
ON AN IDENTITY OF RAMANUJAN OVER FINITELY
GENERATED DOMAINS

GABRIELLA HAJDU AND LAJOS HAJDU

Abstract. In this paper we show that a well-known identity of Ra-
manujan admits only a bounded number of solutions over general finitely
generated domains. The bound is explicit and uniform in the sense that
it depends only on the dimensions of the domains involved. Our method
is constructive, and opens up a possibility to determine the solutions in
concrete instances. In some special cases all solutions are determined.
Our results can also be considered as a continuation of some theorems
of Z. Daróczy and G. Hajdu, obtained over Z. We note that in case of
Hosszú’s equation, similar results were obtained by several authors.

1. Introduction

In the third volume of his famous Notebooks [1], Ramanujan states the
following identity: if ad = bc, then

(a + b + c)n + (b + c + d)n + (a− d)n = (a + b + d)n + (a + c + d)n + (b− c)n

holds for n = 2, 4. Concerning this assertion, Z. Daróczy posed the following
question: what functions satisfy the above identity? More precisely, one
should determine all solutions f of the functional equation

f(a+b+c)+f(b+c+d)+f(a−d) = f(a+b+d)+f(a+c+d)+f(b−c) (1)

which holds for any a, b, c, d with ad = bc. This problem has been solved by
Z. Daróczy and G. Hajdu when for the unknown function we have f : Z → R
or f : F → V where F is any field of characteristic zero and V is a linear
space over some field of characteristic zero (see [3] and [2], respectively).

In the original identity of Ramanujan the domain where the parameters
a, b, c, d come from is not specified. However, it is obvious that the commu-
tativity of the multiplication is tacitly assumed. As we will work in general
domains, we consider this identity under an assumption which is “more pre-
cise” than ad = bc. For the moment let R be a (not necessarily commutative)
ring of characteristic zero, and let S be an appropriately chosen algebraic
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structure, to be specified later. Let f : R → S be an arbitrary function,
and suppose that the functional equation (1) holds for any a, b, c, d ∈ R with

ad+da = bc+cb and (uv+vu)2−2(u2v2+v2u2) = (pq+qp)2−2(p2q2+q2p2),
(2)

where u = a+ b+ c, v = a−d, p = a+ b+d and q = b− c. We mention that
it is necessary to impose (2) in order to guarantee that the original solutions
f(x) = x2, x4 of Ramanujan are also solutions in the non-commutative case
(with S = R, say). Further, note that when the multiplication in R is
commutative, then the second assertion is automatic, hence (2) reduces to
ad = bc.

In this paper we give uniform finiteness results for the number of indepen-
dent solutions of (1) with (2), when R and S are suitable finitely generated
domains. The bound is explicit and uniform, that is it depends only on
the dimensions of the domains involved. Our method is constructive in a
sense, and provides an efficient tool to determine all solutions in concrete
cases. Though there are some additional difficulties we have to deal with,
following our approach we completely describe the set of solutions of (1)
with (2) when R is the ring of integers of the number fields Q(i) or Q(

√
2).

There seems to be two natural methods for finding all solutions in concrete
instances. To illustrate both of them, we give different arguments in case of
the above structures.

Finally, we mention that similar investigations were performed by several
authors concerning Hosszú’s famous functional equation

f(x + y − xy) + f(xy) = f(x) + f(y),

see e.g. the papers of Davison [4] and Davison and Redlin [5], and the
references given there.

2. Notation and results

To formulate our results, we need to introduce some notation which will
be used throughout the paper without any further mentioning. From this
point on, R will always denote a finitely generated Z-algebra. That is,
R is supposed to be a ring of characteristic zero, which is also a finitely
generated Z-module, of rank say n. Our assumptions imply that R has a
basis ϑ1, . . . , ϑn over Z, such that each α ∈ R can be expressed as

α = a1ϑ1 + · · ·+ anϑn,

where a1, . . . , an are uniquely determined integers. Note that R can be taken
e.g. as the ring of integers of any algebraic number field, or as the ring of
quadratic matrices of any size, having integer entries.

The range S of the function f in (1) does not play a vital role, the almost
only important feature from our viewpoint is that it also should be finitely
generated. So we can take S to be any finite dimensional linear space, over
an arbitrary field F . For simplicity, we fix m to be the dimension of S over
F .
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The set of all solutions f : R → S to (1) with (2) will be denoted by
S(R,S).

Now we can formulate our results. We start with a general statement.

