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1. Introduction

Let K be an algebraic number field of degree k, and let α1, . . . , αn be

linearly independent elements of K over Q. Denote by D ∈ Z the common

denominator of α1, . . . , αn and put βi = Dαi (i = 1, . . . , n). Note that

β1, . . . , βn are algebraic integers of K. Let m be a non-zero integer and

consider the norm form equation

(1.1) NK/Q(x1α1 + . . . + xnαn) = m

in integers x1, . . . , xn. Let H denote the solution set of (1.1) and |H| the size

of H. Note that if the Z-module generated by α1, . . . , αn contains a sub-

module, which is a full module in a subfield of Q(α1, . . . , αn) different from

the imaginary quadratic fields and Q, then this equation can have infinitely

many solutions (see e.g. Schmidt [19]). Various arithmetical properties of

the elements of H were studied in [11] and [8]. In the present paper we are

concerned with arithmetical progressions in H. Arranging the elements of

H in an |H| ×n array H, one may ask at least two natural questions about

arithmetical progressions appearing in H. The ”horizontal” one: do there

exist infinitely many rows of H, which form arithmetic progressions; and

the ”vertical” one: do there exist arbitrary long arithmetic progressions in

some column of H? Note that the first question is meaningful only if n > 2.

The ”horizontal” problem was treated by Bérczes and Pethő [4] by proving

that if αi = αi−1 (i = 1, . . . , n) then in generalH contains only finitely many
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effectively computable ”horizontal” AP’s and they were able to localize the

possible exceptional cases. Later Bérczes and Pethő [5], Bérczes Pethő

and Ziegler [6] and Bazsó [2] computed all horizontal AP’s in the solution

sets of norm form equations corresponding to the fields generated by the

polynomials xn − a, 2 ≤ a ≤ 100, x3 − (a− 1)x2 − (a + 2)x− 1, a ∈ Z and

xn + a, 2 ≤ a ≤ 100, respectively.

For quadratic norm form equations, which are called Pell equations if

K is a real quadratic field, only the ”vertical” problem is interesting. In

this direction Pethő and Ziegler [18] proved among others that the length

of the ”vertical” AP’s in H is bounded by a constant, which depends on

the coefficients of the (quadratic) form and on m. On the other hand, they

proved that every three term AP occurs in the second column of infinitely

many H. Dujella, Pethő and Tadić [7] was able to extend this result to four

term AP’s.

The main goal of the present paper is to generalize the result of Pethő and

Ziegler [18] to arbitrary norm form equations. In the sequel AP in H always

means a ”vertical” arithmetical progression belonging to H. A sequence in

H, with the property that all the corresponding coordinate sequences form

”vertical” AP’s, will be called an algebraic AP in H.

2. Results

Now we summarize our main results.

Theorem 2.1. Let (x
(j)
1 , . . . , x

(j)
n ) (j = 1, . . . , t) be a sequence of distinct

elements in H such that x
(j)
i is an arithmetic progression for some i ∈

{1, . . . , n}. Then we have t ≤ c1, where c1 = c1(k,m, D) is an explicitly

computable constant.

Theorem 2.2. The set H contains at most c3 arithmetic progressions of the

form x+kd (k = −1, 0, 1). Here c3 = c3(k, m,D) is an explicitly computable

constant, x = (x1, . . . , xn), d is a non-zero integer, and d is the n-tuple with

all entries equal to d.

By Theorem 2.1 the length of any AP in H is bounded. In the particular

case k = 2, H does not contain any algebraic AP (see Pethő and Ziegler

[18]). However, it is not possible to give a bound for the number of AP-s
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in H for k ≥ 3. It is demonstrated by the following example. Let P (x) =

x(x − 1) . . . (x − k + 1) + (−1)k and denote by α one of its roots. It was

proved in [14] (Lemma 2.2, see also [1, 13] and [17]), that P (x) is irreducible

and the conjugates of α are α + 1, . . . , α + k − 1. Thus these k numbers

are units of norm 1 in the algebraic number field Q(α), moreover they form

an AP of length k. If µ is an algebraic integer in Q(α) of norm m then

µα, µ(α + 1), . . . , µ(α + k− 1) also have norm m, and form an AP of length

k.

