
ON POLYNOMIALS WITH ONLY RATIONAL ROOTS

LAJOS HAJDU, ROBERT TIJDEMAN, AND NÓRA VARGA

Abstract. In this paper we study upper bounds for the degrees
of polynomials with only rational roots. First we assume that the
coefficients are bounded. In the second theorem we suppose that
the primes 2 and 3 do not divide any coefficient. The third theorem
concerns the case that all coefficients are composed of primes from
a fixed finite set.

1. Introduction

Polynomials in Z[x] with only rational roots are the simplest exam-
ples of decomposable polynomials and forms. Such polynomials play
an important role in the theory of Diophantine equations, see e.g. Ch.
9 of Evertse and Győry [11]. They cover norm forms which are crucial
in Schmidt’s Subspace Theorem [22], and index forms and discriminant
forms, see Evertse and Győry [12]. Many papers on Diophantine equa-
tions deal with polynomials in Z[x] with only rational roots themselves,
see e.g. Section 2 of Hajdu and Tijdeman [15].

There is also an extensive literature on polynomials with restricted
coefficients, in particular, with coefficients belonging to one of the sets
{−1, 1}, {0, 1} or {−1, 0, 1}, see Hare and Jankauskas [18] and the ref-
erences there. In the first case the polynomials are called Littlewood
polynomials, in the second case (assuming that the constant term is
non-zero) Newman polynomials. For examples of studies of the loca-
tion of the roots of such polynomials, see Borwein et al. [4] and Berend
and Golan [2] for Littlewood polynomials, Odlyzko and Poonen [21]
and Mercer [20] for Newman polynomials, and Borwein and Pinner [7],
Borwein and Erdélyi [5] and Drungilas and Dubickas [8] for polynomials
with all coefficients in {−1, 0, 1}.

The set of polynomials f(x) ∈ Z[x] with all coefficients in {−1, 0, 1},
constant term non-zero and only rational roots is very restricted as
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can be simply checked: The only possible roots are 1 and −1. Hence
f(x) = ±(x − 1)a(x + 1)b for some a, b ∈ Z≥0. The coefficient of x is
±(b − a). Therefore |b − a| ≤ 1. It follows that f(x) = ±(x2 − 1)k

maybe multiplied with either x− 1 or x+1 where k = min(a, b). Since
the coefficients of f are in {−1, 0, 1}, we obtain k ∈ {0, 1} and the
degree of f is at most 3. An example of such a polynomial of degree 3
is

(1) f(x) = x3 − x2 − x+ 1 = (x− 1)2(x+ 1).

In this paper we generalize this result in two ways. In the first place
we require that the coefficients of f are bounded. By the height of
a polynomial with integer coefficients we mean the maximum of the
absolute values of its coefficients. We prove the following result.

Theorem 1.1. Let f(x) ∈ Z[x] be a polynomial of degree n with only
non-zero rational roots and height bounded by H ≥ 2. Then we have
both

(2) n ≤
(

2

log 2
+ o(1)

)
logH (H → ∞)

and

(3) n ≤ 5

log 2
logH.

Further, the constants 2/ log 2 and 5/ log 2 in (2) and (3), respectively,
are best possible.

Remark 1. Observe that for any f ∈ Z[x] of degree n, the height of
g := xmf(x) is the same as that of f , while deg(g) = m + n. So the
assumption that the roots of f are non-zero is clearly necessary.

The second generalization concerns the case that none of the coeffi-
cients of f(x) is divisible by 2 or 3. We prove

Theorem 1.2. Every polynomial f(x) ∈ Z[x] with only rational roots
of which no coefficient is divisible by 2 or 3 has degree at most 3.

Remark 2. Example (1) shows that degree 3 is possible.

A further restriction is that the coefficients of f are integral S-units,
that is integers composed of primes from a finite set S. Such polyno-
mials are called S-polynomials. The next theorem shows that for any
n there are only finitely many families of S-polynomials of degree n
having only rational roots.

