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1. Introduction

In 1965, Posner and Rumsey [2] considered polynomials that divide infinitely
many trinomials. They made an attempt to determine all such polynomials but
they could only partially solve this problem. Further, they made a conjecture on
polynomials which divide infinitely many k-nomials. To formulate their conjecture
we need to introduce the concept of standard k-nomials. We remark that this
concept in the form below is due to Győry and Schinzel [1].

A polynomial P (x) with coefficients in a field of characteristic 0 which is of the
form

P (x) = xm1 +
k−1∑
i=2

cix
mi + ck with m1 > . . . > mk−1 > 0,

is called a standard k-nomial.
Posner and Rumsey [2] conjectured that if a polynomial with rational coeffi-

cients divides infinitely many standard k-nomials over Q, then it divides a non-zero
polynomial of degree less than k in xr for some integer r ≥ 1.

For k = 2 the conjecture is clearly true. In their joint paper [1] Győry and
Schinzel proved the conjecture (in a stronger sense) for k = 3, and disproved it
for every k ≥ 4. For k = 3 they proved that if a polynomial P (x) with rational
coefficients divides more than a certain (explicitely given) number of trinomials
over Q, then P (x) divides a linear or quadratic polynomial in xr for some integer
r ≥ 1. Very recently their explicit constant has been improved by H.P. Schlikewei
and C. Viola (private communication). For k = 3, the above conjecture has been
proved in [1] in a qualitative form for polynomials over any field of characteristic 0
as well.

Győry and Schinzel [1] disproved the conjecture for k ≥ 4 by means of coun-
terexamples. They showed that for every k ≥ 2 there exists a polynomial P ∈ Q[x]
that divides infinitely many standard quadrinomials over Q, but does not divide
any non-zero polynomial of degree less than k in xr for any integer r ≥ 1. The
quadrinomials constructed have the constant term zero. For polynomials with the
constant term non-zero the relevant problem is harder. In [1] the authors proved
that for k ≥ 2 there is a P ∈ Q[x] that divides infinitely many standard quintino-
mials over Q with the constant term non-zero, but does not divide any non-zero
polynomial of degree less than k in xr over Q for any integer r ≥ 1. In these results
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the polynomials P (x) are all trinomials. This fact led the authors in [1] to propose
the following problem.

Let K be a field of characteristic 0. Is it true that a polynomial P ∈ K[x] with
P (0) 6= 0 divides infinitely many standard k-nomials with the constant term non-
zero if and only if either P divides a non-zero polynomial of degree less than k in
xr for any integer r ≥ 1, or P divides a standard

[
k+1
2

]
-nomial?

The purpose of this paper is to considerably extend the set of counterexample
polynomials and to give a negative answer to this problem in case k ≥ 6. Further,
we propose a new problem, in which the remaining cases of k = 4 and 5 are also
included.

Theorem. Let K be a field of characteristic 0. For every positive number C and
for every integer k ≥ 6 there exists a standard (k − 2)-nomial P (x) ∈ K[x] with
P (0) 6= 0 and deg P > C, which divides over K infinitely many standard k-nomials
with the constant term non-zero, but P (x) divides over K neither any non-zero
polynomial of degree less than deg P in xr for any integer r ≥ 1, nor any standard
(k − 3)-nomial.

Remark 1. For k ≥ 6, our Theorem gives a negative answer to the problem of
Győry and Schinzel, since in this case we have[

k + 1
2

]
≤ k − 3 .

Remark 2. Following the method of the proof, one can see that the polynomials
P (x) in our Theorem can be effectively determined.

Remark 3. We obtain as a trivial consequence of the Theorem that for every
integer n ≥ 4 there exists a standard n-nomial q(x) not dividing any standard
r-nomial with r < n. (For n ≤ 3 the statement is obvious.)

For the values k = 4 and 5 the problem of Győry and Schinzel remains open. We
guess that the real difficulties lie in the case when the polynomial P , which divides
infinitely many standard k-nomials, has more than k − 2 non-zero coefficients. We
propose the following.

Problem. Let K be a field of characteristic 0, and k ≥ 4 be an integer. Is
it true that if the polynomial P (x) ∈ K[x] with non-zero constant term divides
infinitely many standard k-nomials with the constant term non-zero then either P
divides a non-zero polynomial of degree less than k in xr for some integer r ≥ 1, or
P divides a standard l-nomial q(x) such that l ≤ k − 2 and q(x) divides infinitely
many standard k-nomials?

For k = 2 and k = 3 the assertion formulated in the problem is true.

2. Proof

To prove our theorem we need some lemmas.

