ON ADDITIVE AND MULTIPLICATIVE
 DECOMPOSITIONS OF SETS OF INTEGERS
 WITH RESTRICTED PRIME FACTORS, II. (SMOOTH NUMBERS AND GENERALIZATIONS.)

K. GYŐRY, L. HAJDU AND A. SÁRKÖZY

Abstract

In part I of this paper we studied additive decomposability of the set \mathcal{F}_{y} of the y-smooth numbers and the multiplicative decomposability of the shifted set $\mathcal{G}_{y}=\mathcal{F}_{y}+\{1\}$. In this paper, focusing on the case of 'large' functions y, we continue the study of these problems. Further, we also investigate a problem related to the m-decomposability of k-term sumsets, for arbitrary k.

1. Introduction

First we recall some notation, definitions and results from part I of this paper [6] which we all also need here.
$\mathcal{A}, \mathcal{B}, \mathcal{C}, \ldots$ denote (usually infinite) sets of non-negative integers, and their counting functions are denoted by $A(X), B(X), C(X), \ldots$ so that, e.g.,

$$
A(X)=|\{a: a \leq X, a \in \mathcal{A}\}| .
$$

The set of the positive integers is denoted by \mathbb{N}, and we write $\mathbb{N} \cup\{0\}=$ \mathbb{N}_{0}. The set of rational numbers is denoted by \mathbb{Q}.

We will need
Definition 1.1. Let G be an additive semigroup and $\mathcal{A}, \mathcal{B}, \mathcal{C}$ subsets of G with

$$
\begin{equation*}
|\mathcal{B}| \geq 2, \quad|\mathcal{C}| \geq 2 \tag{1.1}
\end{equation*}
$$

If

$$
\begin{equation*}
\mathcal{A}=\mathcal{B}+\mathcal{C}(=\{b+c: b \in \mathcal{B}, c \in \mathcal{C}\}) \tag{1.2}
\end{equation*}
$$

[^0]then (1.2) is called an additive decomposition or briefly a-decomposition of \mathcal{A}, while if a multiplication is defined in G and (1.1) and
\[

$$
\begin{equation*}
\mathcal{A}=\mathcal{B} \cdot \mathcal{C}(=\{b c: b \in \mathcal{B}, c \in \mathcal{C}\}) \tag{1.3}
\end{equation*}
$$

\]

hold then (1.3) is called a multiplicative decomposition or briefly mdecomposition of \mathcal{A}.

Definition 1.2. A finite or infinite set \mathcal{A} of non-negative integers is said to be a-reducible if it has an additive decomposition

$$
\mathcal{A}=\mathcal{B}+\mathcal{C} \quad \text { with } \quad|\mathcal{B}| \geq 2,|\mathcal{C}| \geq 2
$$

(where $\mathcal{B} \subset \mathbb{N}_{0}, \mathcal{C} \subset \mathbb{N}_{0}$). If there are no sets \mathcal{B}, \mathcal{C} with these properties then \mathcal{A} is said to be a-primitive or a-irreducible.

Similarly, if \mathcal{A} is a finite or infinite set of positive integers then it is said to be m-reducible if it has a multiplicative decomposition

$$
\mathcal{A}=\mathcal{B} \cdot \mathcal{C} \quad \text { with } \quad|\mathcal{B}| \geq 2,|\mathcal{C}| \geq 2
$$

(where $\mathcal{B} \subset \mathbb{N}, \mathcal{C} \subset \mathbb{N}$). If there are no such sets \mathcal{B}, \mathcal{C} then \mathcal{A} is said to be m-primitive or m-irreducible.

Definition 1.3. Two sets \mathcal{A}, \mathcal{B} of non-negative integers are said to be asymptotically equal if there is a number K such that $\mathcal{A} \cap[K,+\infty)=$ $\mathcal{B} \cap[K,+\infty)$ and then we write $\mathcal{A} \sim \mathcal{B}$.

Definition 1.4. An infinite set \mathcal{A} of non-negative integers is said to be totally a-primitive if every \mathcal{A}^{\prime} with $\mathcal{A}^{\prime} \subset \mathbb{N}_{0}, \mathcal{A}^{\prime} \sim \mathcal{A}$ is a-primitive.

Similarly, an infinite set $\mathcal{A} \subset \mathbb{N}$ is said to be totally m-primitive if every $\mathcal{A}^{\prime} \subset \mathbb{N}$ with $\mathcal{A}^{\prime} \sim \mathcal{A}$ is m-primitive.