Theorem 1.3. Let S be a finite set of primes with |S| = s and n
a positive integer. There exists an explicitly computable constant C =
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C(n, s) depending only on n and s and sets T1, T2 with max(|T1|, |T2|) ≤
C of n-tuples of S-units and (n − 1)/2-tuples of S-units for n odd,
respectively, such that if f(x) is an S-polynomial of degree n having
only rational roots q1, . . . qn, then q1, . . . , qn satisfy one of the conditions
(i) or (ii):

(i) (q1, . . . , qn) = u(r1, . . . , rn) with some (r1, . . . , rn) ∈ T1 and S-
unit u,

(ii) n = 2t + 1 is odd, and re-indexing q1, . . . , qn if necessary, we
have q1 = u and (q2, . . . , qn) = v(r1,−r1, . . . , rt,−rt) with some
(r1, . . . , rt) ∈ T2 and S-units u, v.

Further, the possibilities (i) and (ii) cannot be excluded.

The proof of Theorem 1.1 is elementary. In the proof of Theorem
1.2 we use an old result of Fine [14] that if all the coefficients of the
polynomial (x + 1)n are odd, then n is of the form 2α − 1 for some
α ∈ Z≥0. We derive a corresponding result for the prime 3 in place of
2. Its proof is elementary. The proof of Theorem 1.3 is based on an
estimate of Amoroso and Viada [1] on the number of non-degenerate,
non-proportional solutions of S-unit equations. We finish the paper
with stating some open questions.

2. Proofs

Observe that the rational roots of an S-polynomial f(x) are S-units,
i.e. rational numbers whose numerators and denominators are com-
posed exclusively of primes in S. This follows from the well-known
fact that the denominator of a root of f(x) divides the leading coeffi-
cient of f(x), while its numerator divides the constant term of f(x).
In the sequel we shall use this fact without any further mentioning.

Proof of Theorem 1.1. On the one hand, let f(x) =
∑n

j=0 ajx
j. Then

(4) |f(i)| ≤

∣∣∣∣∣ ∑
j is even

|aj|+ i
∑

j is odd

|aj|

∣∣∣∣∣ ≤
√

1

2
n2 + n+ 1 H.

On the other hand, we may write f(x) =
∏n

j=1(qjx− pj) with pj, qj ∈
Z ̸=0 for all j. Then

(5) |f(i)| =

∣∣∣∣∣
n∏

j=1

(qji− pj)

∣∣∣∣∣ =
n∏

j=1

√
q2j + p2j ≥ (

√
2)n.

Therefore,

(6) n log 2 ≤ log

(
1

2
n2 + n+ 1

)
+ 2 logH.
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From this (2) easily follows. For the height H of the polynomial f(x) =
(x2 − 1)n/2 with even n ≥ 2 by Stirling’s formula we have logH =
(1+ o(1))n log 2/2. This shows that the constant 2/ log 2 in (2) is best
possible.

To prove (3), observe that assuming (5/ log 2) logH < n from (6) we
obtain

n log 2 < log

(
1

2
n2 + n+ 1

)
+

2n log 2

5
.

Hence we easily get

n ≤ 9.

Further, observe that if we assume that f has a root different from ±1,
then (5) can be sharpened to

(7) |f(i)| ≥
√
5(
√
2)n−1.

Thus, in this case combining (5/ log 2) logH < n with (4) and (7), we
get a contradiction for n ≥ 1. So to prove (3), we only need to check the
polynomials of the shape f(x) = ±(x + 1)a(x − 1)n−a with 0 ≤ a ≤ n
for 1 ≤ n ≤ 9. A simple calculation gives that for all these polynomials
(3) holds. In particular, for n = 5 and a = 2, 3 we have equality. Thus
e.g. the polynomial

(x− 1)3(x+ 1)2 = x5 − x4 − 2x3 + 2x2 + x− 1

shows that the constant 5/ log 2 in (3) is best possible. So the theorem
is proved. □
Remark 3. Several authors have considered upper bounds for the
number r of real roots of f(x) ∈ R[x]. Bloch and Pólya [3] proved

r ≪H n log log n/ log n.

