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Abstract. In this paper we extend a conjecture of Cassigne et al.
concerning the behaviour of the Liouville function at integral poly-
nomial values to the rational case. We solve the new conjecture
for polynomials of degree at most two, and provide partial results
for polynomials of degree three. We also make some remarks con-
cerning polynomials of degree four.

1. Introduction

Liouville’s function λ for positive integers n is defined as

λ(n) = (−1)α1+···+αk ,

where n = pα1
1 . . . pαk

k is the prime factorization of n. There are many
results and conjectures in the literature concerning the behavior of
Liouville’s function on polynomial values. First we mention some re-
sults concerning the values of λ on consecutive integers. One can re-
gard a classical conjecture of Chowla [4] as the starting point. It says
(see Conjecture 1.3 in [11] for this formulation) that for any choice of
εi ∈ {−1, 1} (i = 1, . . . , k), the natural density of the set

{n : λ(n + i) = εi (i = 1, . . . , k)}
exists and equals to 1/2k. This conjecture is wide open. Hildebrand
[7] proved that for k = 3, the above set is infinite in each of the eight
possible choices of the εi, while recently, Matomäki, Radziwi l l and Tao
[11] showed that all these sets have positive natural lower densities.

Concerning general polynomials, first we recall another conjecture of
Chowla [4], which states the following.
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Conjecture 1. Let f(x) ∈ Z[x] not of the form ag2(x) (a ∈ Z, g(x) ∈
Z[x]). Then we have ∑

n≤x

λ(f(n)) = o(x).

This conjecture seems to be extremely hard; it has been proved
only for linear polynomials. Cassaigne, Ferenczi, Mauduit, Rivat and
Sárközy [3] suggested the following conjecture.

Conjecture 2. Let f(x) be a polynomial having integer coefficients
with positive leading coefficient which is not of the form ag2(x) (a ∈
Z, g(x) ∈ Z[x]). Then the sequence λ(f(n)) changes sign infinitely
often.

One can easily check that Conjecture 2 is a simple consequence
of Conjecture 1. However, Conjecture 2 is still rather difficult. For
deg(f) = 1 it follows from Dirichlet’s theorem on primes in arith-
metic progressions, but for deg(f) ≥ 2 Conjecture 2 is still open. In
[3], in case of deg(f) = 2, the conjecture is proved under certain as-
sumptions. Further, Borwein, Choi and Ganguli [2], still in case of
deg(f) = 2, could give an integer A0 explicitly in terms of f(x), such
that if the sequence λ(f(n)) changes sign after n = A0, then it changes
sign infinitely often. Using their result, they could prove Conjecture
2 for new families of quadratic polynomials. Recently, Teräväinen [17]
could prove the conjecture for degree three polynomial of the form
f(x) = x(x2 − Bx + C) with B ≥ 0. (It is noted in [17] that the
condition B ≥ 0 probably can be relaxed.) Beside these, Conjecture
2 has been proved for polynomials factoring into linear or certain type
of quadratic factors. Namely, the authors in [3] could handle the case
where f(x) is of the form f(x) = (ax+b1) · · · (ax+bk) with a, b1, . . . , bk
integers, a > 0 and b1 ≡ · · · ≡ bk (mod a). Extending this result,
Teräväinen [17] could completely settle the case where f(x) is a prod-
uct of arbitrary linear factors. Further, he could also solve Conjecture
2 in the case where f(x) is the product of quadratic factors of the form
(x + Ai)

2 + 1 (i = 1, . . . , k), where A1, . . . , Ak are distinct integers.
Apart from these results, Conjecture 2 is open. We note that Gan-
guli and Jankauskas [6] proved related results about sign changes of
quadratic polynomials taken at rational values.

The purpose of this paper is to extend the problem to the rational
values of polynomials in Q[x]. For this, first note that λ naturally
extends to the set of positive rationals in the following way. For positive
integers n, k let

λ
(n
k

)
=

λ(n)

λ(k)
.
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Clearly, this extension is well-defined (i.e. it is independent of the
representation of the rational number n/k). Note that for any pos-
itive rationals p, q we obviously have λ(pq) = λ(p)λ(q). The above
conjectures suggest that the λ values of polynomial sequences behave
”randomly” or ”uniformly”. So concerning the values of a polynomial
taken at rational points, the following conjecture seems to be natural.