Lemma 1. Every polynomial of the form

P (x) = xn + ar−4x
r−4 + ar−5x

r−5 + . . . + a1x + a0 , ai ∈ Q, i = 0, . . . , r − 4

with a0 6= 0, r ≥ 4, n ≥ r − 3 divides infinitely many standard r-nomials over Q
with non-zero constant term.

Proof. The statement is obvious, since for every non-zero a ∈ Q the polynomial
(x + a)P (x) is clearly a standard r-nomial with non-zero constant term.
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Lemma 2. Let

P (x) = xp + ap−1x
p−1 + ap−2x

p−2 + . . . + a1x + a0 , ai ∈ Q, i = 0, . . . , p− 1 ,

where p is a prime. If P is irreducible over Q and has two roots in C with different
absolute values, then P does not divide any non-zero polynomial of degree less than
deg P in xr over Q for any integer r ≥ 1.

Proof. This is a simple consequnce of the proof of Theorems 3A and 3B in [1].
However, for convenience of the reader we repeat here the main steps of the proof.

Suppose that the polynomial P satisfies the conditions of Lemma 2, and for some
polynomial s(x) in Q[x] with t = deg s < deg P and for some integer r ≥ 1, P (x)
divides s(xr) over Q. Since P (x) is irreducible, we may assume that s(x) is also
irreducible over Q. Denote by α1, . . . , αp the roots of P (x) and by β1, . . . , βt the
roots of s(x) in C. Hence (x−α1) divides (xr −βj) for some j (1 ≤ j ≤ t) over the
field of algebraic numbers. Thus we have

αr
1 = βj , (1)

whence βj ∈ Q(α1). But the field Q(α1) is of degree p over Q, where p is a prime.
This implies that βj is either a rational number, or is of degree p. However, the
latter case cannot hold, because βj , as a root of s(x), is of degree less than p. This
implies that βj ∈ Q and t = 1. Consequently, from (1) it follows that

αr
i = αr

1 for i = 1, . . . , p .

But this is a contradiction, because P (x) has two roots with different absolute
values, and Lemma 2 follows.

The following lemma can be regarded as a generalization of a modified version
of Lemma 2 in [2].

Lemma 3. Let l be a natural number. Suppose that a polynomial P (x) has rational
coefficients with P (0) 6= 0, and ϑ1, . . . , ϑl are roots of P (x) in C with the property

| ϑi+1 |
| ϑi |

<
1
l!

for i = 1, . . . , l − 1 .

Then P (x) does not divide any standard l-nomial over Q.

Proof. Suppose, to the contrary, that P (x) divides a standard l-nomial

xn1 + an2x
n2 + . . . + anl−1x

nl−1 + anl
, ani

∈ Q, i = 2, . . . , l , anl
6= 0

over Q. In this case the determinant

D =

∣∣∣∣∣∣∣
ϑn1

1 ϑn2
1 . . . ϑ

nl−1
1 1

ϑn1
2 ϑn2

2 . . . ϑ
nl−1
2 1

. . . . . . . . . . . . . . . . . . . . . . . .
ϑn1

l ϑn2
l . . . ϑ

nl−1
l 1

∣∣∣∣∣∣∣
must vanish. Expanding D we get a sum consisting of l! summands of the form

±ϑn1
i1

ϑn2
i2

. . . ϑ
nl−1
il−1

,
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where
ij 6= ik if j 6= k , and {i1, . . . , il−1} ⊂ {1, . . . , l} . (2)

We will prove that every summand can be written in the form

±ϑn1
1 ϑn2

2 . . . ϑ
nl−1
l−1

l∏
i,j=1
i<j

(
ϑj

ϑi

)kij

, (3)

where the exponents kij are nonnegative integers. We note that in the case when
kij = 0 for 1 ≤ i < j ≤ l, we obtain just the summand

ϑn1
1 ϑn2

2 . . . ϑ
nl−1
l−1 . (4)

It suffices to deal with the case when in (2)

{i1, . . . , il−1} = {1, . . . , l − 1} ,

because the summand

±ϑn1
i1

. . . ϑ
nj−1
ij−1

ϑ
nj

l ϑ
nj+1
ij+1

. . . ϑ
nl−1
il−1

can be written as

±ϑn1
i1

. . . ϑ
nj−1
ij−1

ϑ
nj

ij
ϑ

nj+1
ij+1

. . . ϑ
nl−1
il−1

(
ϑl

ϑij

)nj

,

and nj > 0. Observe that if a summand

±ϑn1
i1

ϑn2
i2

. . . ϑ
nl−1
il−1

, (5)

where (i1, . . . , il−1) is a permutation of (1, . . . , l− 1) with ij > ik and nj < nk, can
be written in the form (3), then the summand S, obtained from (5) by exchanging
the exponents of ϑij

and ϑik
, can also be written in the form (3). Indeed, for this

summand S we have

S = ±ϑi1
n1

ϑn2
i2

. . . ϑ
nl−1
il−1

(
ϑij

ϑik

)nk−nj

,

and as the summand (5) can be written in the form (3), by nk − nj > 0 the same
holds for the summand S. However, every summand can be obtained (up to sign)
from the summand (4) with such changes of the exponents of the roots. Namely,
let T be an arbitrary summand having the form

