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Abstract. M. Pohst asked the following question: is it true that every prime can be

written in the form 2u±3v with some non-negative integers u, v? We put the problem

into a general framework, and prove that the length of any arithmetic progression
in t-term linear combinations of elements from a multiplicative group of rank r (e.g.

of S-units) is bounded in terms of r, t, n, where n is the number of the coefficient

t-tuples of the linear combinations. Combining this result with a recent theorem of
Green and Tao on arithmetic progressions of primes, we give a negative answer to

the problem of M. Pohst.

1. Introduction and results

Linear equations involving elements from a multiplicative group (such as e.g. S-
unit equations) play a vital role and have wide and deep applications in several parts
of diophantine number theory. For theoretical results and applications of such and
related equations we refer to the papers [2–5,8–9], and the references given there.
Combining the underlying theory of such equations and a classical result of van
der Waerden [10] about arithmetic progressions, we show that the length of any
arithmetic progression consisting of t-term linear combinations of elements from a
finitely generated multiplicative group of rank r is bounded in terms of r, t, n, where
n is the number of the coefficient t-tuples of the linear combinations.

To formulate our results we need some notation. We follow the paper [5], with
slight modifications. Let K be an algebraically closed field of characteristic zero.
Write K∗ for the multiplicative group of the non-zero elements of K, and let Γ be
a multiplicative subgroup of K∗ having finite rank r. Let t be a positive integer,
and let A be a finite subset of Kt having n elements. Put

Ht(Γ,A) =

{
t∑

i=1

aixi : (a1, . . . , at) ∈ A, (x1, . . . , xt) ∈ Γt

}
.

The main result of this paper is the following.
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Theorem 1. There exists a constant C(r, t, n) depending only on r, t and n such
that the length of any non-constant arithmetic progression in Ht(Γ,A) is at most
C(r, t, n).

Note that in the upper bound C(r, t, n) none of r, t, n could be omitted. This
will be demonstrated by a simple example in Remark 1 after the proof of Theorem
1. Further, at the same place we show that the number of arithmetic progressions
in Ht(Γ,A) can be infinite, in case of any possible length.

Now as an application, we formulate a result concerning primes represented by
sums of integers which are rational S-units. This is motivated by the next problem.
M. Pohst asked the following question (oral communication): is it true that every
prime can be written in the form 2u ± 3v, with some non-negative integers u, v?
As we will see, by a recent, celebrated result of Green and Tao [7] on arithmetic
progressions consisting of primes, this question can be reduced to S-unit equations
in a natural way. By the help of Theorem 1 we will provide a negative answer
to this question, under much more general circumstances. Note that the theorem
would be true under even more general conditions, as well. However, we think that
it is not natural to use here more general settings.

To formulate this result, let S = {p1, . . . , pr} be a (nonempty) set of (positive)
primes in Z. As usual, let ZS denote the set of those integers, which do not have
any prime divisors outside S. In particular, we have ±1 ∈ ZS . Let t be a positive
integer and let A be a finite non-empty subset of Zt. Put

Ht(ZS , A) =

{
t∑

i=1

aisi : (a1, . . . , at) ∈ A, (s1, . . . , st) ∈ Zt
S

}
.

Theorem 2. For any S, t and A there are infinitely many primes outside the set
Ht(ZS , A).

Taking S = {2, 3}, t = 2 and A = {(1, 1)}, the above theorem yields a negative
answer to the problem of M. Pohst. Note that the smallest prime not of the shape
2u ± 3v is 53; this fact is demonstrated in Remark 2 after the proof of Theorem 2.
We also mention that it is widely believed that there are infinitely many Mersenne-
primes, i.e. primes of the shape 2u− 1 (u ∈ N). As these primes (would) all belong
to H2(S, A) with S = {2}, t = 2 and A = {(1, 1)}, we probably cannot claim that
Ht(S, A) contains only finitely many primes in general. Hence the theorem seems
to be best possible in the qualitative sense.