Conjecture 3. Let f(x) be a polynomial with rational coefficients,
having positive leading coefficient. Suppose that f(x) is not of the form
ag2(x) with some a ∈ Q and g(x) ∈ Q[x]. For ε ∈ {−1, 1} write

Hε(f) = {x ∈ Q : f(x) > 0 and λ(f(x)) = ε}.

Then there exists a real number x0 such that Hε is dense in (x0,∞),
for both ε = ±1.

In this paper we prove Conjecture 3 for deg(f) ≤ 2, and give some
partial results for deg(f) = 3. In particular, we show that for cubic
polynomials Conjecture 2 implies Conjecture 3. We also make some
remarks concerning quartic polynomials. Our main tools will be the
theory of ternary quadratic forms and quadratic twists of elliptic curves.

For polynomials of degree ≥ 5, Conjecture 3 is possibly very difficult.
The reason is that in this case the equation

(1) f(x) = ℓy2 (f ∈ Q[x], ℓ ∈ Q),

in general defines a curve of genus at least two over Q. Hence by
a classical result of Faltings [5], equation (1) has only finitely many
rational solutions x, y. Thus to prove Conjecture 3 for deg(f) ≥ 5, one
need to control infinitely many curves (i.e. consider infinitely many
values of ℓ) in (1). In contrast, if deg(f) ≤ 4, then the genus of (1)
is at most one. Thus with careful choices of ℓ, one has to control only
a few equations of the type (1) in this case. (We note that there is a
similar phenomenon behind Conjecture 2 and the related results.)

2. Main results

Our first statement proves Conjecture 3 for polynomials of degree at
most 2.

Theorem 2.1. Let f(x) ∈ Q[x] with deg(f) ≤ 2 and positive leading
coefficient. Then Conjecture 3 is valid for f(x).

For deg(f) ≥ 3 we have only partial results. We shall stick to the case
deg(f) = 3, though we could handle certain families of polynomials of
degree four, as well. However, as these results would be far from being
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complete, we prefer not to give them. We shall make a remark about
them after the proofs of the results concerning the cubic case.

Our first theorem for degree three polynomials shows that Conjecture
2 implies Conjecture 3 in this case.

Theorem 2.2. Suppose that Conjecture 2 is valid for cubic polynomi-
als. Then Conjecture 3 is also valid for cubic polynomials.

The next theorem for cubic polynomials says that one of the sets Hε

occurring in Conjecture 3 is dense in some interval (x0,∞).

Theorem 2.3. Let f(x) ∈ Q[x] be a cubic polynomial with positive
leading coefficient. Then there exists a real number x0 such that one of
H1(f) and H−1(f) is dense in (x0,∞).

Our third statement in the cubic case gives a simple tool, by the
help of which one can (most probably) easily establish the validity of
Conjecture 3 for any fixed cubic polynomial. For its formulation, for a
negative rational number r put λ(r) := λ(−r).

Theorem 2.4. Let f(x) ∈ Q[x] be a cubic polynomial with positive
leading coefficient. If the roots of f are distinct, then suppose further
that for some non-zero rational numbers a1, a2 with λ(a1a2) = −1, both
elliptic curves

(2) f(x) = aiy
2 (i = 1, 2)

are of positive rank over Q. Then Conjecture 3 is valid for f(x).

Remark 1. In fact, in the case where the roots of f are not distinct,
Theorem 2.4 is a simple consequence of Theorem 2.1 (see the proof).
In other words, for such an f , Conjecture 3 immediately follows from
Theorem 2.1. The main interest of Theorem 2.4 lies in the case where
f has distinct roots.

Remark 2. According to a conjecture of Silverman (see e.g. Conjec-
ture 1 in [13]), for any f(x) as in Theorem 2.4, there exist infinitely
many primes p such that the elliptic curve f(x) = py2 is of positive
rank. Clearly, this conjecture implies Conjecture 3 for cubic polynomi-
als by Theorem 2.4. Indeed, write f(x) = ax3 + bx2 + cx + d, choose
such a prime p and put

f ∗(X) = aX3 + bpX2 + cp2X + dp3.