The next theorem shows that in general if H contains algebraic AP-s at

all, then it contains infinitely many.

Theorem 2.3. Suppose that n = k ≥ 3. Let t ≥ 3 be an integer. If

H contains a non-constant t-term algebraic AP, then it contains infinitely

many.

Now we prove that the algebraic AP’s from the example before Theorem

2.3 are the longest ones. More precisely, we have the following theorem.

Theorem 2.4. Let K be an algebraic number field of degree k. Assume

that α1, . . . , αt ∈ K have the same field norm and form a non-trivial AP.

Then t ≤ k.

Remark. We note that M. Newman ([16], see also [17]) proved that the

length of arithmetic progressions consisting of units of an algebraic number

field of degree k is at most k. Theorem 2.4 is a generalization of his result.

To formulate the next result, for a non-zero integer a let ω(a) denote

the number of prime divisors of a, and for a prime p denote by ordp(a) the

highest exponent u such that pu divides a.

Theorem 2.5. Suppose that the Galois group of the normal closure of

K is doubly transitive. Then the number of those solutions (x1, . . . , xn)

of equation (1.1), for which there exists another solution (y1, . . . , yn) 6=
(x1, . . . , xn), such that

∏n
i=1(xi − yi) = 0, is bounded by

Ψ(k, n, mDk) exp
(
k(12n)6n

)
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where

Ψ(k, n, mDk) :=

(
k

n− 1

)ω(mDk)

·
∏
p|m

p prime

(
ordp(mDk) + n− 1

n− 1

)
.

Theorem 2.6. Let S be a set of s rational primes, and let T be the set of

integers without prime divisors outside S. Suppose that the Galois group of

the normal closure of K is doubly transitive. Then the number of those so-

lutions (x1, . . . , xn) of equation (1.1), for which there exists another solution

(y1, . . . , yn) 6= (x1, . . . , xn), such that xi− yi ∈ T for some i ∈ {1, . . . , n}, is

bounded by

Ψ(k, n, mDk) · exp
(
(s + k)(12n)6n+3

)
,

where Ψ is the function defined in Theorem 2.5.

Remark. By the help of Theorems 2.5 and 2.6 one can easily give a

bound for the number of sequences xj = (x
(j)
1 , . . . , x

(j)
n ) ∈ H such that one

of the coordinates of xj forms an arithmetic progression whose difference is

zero or is an S-unit, respectively.

3. Auxiliary results

In this section we present some lemmas which will be needed in the proofs

of our theorems. For this purpose we need to introduce some notation. Let

L be a number field of degree l and denote by UL the unit group of L. The

next statement is an immediate consequence of a result of Hajdu [12]. Note

that a similar result was independently proved by Jarden and Narkiewicz

[15]

Lemma 3.1. Let n be an integer and let A be a finite subset of Ln. There

exists a constant C1 = C1(l, n, |A|) such that the length of any non-constant

arithmetic progression in the set
{

n∑
i=1

aiyi : (a1, . . . , an) ∈ A, (y1, . . . , yn) ∈ Un
L

}

is at most C1.
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For some other arithmetical properties of the set occurring in Lemma 3.1,

see [11].

Let K be a number field of degree k, α1, . . . , αn linearly independent

algebraic integers in K, m ∈ Z, and λ ∈ K. Consider now the equation

(3.2) NK/Q(α1x1 + · · ·+ αnxn + λ) = m in x1, . . . , xn ∈ Z.

The next lemma is a special case of Corollary 8 of [3].

Lemma 3.2. Suppose that α1, . . . , αn and λ are linearly independent over

Q. Then the number of solutions of equation (3.2) does not exceed the bound

(
217k

)( 2
3
(n+1)(n+2)(2n+3)−4)(ω(m)+1)

.