2. Proofs of the theorems

To prove our theorems, we need several tools. The first one is a deep and general
finiteness result for the number of solutions of linear equations involving elements
of Γ, due to Evertse, Schlickewei and Schmidt [5].

Keeping the notation from the previous section, consider the equation

(1) a1x1 + . . . + atxt = 1

in x = (x1, . . . , xt) ∈ Γt, where a = (a1, . . . , at) ∈ (K∗)t. A solution x is called non-
degenerate, if no subsum of the left hand side of (1) vanishes, that is

∑
i∈I

aixi 6= 0 for

any nonempty subset I of {1, . . . , t}. The next statement is a simple and immediate
consequence of Theorem 1.1 from [5].
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Theorem A. There exists a constant c1(r, t) depending only on r and t (inde-
pendent of a) such that equation (1) has at most c1(r, t) non-degenerate solutions
x ∈ Γt.

We will also need the following simple and well-known corollary of the above
theorem.

Corollary 1. There exists a constant c2(r, t) depending only on r and t with the
following property. If (x1, . . . , xt) ∈ Γt is a solution to (1) then xi = αP (i)x

∗
i (i =

1, . . . , t) with some αP (i), x
∗
i ∈ Γ, where (x∗1, . . . , x

∗
t ) belongs to a set of cardinality

at most c2(r, t). Further, here P1, . . . , Ps, Ps+1 is a partition of {1, . . . , t}, P (i)
denotes the class Pl for which i ∈ Pl, and αPs+1 = 1.

Proof. Partitioning the sum at the left hand side of (1) into vanishing subsums
(the indices in the subsums compose the classes P1, . . . , Ps, respectively) and a
subsum yielding 1 (the indices in this subsum compose Ps+1) such that none of
these subsums has a vanishing subsum, the statement follows from Theorem A by
a simple inductive argument. �

The next well-known result from Ramsey theory is due to van der Waerden (cf.
[10]). This theorem will be very helpful in taking care of the vanishing subsums in
the occurring linear equations of the shape (1).

Theorem B. For every positive integers k and h there exists a positive integer
W = W (k, h) such that for any coloring of the set {1, . . . ,W} using k colors, we
get a non-constant monochromatic arithmetic progression, having at least h terms.

Finally, in the proof of Theorem 2 we also make use of the following recent
deep and celebrated theorem of Green and Tao [7] about arithmetic progressions
of primes.

Theorem C. There are arbitrarily long arithmetic progressions of primes.

Now we are ready to prove our results.

Proof of Theorem 1. We proceed by induction on t. Let t = 1 and take an arbitrary
non-empty subset A of K having n elements. Let q1, . . . , qL be a non-constant
arithmetic progression in H1(Γ,A); write qj = a(j)x(j) (a(j) ∈ A, x(j) ∈ Γ, j =
1, . . . , L). Without loss of generality we may assume that 0 /∈ A; otherwise we can
give bounds for the lengths of the positive and negative parts of the progression
independently, and then simply combine them. Let d := q2 − q1 6= 0 denote the
common difference of the progression. Subtracting the consecutive terms, we get
the equalities

(a(j+1)/d)x(j+1) − (a(j)/d)x(j) = 1 (j = 1, . . . , L− 1).

If L − 1 > n2c1(r, 2) then by |A| = n and the box principle we get that for some
j ∈ {1, . . . , L− 1} the equation