Theorem 1. Let R and S be as above. Then the functional equation (1)
with (2) has at most mC(n) independent solutions, where

C(n) = 2n−1

(
10n + 5

n

)
+

n−1∑
i=0

2i−1

(
10n + 5

i

) ((
n− 1

i

)
+

(
n

i

))
.

More precisely, there exist solutions f1, . . . , fk to (1) with (2) where k ≤
mC(n) such that for any f ∈ S(R,S) there are some λ1, . . . , λk ∈ F with

f = λ1f1 + · · ·+ λkfk.

The following theorems provide complete solutions to the functional equa-
tion (1) with (2), in case of two concrete algebras R. As in fact these domains
are the rings of integers of certain algebraic number fields, for the sake of
simplicity and convenience, we will set S = C in these statements. Write

G = Z[i] = {a + bi : a, b ∈ Z}
for the set of the Gaussian integers and

A = Z[
√

2] = {a + b
√

2 : a, b ∈ Z}.
In what follows, for any x ∈ G (resp. A) let x denote the algebraic conjugate
of x, that is, for x = a + bi ∈ G, x := a− bi and for x = a + b

√
2 ∈ A, x :=

a− b
√

2. Finally, if x, γ ∈ G (resp. A) and H is a full set of representatives
of the remainder classes of γ in G (resp. in A), then by x (mod γ) H we
mean the unique element h of H for which x ≡ h (mod γ).

Theorem 2. Let R = G, and put S = C. Then all solutions to the func-
tional equation (1) with (2) are of the form z1f1 + · · ·+ z11f11 with zj ∈ C.
Here the functions fj : G → C (j = 1, . . . , 11) are given by

f1(x) = 1, f2(x) = x2, f3(x) = x4, f4(x) = x2, f5(x) = x4,

f6(x) =

{
1 if x ≡ 0 mod 2
0 otherwise,

f7(x) = x (mod 1 + i) {0, 1},
f8(x) = x2 (mod 2 + i) H, f9(x) = x4 (mod 2 + i) H,

f10(x) = x2 (mod 2− i) H, f11(x) = x4 (mod 2− i) H,

where H = {0, 1,−1, i,−i}.

Theorem 3. Let R = A and put S = C. Then all solutions to the functional
equation (1) with (2) are of the form z1f1 + · · ·+ z11f11 with zj ∈ C, where
the functions fj (j = 1, . . . , 11) are given by

f1(x) = 1, f2(x) = x2, f3(x) = x4, f4(x) = x2, f5(x) = x4,
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f6(x) =

{
1 if x ≡ 0 mod 2
0 otherwise,

f7(x) = x (mod
√

2) {0, 1},
f8(x) = x2 (mod 1 + 2

√
2) H1, f9(x) = x4 (mod 1 + 2

√
2) H1,

f10(x) = x2 (mod 1− 2
√

2) H2, f11(x) = x4 (mod 1− 2
√

2) H2,

where
H1 = {0, 1, 2,−3,

√
2, 2

√
2, 2 +

√
2}

and
H2 = {0, 1, 2,−3, 1 +

√
2,−

√
2, 2 +

√
2}.

Interestingly, we obtained that both with R = G and R = A, with S =
C, S(R,S) is generated by 11 independent functions. Moreover, the same
number of independent solutions were obtained by Z. Daróczy and G. Hajdu
in [3] over Z. However, as the multiplicative structures of Z, G and A are
rather different, this phenomenon seems to be a strange coincidence only.
This is also suggested by the following statement.

Proposition. The dependence of the bound on n and m in Theorem 1 is
necessary.

3. Proofs

Before giving the proofs of the theorems of the previous section we note
the following simple but useful fact. If f is a solution to (1) with (2) then
f is even, i.e., f(−x) = f(x) holds for all x ∈ R. This can easily be checked
by interchanging the role of b and c in (1).

Proof of Theorem 1. First we show that there exists a “small” subset I of
R such that the values taken by any solution f ∈ S(R,S) on I determine f
completely. By this we mean that for any x ∈ R there exist elements λu of
F (u ∈ I) which are independent of f such that

f(x) =
∑
u∈I

λuf(u).