Definition 1.5. Denote the greatest prime factor of the positive integer n by $p^{+}(n)$. Then n is said to be smooth (or friable) if $p^{+}(n)$ is "small" in terms of n. More precisely, if $y=y(n)$ is a monotone increasing function on \mathbb{N} assuming positive values and $n \in \mathbb{N}$ is such that $p^{+}(n) \leq$ $y(n)$, then we say that n is y-smooth, and we write \mathcal{F}_{y} (\mathcal{F} for "friable") for the set of all y-smooth positive integers.

Starting out from a conjecture of the third author [11] and a related partial result of Elsholtz and Harper [2], in [6] we proved the following two theorems:

Theorem A. If $y(n)$ is an increasing function with $y(n) \rightarrow \infty$ and

$$
\begin{equation*}
y(n)<2^{-32} \log n \quad \text { for large } n, \tag{1.4}
\end{equation*}
$$

then the set \mathcal{F}_{y} is totally a-primitive.
(If $y(n)$ is increasing then the set \mathcal{F}_{y} is m-reducible since $\mathcal{F}_{y}=\mathcal{F}_{y} \cdot \mathcal{F}_{y}$, and we also have $\mathcal{F}_{y} \sim \mathcal{F}_{y} \cdot\{1,2\}$, thus if we want to prove an mprimitivity theorem involving \mathcal{F}_{y} then we have to switch from \mathcal{F}_{y} to the shifted set

$$
\begin{equation*}
\mathcal{G}_{y}:=\mathcal{F}_{y}+\{1\} . \tag{1.5}
\end{equation*}
$$

See also [1].)
Theorem B. If $y(n)$ is defined as in Theorem 1.1, then the set \mathcal{G}_{y} is totally m-primitive.

Here our goal is to prove further related results. First we will prove a theorem in the direction opposite to the one in Theorem A. Indeed, we will show that if $y(n)$ grows faster than $n / 2$, then \mathcal{F}_{y} is not totally a-primitive.

Theorem 1.1. Let $y(n)$ be any monotone increasing function on \mathbb{N} with

$$
\frac{n}{2}<y(n)<n \quad \text { for all } n \in \mathbb{N} .
$$

Then \mathcal{F}_{y} is not totally a-primitive. In particular, in this case the set

$$
\mathcal{F}_{y} \cap[9,+\infty)
$$

is a-reducible, namely, we have

$$
\mathcal{F}_{y} \cap[9,+\infty)=\mathcal{A}+\mathcal{B}
$$

with
$\mathcal{A}=\{n \in \mathbb{N}$: none of $n, n+1, n+3, n+5$ is prime $\}, \mathcal{B}=\{0,1,3,5\}$.
Next we will show that under a standard conjecture, the decomposition in Theorem 1.1 is best possible in the sense that no such decomposition is possible with $2 \leq|\mathcal{B}| \leq 3$. For this, we need to formulate the so-called prime k-tuple conjecture. A finite set A of integers is called admissible, if for any prime p, no subset of A forms a complete residue system modulo p.
Conjecture 1.1 (The prime k-tuple conjecture). Let $\left\{a_{1}, \ldots, a_{k}\right\}$ be an admissible set of integers. Then there exist infinitely many positive integers n such that $n+a_{1}, \ldots, n+a_{k}$ are all primes.

Remark. By a recent, deep result of Maynard [8] we know that for each k, the above conjecture holds for a positive proportion of admissible k-tuples. We also mention that if the prime k-tuple conjecture is true, then there exist infinitely many n such that $n+a_{1}, \ldots, n+a_{k}$ are consecutive primes (see, e.g., the proof of Theorem 2.4 of [7]).

Theorem 1.2. Define $y(n)$ as in Theorem 1.1 and suppose that the prime k-tuple conjecture is true for $k=2,3$. Then for any $\mathcal{C} \subset \mathbb{N}$ with $\mathcal{C} \sim \mathcal{F}_{y}$ there is no decomposition of the form

$$
\mathcal{C}=\mathcal{A}+\mathcal{B}
$$

with

$$
2 \leq|\mathcal{B}| \leq 3
$$

We propose the following problem, which is a shifted, multiplicative analogue of the question studied in Theorems 1.1 and 1.2.
Problem. With the same $y=y(n)$ as in Theorem 1.1, write

$$
\mathcal{G}_{y}=\mathcal{F}_{y}+\{1\}=\left\{m+1: m \in \mathcal{F}_{y}\right\} .
$$

Is the set \mathcal{G}_{y} totally m-primitive?
Towards the above problem, we prove that no appropriate decomposition is possible with $|\mathcal{B}|<+\infty$.

