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Abstract—In a recent work, we have proposed a novel way to
approximate point sets with grids using the LLL algorithm, which
operates in polynomial time. Now, we show how this approach
can be applied to pattern recognition purposes with interpreting
the rate of approximation as a new feature for regularity
measurement. Our practical problem is the characterization of
pigment networks in skin lesions. For this task we also introduce
a novel image processing method for the extraction of the pigment
network. Then, we show how our grid approximation framework
can be applied with specializing it for the recognition of hexagonal
patterns. The classification performance of our approach for the
pigment network characterization problem is measured on a
database annotated by a clinical expert. Throughout the paper
we address several practical issues that may help to apply our
general framework to other practical tasks, as well.

I. INTRODUCTION

Texture or pattern analysis has been studied by researchers
for many years. In several tasks, textures should be classified
as regular or irregular ones, where regularity can be deter-
mined by appropriate measures. Regularity measurement is
usually applied in cases, where we are intended to compare
different data sets or derive information from a data set.
Its output can be applied to data characterization or data
manipulation like in [1] for regularity-based image filtering, or
in [2] for the analysis of human motion patterns. Regularity
measurement has been considered widely also in medicine.
For example, regularity estimation for epileptic seizure data
is proposed in [3], while the regularity of EEG data is
analyzed on patients suffering from Alzheimers disease in [4].
In this paper, we introduce a new methodology for regularity
measurement in terms of finding well approximating grids of
the pattern components based on a novel theoretical approach.

As for the core theoretical background, we consider the
Lenstra-Lenstra-Lovász (LLL) algorithm [5] which has been
making a reasonable impact in mathematics and computer
science since its publication in the early 1980s; see e.g. [6]
for a comprehensive overview on its applications. In general,
LLL is a very efficient polynomial-time algorithm for finding
simultaneous rational approximations to real numbers. In our
recent work [7], we have made the theoretical foundation of
using the LLL algorithm to obtain well approximating grids
for an input set of points in arbitrary dimension. Now, we
introduce these results into practice with also specializing it
to be able to decide whether the approximated point set has
an expected regular appearance. Our work has been motivated
by the practical problem to classify pigment networks in skin

lesions as regular (typical) or irregular (atypical) ones. The
proposed framework considers also a novel image processing
approach to extract the pigment network components as an
input pattern, and apply an LLL approach to check whether it
has an expected regular (in this case hexagonal) behavior.

The rest of the paper is organized as follows. Our framework
considered for finding well approximating grids for a point
set is discussed in section II including its specialization
to recognize hexagonal patterns. In section III, we fit our
approach to the problem of characterizing pigment networks in
skin lesions. We introduce a novel method for the extraction of
pigment networks from dermoscopy images in section IV, and
present our experimental results regarding the classification of
the extracted networks in section V. Finally, some conclusions
are drawn in section VI.

II. FINDING WELL APPROXIMATING GRIDS

A. The general framework

In its original form [5], the Lenstra-Lenstra-Lovász (LLL)
algorithm was introduced as a procedure for grid (lattice)
basis reduction. The LLL algorithm became very popular both
in theoretical and practical problems [6] partly because it
operates in polynomial time. With an appropriate interpretation
of the original idea behind LLL, in [7] we have introduced
a theoretical approach for the approximation of a point set
with grids. In this approach, we apply the LLL algorithm that
determines well approximating grids if such grids exist, or in
other words, the point set is regular. Our method works in
arbitrary dimension, however, regarding the current content,
we recall the necessary formalization from [7] for 2D only.

Let A = {a1, . . . ,ak} ⊂ R2 is a finite set of points, which
do not fit on a line. To approximate A with a grid, our aim
is to find o,d1,d2 ∈ R2 such that the distance of a − o to
the grid Λ := d1Z+d2Z is relatively small for every a ∈ A.
That is, the point set A is approximated by the grid Λ defined
by the grid basis vectors d1 and d2 and having o as its origin.
As a usual notation for the translation of a set by a vector, we
write U +v for {u+v : u ∈ U} for U ⊂ R2,v ∈ R2. As for
the cardinality of A, we will assume that k > 3, otherwise a
trivial perfectly approximating grid can be found. Moreover,
notice that an arbitrarily well approximating grid can be found
if we let d1, d2 extremely small. Therefore, to take the grid
size also into consideration, the following measures have been



introduced in [7] to calculate the error of approximating A by
a given grid Λ:

NΛ,o(A) := max
a∈A

|a− o− Λ|
∆

(
diam A

∆

) 2
k−3

(1)

and

N
(2)
Λ,o(A) :=

√∑
a∈A |a− o− Λ|2

∆

(
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∆

) 2
k−3

, (2)

where diam A is the diameter of the point set A, and ∆ is the
square root of the lattice determinant of Λ calculated as the
determinant of the 2 × 2 matrix (d1d2). The error measures
NΛ,o(A) and N

(2)
Λ,o(A) compensate expected distance errors,

scaling and the size of the approximating grid; besides other
issues, see [7] for more details.

The method introduced in [7] has a parameter ε ∈ R, which
basically controls the sizes (determinants) of the approximat-
ing grids found. However, for each fixed ε, the LLL algorithm
still generates several different grids, whose basis vectors can
be rather various regarding their lengths and enclosed angles.

B. Specialization to a pattern with known structure

In this paper, we investigate such patterns, whose grid
structures are approximately known. More precisely, we will
focus on patterns having honeycomb-like appearance (see
Figure 1a), which is a quite frequent structure in nature. Here,
we will analyze pigment networks in skin lesions (see Figure
1b), however, according to the result [8] awarded by Nobel
prize in 2014, similar investigations could be performed on
motion trajectories stimulating the navigating system of the
brain (see Figure 1c).

The assumption that we have prior knowledge on the
pattern induces some specialization of the general framework
described in section II-A. Namely, the following two issues
are worth noticing:
i) If the approximate type of the grid is known (e.g.

hexagonal), we can restrict our attention to those grids
found by the algorithm in II-A, whose basis vectors fit
this condition.

ii) If the approximate size (determinant) of the grid is
known, the selection of the parameter ε in section II-A
might be less critical, since from the prior knowledge
we can easily fix an ε to support the generation of the
approximating grids having the expected determinant.

As a specific example, we will consider the hexagonal grid
H shown in Figure 2, where the grid cells are represented by
their centroid and the distance of two grid points is 1. H can
be spanned by the basis D = (d1d2) with

d1 = (1, 0)
T
, and d2 =

(
1/2,
√

3/2
)T

, (3)

so it can be naturally considered as a perfect approximation
of H regarding both the error measures defined in (1) and
(2). Note that the square root of the grid determinant is ∆ =
4
√

3/4 = 0.9306..., and for the enclosed angle of d1 and d2

we have ∠(d1d2) = 60◦. The basis vectors given in (3) are

(a) (b) (c)

Fig. 1: Hexagonal grid structures in nature; (a) honey-
comb pattern, (b) pigment network in a skin lesion, (c)
locations stimulating grid cells of the brain (image source:
http://www.nobelprize.org/nobel prizes/medicine/laureates/
2014/press.html).

shown in Figure 2a. The points of the hexagonal grid H, just
like other grids, can be spanned by other – actually infinitely
many – basis vectors, as well. For example,

d′
1 =

(
1/2,
√

3/2
)T

, and d′
2 =

(
3/2,
√

3/2
)T

, (4)

also span H (see Figure 2a), with ∆′ = 4
√

3/4 = 0.9306...,
and ∠(d′

1d
′
2) = 30◦.

(a) (b)

Fig. 2: The hexagonal grid H defined by different basis
vectors; (a) d1 = (1, 0)

T
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√
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)T

, (b) d′
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√
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)T
,d′

2 =
(
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√
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.

That is, for our later decision on the regularity of a grid, we
need a proper rule to be able to determine, whether two bases
span the same grid or not. For this purpose, we will compare
each basis B returned by the LLL algorithm with D using
some theoretical considerations. Namely, it is known that if
two bases D, B span the same grid, then det(D) = ± det(B)
holds. However, comparing only these determinants would not
guarantee that the two grids are similar, as e.g. a square grid
could easily be defined having the same determinant. Thus, we
take advantage of another property, namely that D and B span
the same grid, if and only if, there exists an unimodular matrix
U (i.e. a square matrix with integer entries and determinant
±1) such that B = DU . Based on this property, for the
comparison of D and B we will apply

D−1B = D−1DU = U, (5)

where D−1denotes the inverse matrix of D. Notice that, the
inverse matrices are guaranteed for both D and B, since they
are both bases. As a decision rule, we check whether the matrix



U obtained through (5) can be accepted as a unimodular one.
That is, if the entries of U are ”nearly ” integers, and |det(U)|
is close to 1, we consider that B can be accepted to span a
hexagonal grid close to that of D.