By Remark 1 we may assume that the roots of f(x) are distinct. Now
by Silverman’s conjecture again, we can find a prime q such that the
elliptic curve f ∗(X) = qY 2 has positive rank. However, then by the
substituion (X,Y ) = (px, p2y) we see that the elliptic curve f(x) =
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pqy2 is also of positive rank. Hence assuming Silverman’s conjecture,
by Theorem 2.4 we obtain Conjecture 3 for cubic polynomials, indeed.

Our last statement in the cubic case shows that for a particular,
infinite set of cubic polynomials, Conjecture 3 is valid. In fact, this
statement (and in particular, its proof) is to demonstrate that Theorem
2.4 can be efficiently used, indeed.

Theorem 2.5. For any positive rational N , Conjecture 3 is valid for
the polynomial fN(x) = x3 −N2x.

Remark 3. As it is well-known, the polynomials fN(x), or the elliptic
curves fN(x) = y2 are closely related to the famous set of congruent
numbers. (For details and related results about them, see e.g. the
survey paper [18] and the references therein.) That is why we choose
this family for demonstration. In fact, one can easily get alike results for
similar families of elliptic curves. Namely, let f(x) be as in Theorem
2.4 with distinct roots, such that both elliptic curves in (2) are of
positive ranks with some a1, a2 with λ(a1a2) = −1. Write f(x) =
ax3 + bx2 + cx + d and put

fM(x) = ax3 + bMx2 + cM2x + dM3 (M ∈ Q \ {0}).

Then Conjecture 3 holds for all polynomials fM(x). This statement
can be proved similarly to Theorem 2.5.

3. Proofs

We start with the proof of Theorem 2.1. For this, we shall need a
famous theorem of Legendre concerning the representability of zero by
ternary quadratic forms.

Lemma 3.1. Let A,B,C be non-zero, square-free, pairwise coprime
integers, not all of the same sign. Then the equation

(3) AX2 + BY 2 + CZ2 = 0

has a non-trivial solution in integers X,Y, Z if and only if the congru-
ences

t2 ≡ −BC (mod A), t2 ≡ −AC (mod B), t2 ≡ −AB (mod C)

are all solvable.
Further, if (3) has a non-trivial solution, then it has infinitely many

coprime solution (X,Y, Z) which can be parametrized by finitely many
binary quadratic forms.
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Proof. The first part of the statement is a classical theorem of Legendre
[9]. The second part of the statement follows e.g. from Theorem 4 on
p. 47 of Mordell [12]. �
Remark 4. We shall need and explicitly give the parametrizations for
the solutions (X,Y, Z) of (3) concretely in our case (in the proof of
Theorem 2.1), that is why we do not give more general details about
them at this point.

Proof of Theorem 2.1. Since the case where deg(f) = 0 is excluded, we
need to check the possibilities deg(f) = 1, 2 only. The case deg(f) = 1
is in fact trivial, but we give a simple argument. Writing f(x) = ax+ b
with a, b ∈ Q, a > 0, for ε = ±1 we have

Hε := {x ∈ Q : f(x) > 0, λ(f(x)) = ε} =

=

{
1

a
y − b

a
: y ∈ Q, y > 0, λ(y) = ε

}
.

Thus to prove our claim, it is sufficient to check that the sets

H∗
ε = {y ∈ Q : y > 0, λ(y) = ε}

are dense in (0,∞). To see this, let α be an arbitrary positive real
number, (rn)∞n=1 be a sequence of positive rationals tending to α, and
set

tn :=
pπ(n2)+1

n2
(n = 1, 2, . . . ).

Here π(x) is the prime counting function, so the numerator of tn is
the smallest prime exceeding n2. Note that λ(tn) = −1 for every
n = 1, 2, . . . . Further, we trivially have lim

n→∞
tn = 1. (This follows from

standard estimates concerning π(x); see e.g. [14].) Put

r(1)n =

{
rn if λ(rn) = 1,

tnrn if λ(rn) = −1
(n = 1, 2, . . . )

and

r(−1)
n =

{
tnrn if λ(rn) = 1,

rn if λ(rn) = −1
(n = 1, 2, . . . ).