(a(j+1)/d)x1 − (a(j)/d)x2 = 1

has more than c1(r, 2) solutions in (x1, x2) ∈ Γ2. However, by Theorem A this is a
contradiction. Hence L ≤ C(r, 1, n) := n2c1(r, 2) + 1, and the theorem follows for
t = 1.
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Let now t be an arbitrary integer with t ≥ 2, and assume that the statement
is true for t − 1. That is, the length of any arithmetic progression in Ht−1(Γ,B)
with any non-empty B ⊆ Kt−1, |B| = m is at most C(r, t− 1,m) for some constant
C(r, t−1,m) depending only on r, t−1,m. Further, let A be a non-empty subset of
Kt having n elements, and let q1, . . . , qL be a non-constant arithmetic progression
in Ht(Γ,A). Assume first that n = 1. Let A = {(a1, . . . , at)}, and put

qj =
t∑

i=1

aix
(j)
i (j = 1, . . . , L)

where (x(j)
1 , . . . , x

(j)
t ) ∈ Γt. We have

t∑
i=1

(ai/d)x(j+1)
i −

t∑
i=1

(ai/d)x(j)
i = 1 (j = 1, . . . , L− 1)

where d := q2 − q1 6= 0 is the common difference of the progression. Note that
if a1 . . . at = 0 then by the induction step we immediately have L ≤ C(r, t − 1, 1)
and the theorem follows in this case. Otherwise, Corollary 1 implies that for each
j ∈ {1, . . . , L − 1}, x

(j)
i is of the form x

(j)
i = αP (i)x

∗
i with certain (x∗1, . . . , x

∗
t )

coming from a finite subset of Γt of cardinality bounded by some c2(r, t) and certain
αP (i) ∈ Γ (i = 1, . . . , t). Here P1, . . . , Ps, Ps+1 is some partition of the set {1, . . . , t},
and P (i) denotes the class Pl (1 ≤ l ≤ s + 1) for which i ∈ Pl. Further, Ps+1 is
possibly empty, but otherwise αPs+1 = 1. Obviously, we have 1 ≤ s+1 ≤ t, further
1 ≤ s ≤ t if Ps+1 is empty. Now we paint the terms qj (j = 1, . . . , L − 1) of the
arithmetic progression. We code the colors in the following way. Those qj will
get the same color, where in the above representation the very same partition of
the indices {1, . . . , t} occurs, moreover, the ”parameter t-tuples” (x∗1, . . . , x

∗
t ) also

coincide. That is, qj1 and qj2 will get the same color if and only if we have

(x(j1)
1 , . . . , x

(j1)
t ) = (αP (1)x

∗
1, . . . , αP (t)x

∗
t )

and
(x(j2)

1 , . . . , x
(j2)
t ) = (α′P (1)x

∗
1, . . . , α

′
P (t)x

∗
t )

with the same partition P1, . . . , Ps, Ps+1, the same (x∗1, . . . , x
∗
t ) ∈ Γt, and some

αP (1), . . . , αP (t), α
′
P (1), . . . , α

′
P (t) ∈ Γ. Observe that by Corollary 1 and elementary

combinatorics, the number of colors is bounded by some constant c3(r, t) depending
only on r and t. Take k = c3(r, t) and h = C(r, t− 1, 1) + 1. Suppose that L− 1 ≥
W (k, h). Then by Theorem B we find that there exists a monochromatic arithmetic
progression in Ht(Γ,A) corresponding to the above coloring, of length C(r, t −
1, 1) + 1. If this subprogression corresponds to a case where Ps+1 is non-empty,
then observe that in each corresponding qj the very same constant

∑
P (i)=Ps+1

aix
∗
i

occurs. Cancelling this constant from each term of the subprogression, we get an
arithmetic progression in Ht−1(Γ,A′) (with the appropriate one-elemented A′) of
length C(r, t− 1, 1)+1, which is a contradiction. Suppose now that Ps+1 is empty.
Observe that in this case s < t must be valid. Hence there exists a class, say P1
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with at least two members. However, then writing bl =
∑

P (i)=Pl

aix
∗
i (l = 1, . . . , s)

the representation

qj =
s∑

l=1

blαPl

belongs to Ht−1(Γ, {b}), with b = (b1, . . . , bs, 0 . . . , 0) ∈ Kt−1. Hence we get an
arithmetic progression in the latter set, of length C(r, t − 1, 1) + 1, which is a
contradiction again. As there are now more cases to distinguish, we get that L ≤
C(r, t, 1) := W (k, h) must be valid. Hence the theorem follows in this case.