More precisely, if the respective entries of the matrices of
D and U are written as D = (di,j) and U = (ui,j), we
can introduce three non-negative tolerance parameters with
requiring all the following conditions C1, C2, C3 to hold to
accept U as a unimodular matrix:
• C1) Determinant: || det(U)| − 1| ≤ Tdet,
• C2) Entry-wise: |ui,j − round(ui,j)| ≤ Tew, i, j = 1, 2,

• C3) Sum of entries:
2∑

i,j=1

|ui,j − round(ui,j)| ≤ Tsum,

where round(x) stands for the integer closest to the argument
x. The appropriate selection of the tolerance parameters should
be tuned to the specific application which issue will be
addressed later on also in our practical problem.

Notice that, the above formulation for the decision of the
presence of a pattern is not scale-invariant, since it compares
the grid basis found by LLL with that of the fixed sized H.
Thus, to provide some tolerance, we introduce a corresponding
positive scale parameter λ, and test a specific Uλ matrix
calculated by the appropriate modification of (5)

λD−1B = Uλ, (6)

for a specific range of scales λ ∈ I . E.g., I = {1} provides
a strict decision, while I = {0.9, 1, 1.1} leads to a bit larger
tolerance regarding the expected pattern size.

C. Estimating the rate of regularity

Still if the observed pattern has some grid-like structure,
perfect regular appearance can be hardly expected in applica-
tions. That is, the pattern is just close to the one we consider as
a theoretical model. That is, to be able to decide whether the
pattern should be considered as a realization of the theoretic
one, we must discover the rate of natural noise to what extent
the pattern may differ. After this step, a natural decision on
the pattern can be made based on whether its difference from
the theoretic grid is below this noise level or not. Naturally,
larger reliability can be expected if this noise level can be kept
low, that is, the pattern has a rather strict grid-like appearance.
On the other hand, the tolerance threshold cannot exceed the
level above which the pattern suggests a random behavior.

To check the effect of the natural noise to the appearance
of the pattern, we have made some simple simulations with
artificially distorting the hexagonal grid H. For a precise
formulation, we have selected the point set A = αd1 + βd2

for some specific α, β = ±2,±1, 0 to be the 19 points of
H shown in Figure 2 and applied the noise to A in terms
of translations of its points with some random figures. The
random translation values for both coordinates have been
selected from the interval [−1, 1] with noting that a maximum
level of noise is already able to exchange two neighboring
grid points. After applying different levels of noise, we have
executed our LLL algorithm to find well approximating grids.

From these grids, we have selected the one having the smallest
error with respect to N

(2)
Λ,o(A) defined in (2). Notice that

similar results can be obtained by using the error term (1).
In Figures 3a and 3b we show two examples for different
levels of noises with the best approximating grids found. It
can be observed that in the case of small error, the hexagonal
structure is still preserved, however, in the case of larger noise
it is possible that the best approximating grid found by the
LLL method will not be the hexagonal one any more.

(a) (b)

(c)

Fig. 3: Best approximating grids found by LLL after adding
random translational noise to the hexagonal grid (blue dots:
deformed hexagonal grid, red squares: approximating grid);
(a) noise level 0.1, (b) noise level 0.3, (c) N (2)

Λ,o(A) error of
grid approximation against noise level (approximating grid is
accepted as the hexagonal one in the green region).

We present the minimal N (2)
Λ,o(A) error occuring among the

approximating grids found by LLL against the level of noise
in Figure 3c. It is natural that the error grows linearly with the
noise level, however, it can be also nicely observed that from
the noise level which practically transforms A to be a random
point set, the grid approximation error becomes approximately
constant. In other words, a threshold for the natural noise
tolerance should be selected by no means below this level. In
Figure 3c, we have also indicated the noise domain by green,
where the best approximating grid could be considered as a
hexagonal one. For this selection, we set the tolerance levels
for conditions C1, C2, C3 as Tdet = 0.05, Tew = 0.05, Tsum =
0.15. Also notice that in this simulation we can ignore the
scale issue addressed with (6), so can fix the scale parameter
as λ = 1.