Let F be an algebraically closed field of characteristic 0. Write F ∗ for

the multiplicative group of nonzero elements of F , and let (F ∗)n be the

direct product consisting of n-tuples x = (x1, . . . , xn) with xi ∈ F ∗ for

i = 1, . . . , n. For x, y ∈ (F ∗)n write x ∗ y = (x1y1, . . . , xnyn). Let Γ be

a subgroup of (F ∗)n and suppose that (a1, . . . , an) ∈ (F ∗)n. Consider the

so-called generalized unit equation

(3.3) a1x1 + . . . + anxn = 1

in x = (x1, . . . , xn) ∈ Γ. A solution x is called non-degenerate, if no subsum

of the left hand side of (3.3) vanishes, that is
∑
i∈I

aixi 6= 0 for any nonempty

subset I of {1, . . . , n}. The next lemma is Theorem 1.1 of Evertse, Schlick-

ewei and Schmidt [10].

Lemma 3.3. Suppose that Γ has finite rank r. Then the number of non-

degenerate solutions x ∈ Γ of equation (3.3) is bounded by

exp
(
(6n)3n(r + 1)

)
.

Let M be the Z-module generated by the elements α1, . . . , αn. Clearly,

equation (1.1) can be transformed to the equation

(3.4) NK/Q(δ) = m in δ ∈M.



6 A. BÉRCZES, L. HAJDU, AND A. PETHŐ

Lemma 3.4. The set of solutions of (3.4) is contained in some union

δ1O∗
K ∪ · · · ∪ δtO∗

K, where

t ≤ Ψ(k, n,m) =

(
k

n− 1

)ω(m)

·
∏
p|m

p prime

(
ordp(m) + n− 1

n− 1

)

and δ1, . . . , δt are solutions of (3.4).

Proof. This is a special case of Lemma 4 of [9]. ¤

4. Proofs

Proof of Theorem 2.1. Recall that H is the solution set of (1.1), D is the

common denominator of α1, . . . , αn, and βi = Dαi (i = 1, . . . , n).

Suppose first that we have a non-constant sequence (x
(j)
1 , . . . , x

(j)
n ) (j =

1, . . . , t) in H such that x
(j)
i is constant for some i ∈ {1, . . . , n}. Let λ :=

x
(j)
i ·βi. Then equation (1.1) is of the shape (3.2) and by Lemma 3.2 we see

that the number of such solutions of (1.1) (i.e. t) is bounded by
(
217k

)( 2
3
n(n+1)(2n+1)−4)(ω(mDk)+1) ≤ c1(k, m,D).

Assume next that (x
(j)
1 , . . . , x

(j)
n ) ∈ H for j = 1, . . . , t such that x

(j)
i forms

a non-constant arithmetic progression for some i ∈ {1, . . . , n}. Writing

σ1, . . . , σk for the isomorphisms of K into C, for u = 1, . . . , k we have

x1σu(β1) + . . . + xnσu(βn)σu(ε)σu(µ)

where µ is an element of norm mDk and ε is a unit in the Z-module

Z[β1, . . . , βn]. By Lemma 3.4 µ can be chosen from a set having at most

Ψ(k, n, mDk) elements. Consider a fixed value of µ. Choose the order of

the isomorphisms σ1, . . . , σk such that the matrix

(4.5) B




σ1(β1) . . . σ1(βn)
...

. . .
...

σn(β1) . . . σn(βn)




has non-zero determinant. Hence we have

(4.6)




x1

...

xn


 = B−1




σ1(ε)σ1(µ)
...

σn(ε)σn(µ)


 .
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Writing

(4.7) B−1




γ11 . . . γ1n

...
. . .

...

γn1 . . . γnn




we get

xi = ai1y1 + . . . + ainyn

for all i = 1, . . . , n, where aih = γihσh(µ) and yh = σh(ε) for h = 1, . . . , n.

Noting that the yh (h = 1, . . . , n) are units in the splitting field L of K, and

deg(L) ≤ k!, using n ≤ k the theorem follows from Lemma 3.1. ¤

Proof of Theorem 2.2. Obviously, in view of Theorem 2.1 it is sufficient to

give an upper bound for the number of three-term progressions in H. For

this purpose, assume that (x1, . . . , xn) is the middle term of a three-term

arithmetic progression in H, with common difference d1. Denote by UK the

unit group of the ring of algebraic integers of the field K. Put

µ±1 = (x1 ± d)β1 + . . . + (xn ± d)βn and µ0 = x1β1 + . . . + xnβn.