Finally, consider the general case, i.e. with a non-empty A ⊆ Kt, |A| = n,
and let q1, . . . , qL be a non-constant arithmetic progression in Ht(Γ,A). Paint qj

(j = 1, . . . , L) with a color corresponding to that a ∈ A which belongs to the
representation of qj . Let k = n and h = C(r, t, 1) + 1. Applying Theorem B
we get that if L ≥ W (k, h), then there exists a monochromatic subprogression
of the original arithmetic progression of length at least C(r, t, 1) + 1. As in this
subprogression the terms correspond to the same a ∈ A, this is a contradiction.
Hence L ≤ C(r, t, n) := W (k, h)− 1, and the theorem follows. �

Remark 1. As we mentioned in the introduction, in the upper bound C(r, t, n)
none of r, t, n could be omitted. To see this, for simplicity take K = Q. First
let t be arbitrary but fixed, take Γ = {−1, 1} and let A = {(1, . . . , 1)}. As the
arithmetic progression −t,−t + 2, . . . , t− 2, t belongs to Ht(Γ,A), the dependence
on t is necessary. Let now t = 1, and take an arbitrary positive integer k. Choosing
either Γ = {1} and A = {1, . . . , k} or Γ = US with S = {p : p is prime and p | k!}
(for the notation see the proof of Theorem 2 below) and A = {1}, in both cases we
get that the arithmetic progression 1, . . . , k belongs to Ht(Γ,A). This shows that
the dependence on both r and n is necessary, as well.

Further, in general it is not possible to give a bound for the number of pro-
gressions in Ht(Γ,A). Indeed, take K = Q, S = {2} and let Γ = US . Setting
A = {0, 1} we see that 0, 2u, 2u+1 is an arithmetic progression in H1(Γ,A) for any
u ∈ N. To get a ”non-trivial” example, observe that 1, 2u + 1, 2u+1 + 1 is an arith-
metic progression consisting of pairwise relatively prime terms in H2(Γ,A), for any
u ∈ N. In general, take arbitrary K, Γ, t and A, and suppose that q1, . . . , qL is
an arithmetic progression in Ht(Γ,A). Then q1 + x, . . . , qL + x is an arithmetic
progression in Ht+1(Γ,A′) with any x ∈ Γ, where A′ is chosen accordingly. This
shows that Ht(Γ,A) can contain infinitely many arithmetic progressions in general.

Proof of Theorem 2. Let t and S be fixed, and let A be a non-empty subset of Zt

with |A| = n. As is well-known, taking K = Q and

US = {p/q : p, q ∈ Z \ {0}, gcd(p, q) = 1, pq ∈ ZS},

US is a finitely generated multiplicative subgroup of Q∗ (with ZS ⊆ US), of rank r =
|S|. Further, Theorem C obviously implies that there are infinitely many pairwise
disjoint arithmetic progressions of primes of length C(r, t, n)+1 (where C(r, t, n) is
specified in Theorem 1). As by Theorem 1 each such progression contains a prime
outside Ht(US , A), the statement follows. �

Remark 2. The smallest prime yielding a negative answer to the problem of M.
Pohst is 53. This can be seen as follows. On the one hand, it is easy to check that all
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the smaller primes can be represented in the desired form, with ”small” u, v. (The
”largest” decomposition is given by 27 − 34 = 47.) On the other hand, if 53 is of
the shape 2u± 3v, then we have 2αy2 = 3βx3 +53 with α ∈ {0, 1} and β ∈ {0, 1, 2}
where ±x and y are powers of 3 and 2, respectively. However, a simple computation
with Magma (see [1]) gives that these elliptic equations have no solutions of the
required shape, and our claim follows. Note that as these equations can be easily
transformed into Mordell equations, their solutions are already known from [6].
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