III. ESTIMATING THE TOLERABLE NOISE LEVEL FOR
PIGMENT NETWORKS

The pigment network is an important feature in dermoscopy
for the detection of skin cancer (malignant melanoma). It is



a grid-like or honeycomb-like structure consisting of round,
pigmented lines and lighter hypo-pigmented holes. As for
its classification, the pigment network can be either typical
or atypical. Slowing growing benign pigmented lesions pro-
duce uniform patterns lending a more regular honeycomb-like
(hexagonal) appearance to the network. In the typical case,
the lines are uniformly populated with benign pigment cells
that grow at a slow rate. On the other hand, atypical pigment
networks relate more to melanomas consist of malignant
melanocytes that vary in size and degree of pigmentation.
Malignant cells move through the epidermis in all directions
at varying rates, which movement results in structures with
bizarre patterns. In such atypical networks, cells are numerous
in some locations and sparse in others. More details on this
topic can be found in [9].

The above dermoscopic differences of pigment networks
suggest the idea to classify them as typical or atypical based
on measuring their regularity. Namely, we apply our LLL
approach to check whether a point set extracted from the
pigment network can be approximated by a regular hexagonal
grid or not. We start with showing how the parameters of our
framework should be adjusted according to this task.

Though the literature describes the typical pigment network
as having a honeycomb-like pattern, it has a natural deviation
from the regular hexagonal grid. To be able to distinguish this
natural noise from atypical appearance, a local dermatologist
selected manually the centers of pigment cells in some typical
and atypical pigment networks. For these manually annotated
point sets, we applied the LLL algorithm to find well ap-
proximating grids. From these tests we could determine the
appropriate tolerance levels regarding conditions C1, C2 and
C3 for the allowed distortion of the regular hexagonal grid.
Namely, we have set Tdet = 0.3, Tex = 0.15 and Tsum = 0.5
to distinguish the typical and atypical appearances.

Moreover, we must address the scale issue described in (6).
That is, we have to find that basis B among the ones returned
by the LLL approach, which spans the hexagonal grid having
the basis λD with minimal error considering (1) or (2). Here,
the scale parameter λ falls within an allowable range [λ̃ −
δ, λ̃ + δ] with some δ > 0 to have the closest input points
to be adjacent in the approximating grid. More precisely, for
each input point set A = {a1, . . . ,ak} we set

λ̃A =

k∑
i=1

k
min

j=1,j 6=i
(‖ai,aj‖2)

k
, (7)

where ‖ai,aj‖2 denotes the Euclidean distance of the points
ai and aj . As for the proper figures, we had 10 ≤ λ̃A ≤
20 according to the difference of the sizes of the pigment
networks, and δ was adjusted to be λ̃A/2.

When the LLL approach did not find a grid which can
be accepted as a hexagonal one with the above setup, the
pigment network is considered as an atypical one. On the
other hand, if LLL found a basis B meeting the tolerance
levels with being sufficiently hexagonal, its approximation
error is checked. Based on the manually annotated pigment

network images, we consider the network to be typical, if for
its approximation error N (2)

Λ,o(A) < 3.1 holds. Notice that,
with corresponding scaling this value fits the noise level 0.15
in Figure 3c. In Figure 4a, a typical pigment network is shown
which can be approximated by a regular hexagonal grid, while
an atypical lesion can be seen in Figure 4b.

(a) (b)

Fig. 4: Manual annotated pigment networks to adjust tolerance
levels for hexagonal grid approximation; (a) a typical network,
(b) an atypical network.

IV. PIGMENT NETWORK EXTRACTION

In order to use our regularity measure for pigment network
classification, we should extract the centroids of the pigment
cells by an automated method. In this section, we present
a new algorithm for the extraction of the pigment network,
whose regularity will be further analyzed by our grid matching
approach described earlier.