Theorem 1.3. Let $y(n)$ be as in Theorem 1.1. Then for any $\mathcal{C} \subset \mathbb{N}$ with $\mathcal{C} \sim \mathcal{G}_{y}$ there is no decomposition of the form

$$
\mathcal{C}=\mathcal{A} \cdot \mathcal{B}
$$

with

$$
|\mathcal{B}|<+\infty .
$$

Let

$$
\Gamma:=\left\{n_{1}, \ldots, n_{s}\right\}
$$

be a set of pairwise coprime positive integers >1, and let $\{\Gamma\}$ be the multiplicative semigroup generated by Γ, with $1 \in\{\Gamma\}$. If in particular, n_{1}, \ldots, n_{s} are distinct primes, then we use the notation $\Gamma=S$, and $\{\Gamma\}=\{S\}$ is just the set of positive integers composed of the primes from S.

The next theorem shows that if Γ is finite, then the sets of k-term and at most k-term sums of pairwise coprime elements of $\{\Gamma\}$ are totally m -primitive. For the precise formulation of the statement, write H_{1} := $\{\Gamma\}$, and for $k \geq 2$ set

$$
H_{k}:=\left\{u_{1}+\cdots+u_{k}: u_{i} \in\{\Gamma\}, \operatorname{gcd}\left(u_{i}, u_{j}\right)=1 \text { for } 1 \leq i<j \leq k\right\}
$$

and

$$
H_{\leq k}:=\bigcup_{\ell=1}^{k} H_{\ell} .
$$

Theorem 1.4. Let $k \geq 2$. Then both H_{k} and $H_{\leq k}$ are totally mprimitive, apart from the only exception exception of the case $\Gamma=\{2\}$ and $k=3$, when we have

$$
H_{\leq 3}=\{1,2\} \cdot\left\{2^{\beta}, 2^{\beta}+1: \beta \geq 0\right\} .
$$

Remark. As we have

$$
\{\Gamma\}=\{\Gamma\} \cdot\{\Gamma\},
$$

the assumption $k \geq 2$ is clearly necessary. Further, the coprimality assumption in the definition of H_{k} cannot be dropped. Indeed, letting

$$
H_{k}^{*}:=\left\{u_{1}+\cdots+u_{k}: u_{i} \in\{\Gamma\} \text { for } 1 \leq i \leq k\right\}
$$

and

$$
H_{\leq k}^{*}:=\bigcup_{\ell=1}^{k} H_{\ell}^{*}
$$

we clearly have

$$
H_{k}^{*}=\{\Gamma\} \cdot H_{k}^{*} \quad \text { and } \quad H_{\leq k}^{*}=\{\Gamma\} \cdot H_{\leq k}^{*} .
$$

2. Proof of Theorem 1.1

By the choice of $y(n)$ we see that \mathcal{F}_{y} is the set of all composite integers. Put

$$
\mathcal{C}=\mathcal{F}_{y} \cap[9,+\infty) .
$$

We show that by the definition of \mathcal{A} and \mathcal{B} as in the theorem, we have

$$
\mathcal{C}=\mathcal{A}+\mathcal{B} .
$$

To see this, first observe that by the assumptions on \mathcal{A} and \mathcal{B}, all the elements of $\mathcal{A}+\mathcal{B}$ are composite. So we only need to check that all composite numbers n with $n \geq 9$ belong to $\mathcal{A}+\mathcal{B}$. If n is an odd composite number, then by $n \in \mathcal{A}$ we have

$$
\begin{equation*}
n \in \mathcal{A}+\mathcal{B} . \tag{2.1}
\end{equation*}
$$

So assume that n is an even composite number with $n \geq 10$. Then one of $n-1, n-3, n-5$ is not a prime. As this number is clearly in \mathcal{A}, we have (2.1) again and our claim follows.

3. Proof of Theorem 1.2

Let $\mathcal{C} \subset \mathbb{N}$ with $\mathcal{C} \sim \mathcal{F}_{y}$. Then, as we noted in the proof of Theorem 1.1, with some positive integer n_{0} we have

$$
\mathcal{C} \cap\left[n_{0},+\infty\right)=\left\{n \in \mathbb{N}: n \geq n_{0} \text { and } n \text { is composite }\right\} .
$$

We handle the cases $k=2$ and 3 separately.
Let first $k=2$, that is assume that contrary to the assertion of the theorem the set \mathcal{C} can be represented as

$$
\begin{equation*}
\mathcal{C}=\mathcal{A}+\mathcal{B} \tag{3.1}
\end{equation*}
$$

with $|\mathcal{B}|=2$. Set $B=\left\{b_{1}, b_{2}\right\}$. Clearly, without loss of generality we may assume that $b_{1}<b_{2}$ and also that $b_{1}=0$. Indeed, the first assumption is trivial, and the second one can be made since (3.1) implies that

$$
\mathcal{C}=\mathcal{A}^{*}+\left\{0, b_{2}-b_{1}\right\}
$$

with

$$
\mathcal{A}^{*}=\mathcal{A}+\left\{b_{1}\right\}=\left\{a+b_{1}: a \in \mathcal{A}\right\} .
$$