For this purpose, fix an arbitrary basis ϑ1, . . . , ϑn of R over Z. If α ∈ R
and

α = a1ϑ1 + · · ·+ anϑn

with a1, . . . , an ∈ Z, then write

N(α) = |a1|+ · · ·+ |an|.
We call a1, . . . , an the coordinates and N(α) the norm of α. Let

T = {b1ϑ1 + · · ·+ bnϑn : bi ∈ Z, |bi| ≤ 2}
and write

I = {x ∈ R : N(x) ≤ 10n + 5}.
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We show that f is determined by the values of f on I. We proceed by
induction. Let x be an arbitrary element of R. If N(x) ≤ 10n + 5, then
our claim trivially holds. So we may assume that N(x) > 10n + 5 and that
for every x′ ∈ R with N(x′) < N(x) the assertion is valid. If one of the
coordinates of x, say ai is non-zero and divisible by 3, then put t1 = 3ϑi or
t1 = −3ϑi, according as ai is positive or negative. Otherwise, let t1 = 0.
Moreover, choose a t2 ∈ T such that all coordinates of x + t2 are divisible
by 3, and that the sign of each non-zero coordinate of t2 coincides with
the sign of the corresponding coordinate of x. By the definition of T one
can easily check that such a t2 exists. Put t = t1 + t2. Define y to be the
element in R obtained by dividing each coordinate of x + t by 3. Observe
that N(t) ≤ 2n + 1 and also that each coordinate of y has the same sign as
the corresponding coordinate of x. Put

a = 2(y − t), b = y − t, c = 2t, d = t.

A simple calculation shows that for this choice of the parameters (2) is
valid. Further, by the choice of t and our assumption N(x) > 10n + 5,
using the information about the signs of the coordinates of x, t and y, a
straightforward calculation shows that

N(a+b+c) > max(N(a+b+d), N(a+c+d), N(b+c+d), N(a−d), N(b−c)).

Since x = a + b + c, this inductively proves that the value of f at x is
determined by the values of f on I. As x was taken arbitrarily, our claim
follows.

Clearly, we have

|I| = #{(b1, . . . , bn) : |b1|+ · · ·+ |bn| ≤ 10n + 5}.

Thus by Lemma 2.3 of [6] we obtain |I| =
n∑

i=0
2i

(
n
i

)(
10n+5

i

)
. Since for any

x ∈ R and f ∈ S(R,S) we have f(x) = f(−x), we get that f is completely
determined already by the values taken on the set

I ′ = {x ∈ I : the first coordinate of x is non-negative}.
Using again Lemma 2.3 of [6], a simple calculation yields that |I ′| = C(n),
where C(n) is defined in the statement.

Observe that if for any x ∈ R we have

f(x) =
∑
u∈I′

λ(1)
u f(u) =

∑
u∈I′

λ(2)
u f(u)

with some λ
(1)
u , λ

(2)
u ∈ F (u ∈ I ′) such that λ

(1)
u 6= λ

(2)
u for some u ∈ I ′,

then it is possible to exclude an element of I ′ such that the remaining set
still determines f on R. Hence we may reduce I ′ to a set I0 = {u1, . . . , ul}
with l ≤ C(n) such that the above expansion of f(x) is unique for any
x ∈ R. Fix an arbitrary basis β1, . . . , βm of S over F . Define the functions
fij (1 ≤ i ≤ l, 1 ≤ j ≤ m) on I0 by fij(ui) = βj and fij(ur) = 0 for
r 6= i, and then extend this definition to the whole R in the unique way, to
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obtain solutions to (1) with (2). Then clearly every f ∈ S(R,S) is a linear
combination of the functions fij over F . As the number of the fij is at most
mC(n), the theorem follows. �

Proof of Theorem 2. The proof consists of two major parts. First we show
that there exists a set I0 such that any solution f : G → C to (1) with (2)
is uniquely determined by the values it takes on I0. For this purpose we use
the same argument as in the proof of Theorem 1, with slight changes only.
This way we can get a smaller bound for the diameter of the initial set I
of “base points”. In the second part we prove that the functions f1, . . . , f11

given in the theorem form a base of S(G, C) over C.
For any x = x1 + x2i ∈ G let

N(x) = |x| =
√

x2
1 + x2

2,

the Euclidean norm (length) of x. The role of number 3 in the proof of
Theorem 1 will be played by 1 + i. We put

T = {z ∈ G : |z| ≤
√

2} and I = {x ∈ G : |x| ≤ 7.64}.
Assume f : G → C to be a solution to (1) with (2). We shall show that for
any x ∈ G, the value f(x) can be obtained from the values {f(x′) : x′ ∈ I}.
This trivially holds for any x ∈ I. Now let x ∈ G, |x| > 7.64 and suppose
that for any x′ ∈ G with |x′| < |x|, f(x′) is determined by the values f
takes on the set I. Choose an element t ∈ T such that x + t is divisible by
1 + i and the length of x + (1− i)t is strictly less than the length of x. The

definition of T guarantees the existence of such a t. Let y =
x + t

1 + i
and put

a = i(y − t), b = y − t, c = it, d = t.