Then we have λ(r
(1)
n ) = 1 and λ(r

(−1)
n ) = −1 (n = 1, 2, . . . ), and

lim
n→∞

r(1)n = lim
n→∞

r(−1)
n = α,

which implies our claim in this case.
Let now deg(f) = 2. Observe that Conjecture 3 is valid for f(x) if

and only if it is valid for Af(Bx + C) for any rationals A,B,C with



ON THE LIOUVILLE FUNCTION ON RATIONAL POLYNOMIAL VALUES 7

A > 0, B > 0. Hence without loss of generality we may assume that
f(x) is of the form

f(x) = x2 + a (a ∈ Z square-free).

Further, here a is non-zero, otherwise f(x) would be of the excluded
shape. Consider the equation

(4) f(x) = ℓy2

in rationals x, y, where ℓ is a square-free integer greater than one, such
that for all prime divisors qj (j = 1, . . . , J) of ℓ we have

(5) qj ≡ 1 (mod 4|a|) (j = 1, . . . , J).

Letting x = x1/x2 and y = y1/y2 with integral unknowns x1, x2, y1, y2
the above equation yields

(6) X2 + aY 2 − ℓZ2 = 0,

where X = x1y2, Y = x2y2, Z = y1x2. As a and ℓ are square-free,
ℓ > 1 and gcd(a, ℓ) = 1, Lemma 3.1 gives that (6) has a non-trivial
solution in integers X,Y, Z if and only if

(7) t2 ≡ ℓ (mod |a|) and t2 ≡ −a (mod ℓ)

are both solvable. Obviously, by (5), the first congruence is solvable
(one can take e.g. t = 1). We claim that the second congruence in (7)
is solvable, as well. For this, write

(8) |a| = 2νp1 . . . pI

where ν ∈ {0, 1}, and pi (i = 1, . . . , I) are distinct odd primes. If
|a| ≤ 2 then our claim immediately follows by (5) and by the well-
known identities

(9)

(
−1

q

)
= (−1)

q−1
2 and

(
2

q

)
= (−1)

q2−1
8

of the Legendre symbol valid for any odd prime q. So we may assume
that |a| > 2. Then we have I ≥ 1 in (8). Further, (9) implies that

(10)

(
−1

qj

)
= 1 (j = 1, . . . , J),

and if a is even, then also that

(11)

(
2

qj

)
= 1 (j = 1, . . . , J).

Note that if a is odd, then we do not need to know the values of
(

2
qj

)
.

These assertions, using the quadratic reciprocity law of the Legendre
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symbol by (5) show that the second congruence of (7) is also valid.
Indeed, for any 1 ≤ i ≤ I, 1 ≤ j ≤ J we have(

pi
qj

)
= (−1)

(pi−1)(qj−1)

4

(
qj
pi

)
= 1,

and this by (10) and (11) clearly implies our claim.
Altogether, we see that if ℓ > 1 is square-free with prime divisors

satisfying (5), then equation (6) has a non-trivial solution. Lemma 3.1
also gives that then (6) has infinitely many solutions, which can be
parametrized. As we shall need precise details about this parametriza-
tion, we give it explicitly in our case.

Fix two integers ℓ = ℓ1, ℓ2 of the above shape, with λ(ℓ1) = 1 and
λ(ℓ2) = −1, respectively. We distinguish two (similar) cases. Assume
first that a > 0. Let ℓ be any of ℓ1, ℓ2, and let (X0, Y0, Z0) be a non-
trivial integer solution of (6) with non-negative entries. Observe that
Z0 ̸= 0, and also that one of X0, Y0 is not zero. Following the argument
on p. 47 of Mordell, with rational parameters r, p, q set

X = rX0 + p, Y = rY0 + q, Z = rZ0.

We want X,Y, Z to form a solution to (6). Thus after substitution, we
get

r = −1

2

p2 + aq2

pX0 + aqY0

and

X = −1

2

−p2X0 − 2apqY0 + aq2X0

pX0 + aqY0

, Y = −1

2

p2Y0 − 2pqX0 − aq2Y0

pX0 + aqY0

,

Z = −1

2

(p2 + aq2)Z0

pX0 + aqY0

.