Note that NK/Q(µ−1) = NK/Q(µ0) = NK/Q(µ1) = mDk, and further that

µh = εhµ
∗
h (h = −1, 0, 1) where ε−1, ε0, ε1 ∈ UK and µ∗−1, µ

∗
0, µ

∗
1 belong to a

finite set whose cardinality is bounded in terms of k, m,D. Thus we have

µ∗−1ε−1 − 2µ∗0ε0 + µ∗1ε1 = 0.

Hence Lemma 3.3 implies that

(ε−1, ε0, ε1) = ε(ε∗−1, ε
∗
0, ε

∗
1)

with some ε ∈ UK , where (ε∗−1, ε
∗
0, ε

∗
1) belongs to a finite subset of U3

K , of

cardinality bounded by some constant depending only on k, m, D. Thus we

conclude that

µh = ελh (h = −1, 0, 1)

holds, where ε ∈ UK and λ−1, λ0, λ1 belong to a finite set of cardinality

depending only on k, m,D again. Observe that d = ε(λ1 − λ0) holds, and

further that this d can be rational for at most one choice of ε ∈ UK (up to

a factor −1), for any fixed (λ−1, λ0, λ1). Hence the theorem follows. ¤
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Proof of Theorem 2.3. Suppose that (x
(j)
1 , . . . , x

(j)
n ) (j = 1, . . . , t) is a non-

constant algebraic AP in H. Let ε be an arbitrary unit in Z[β1, . . . , βn] of

norm 1, and define (y
(j)
1 , . . . , y

(j)
n ) by

y
(j)
1 β1 + . . . + y(j)

n βn = ε(x
(j)
1 β1 + . . . + x(j)

n βn) for j = 1, . . . , t.

Obviously, then (y
(j)
1 , . . . , y

(j)
n ) (j = 1, . . . , t) is a non-constant algebraic AP

in H. As there are infinitely many units in Z[β1, . . . , βn] of norm 1, the

theorem follows. ¤

Proof of Theorem 2.4. Denote by m the common norm of α1, . . . , αt. As

these numbers form an AP, we have αi = α1 + (i− 1)(α2−α1), i = 1, . . . , t.

This implies αi

β
= α1

β
+ i − 1 with β = α2 − α1. Put M for the norm of β

and P (x) = xu + pu−1x
u−1 + · · · + p0, pj ∈ Q for the minimal polynomial

of α1

β
. It is well known that the defining polynomial of α1

β
is a power of its

minimal polynomial, i.e. u|k and p
k/u
0 = (−1)km/M . If k = u then we even

have p0 = (−1)km/M otherwise, because both p0 and m/M are rational

numbers, there are at most two possibilities for p0, which differ from each

other only in their sign.

Consider the polynomials Pi(x) = P (x − (i − 1)), i = 1, . . . , t. They are

with P (x) irreducible and we have

Pi

(
αi

β

)
= P

(
αi

β
− (i− 1)

)
P

(
α1

β

)
= 0,

i.e. αi

β
is a root of Pi(x), which together with the irreducibility of Pi(x)

implies that it is the minimal polynomial of αi

β
. Thus its constant term is

equal to p0 if k = u and may differ from p0 only in its sign, otherwise. Hence

P (−i + 1), i = 1, . . . , t is constant if k = u or can assume only at most two

different values. If k = u this implies P (x) = x(x−1) . . . (x− t+1)+p0 and

we have t ≤ k as stated. If u < k then there exists a subset I ⊆ {1, . . . , t}
of size |I| ≥ t/2 such that P (−i + 1) takes the same value for all i ∈ I.