This was improved by E. Schmidt (unpublished) and further by Schur
[23]. Schur proved

(8) r2 < 4n logQ for n > 6,

where

Q =
1

|a0an|1/2
(a20 + a21 + · · ·+ a2n)

1/2.

Further he showed that the constant 4 in (8) cannot be improved. With
r = n we obtain for polynomials f(x) ∈ Z[x] with only real roots that

(9) n ≤ (4 + o(1)) logH (H → ∞).

(Here we used that Q ≤
√
n H in this case.) By Theorem 1.1 the

constant 4 in (9) cannot be replaced by a constant less than 2/ log 2 ∼
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2.885. For related results see Erdős and Turán [9], Littlewood and
Offord [19], and Borwein, Erdélyi and Kós [6] too.

To prove Theorem 1.2, we need two lemmas. The first one is a direct
consequence of Theorem 4 of Fine [14].

Lemma 2.1. Let n be a positive integer such that all the coefficients
of (x+ 1)n are odd. Then n is of the shape 2α − 1 with some α ∈ Z≥0.

The next lemma is new, and provides a similar result for prime 3.

Lemma 2.2. Let a, b be non-negative integers. Put n := a+ b. If none
of the coefficients of (x− 1)a(x + 1)b is divisible by 3, then n is of the
shape 3β−1, 2 ·3β−1, 3γ+3δ−1 or 2 ·3γ+3δ−1 with β ≥ 0, γ > δ ≥ 0.

Proof. We call a pair of non-negative integers (a, b) good if none of the
coefficients of f(a,b)(x) := (x − 1)a(x + 1)b is divisible by 3; otherwise
we say that (a, b) is bad. Observe that this property is symmetric in a
and b in view of the substitution x → −x. We distinguish between the
residue classes of a and b modulo 3.

CASE a ≡ ε (mod 3), b ≡ 0 (mod 3), ε ∈ {0, 1}. Letting a = 3u + ε,
b = 3v we get that

f(a,b)(x) ≡ (x3 − 1)u(x3 + 1)v(x− 1)ε (mod 3).

Hence (a, b) is good if and only if u = v = 0, i.e. n = 0 or 1.

CASE b ≡ ε (mod 3), a ≡ 0 (mod 3), ε ∈ {0, 1}. By symmetry, this
yields the same conclusion as in the previous case.

CASE a ≡ 2 (mod 3), b ≡ 0 (mod 3). Writing a = 3u + 2, b = 3v we
see that

f(a,b)(x) ≡ (x3 − 1)u(x3 + 1)v(x2 + x+ 1) (mod 3).

This shows that (a, b) is good if and only if (u, v) is good.

CASE b ≡ 2 (mod 3), a ≡ 0 (mod 3). By symmetry, this yields the
same conclusion as in the previous case.

CASE a ≡ b ≡ ε (mod 3), ε ∈ {1, 2}. Putting a = 3u + ε, b = 3v + ε
we see that

f(a,b)(x) ≡ (x3 − 1)u(x3 + 1)v(x2 − 1)ε (mod 3).

Hence (a, b) is bad, as the coefficient of x will be 0 (mod 3).

CASE a ≡ 2 (mod 3), b ≡ 1 (mod 3). Letting a = 3u + 2, b = 3v + 1
we obtain that

(10) f(a,b)(x) ≡ (x3 − 1)u(x3 + 1)v(x3 − x2 − x+ 1) (mod 3).
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From this we immediately see that if (u, v) is bad, then (a, b) is bad,
too. Assume that (u, v) is good. Then we may write

(11) (x3 − 1)u(x3 + 1)v =
u+v∑
i=0

cix
3i

with 3 ∤ ci (i = 0, . . . , u+ v); in particular, cu+v = 1. Then, combining
(10) and (11), we obtain that (a, b) is good if and only if none of the
integers

cu+v, cu+v + cu+v−1, . . . , c1 + c0, c0
is divisible by 3. Since cu+v = 1, this gives ci ≡ 1 (mod 3) (i =
0, . . . , u + v). Hence we obtain, on replacing x3 by x1 in (11), that
every coefficient of (x1 − 1)u(x1 + 1)v is 1 (mod 3). This is equivalent
with

(12) (x1 − 1)u+1(x1 + 1)v ≡ xu+v+1
1 − 1 (mod 3).