As the set $\left\{-b_{2}, b_{2}\right\}$ is admissible, by our assumption on the validity of Conjecture 1.1 we get that there exist infinitely many integers n such that $n-b_{2}$ and $n+b_{2}$ are both primes. In view of the Remark after Conjecture 1.1, we may assume that these primes are consecutive, that is, in particular, n is composite. Observe that then, assuming that $n \geq n_{0}+b_{2}$, we have $n-b_{2} \notin \mathcal{A}$ and $n \notin \mathcal{A}$. Indeed, otherwise by the primality of $n-b_{2}$ and $n+b_{2}$, respectively, we get a contradiction: in case of $n-b_{2} \in \mathcal{A}$ we have $n-b_{2} \in \mathcal{C}$, while $n+b_{2} \in \mathcal{A}$ implies that $n+b_{2} \in \mathcal{C}$. But then we get $n \notin \mathcal{C}$, which is a contradiction.

Let now $k=3$, that is assume that we have (3.1) with some \mathcal{B} with $|\mathcal{B}|=3$. Write $\mathcal{B}=\left\{b_{1}, b_{2}, b_{3}\right\}$. As in the case $k=2$, we may assume that $0=b_{1}<b_{2}<b_{3}$. Now we construct an admissible triple related to \mathcal{B}. If b_{2} and b_{3} are of the same parity, then either

$$
t_{1}=\left\{-b_{3},-b_{2}, b_{3}\right\}
$$

or

$$
t_{2}=\left\{-b_{3},-b_{2}, b_{2}\right\}
$$

is admissible, according as $3 \mid b_{3}$ or $3 \nmid b_{3}$. Further, if b_{2} is odd and b_{3} is even, then either

$$
t_{3}=\left\{-b_{3}+b_{2}, b_{3}-b_{2}, b_{2}\right\}
$$

or

$$
t_{4}=\left\{-b_{3}+b_{2},-b_{2}, b_{2}\right\}
$$

is admissible, according as $b_{2} \equiv b_{3}(\bmod 3)$ or $b_{2} \not \equiv b_{3}(\bmod 3)$. Finally, if b_{2} is even and b_{3} is odd, then either

$$
t_{5}=\left\{-b_{3}+b_{2}, b_{3}-b_{2}, b_{3}\right\}
$$

or

$$
t_{6}=\left\{-b_{3}, b_{3}-b_{2}, b_{3}\right\}
$$

is admissible, according as $b_{2} \equiv b_{3}(\bmod 3)$ or $b_{2} \not \equiv b_{3}(\bmod 3)$. Let $1 \leq i \leq 6$ such that t_{i} is admissible, and write $t_{i}=\left\{u_{1}, u_{2}, u_{3}\right\}$. According to Conjecture 1.1 (see also the Remark after it) we get that there exists an n with $n \geq n_{0}+b_{3}$ such that n is composite, but

$$
n+u_{1}, \quad n+u_{2}, \quad n+u_{3}
$$

are all primes $\geq n_{0}$. However, then a simple check shows that for any value of i, we have that none of $n-b_{3}, n-b_{2}, n$ is in \mathcal{A}, since otherwise \mathcal{C} would contain a prime $\geq n_{0}$. However, then we get $n \notin \mathcal{C}$. This is a contradiction, and our claim follows.

4. Proof of Theorem 1.3

Let $\mathcal{C} \subset \mathbb{N}$ with $\mathcal{C} \sim \mathcal{G}_{y}$. Then with some positive integer n_{0} we have

$$
\mathcal{C} \cap\left[n_{0},+\infty\right)=\left\{n+1: n \geq n_{0}-1 \text { and } n \text { is composite }\right\} .
$$

Assume to the contrary that we can write

$$
\begin{equation*}
\mathcal{C}=\mathcal{A} \cdot \mathcal{B} \tag{4.1}
\end{equation*}
$$

with $|\mathcal{B}|<+\infty$. Put $B=\left\{b_{1}, \ldots, b_{\ell}\right\}$ with $\ell \geq 2$ and $1 \leq b_{1}<b_{2}<$ $\cdots<b_{\ell}$.

Assume first that $1 \notin \mathcal{B}$ (that is, $b_{1}>1$). Let n be an arbitrary (composite) multiple of the product $b_{1} \ldots b_{\ell}$ such that $n \geq n_{0}$. Then we immediately see that $n+1$ is not divisible by any $b_{i}(i=1, \ldots, \ell)$, which shows that $n+1 \notin \mathcal{C}$. However, this is a contradiction, and our claim follows in this case.