By the theory of interpolation the degree of P must be at least |I|, i.e.

u ≥ |I| ≥ t/2. On the other hand, u < k and u|k imply u ≤ k/2. ¿From

the last two inequalities we get t ≤ k in this case, too. ¤

Proof of Theorem 2.5. We shall bound the number of those solutions of

equation (1.1), for which there exists a solution (y1, . . . , yn) 6= (x1, . . . , xn)
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with xi = yi for some i ∈ {1, . . . , n}. Now equation (1.1) means that

(4.8) β1x1 + β2x2 + · · ·+ βnxn = µ1ε1

and

(4.9) β1y1 + β2y2 + · · ·+ βnyn = µ2ε2

where µ1, µ2 are elements of norm mDk and ε1, ε2 are units in the Z-module

generated by β1, . . . , βn. By Lemma 3.4 both µ1 and µ2 can be chosen

from a set having at most Ψ(k, n,mDk) elements. Consider fixed values

of µ1 and µ2. Denote again by σ1, . . . , σk the isomorphic embeddings of K

into C, choosing their order such that the matrix B in (4.5) has nonzero

determinant. Using (4.7), equation (4.8) leads to equation (4.6). This means

that

(4.10) xi =
n∑

j=1

γijσj(µ1)σj(ε1).

Similarly, using equation (4.9) we can show that

(4.11) yi =
n∑

j=1

γijσj(µ2)σj(ε2).

One can easily check that γij 6= 0 for at least two indices j ∈ {1, . . . , n}.
Thus without loss of generality we may assume that γi1, . . . , γiN are non-

zero and γi,N+1 = · · · = γin = 0, for some 2 ≤ N ≤ n. Now subtracting

equations (4.10) and (4.11) we get

(4.12)
N∑

j=1

(γijσj(µ1)σj(ε1)− γijσj(µ2)σj(ε2)) = 0.

This is a homogeneous unit equation consisting of 2N terms. We shall

bound the number of solutions of this equation. First we count the non-

degenerate solutions of (4.12). Dividing the equation by the last term we

obtain

(4.13)
N−1∑
j=1

(
γijσj(µ1)

γinσN(µ2)

σj(ε1)

σN(ε2)
− γijσj(µ2)

γiNσN(µ2)

σj(ε2)

σN(ε2)

)
+

σN(µ1)

σN(µ2)

σN(ε1)

σN(ε2)
= 1,
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which is an inhomogeneous unit equation having 2N − 1 terms. We easily

see that all solutions to this equation are contained in the subgroup

Γ =

{(
σ1(ε1)

σN(ε2)
,

σ1(ε2)

σN(ε2)
,

σ2(ε1)

σN(ε2)
,

σ2(ε2)

σN(ε2)
, . . . ,

σN(ε1)

σN(ε2)

)
| ε1, ε2 ∈ O∗

K

}

of (C∗)2N−1. Clearly, this group has rank at most 2rK , where rK is the unit

rank of the field K. Indeed, if η1, . . . , ηrK
denotes a fundamental system of

units in K then, the subgroup Γ0 of (C∗)2N−1, generated by the vectors

aj = (σ1(ηj), 1, σ2(ηj), 1, . . . , 1, σN(ηj)) (j = 1, . . . , rK),

and

bi =

(
1

σN(ηj)
,

σ1(ηj)

σN(ηj)
,

1

σN(ηj)
,

σ2(ηj)

σN(ηj)
, . . . ,

σN−1(ηj)

σN(ηj)
,

1

σN(ηj)

)
(j = 1, . . . , rK)

has rank at most 2rK . Further, the factor group Γ/Γ0 is a torsion group.

This means that the solutions of equation (4.13) belong to a subgroup of

rank at most of 2k − 2 of (C∗)2N−1. Thus, σ1(ε1)
σN (ε2)

is contained in a set of at

most

exp
(
(12N − 6)6N−3(2k − 1)

)

elements. Fix now such a value. Then using that the Galois group of K is

doubly transitive, we see that σl(ε1)
σj(ε2)

is also fixed for each j, l ∈ {1, . . . , k}. By

multiplying the ratios σ1(ε1)
σj(ε2)

for j ∈ {1, . . . , k} and using that
∏k

j=1 σj(ε2) =

±1 we get that ε1 may assume at most 2k values. Similarly, ε2 may assume

at most 2k values. These altogether show that the number of non-degenerate

solutions of equation (4.12) is bounded by

(4.14) exp
(
(12N − 6)6N−2(4k − 2)

)
.