We show that (12) holds precisely for

(13) (u, v) = (3ℓ − 1, 0), (3ℓ − 1, 3ℓ) (ℓ ≥ 0).

It is easy to check that (12) is valid for (u, v) given by (13). Assume
that (12) holds for some (u, v) and write u + 1 = 3U + p, v = 3V + q
with 0 ≤ p, q ≤ 2 and U, V ≥ 0. Then (12) can be rewritten as

(x3
1 − 1)U(x3

1 + 1)V (x1 − 1)p(x1 + 1)q ≡ xu+v+1
1 − 1 (mod 3).

Hence we get two possibilities. If (p, q) ̸= (0, 0), then we must have
(p, q) = (1, 0), (1, 1) and (U, V ) = (0, 0). So (u, v) = (0, 0), (0, 1) be-
longing to (13) with ℓ = 0. If (p, q) = (0, 0) then we easily see that
either V = 0 or U = V must be valid. Then (12) can be rewritten as

(x3
1 − 1)U ≡ x3U

1 − 1 (mod 3)

or
(x6

1 − 1)U ≡ x6U
1 − 1 (mod 3),

respectively. These clearly hold if and only if U is a power of 3, and
our claim follows. Altogether, we see that in this case (a, b) is good if
and only if (u, v) is good and (13) holds.

CASE b ≡ 2 (mod 3), a ≡ 1 (mod 3). By symmetry, (a, b) is good if
and only if setting a = 3u+ 1 and b = 3v + 2, (u, v) is good and

(14) (u, v) = (0, 3ℓ − 1), (3ℓ, 3ℓ − 1) (ℓ ≥ 0).

We conclude that (a, b) with a + b = n > 1 is good if and only if
writing a = 3u + i, b = 3v + j with 0 ≤ i, j ≤ 2, (u, v) is good and
([(a, b) (mod 3) equals (2, 0) or (0, 2)] or [(a, b) ≡ (2, 1) (mod 3) and
(13) holds] or [(a, b) ≡ (1, 2) (mod 3) and (14) holds]).
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Suppose (a, b) ≡ (2, 1) (mod 3). Then by (13) we have two options.
If (u, v) = (3ℓ−1, 0) (ℓ ≥ 0) then we have n = 3ℓ+1 = 3ℓ+1+30−1 and we
are done. If (u, v) = (3ℓ−1, 3ℓ) (ℓ ≥ 0) then n = 2·3ℓ+1 = 2·3ℓ+1+30−1,
and our claim follows. By symmetry the case (a, b) ≡ (1, 2) (mod 3)
with (14) leads to the same values of n.

It remains to deal with the case (a, b) (mod 3) equals (2, 0) or (0, 2).
In both cases we have n = a+b = 3u+3v+2. Writing u = 3u1+u0, v =
3v1 + v0 with u0, v0 ∈ {0, 1, 2} we have, by the above conclusion:

(u, v) with u+ v > 1 is good if and only if (u1, v1) is good and
([(u, v) (mod 3) equals (2, 0) or (0, 2)] or
[(u, v) ≡ (2, 1) (mod 3) and (13) holds] or
[(u, v) ≡ (1, 2) (mod 3) and (14) holds]),
where in (13) and (14) (u, v) is replaced with (u1, v1).

Thus, by induction, all possible degrees n are obtained by applying the
substitution n → 3n + 2 a number of times on the possible starting
values 0, 1, 3ℓ, 2 · 3ℓ for any non-negative integer ℓ. By applying the
substitution k times we find 3k − 1, 2 · 3k − 1, 3ℓ +3k − 1, 2 · 3ℓ +3k − 1,
respectively, with ℓ > k, for the only possible values of n. □

Remark 4. For all the mentioned values in Lemma 2.2 there are
polynomials without coefficients divisible by 3. We have modulo 3:

(x−1)3
ℓ−1 = (x−1)3

ℓ

/(x−1) ≡ (x3ℓ−1)/(x−1) = x3ℓ−1+x3ℓ−2+. . .+1,

(x−1)2·3
ℓ−1 ≡ (x3ℓ −1)2/(x−1) = (x3ℓ−1+x3ℓ−2+ . . .+1)(x3ℓ −1) =

= x2·3ℓ−1 + x2·3ℓ−2 + . . .+ x3ℓ − x3ℓ−1 − x3ℓ−2 − . . .− 1,

(x−1)3
ℓ−1(x+1)3

ℓ

= (x−1)3
ℓ

(x+1)3
ℓ

/(x−1) ≡ (x3ℓ−1)(x3ℓ+1)/(x−1)

= (x3ℓ−1 + x3ℓ−2 + . . .+ 1)(x3ℓ + 1) = x2·3ℓ−1 + x2·3ℓ−2 + . . .+ 1.

The first identity can be multiplied by (x+ 1)3
k ≡ x3k + 1 for any k

less than ℓ and yields the solutions

(3ℓ − 1, 0), (3ℓ − 1, 1), (3ℓ − 1, 3), . . . , (3ℓ − 1, 3ℓ−1)

for (deg(x− 1), deg(x+1)). This provides the total degrees 3ℓ− 1, 3ℓ+
3k − 1.

The second assertion provides the total degree 2 · 3ℓ− 1. This degree
is found in another way by the third formula.
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The third identity can be multiplied by (x + 1)3
k ≡ x3k + 1 for any

k less than ℓ and yields the solutions

(3ℓ − 1, 3ℓ), (3ℓ − 1, 3ℓ + 1), (3ℓ − 1, 3ℓ + 3), . . . , (3ℓ − 1, 3ℓ + 3ℓ−1)

for (deg(x − 1), deg(x + 1)). This provides the total degrees 2 · 3ℓ − 1
and 2 · 3ℓ + 3k − 1.

Proof of Theorem 1.2. Let f be as in the statement. Since we argue
modulo 2 and 3, and 2, 3 do not divide the leading coefficient of f , we
may assume that f is monic. Since the roots of f are odd, Lemma
2.1 shows that n + 1 is a power of 2. Further, since the roots of f are
not divisible by 3, by Lemma 2.2 we get that n + 1 is of the shape
3β, 2 · 3β, 3γ + 3δ or 2 · 3γ + 3δ. The combination is possible only for
n = 0, 1, 3, as a simple check reveals. □

For the proof of Theorem 1.3 we use the theory of S-unit equations.
Let S be a finite set of primes, b1, . . . , bm non-zero rationals, and con-
sider the equation

(15) b1x1 + · · ·+ bmxm = 0 in S-units x1, . . . , xm.

A solution (y1, . . . , ym) of (15) is called non-degenerate if∑
i∈I

biyi ̸= 0 for each non-empty subset I of {1, . . . ,m}.

Further, two solutions (y1, . . . , ym) and (z1, . . . , zm) are called propor-
tional, if there is an S-unit u such that (z1, . . . , zm) = u(y1, . . . , ym).
The following result is due to Amoroso and Viada; see the paragraph
after (1.7) on p. 412 of [1]. (For an earlier version see [13], and for the
case m = 2 see [10].) Note that in fact the original result of Amoroso
and Viada concerns the inhomogeneous case, i.e. where the right hand
side of (15) is 1. However, it is easy to transform their result into the
shape of (15).

Lemma 2.3. Equation (15) has at most (8m − 8)4(m−1)4(m+s) non-
degenerate, non-proportional solutions, where s = |S|.

Proof of Theorem 1.3. Suppose that f(x) =
∑n

j=0 ajx
j is an S-polynomial

of degree n having only rational roots q1, . . . , qn. By our assumption,
a0, a1, . . . , an are integral S-units. We have

(16) Aj = σj(q1, . . . , qn) (1 ≤ j ≤ n)

where Aj = (−1)jan−j/an and σj is the j-th elementary symmetric
polynomial (of degree j) of q1, . . . , qn. Using (16) for j = 1, 2 we get

(17) q21 + · · ·+ q2n = A2
1 − 2A2.
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This shows that (q21, . . . , q
2
n, A

2
1, A2) yields a solution to the S-unit equa-

tion

(18) x1 + · · ·+ xn − xn+1 + 2xn+2 = 0.