Suppose now that $1 \in \mathcal{B}$ (that is, $b_{1}=1$). For each of $i=2, \ldots, \ell$ choose a prime divisor p_{i} of b_{i}, with the convention that $p_{i}=4$ if b_{i} is a power of 2 , and let P be the set of these primes. Observe that P is non-empty. Take two distinct primes q_{1}, q_{2} not belonging to P, and consider the following system of linear congruences:

$$
\begin{array}{lll}
x \equiv 0 & \left(\bmod q_{i}\right) & \text { for } i=1,2, \\
x \equiv 1 & (\bmod p) & \text { if } p \in P, p \mid b_{2}-1, \\
x \equiv 0 & (\bmod p) & \text { if } p \in P, p \nmid b_{2}-1 .
\end{array}
$$

Let x_{0} be an arbitrary positive solution to the above system. Put

$$
N:=q_{1} q_{2} \prod_{p \in P} p
$$

and consider the arithmetic progression

$$
\begin{equation*}
\left(b_{2} N\right) t+\left(b_{2}\left(x_{0}+1\right)-1\right) \tag{4.2}
\end{equation*}
$$

in $t \geq 0$. Observe that here we have $\operatorname{gcd}\left(b_{2} N, b_{2}\left(x_{0}+1\right)-1\right)=1$. Indeed, $\operatorname{gcd}\left(b_{2}, b_{2}\left(x_{0}+1\right)-1\right)=1$ trivially holds, and as $b_{2}\left(x_{0}+1\right)-1=$ $b_{2} x_{0}+b_{2}-1$, the relation $\operatorname{gcd}\left(N, b_{2}\left(x_{0}+1\right)-1\right)=1$ follows from the definition of x_{0}. Thus by Dirichlet's theorem there exist infinitely many integers t such that (4.2) is a prime. Let t be such an integer with $t>n_{0}$, and put

$$
n:=t N+x_{0} .
$$

We claim that n is composite with $n>n_{0}$, but $n+1 \notin \mathcal{C}$. This will clearly imply the statement. It is obvious that $n>n_{0}$, and as $q_{1} q_{2} \mid N$ and $q_{1} q_{2} \mid x_{0}$, we also have that n is composite. Further, we have that $n+1 \notin \mathcal{A}$. Indeed, otherwise we would also have $b_{2}(n+1) \in \mathcal{C}$, that is, $b_{2}(n+1)-1$ should be composite - however,

$$
b_{2}(n+1)-1=\left(b_{2} N\right) t+\left(b_{2}\left(x_{0}+1\right)-1\right)
$$

is a prime. (The importance of this fact is that we cannot have $n+1 \in \mathcal{C}$ by the relation $n+1=(n+1) \cdot 1$ with $n+1 \in \mathcal{A}$ and $1 \in \mathcal{B}$.) Further, since $n+1 \equiv 1,2(\bmod p)$ for $p \in P$ as $p_{i} \geq 3$ and $p_{i} \mid b_{i}$ we have $b_{i} \nmid n+1$ for $i=3, \ldots, \ell$. We need to check the case $i=2$ separately. If $b_{2}>2$, then we have $p_{2} \geq 3$ and $p_{2} \mid b_{2}$, and we have $b_{2} \nmid n+1$ again. On the other hand, if $b_{2}=2$, then as $b_{2}-1=1$ and $p_{2}=4$, we have $4 \mid n$, so $b_{2} \nmid n+1$ once again. So in any case, $b_{i} \nmid n+1(i=2, \ldots, \ell)$. Hence $n+1$ cannot be of the form $a b_{i}$ with $a \in \mathcal{A}$ and $i=1, \ldots, \ell$. Thus our claim follows also in this case.

5. Proof of Theorem 1.4

The proof of Theorem 1.4 is based on the following deep theorem. Recall that $\{\Gamma\}$ denotes the multiplicative semigroup generated by Γ. Consider the equation

$$
\begin{equation*}
a_{1} x_{1}+\cdots+a_{m} x_{m}=0 \quad \text { in } x_{1}, \ldots, x_{m} \in\{\Gamma\}, \tag{5.1}
\end{equation*}
$$

where a_{1}, \ldots, a_{m} are non-zero elements of \mathbb{Q}. If $m \geq 3$, a solution of (5.1) is called non-degenerate if the left hand side of (5.1) has no vanishing subsums. Two solutions x_{1}, \ldots, x_{m} and $x_{1}^{\prime}, \ldots, x_{m}^{\prime}$ are proportional if

$$
\left(x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)=\lambda\left(x_{1}, \ldots, x_{m}\right)
$$

with some $\lambda \in\{\Gamma\} \backslash\{1\}$.
Theorem C. Equation (5.1) has only finitely many non-proportional, non-degenerate solutions.