Then ad = bc, that is, (2) is valid. Moreover, we have

a + b + c = x, (1 + i)(b + c + d) = x + it,

(1− i)(a− d) = x− t, a + b + d = x + (1− i)t,

(1− i)(a + c + d) = x + (2− i)t, (1 + i)(b− c) = x + (1− 2i)t.

Hence by |x| > 7.64 >
√

5|t|√
2−1

, a simple calculation shows that

|a + b + c| > max(|a + b + d|, |a− d|, |a + c + d|, |b + c + d|, |b− c|).
Our aim now is to reduce I and construct the smallest set I0 with the

same property, namely that any solution to (1) with (2) is determined by
its values on I0. To achieve this we eliminate as many elements from I as
possible. Since for any x ∈ G we have f(−x) = f(x), the elements of I
having negative real parts can be omitted. Next, if taking an element x of
I we can find suitable a, b, c, d ∈ G with the properties that

a) ad = bc (i.e., (2) holds),
b) x equals one of the arguments of f in (1),
c) x is strictly longer than the other five arguments,
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then we can cancel x from I, because f(x) is determined by {f(x′) : x′ ∈
I, |x′| < |x|}. Moreover, in this case we can cancel x with a, b, c, d and also
±ix with ±ia,±ib,±ic,±id. In most cases we can choose d to be equal to
either −1− i or −i. For example, if x = 5 + i then we can take

a = −2 + 2i, b = 2 + 2i, c = 1, d = −i.

Then in (1) we have

x = a + b + c = 5 + i, b + c + d = 3− 3i, a− d = 2 + 4i,

a + b + d = 3 + i, a + c + d = 1 + i, b− c = 2.

Similarly, for x = 1 + 4i we may choose

a = −2 + 2i, b = 2 + 2i, c = 1, d = −i

which yields

x = a + b + c = 1 + 4i, b + c + d = 3 + i, a− d = −2 + 3i,

a + b + d = 3i, a + c + d = −1 + i, b− c = 1 + 2i.

After the possible eliminations we obtain the set

I ′ = {0, 1, i, 2, 2i, 1 + i, 1− i, 1− 2i, 2− i, 3, 1− 3i,

3 + i, 1 + 3i, 3− 2i, 4i, 1− 4i, 1 + 4i, 4 + i, 2 + 3i,

3 + 2i, 3i, 3− i, 2− 2i, 2 + 2i, 1 + 2i, 2 + i}.

We mention that I ′ could be further reduced by the above method, however,
now it is worth changing the strategy. Namely, up to this point we used
shorter arguments to eliminate the longest one, and now we abandon this
restriction. In this way we can successively cancel the elements given in
Table 1, in the column of x. In the table we give the appropriate choices of
the parameters a, b, c, d as well, together with the other arguments occurring
in (1) (recall that f(−x) = f(x)). Note that in each row of Table 1 we have
x = a + b + c except for x = 4i when x = a− d.

After this elimination process we obtain the 11-element set

I0 = {0, 1, i, 2, 2i, 1 + i, 1− i, 1− 2i, 2− i, 3, 1− 3i}.
We show that I0 is minimal, that is, every function solving (1) with (2) is

uniquely determined by the values it takes on the set I0. For this purpose
we provide 11 linearly independent solutions which form a base of the linear
space S(G, C) over C.

¿From Ramanujan’s work we know the solutions

f1(x) = 1, f2(x) = x2, f3(x) = x4.

Clearly, taking conjugates, we have two more solutions given by

f4(x) = x2, f5(x) = x4.