If (q21, . . . , q
2
n, A

2
1, A2) is a solution with no vanishing subsums, then by

Lemma 2.3 we can write q2i = u0ℓi (i = 1, . . . , n), where (ℓ1, . . . , ℓn)
comes from a finite set of cardinality bounded in terms of n and s, and
u0 is an S-unit. Obviously, the squarefree parts of ℓ1, . . . , ℓn are the
same, say ℓ0. Thus letting r2i = ℓi/ℓ0 (i = 1, . . . , n) and u2 = u0ℓ0, we
have qi = ±uri (i = 1, . . . , n) and we are done in this case.

Hence we may assume that (q21, . . . , q
2
n, A

2
1, A2) contains a vanishing

subsum. Since q2i > 0 (1 ≤ i ≤ n), the only possibility is that (after
re-indexing q1, . . . , qn if necessary) we have

(19) q21 + · · ·+ q2k − A2
1 = 0,

(20) q2k+1 + · · ·+ q2n + 2A2 = 0

for some k with 1 ≤ k < n. It is easy to see that (19) and (20) do not
have a vanishing subsum. Thus, similarly as above, Lemma 2.3 yields
that

(q1, . . . , qk) = u(w1, . . . , wk),

(qk+1, . . . , qn) = v(r1, . . . , rℓ),

A1 = ut1 ̸= 0, A2 = v2t2 ̸= 0,

where ℓ = n−k and both (w1, . . . , wk, t1) and (r1, . . . , rℓ, t2) come from
finite sets of S-units of cardinalities bounded in terms of n and s, and
u, v are S-units. Hence (16) for j = 1 yields that

(21) u(w1 + · · ·+ wk) + v(r1 + · · ·+ rℓ) = ut1.

If r1 + · · ·+ rℓ ̸= 0 then the S-unit v/u comes from a set of cardinality
bounded in terms of n and s, and we are in case (i). So we may suppose
that

w1 + · · ·+ wk = t1,

r1 + · · ·+ rℓ = 0.

As we have k ≥ 1, ℓ ≥ 1 and, by (19) and (20),

w2
1 + · · ·+ w2

k − t21 = 0,

r21 + · · ·+ r2ℓ + 2t2 = 0,

we obtain

σ2(w1, . . . , wk) = 0, σ2(r1, . . . , rℓ) = t2.
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We shall prove by contradiction that k = 1. Assume that k ≥ 2. If
k = 2 then w1w2 = 0, which is not possible. So, k ≥ 3. Hence

u3σ3(w1, . . . , wk) + u2vσ2(w1, . . . , wk)σ1(r1, . . . , rℓ)+

+ uv2σ1(w1, . . . , wk)σ2(r1, . . . , rℓ) + v3σ3(r1, . . . , rℓ)− A3 = 0.

Here σj(r1, . . . , rℓ) = 0 if ℓ < j. In view of the previously obtained
assertions, we get

(22) u3σ3(w1, . . . , wk) + uv2t1t2 + v3σ3(r1, . . . , rℓ)− A3 = 0.

If σ3(w1, . . . , wk) ̸= 0 or σ3(r1, . . . , rℓ) ̸= 0 then (22) by Lemma 2.3
easily yields (both with or without vanishing subsums) that v/u belongs
to a set of cardinality bounded in terms of n and s, and we are in case
(i). So we may assume that

σ3(w1, . . . , wk) = 0, σ3(r1, . . . , rℓ) = 0.

Then we get

w3
1 + · · ·+ w3

k = σ1(w1, . . . , wk)
3 − 3σ1(w1, . . . , wk)σ2(w1, . . . , wk)+

+ 3σ3(w1, . . . , wk) = t31.

We have obtained

(23)


w1 + · · ·+ wk = t1,

w2
1 + · · ·+ w2

k = t21,

w3
1 + · · ·+ w3

k = t31.