Now we have to estimate the number of degenerate solutions of (4.12), too.

If γijσj(µ1)σj(ε1) − γijσj(µ2)σj(ε2) = 0 for all j ∈ {1, . . . , N} then we get

that σl(µ1)σl(ε1)σl(µ2)σl(ε2) for some l ∈ {1, . . . , N} and thus µ1ε1 = µ2ε2.

Now subtracting equations (4.8) and (4.9) and using that β1, . . . , βn are

linearly independent, we get that xj = yj for all j ∈ {1, . . . , n}, which is a

contradiction. Thus we must have one of the following two cases:

(i) Equation (4.12) has a minimal vanishing sub-sum (i.e. a sub-sum

with no further vanishing sub-sums) which contains both σj(ε1) and

σl(ε2) for some j 6= l, j, l ∈ {1, . . . , N}. Similarly to the case of the
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non-degenerate solutions we can prove that the number of solutions

of (4.12) is bounded by the expression in (4.14).

(ii) Equation (4.12) has both a minimal vanishing sub-sum which con-

tains σj(ε1) and σl(ε1) for some j 6= l, j, l ∈ {1, . . . , N}, and a

minimal vanishing sub-sum which contains σu(ε2) and σv(ε2) for

some u 6= v, u, v ∈ {1, . . . , N}. Further, these vanishing sub-sums

contain at most N terms. Thus we infer again a much better bound

than the bound (4.14) on the number of solutions in this case.

Finally, we have 22N−1 possibilities for choosing the considered sub-sums,

so altogether the number of solutions (ε1, ε2) of equation (4.12) is bounded

by

(4.15) exp
(
(12N − 6)6N−1(4k − 2)

)
.

Thus (using that N ≤ n) the number of those solutions of equation (1.1),

for which there exists a solution (y1, . . . , yn) 6= (x1, . . . , xn) with xi = yi, is

bounded by

Ψ(k, n,mDk) exp
(
(12n− 6)6n−1(4k − 2)

)
.

Thus the number of those solutions (x1, . . . , xn) of equation (1.1), for which

there exists another solution (y1, . . . , yn) 6= (x1, . . . , xn), such that
∏n

i=1(xi−
yi) = 0 is bounded by

nΨ(k, n,mDk) exp
(
(12n− 6)6n−1(4k − 2)

) ≤ Ψ(k, n,mDk) exp
(
k(12n)6n

)
.

¤

Proof of Theorem 2.6. We start the proof of the present theorem exactly

in the same way as the proof of Theorem 2.5. The first difference is that

instead of equation (4.12) we get

(4.16)
N∑

j=1

(γijσj(µ1)σj(ε1)− γijσj(µ2)σj(ε2)) = d ∈ T.

Now divide this equation by d to get an inhomogeneous S-unit equation

having 2N terms. Using Lemma 3.3 we can bound (similarly to the proof of

Theorem 2.5) the possibilities for either the values of σu(ε1)
d

, or the values of
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σu(ε2)
d

for some u, depending on the vanishing subsums in the unit equation.

This bound is given by

(4.17) exp
(
(12N)6N(s + 2k − 1)

)
.

Since d ∈ Z and σu(ε1) is a unit, thus if σu(ε1)
d

is fixed, then d may assume

at most two values and by fixing one of those, σu(ε1) becomes also fixed.

Then we can fix ε2, too. A similar argument works also when first we are

able to fix σu(ε2)
d

. Thus for the number of solutions of equation (1.1), for

which there exists another solution (y1, . . . , yn) 6= (x1, . . . , xn), such that

xi − yi ∈ T for some i ∈ {1, . . . , n}, is bounded by

Ψ(k, n, mDk) exp
(
(s + k)(12n)6n+3

)
.
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