What is of utmost importance for us, is that the denominators of
X,Y, Z are the same, and assuming from this point on that p, q are
integers, the numerators of X,Y, Z form an integral solution to (6).
(This can also be checked directly.) This yields

(12) x =
x1

x2

=
X

Y
=

−p2X0 − 2apqY0 + aq2X0

p2Y0 − 2pqX0 − aq2Y0

.

Recall that for all these values of x, we have λ(f(x)) = λ(ℓi) (with
i ∈ {1, 2} arbitrary, but fixed). We only need to check that the rationals
x given by (12) form a dense set in some interval (x0,∞). Letting
s = p/q, we obtain

x =
−X0s

2 − 2aY0s + aX0

Y0s2 − 2X0s− aY0

.
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Clearly, it is sufficient to show that for any real number δ large enough,
we can find some real number s such that x = x(s) = δ. The latter
equality can be rewritten as

(X0 + δY0)s
2 + (2aY0 − 2δX0)s− δaY0 − aX0 = 0.

Since the discriminant (and one of the roots) of the left hand side is
positive, our claim follows in this case.

Assume next that a < 0. Let again (X0, Y0, Z0) be a non-trivial
integer solution of (6) with non-negative entries. Observe that now we
have X0 ̸= 0, and also that one of Y0, Z0 is not zero. Following the
above argument, with rational parameters r, p, q we set

X = rX0, Y = rY0 + p, Z = rZ0 + q.

We want X,Y, Z to form a solution to (6) again. Thus after substitution
we get

r = −1

2

ap2 − ℓq2

apY0 − ℓqZ0

and

X = −1

2

ap2X0 − ℓq2X0

apY0 − ℓqZ0

, Y = −1

2

−ap2Y0 + 2ℓpqZ0 − ℓq2Y0

apY0 − ℓqZ0

,

Z = −1

2

ap2Z0 − 2apqY0 + ℓq2Z0

apY0 − ℓqZ0

.

Similarly as in case of a > 0, this yields

x =
x1

x2

=
X

Y
=

ap2X0 − ℓq2X0

−ap2Y0 + 2ℓpqZ0 − ℓq2Y0

now again with p, q assumed to be arbitrary integers. Recall that for
all these values of x, we have again λ(f(x)) = λ(ℓi) (with i ∈ {1, 2}
arbitrary, but fixed). Letting s = p/q, we get

x =
aX0s

2 − ℓX0

−aY0s2 + 2ℓZ0s− ℓY0

.

Since for real δ large enough, x = x(s) = δ yields

(aX0 + aδY0)s
2 − 2δℓZ0s + δℓY0 − ℓX0 = 0

with positive discriminant (and a positive root) of the left hand side,
our claim follows also in this case similarly as before. Hence the proof
of the theorem is complete. �

To prove our results concerning cubic polynomials, we need the fol-
lowing lemma, which is an immediate consequence of a classical theo-
rem due to Poincaré and Hurwitz.



10 G. HAJDU AND L. HAJDU

Lemma 3.2. Let h(x) ∈ Q[x] be a cubic polynomial with positive lead-
ing coefficient having distinct roots, and write α for its largest real root.
Suppose that the elliptic curve

E : h(x) = y2

is of positive rank. Then the x coordinates of the rational points on E
form a dense set in the interval (α,∞).

Proof. By a theorem due to Poincaré and Hurwitz, the rational ponts
on E are dense among the real points on E with x coordinates satisfying
x ≥ α. (See p. 173 of [10] and Satz 13 of [8]; c.f. also Satz 11 on p. 78
in [16].) From this the statement immediately follows. �

Now we can give the proofs of our theorems concerning cubic poly-
nomials.

Proof of Theorem 2.2. Suppose that Conjecture 2 is valid for cubic
polynomials. Let f(x) ∈ Q[x] be a polynomial of degree three, with
positive leading coefficient. If f(x) has a double root, then we may
write

f(x) = (ax + b)g2(x) (a, b ∈ Q, a > 0, g(x) ∈ Q[x]).