T = ±ϑ
ni1
1 ϑ

ni2
2 . . . ϑ

nil−1
l−1 ,

where (i1, . . . , il−1) is a permutation of (1, . . . , l − 1). We give a sequence of sum-
mands, with the property that every summand of the sequence is clearly obtained
from the previous one by the above type changes of the exponents of two roots. We
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start with the summand (4). By changing the exponents of adjacent roots only,
from (4) we can get the summand

ϑ
ni1
1 ϑn1

2 ϑn2
3 . . . ϑ

ni1−2

i1−1 ϑ
ni1−1

i1
ϑ

ni1+1

i1+1 . . . ϑ
nl−1
l−1 ,

where the exponent of ϑ1 is the same as in the summand T . Moreover, for 2 ≤ i <
j ≤ l − 1 the exponent of ϑi is less than the exponent of ϑj . (The summand (4)
also has this property, for 1 ≤ i < j ≤ l − 1.) Now we continue with the exponent
ni2 of ϑ2 in T . By changing again the exponents of adjacent roots only, we can get
the summand

ϑ
ni1
1 ϑ

ni2
2 ϑn1

3 . . . ϑ
ni1−3

i1−1 ϑ
ni1−2

i1
ϑ

ni1
i1+1 . . . ϑ

ni2−2

i2−1 ϑ
ni2−1

i2
ϑ

ni2+1

i2+1 . . . ϑ
nl−1
l−1 ,

where the exponents of ϑ1 and ϑ2 are the same as in the summand T . Moreover,
for 3 ≤ i < j ≤ l − 1 the exponent of ϑi is less than the exponent of ϑj . (Here
we assumed that i1 < i2, but the opposite case is similar.) Now we continue with
ni3 , and so on. Obviously, the last element of the sequence is the arbitrarily chosen
summand T (up to sign), thus every summand can be transformed into the form (3).
Now we can cancel out (4) from each summand of the expansion of the determinant
D to obtain

D = ϑn1
1 ϑn2

2 . . . ϑ
nl−1
l−1 (S1 + S2 + . . . + Sl!) ,

where for t = 1, . . . , l! St is of the form

±
l∏

i,j=1
i<j

(
ϑj

ϑi

)kij

.

Here the exponents kij are nonnegative integers, which are not all zero, except say
S1, for which S1 = 1 holds. However, by the assumption made on the quotienst
|ϑi+1|
|ϑi| , i = 1, . . . , l − 1 , we have | S1 + . . . + Sl! |> 1

l! . Hence D 6= 0, which is a
contradiction, and Lemma 3 follows.

Lemma 4. Let l and t be integers with l ≥ 2 and t ≥ 3. Let ε0 ∈ [0, 2], εi ∈ [0, 1],
i = 1, . . . , l be rational numbers. Then for every natural number n with

n > N =
(2l2 + l + 1) log t

log (tl + 1)− log tl

and for every integer r with 0 ≤ r ≤ l the polynomial

P (x) = xn −
l∑

j=0

tjn

l∏
i=0
i 6=j

(x− ti)

l∏
i=0
i 6=j

(tj − ti)
+ εlx

l + . . . + ε1x + ε0

has a (real) root in the open interval (tr − 1, tr + 1), and P (0) 6= 0.
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Proof. Let l, t, εi be fixed for i = 0, . . . , l. First we prove that if n > N1 =
4l2 + 4l + 2 then for 0 ≤ r < l

P (tr − 1)P (tr + 1) < 0 (6)

holds. To do this, we show that in this case the sign of P (tr ± 1) is ’ruled’ by the
term

m(x) = tln

l−1∏
i=0

(x− ti)

l−1∏
i=0

(tl − ti)
,

that is
sgn(P (tr ± 1)) = sgn(m(tr ± 1)) . (7)

For the absolute value of m(tr ± 1) we have

| m(tr ± 1) |> tln−l2 .

On the other hand, by a simple computation we get

| P (tr ± 1)−m(tr ± 1) |< tln−
n
2 +l2+2l+1 ,

which proves (7). Since m(tr + 1)m(tr − 1) < 0 is trivial, for these values of r (6)
is proved.