This theorem was proved independently by van der Poorten and Schlickewei [9] and Evertse [3] in a more general form. Later Evertse and Győry [4] showed that the number of non-proportional, nondegenerate solutions of (5.1) can be estimated from above by a constant which depends only on Γ. For related results, see the paper [10] and the book [5].

We shall use the following consequence of Theorem C.
Corollary 5.1. There exists a finite set \mathcal{L} such that if x_{1}, \ldots, x_{ℓ} are pairwise coprime elements of $\{\Gamma\}, y_{1}, \ldots, y_{h}$ are also pairwise coprime elements of $\{\Gamma\}$ such that $\ell, h \leq k, \ell+h \geq 3$ and

$$
\begin{equation*}
\varepsilon\left(x_{1}+\cdots+x_{\ell}\right)-\eta\left(y_{1}+\cdots+y_{h}\right)=0 \tag{5.2}
\end{equation*}
$$

with some $\varepsilon, \eta \in\{\Gamma\}$ and without vanishing subsum on the left hand side, then

$$
x_{1}, \ldots, x_{\ell}, y_{1}, \ldots, y_{h} \in \mathcal{L} .
$$

Further, \mathcal{L} is independent of ε, η.
Proof. Without loss of generality we may assume that $\ell \geq 2$. Then Theorem C implies that

$$
\left(\varepsilon x_{1}, \ldots, \varepsilon x_{\ell}\right)=\nu\left(z_{1}, \ldots, z_{\ell}\right),
$$

where $\nu, z_{1}, \ldots, z_{\ell} \in\{\Gamma\}$, and z_{1}, \ldots, z_{ℓ} belong to a finite set. Hence, as

$$
\left(x_{1}, \ldots, x_{\ell}\right)=\nu^{*}\left(z_{1}, \ldots, z_{\ell}\right)
$$

with $\nu^{*}=\nu / \varepsilon$, in view of that $x_{1}, \ldots, x_{\ell} \in\{\Gamma\}$ are pairwise coprime, we conclude that x_{1}, \ldots, x_{ℓ} belong to a finite set (which is independent of ε, η). If we have $h=1$, then expressing y_{1} from (5.2), the statement immediately follows. On the other hand, if $h \geq 2$, then applying the above argument for $\left(\eta y_{1}, \ldots, \eta y_{h}\right)$ in place of $\left(\varepsilon x_{1}, \ldots, \varepsilon x_{\ell}\right)$, the statement also follows.

Now we can prove our Theorem 1.4. Our argument will give the proof of our statement concerning both H_{k} and $H_{\leq k}$. First note that there is a constant C_{1} such that if in H_{k} (resp. in $H_{\leq k}$), we have

$$
u_{1}+\cdots+u_{t}>C_{1}
$$

with $t=k$ (resp. with $2 \leq t \leq k$) and $\operatorname{gcd}\left(u_{i}, u_{j}\right)=1$ for $1 \leq i<$ $j \leq t$, then this sum is not contained in $\{\Gamma\}$. This is an immediate consequence of Theorem C.

Assume that contrary to the statement of the theorem for some \mathcal{R} which is asymptotically equal to one of H_{k} and $H_{\leq k}$ we have

$$
\mathcal{R}=\mathcal{A} \cdot \mathcal{B}
$$

with

$$
\mathcal{A}, \mathcal{B} \subset \mathbb{N}, \quad|\mathcal{A}|,|\mathcal{B}| \geq 2
$$

Since both H_{k} and $H_{\leq k}$ are infinite, so is \mathcal{R}, whence at least one of \mathcal{A} and \mathcal{B}, say \mathcal{B} is infinite.

We prove that

$$
\begin{equation*}
\mathcal{A}=\left\{a_{0} t: t \in T\right\} \tag{5.3}
\end{equation*}
$$

with some positive integer a_{0} and $T \subset\{\Gamma\}$, such that $|T| \geq 2$. Indeed, take distinct elements $a_{1}, a_{2} \in \mathcal{A}$. Then for all sufficiently large $b \in \mathcal{B}$ we have

$$
\begin{equation*}
r_{1}:=a_{1} b=u_{1}+\cdots+u_{\ell} \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2}:=a_{2} b=v_{1}+\cdots+v_{h} \tag{5.5}
\end{equation*}
$$

with some $r_{1}, r_{2} \in \mathcal{R}, \ell, h \leq k$, and with $u_{1}, \ldots, u_{\ell}, v_{1}, \ldots, v_{h} \in\{\Gamma\}$ such that

$$
\begin{equation*}
\operatorname{gcd}\left(u_{i_{1}}, u_{i_{2}}\right)=\operatorname{gcd}\left(v_{j_{1}}, v_{j_{2}}\right)=1\left(1 \leq i_{1}<i_{2} \leq \ell, 1 \leq j_{1}<j_{2} \leq h\right) . \tag{5.6}
\end{equation*}
$$