Showing that the functions f6, . . . , f11 are indeed solutions to (1) with (2)
needs some calculation. We prove it only in one case, the other functions
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x a b c d the other arguments
3 + i 2i 2 1− i −1− i 2− 2i, 1 + 3i, 1 + i, 0, 1 + i
1+3i −1 2 + 2i i 2− 2i 4 + i,−3 + 2i, 3, 1− i, 2 + i
3−2i −1−2i 2 + i 2− i −1+2i 3 + 2i, 4i, i,−i, 2i

4i 5i 1− 2i −1−2i i i,−3i, 1 + 4i,−1 + 4i, 2
1−4i 2− i −i −1−2i −1 −2−3i, 3−i, 1−2i,−3i, 1+i
1+4i −1+2i 2 + i i 1 3 + 2i,−2 + 2i, 2 + 3i, 3i, 2
4 + i 2− i 1 + 2i 1 i 2 + 3i, 2− 2i, 3 + 2i, 3, 2i
2+3i −1 + i 1 2 + 2i −2i 3,−1+3i,−i, 1+ i,−1−2i
3+2i 1− i i 2 + 2i −2 3i, 3− i,−1, 1 + i,−2− i

3i 1 + i −1 + i i −1 −2+2i, 2+i,−1+2i, 2i,−1
3− i −2i 2 1 + i −1 + i 2 + 2i, 1− 3i, 1− i, 0, 1− i
2−2i 2 1− i −1− i −1 −1− 2i, 3, 2− i,−i, 2
2+2i 2 1 + i −1 + i −1 −1 + 2i, 3, 2 + i, i, 2
1+2i −1 + i 1 + i 1 −i 2,−1 + 2i, i, 0, i
2 + i 1− i 1 + i i −1 2i, 2− i, 1, 0, 1

Table 1. The reduction of I ′. We successively omit the elements in the column
of x from I ′ to get I0.

can be handled in a similar way. We show that f9 solves (1) with (2), that
is, ad = bc implies

(a+b+c)4 +(b+c+d)4 +(a−d)4 = (a+b+d)4 +(a+c+d)4 +(b−c)4, (3)

where raising to the fourth power is understood modulo 2 + i (as in the
statement of the theorem). Clearly, we may suppose that a, b, c ∈ H =
{0, 1,−1, i,−i}. If a = 0 then we also have bc = 0, and (3) trivially holds.
Hence we may assume that a 6= 0. Moreover, after multiplying (3) by the
fourth power of the inverse of a modulo 2 + i, we may also suppose that
a = 1. Hence by ad = bc, (3) reduces to

(1+b+c)4+(b+c+bc)4+(1−bc)4 = (1+b+bc)4+(1+c+bc)4+(b−c)4. (4)

Observe that if one of b or c belongs to {−1, 0, 1} then by (−1)4 = 1, (4) is
a formal identity. Using symmetry, it remains only to show that (4) holds
in the following cases.

a) If b = c = i, then by

(1 + 2i)4 ≡ 24 ≡ i4 ≡ 1 and (−1 + 2i)4 ≡ 04 ≡ 0 (mod 2 + i)

we get that
(1 + 2i)4 + (−1 + 2i)4 + 24 = i4 + i4 + 04,

that is, (4) holds.
b) If b = i and c = −i, then using

14 ≡ (2− i)4 ≡ (2i)4 ≡ 1 and 04 ≡ (2 + i)4 ≡ 0 (mod 2 + i)

we obtain
14 + 14 + 04 = (2 + i)4 + (2− i)4 + (2i)4,
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so (4) is valid again.
c) Finally, if b = c = −i, then

(−1− 2i)4 ≡ 24 ≡ (−i)4 ≡ 1 and (1− 2i)4 ≡ 04 ≡ 0 (mod 2 + i)

give
(1− 2i)4 + (−1− 2i)4 + 24 = (−i)4 + (−i)4 + 04,

which shows that (4) is true also in this case.
This proves that f9 is a solution to (1) with (2) indeed. In case of the

other functions given in the statement, similar arguments are available to
get the same conclusion.

To show that the functions f1, . . . f11 are linearly independent, we compose
a matrix A from the values they take on the set I0. So let A be the following
matrix: 

1 1 1 1 1 1 1 1 1 1 1
0 1 −1 4 −4 2i −2i −3−4i 3−4i 9 −8−6i
0 1 1 16 16 −4 −4 −7+24i −7−24i 81 28+96i
0 1 −1 4 −4 −2i 2i −3+4i 3+4i 9 −8+6i
0 1 1 16 16 −4 −4 −7−24i −7+24i 81 28−96i
1 0 0 1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 1 1 1 0
0 1 −1 −1 1 1 −1 0 1 −1 −1
0 1 1 1 1 1 1 0 1 1 1
0 1 −1 −1 1 −1 1 −1 0 −1 0
0 1 1 1 1 1 1 1 0 1 0


defined by Ajk = fj(xk), where xk (k = 1, . . . , 11) are the elements of I0

(in the given order). A simple calculation with Maple yields that the rank
of A is 11, which shows that the solutions fj (j = 1, . . . , 11) are linearly
independent over C. This completes the proof of the theorem. �

Remark 1. In the proof of Theorem 2, after giving an initial bound for the
size of I, we used reduction to construct I0. That is, we eliminated as
many elements from I as possible. However, there is another, “expansive”
approach, when we gradually build up the set I0 and then we check that
every element in I can be obtained from this set. This is a more heuristic
way of finding our set I0, nevertheless this provides a quicker method. In
the proof of Theorem 3 we show how it works. Of course, the argument in
the proof of Theorem 2 could be applied here as well.