Note that (23) implies that there are indices i1, i2 with wi1 > 0 and
wi2 < 0, thus

|t1| =
√

w2
1 + · · ·+ w2

k =
√
|w1|2 + · · ·+ |wk|2 ≥

≥ 3
√

|w1|3 + · · ·+ |wk|3 > |t1|.

This contradiction shows that k = 1 and ℓ = n− 1.
Recall that

σ1(r1, . . . , rℓ) = 0, σ2(r1, . . . , rℓ) = t2, σ3(r1, . . . , rℓ) = 0.

Hence (22) yields A3 = uv2t1t2. Further, by (16) and k = 1 we get

(24) Aj = uvj−1w1σj−1(r1, . . . , rℓ) + vjσj(r1, . . . , rℓ) (4 ≤ j ≤ n).

From this, taking j = 4 we obtain

σ4(r1, . . . , rℓ) = A4/v
4 ̸= 0.
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Now (24) for j = 5 by Lemma 2.3 yields that if σ5(r1, . . . , rℓ) ̸= 0 then
v/u comes from a set of cardinality bounded by n and s, and we are in
case (i). So we may assume that

σ5(r1, . . . , rℓ) = 0.

Now by repeating this argument, we may assume that{
σj(r1, . . . , rℓ) = Aj/v

j ̸= 0 for j even,

σj(r1, . . . , rℓ) = 0 for j odd.

In particular, since σℓ(r1, . . . , rℓ) = r1 · · · rℓ cannot be zero, ℓ is even
whence n = ℓ+1 is odd. Observing that (x+ r1) · · · (x+ rℓ) is an even
polynomial, writing ℓ = 2t and re-indexing the S-units ri (1 ≤ i ≤ ℓ)
such that rt+i = −ri (1 ≤ i ≤ t), we see that we are in case (ii).

Finally, we show that the possibilities (i) and (ii) cannot be excluded.
Indeed, if r1, . . . , rn is a set of rational roots of an S-polynomial of
degree n, then clearly, the same is true for ur1, . . . , urn for any S-unit
u, showing the necessity of (i). On the other hand, let r21, . . . , r

2
t be the

rational roots of the S-polynomial (x − r21) · · · (x − r2t ). Then in the
polynomial (x2− r21) · · · (x2− r2t ), all the coefficients of the even powers
of x are S-units (while the coefficients of the odd powers of x equal 0).
Thus for any S-units u, v, all the coefficients of the polynomial

(x+ u)(x− vr1)(x+ vr1) · · · (x− vrt)(x+ vrt)

are S-units. This shows that (ii) cannot be excluded either. Note
that it is easy to construct as many such non-proportional tuples as
we like: Take arbitrary tuples of n integers (or t squares) that are non-
proportional and define S as the set of prime factors of the product of
their elementary symmetric polynomials. □

3. Open problems

We wonder whether the following statement is correct:

Problem 1. Is it true that for any primes p and q there exists an
n1 = n1(p, q) such that every polynomial f(x) ∈ Z[x] with only rational
roots of which no coefficient is divisible by p or q has degree at most
n1?

Theorem 1.1 shows that the answer is ‘yes’ for the pair of primes (p, q) =
(2, 3).

A weaker statement is a restriction to S-polynomials.

Problem 2. Is it true that for any finite set S of primes there exists
an n2 = n2(S) such that every S-polynomial f(x) ∈ Z[x] with only
rational roots has degree at most n2?
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Theorem 1.2 yields an affirmative answer for sets S of primes with
2, 3 /∈ S.

The last problem is raised by Lemmas 2.1 and 2.2.

Problem 3. Is it true that for every prime p there exists a constant
c(p) such that if f(x) ∈ Z[x] has only rational roots and none of the
coefficients of f is divisible by p, then deg(f)+1 in its p-adic expansion
has at most c(p) non-zero digits? In particular, can one take c(p) =
p− 1?

Lemmas 2.1 and 2.2 show that the answer is ‘yes’ with c(p) = p− 1 for
p = 2, 3. Note that an affirmative answer to Problem 3 through a deep
result of Stewart [24] would yield positive answers to Problems 1 and
2, as well.
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