Our extraction procedure works on an intensity image, thus,
it starts with a grayscale conversion of the input color image.
In the first phase of its operation, the proposed method applies
a pixel-wise directional scheme. For every pixel, the intensity
values along discrete line segments of different orientations
centered at the pixel under examination are considered. The
orientations of these segments uniformly cover the range
[0, 180◦] with a fixed rotation angle δφ between them that
was set to 6◦ in our implementation. The vector consisting
of the intensity values along such a line segment is referred
to as a cross-sectional intensity profile. Its length, i.e., the
number of its composing pixels is 2r + 1. Let P denote such
a profile and P [i] the intensity of its its i-th pixel, where
i = −r, . . . , r. Thus, the central value, i.e., the intensity
of the pixel whose surroundings is being examined is P [0].
In our implementation, r was set to 10, however, it will be
later shown that this is not a critical parameter. The operation
described in the following is applied on all cross-sections of
a pixel, resulting in a response value. This way, a directional
response vector (DRV ) is assigned to every pixel.

The second order derivative of the Gaussian (SDG) filter is
widely used in signal and image processing tasks. Its negative
normalized variant is often referred to as the Mexican-hat due
to its shape. The two dimensional counterpart is known as
the Laplacian of Gaussian (LoG) filter and is a fundamental
tool in corner, blob and edge detection tasks. The SDG filter
including a scale parameter σ is given as

G′′σ(x) =
x2 − σ2

σ4
exp

(
−x2

2σ2

)
. (8)



Favorable properties of the SDG filter are being zero-
mean and flattening out to zero. Hence, the response is less
dependent on the length of the cross-section than it would
be in the case of e.g., zero-mean Gaussian masks. The only
constraint is that the cross-section length should be sufficiently
large to allow the SDG filter with the largest scale to flatten
out. The general way to calculate the matched filter response
is the discrete cross-correlation of the signal and the mask. If
both data are real and the mask is central symmetric, this is the
same as discrete convolution. Thus, both expressions occur in
the literature. In the case of the proposed technique, the size
of the cross-section profile and the mask are equal. Since only
the response at the central position is relevant, the operation
simplifies to the sum-product of the two vectors. That is, the
matched filter response of an SDG on a profile P is given as

MP,σ =

r∑
i=−r

P [i]G′′σ(i). (9)

The most important drawback of this correlation based
matching of directional SDGs is the high response for asym-
metric bright intensity transitions, such as those occurring at
the boundary of air bubbles in dermatoscopic images. The
solution proposed here is to split the sum-product (9) to a left
and right part, excluding the central element, and subtracting
the absolute difference of these two from the entire response.
Thus, a symmetry constraint is incorporated. In the case of
an SDG filter, the sum-products may be negative, yielding
erroneous effects. In such a case, the response is considered
to be zero. The formal description can be given as:

MP,σ = ML
P,σ + P [0]G′′σ(0) +MR

P,σ, where

ML
P,σ=

−1∑
i=−r

P [i]G′′σ(i), MR
P,σ=

r∑
i=1

P [i]G′′σ(i).
(10)

This way, the symmetric matched filter response (SM ) is
expressed as

SMP,σ = max(MP,σ − |ML
P,σ −MR

P,σ|, 0). (11)

To handle the varying thickness of pigment network lines,
SDG masks corresponding to different scale parameters σ
are matched against the profile, and the maximal response
is selected. Formally, the final multiscale symmetric matched
filter (MSM ) response for cross-section profile P is given as

MSMP = max
σ

(SMP,σ). (12)

In our implementation, the scale values σ range from 1.0 to
3.0 with a step of 0.1.

In order to obtain a single value that describes the likelihood
of a pixel being part of the pigment network, a score for every
pixel using the statistical measures of its response vector is
calculated. A formula that considers the mean µDRV , standard
deviation σDRV and maximal value maxDRV of the response
vector is considered here. The idea behind this approach is that
points of elongated structures, such as those of the pigment
network, have low or zero response at directions matching the

orientation of the corresponding structure. Thus, the variation
of responses over the directions is higher. Therefore, the score
of a pixel is calculated by multiplying the response vector
mean with its standard deviation, and then divide the product
by the maximal response value to achieve a certain level of
normalization, i.e.

score(DRV ) =
µDRV σDRV

maxDRV
. (13)

To obtain a binary network mask, a hysteresis thresholding
technique is applied to the score map. This means that two
threshold values are considered, a high (thigh) and a low
(tlow) one, and those pixels are marked as foreground ones,
whose score is greater than tlow, and are connected to at
least one point with a score greater than thigh through an
8-connected path of points with scores greater than tlow. The
high threshold was set as the mean score, and tlow = thigh/2.