Hence we immediately see that by Theorem 2.1, Conjecture 3 is valid
for f(x). So we may assume that the roots of f(x) are distinct. Further,
observe that Conjecture 3 is valid for f(x) if and only if it is valid for
all multiples Af(x) of f(x) where A is any positive rational. Thus
without loss of generality we may also suppose that f(x) has coprime
integer coefficients. Since we assumed that Conjecture 2 is valid, we
can choose sequences (ui)

∞
i=1 and (vi)

∞
i=1 of positive integers such that

λ(f(ui)) = 1 and λ(f(vi)) = −1 (i = 1, 2, . . . ). Hence we see that all
the elliptic curves

E
(1)
i : f(x) = f(ui)y

2 and E
(2)
i : f(x) = f(vi)y

2 (i = 1, 2, . . . )

contain a rational point, namely (ui, 1) and (vi, 1), respectively. By the
Specialization Theorem of Silverman (see e.g. Theorem 11.4 on p. 271
of [15]), we know that these points are torsion points only for finitely
many indices i. Hence we conclude that there exists an i0, such that

both E
(1)
i0

and E
(2)
i0

are of positive rank. Thus, as λ(f(ui0)) = 1 and

λ(f(vi0)) = −1, for all rational points (x(1), y(1)) of E
(1)
i0

with y(1) ̸= 0

and (x(2), y(2)) of E
(2)
i0

with y(2) ̸= 0 we have

λ(f(x(1))) = 1 and λ(f(x(2))) = −1,

respectively. Hence our claim immediately follows from Lemma 3.2. �
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Proof of Theorem 2.3. The proof follows the same lines as that of The-
orem 2.2. Namely, just as there, by the help of the Specialization
Theorem of Silverman we can find a positive integer ℓ such that the
elliptic curve

f(x) = ℓy2

is of positive rank over Q. Hence by Lemma 3.2 we get that either H1

or H−1 is dense in some interval (x0,∞), according as whether λ(ℓ) = 1
or λ(ℓ) = −1. This proves our claim. �
Proof of Theorem 2.4. Assume first that f(x) has a multiple root. Then
with some rationals a, b, c, d with ac ̸= 0, we can write

f(x) = (ax + b)(cx + d)2.

Hence the statement immediately follows from Theorem 2.1 in this
case.

Assume now that f has distinct roots. Then the fact that both
elliptic curves

E1 : f(x) = a1y
2 and E2 : f(x) = a2y

2

are of positive rank, in view of that for all rational points (u, v) of these
curves with v ̸= 0 we have

λ(f(u)) = λ(ai)

for i = 1, 2, respectively, by Lemma 3.2 implies the statement. �
Proof of Theorem 2.5. As one can easily check e.g. by Magma [1], the
ranks of both elliptic curves

X3 −X = 5Y 2 and X3 −X = 6Y 2

over Q are positive (namely, equal to one). This, using the substitutions
x = NX and y = NY (for any positive rational N), implies that the
ranks of both elliptic curves

x3 −N2x = 5Ny2 and x3 −N2x = 6Ny2

are also positive over Q. This, in view of λ(30N2) = −1 by Theorem
2.4 implies the statement. �

Remark 5. As it is well-known (see e.g. Theorem 2 on p. 77 of [12]),
by the help of any of its rational points, a quartic curve of the form

(13) AX4 + BX3 + CX2 + DX + E = Y 2

can be transformed to a curve of the form

x3 + ax + b = y2
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with a birational transformation. For a given quartic polynomial f(x),
substituting any rational value into x and writing ℓ for the square-free
part of f(x), we see that

(14) f(x) = ℓy2

does have a rational point. Then we can transform (14) to a cubic
equation, and we can use our Theorems 2.3 to 2.5 to get conclusions
for f(x) with respect to Conjecture 3. In some cases (under certain
assumptions on f(x)) the transformation can be made explicit, and
we can get explicit statements. (See e.g. [19] for the case where E in
(13) is a full square in Q.) Since this can be done only under some
assumptions, and we could get only partial results towards Conjecture
3 in this case, we do not work out the details here.
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