We infer from (5.4) and (5.5) that

$$
\begin{equation*}
a_{2}\left(u_{1}+\cdots+u_{\ell}\right)-a_{1}\left(v_{1}+\cdots+v_{h}\right)=0 \tag{5.7}
\end{equation*}
$$

Since there are infinitely many $b \in \mathcal{B}$, and we arrive at (5.7) whenever b is large enough, this equation has infinitely many solutions $u_{1}, \ldots, u_{\ell}, v_{1}, \ldots, v_{h} \in\{\Gamma\}$ with the property (5.6). However, by Theorem C this can hold only if, after changing the indices if necessary,

$$
\begin{equation*}
a_{2} u_{1}=a_{1} v_{1} . \tag{5.8}
\end{equation*}
$$

Let d_{1}, d_{2} be the maximal positive divisors of a_{1}, a_{2} from $\{\Gamma\}$, respectively. Write

$$
\begin{equation*}
a_{1}=a_{1}^{\prime} d_{1} \quad \text { and } \quad a_{2}=a_{2}^{\prime} d_{2}, \tag{5.9}
\end{equation*}
$$

and observe that by the pairwise coprimality of the elements of Γ both d_{1}, d_{2} and $a_{1}^{\prime}, a_{2}^{\prime}$ are uniquely determined. In particular, none of $a_{1}^{\prime}, a_{2}^{\prime}$ is divisible by any element of Γ. Equations (5.9) together with (5.8) imply

$$
a_{2}^{\prime} d_{2} u_{1}=a_{1}^{\prime} d_{1} v_{1},
$$

where $d_{2} u_{1}, d_{1} v_{1} \in\{\Gamma\}$. We know infer that

$$
a_{0}:=a_{1}^{\prime}=a_{2}^{\prime}
$$

and

$$
a_{1}=a_{0} t_{1}, \quad a_{2}=a_{0} t_{2} \quad \text { with } t_{1}, t_{2} \in\{\Gamma\} .
$$

It is important to note that a_{0} is the greatest positive divisor of a_{1} (and of a_{2}) which is not divisible by any element of Γ. Considering now a_{1}, a_{i} instead of a_{1}, a_{2} for any other $a_{i} \in \mathcal{A}$, we get in the same way that

$$
a_{i}=a_{0} t_{i} \quad \text { with } t_{i} \in\{\Gamma\} .
$$

This proves (5.3).
Write $\Gamma=\left\{n_{1}, \ldots, n_{s}\right\}$ and put $m:=\min (s, k)$. Denote by \mathcal{R}° the subset of \mathcal{R} consisting of sums $u_{1}+\cdots+u_{k}$ with $u_{1}, \ldots, u_{m} \in\{\Gamma\} \backslash \mathcal{L}$ such that

$$
u_{i}= \begin{cases}n_{i}^{\alpha_{i}} & \text { with } \alpha_{i}>1 \text { for } i \leq m \tag{5.10}\\ 1 & \text { for } s<i \leq k(\text { if } s<k)\end{cases}
$$

Clearly, \mathcal{R}° is an infinite set. Take $r_{1} \in \mathcal{R}^{\circ}$ of the form

$$
r_{1}=u_{1}+\cdots+u_{k}
$$

with u_{1}, \ldots, u_{k} satisfying (5.10). By what we have already proved, we can write

$$
r_{1}=a_{0} t_{1} b
$$

with some $t_{1} \in T$ and $b \in \mathcal{B}$. Put $r_{2}=a_{0} t_{2} b$ with some $t_{2} \in T, t_{2} \neq t_{1}$ such that $r_{2} \in \mathcal{R}$. Writing

$$
r_{2}=v_{1}+\cdots+v_{h}
$$

with pairwise coprime $v_{1}, \ldots, v_{h} \in\{\Gamma\}$, we get

$$
\begin{equation*}
t_{2}\left(u_{1}+\cdots+u_{k}\right)-t_{1}\left(v_{1}+\cdots+v_{h}\right)=0 . \tag{5.11}
\end{equation*}
$$

Recall that by assumption, $u_{i} \in\{\Gamma\} \backslash \mathcal{L}$ for $i=1, \ldots, m$. Hence we must have $h \geq m$, and repeatedly applying Corollary 5.1 (after changing the indices if necessary), we get

$$
t_{2} u_{i}-t_{1} v_{i}=0 \quad(i=1, \ldots, m)
$$

whence

$$
\frac{u_{1}}{v_{1}}=\cdots=\frac{u_{m}}{v_{m}}
$$

that is

$$
u_{1} v_{i}=v_{1} u_{i} \quad(2 \leq i \leq m) .
$$

If $m>1$, then this by the coprimality of u_{1}, \ldots, u_{k} and v_{1}, \ldots, v_{k} gives $u_{i}=v_{i}(i=1, \ldots, m)$. This is a contradiction, which proves the theorem whenever $m>1$.