The recognition of the pigment network is based on an-
alyzing the holes of the binary network mask, i.e., those
4-connected components of background pixels that do not
touch the image borders. Since the network segmentation
is not perfect, several such holes will be detected even in
images that do not contain pigment networks. Consequently,
the holes need to be filtered. First, holes consisting of less
than 5 or more than 400 pixels are automatically rejected
(at image resolution 768 × 560). For the remaining holes, a
simple convexity measure, the ratio of the area of the hole,
and the area of its convex hull is calculated. This measure
is known as the solidity, and those hole components are
kept, whose solidity is at least 0.8. The remaining holes are
decomposed into disjoint groups, based on proximity analysis
using a simple maximal distance clustering. In each such
group, every hole must be within this maximal distance to
at least another hole component. The group is considered to
correspond to a pigment network if it is composed of at least
four hole components. The number of holes in groups that
fulfill this criteria are summed up, and if this number exceeds
a certain threshold, then the lesion is considered to contain
a pigment network. This threshold was set to 50 in our test
implementation. The steps of our proposed pigment network
extraction approach are also shown in Figure 5.

V. EXPERIMENTAL RESULTS

Currently, few dermoscopic image sets are publicly avail-
able like PH2 [10] or the ones involved in the International
Skin Imaging Collaboration (ISIC): Melanoma Project [11].
For our testing purposes, PH2 was more suitable, since it
contains manual annotations regarding the typical/atypical
appearance at image-level. These labels are derived from the
presence/absence of atypical pigment networks. Namely, if the
specialist can detect atypical pigment network in any sub-
region of the lesion, the whole lesion is considered atypical.
That is, if the lesion contains only typical networks, then it
is typical but an atypical lesion may contain typical networks,
as well. This behavior requires a local investigation on the
pigment networks detected in the image, which is supported
by the method described in section IV.



(a) (b)

(c) (d)

Fig. 5: Steps of extracting the pigment network; (a) a sample
dermatoscopic image; (b) the calculated network score map
(contrast enhanced for better visualization), (c) the holes of
the segmented network, (d) the result of the maximal distance
clustering of the filtered hole components.

PH2 contains 200 8-bit RGB color dermoscopic images (80
common nevi, 80 atypical nevi, and 40 melanomas) taken at
20× optical zoom and resolution 768x560. Only 94 images (39
typical, 55 atypical at lesion-level) contain pigment networks
which images are divided into 136 sub-regions containing pig-
ment network segments. However, no annotation is available
in PH2 at network-level regarding typical/atypical behavior.
Thus, these network segments were labeled manually by a
local dermatologist (62 typical and 74 atypical).

The method described in section IV extracts the pigment
cells of the network. The input point set A = {a1, . . . ,ak} is
composed from the centroids of these components and well
approximating grids are found by the LLL algorithm. If a
grid spanned by a basis B meets the tolerance levels to be
sufficiently hexagonal and provide low approximation error,
we consider the pigment network typical, otherwise atypical.
In this way, the accuracy of automated classification of the
136 sub-regions was found to be 0.71 (with sensitivity 0.82
and specificity 0.58). When a lesion is classified at image-
level based on whether it contains atypical sub region or not,
we reached 0.76 accuracy. These figures currently cannot be
compared with other works, since existing methods like [12],
[13] and [14] focus only on the decision on the presence
of pigment networks and not on their classification. The
advantage of the proposed pigment network extraction method
comes from the more extensive use of the information about
the local surroundings of the individual pixels through the
usage of directional response vectors.

VI. CONCLUSION

The proposed way for measuring pattern regularity based
on grid matching could be useful in other fields, as well. Our
effort to develop the theoretical foundation of grid matching

was motivated by the clinical problem to classify pigment
networks in skin lesions as typical or atypical ones. We have
showed how the LLL algorithm can be used for finding well
approximating grids if we have some preliminary conditions
regarding the expected structure. Moreover, we have intro-
duced a new technique for pigment network extraction. The
output of this method is further analyzed using the LLL
framework to decide whether a well approximating hexagonal
grid can be found ro recognize typical pigment networks. Our
experimental results show that our approach is reasonable in
this field, and the LLL approach with its polynomial-time
complexity is very efficient also for this purpose. However,
a proper extraction of the network components is important
for accurate grid approximation, and thus, the corresponding
image processing algorithms need further improvements.
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