Proof of Theorem 3. During the proof we use the notation and formulas
from the proof of Theorem 1. For any x = a + b

√
2 ∈ A let N(x) = |a|+ |b|

and put
I = {x ∈ A : N(x) ≤ 25}.

Suppose that f : A → C is a solution to (1) with (2). Then, as in the proof
of Theorem 1, for any x ∈ A the value f(x) can be obtained from the values
{f(x′) : x′ ∈ I}.

To find I0 (a minimal set of base points) we apply the following heuristics.
We start with I0 = {0} and we expand this set gradually, until we obtain a
set I0 such that the values of any solution f of (1) with (2) are determined
by the values of f taken on I0. Note that for this purpose it is sufficient to
check that for each x ∈ I, f(x) is a linear combination of the values f(u)
(u ∈ I0) with complex coefficients (which are independent of f). We put
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H = I0. At each stage of the expansion, we do the following. We take all
values a, b, c, d with ad = bc from an appropriate (small) set and in each
case we generate the arguments of f in (1). If only one of these arguments
does not belong to the actual H and (1) is not an identity, then we add this
argument to H. Then we repeat the process (with the new H). After a few
rounds we stop and check whether the set H we obtained contains I. If it
does, then we accept I0 as a minimal set of base points, and we are done. In
the opposite case, that is if there is an element x of I which is not in H (i.e.
which we could not reach from I0), then we add x to I0 and start over the
whole procedure. As the result of this method we obtained the following set
of points:

I0 = {0, 1, 2, 3,
√

2, 1 +
√

2, 2 +
√

2, 3 +
√

2, 2
√

2, 3 + 2
√

2, 1− 2
√

2}.
Though we used a heuristic procedure to get this I0, we can prove that this
set is a minimal set of base points indeed. On one hand, a simple calculation
shows that for any solution f to (1) with (2), the values of f taken on I are
uniquely determined by the values of f on I0. (This is why we stopped the
above procedure at this stage.) On the other hand, it is easy to check (in the
same way as in the proof of Theorem 2) that the functions fi (i = 1, . . . , 11)
are solutions to (1) with (2), moreover, they are linearly independent over
C. Hence the theorem follows. �

Proof of the Proposition. Let n be an odd prime, and let α be a root of
the polynomial P (x) = xn−1

x−1 . Note that P is irreducible over Q, and put
R = Z[α]. Then as is well-known, 1, α, . . . , αn−2 is a basis of the order R
over Z. Moreover, as αn−1 + . . . + α + 1 = 0, we have that α, . . . , αn−1

is also a basis of R. Further, as α is a primitive n-th root of unity, the
roots of P are given by α, α2, . . . , αn−1. Let cj : Q(α) → C denote the
isomorphism induced by the correspondence α → αj for j = 1, . . . , n − 1.
Consider (1) and (2) with S = C and define the function fj : R → C
by fj(x) = cj(x2) (j = 1, . . . , n − 1). As the cj are isomorphisms, these
functions are in S(R,S). We show that they are linearly independent over
C. For this purpose, observe that as α is an n-th root of unity, we have

{α2, . . . , α2(n−1)} = {α, . . . , αn−1}.
Thus ∣∣∣∣∣∣∣

c1(α2) . . . c1(α2(n−1))
...

. . .
...

cn−1(α2) . . . cn−1(α2(n−1))

∣∣∣∣∣∣∣
is the square-root of the discriminant of the order R (up to sign), and hence
it does not vanish. This shows that the functions fj are linearly independent
over C. Hence (1) with (2) has at least n− 1 independent solutions in this
case, which shows that the dependence on n in our bound is necessary.

Let now R = Z, S = Rm, and suppose that ϑ1, . . . , ϑm is a basis of S
over F = R. Then the functions gj : R → S (j = 1, . . . ,m) defined by
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gj(x) = ϑj (x ∈ R), are in S(R,S), and are obviously linearly independent
over F . Hence our claim follows. �
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