Now we turn to the case r = l. Clearly we have

P (tl + 1) > (tl + 1)n − (l + 1)tln+l2 ,

but the right hand side of this inequality is positive if n > N2 = (l2+l) log t
log (tl+1)−log tl .

Further, we have
P (tl − 1) < tl

2+l+1(tl − 1)
n − tln−l2 ,

with negative right hand side if n > N3 = (2l2+l+1) log t
log tl−log (tl−1)

. This proves that if n >

max{N1, N2, N3}, then the polynomial P (x) has the desired properties (P (0) 6= 0
follows from (6) with r = 0). However, N > max{N1, N2, N3}, and Lemma 4
follows.

Lemma 5. Let K be a field of characteristic 0, let P (x) = adx
d + . . . + a1x + a0

be a polynomial with rational coefficients and let n be an integer. If P (x) does
not divide any standard n-nomial with rational coefficients over Q, then P (x) does
not divide over K any standard n-nomial with coefficients in K. Moreover, if s is
an integer with the property that P (x) does not divide any non-zero polynomial of
degree less then s in xr for any integer r ≥ 1 with rational coefficients over Q, then
P (x) does not divide over K any non-zero polynomial of degree less then s in xr

for any integer r ≥ 1 with coefficients in K.

Proof. We only prove here the first part of the statement, the second part can be
proved in a similar way.

We can suppose that d ≥ n, otherwise Lemma 5 is trivial. In the rest of the proof
of Lemma 5, by a nontrivial coefficient of a polynomial we will mean a coefficient of
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a nonconstant term of this polynomial. Suppose that for some fixed integer n the
polynomial P (x) does not divide any standard n-nomial over Q. This means that
for any integer m and for any non-zero polynomial T (x) ∈ Q[x] of degree at most
m, the polynomial P (x)T (x) has at least n non-zero nontrivial coefficients. This
property can be formulated in the following way. (Without loss of generality we
may suppose that m ≥ d.) Consider the m + 1 coefficients of the polynomial T (x)
as variables. The fact that P does not divide any standard n-nomial over Q means
that among the nontrivial coefficients of P (x)T (x) there are at most m+d−n which
are 0. In other words, fixing any m + d−n nontrivial coefficients of P (x)T (x), and
choosing them as 0, the homogeneous linear system of equations (the variables are
the coefficients of T ) is not solvable over Q. But this implies that this system of
equations is not solvable over K, and (the first part of) Lemma 5 follows.

Now we are in a position to prove our Theorem.

Proof of the Theorem. By Lemma 5 we can suppose that K = Q. Let k be an
integer with k ≥ 6 and let L = k − 4. Let t be an integer with

t > 2(L + 1)! + 1 . (9)

Let n be a prime with

n > max
{

C,
(2L2 + L + 1) log t

log (tL + 1)− log tL

}
,

where C is an arbitrary positive number. Denote by Q(x) the polynomial

xn −
L∑

j=0

tjn

L∏
i=0
i 6=j

(x− ti)

L∏
i=0
i 6=j

(tj − ti)
.

From Eisenstein’s theorem it follows that there exist rational numbers ε0, ε1, . . . , εL

with ε0 ∈ [0, 2], εi ∈ [0, 1], i = 1, . . . , L such that the polynomial P (x) = Q(x) +
εLxL + . . . + ε1x + ε0 is irreducible over Q. Indeed, the rational numbers εi,
i = 0, . . . , L can be chosen in such a way that the above defined polynomial P (x)
will have integer coefficients, and that the coefficients of P (x), except its leading
coefficient, will be even, but its constant term will not be divisible by four. Now
it follows from Eisenstein’s theorem that the polynomial P (x) so obtained is irre-
ducible over Q. (At this point we would like to remark that the coefficients of the
polynomial Q in fact are integers. This assertion could be proved easily, however it
is not needed in the proof of our Theorem, and we omit the details.) By Lemma 4
for every integer r with 0 ≤ r ≤ L, P (x) has a root ϑr in the interval (tr−1, tr +1),
and condition (9) implies that for the quotients of these roots we have

| ϑr+1 |
| ϑr |

<
1

(L + 1)!
, r = 0, . . . , L− 1 .

Hence, by Lemma 3 P (x) does not divide any (k − 3)-nomial over Q. Further,
Lemma 2 implies that P (x) does not divide any polynomial of degree less than n
in xr for any integer r ≥ 1. On the other hand, by Lemma 3 P (x) is clearly a
standard (k−2)-nomial with non-zero constant term, and from Lemma 1 it follows
that P (x) divides infinitely many standard k-nomials with non-zero constant term
over Q. The proof of the Theorem is now complete.
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