So we are left with the only possibility $m=1$, that is, $s=1$. Then, letting $\Gamma=\{n\}$, equation (5.11) reduces to

$$
\begin{equation*}
t_{2} n^{\alpha_{1}}-t_{1} n^{\alpha_{2}}=c \tag{5.12}
\end{equation*}
$$

where $c=t_{1} w-t_{2}(k-1)$ with some $0 \leq w \leq k-1$. For any fixed $c \neq 0$ the above equation has only finitely many solutions in non-negative integers α_{1}, α_{2}. Indeed, we may easily bound $\min \left(\alpha_{1}, \alpha_{2}\right)$ first, and then also $\max \left(\alpha_{1}, \alpha_{2}\right)$. Hence we may assume that $c=0$ in (5.12). Observe, that in the case of the set H_{k} we have $w=k-1$, whence we get $t_{1}=t_{2}$, a contradiction.

So in what follows, we may assume that we deal with the set $H_{\leq k}$. Observe that for any large β, both n^{β} and $n^{\beta}+1$ belong to \mathcal{R}. Hence, in view of (5.3) we get $a_{0}=1$, and all elements of \mathcal{A} are powers of n. This implies that $1 \in \mathcal{A}$: indeed, since all elements of \mathcal{A} are powers of n, we can have $n^{\beta}+1 \in \mathcal{R}$ only if $1 \in \mathcal{A}$ (and $n^{\beta}+1 \in \mathcal{B}$). Recall that $|\mathcal{A}| \geq 2$; let $n^{\alpha} \in \mathcal{A}$ with some $\alpha>0$, and assume that α is minimal with this property. Obviously, for all large β we must have $n^{\beta}+i \in \mathcal{B}$, for all $0 \leq i<k$. One of $k-2, k-1$ is not divisible by n; write j for this number. (Note that for $k=2$ we have $j=1$.) Then, for all large β, we must have $n^{\beta}+j \in \mathcal{B}$. Consequently, we have

$$
n^{\alpha+\beta}+n^{\alpha} j \in \mathcal{R} .
$$

However, this implies that

$$
n^{\alpha} j \leq k-1
$$

Hence, in view of $j \in\{k-2, k-1\}$ (with $j=1$ for $k=2$) we easily get that the only possibility is given by

$$
n=2, \quad \alpha=1, \quad k=3 .
$$

Thus the theorem follows.

6. Acknowledgement

The authors are grateful to the Referee for her/his work and helpful remarks.

References

[1] C. Elsholtz, Multiplicative decomposability of shifted sets, Bull. London Math. Soc. 40 (2008), 97-107.
[2] C. Elsholtz and A. J. Harper, Additive decomposability of sets with restricted prime factors, Trans. Amer. Math. Soc. 367 (2015), 7403-7427.
[3] J.-H. Evertse, On sums of S-units and linear recurrences, Compos. Math. 53 (1984), 225-244.
[4] J.-H. Evertse, K. Győry, On the number of solutions of weighted unit equations, Compos. Math. 66 (1988), 329-354.
[5] J.-H. Evertse, K. Győry, Unit Equations in Diophantine Number Theory, Cambridge University Press, 2015.
[6] K. Győry, L. Hajdu, A. Sárközy, On additive and multiplicative decompositions of sets of integers with restricted prime factors, I. (Smooth numbers.) Indag. Math. 32 (2021), 365-374.
[7] L. Hajdu, N. Saradha, On generalizations of problems of Recaman and Pomerance, J. Number Theory 162 (2016), 552-563.
[8] J. Maynard, Small gaps between primes, Annals Math. 181 (2015), 383-413.
[9] A. J. van der Poorten, H. P. Schlickewei, The growth condition for recurrence sequences, Macquarie University Math. Rep., 1982, 82-0041.
[10] A. J. van der Poorten, H. P. Schlickewei, Additive relations in fields, J. Austral. Math. Soc. 51 (1991), 154-170.
[11] A. Sárközy, Unsolved problems in number theory, Periodica Math. Hungar. 42(1-2) (2001), 17-35.
K. GYŐRY
L. Hajdu

University of Debrecen, Institute of Mathematics
H-4002 Debrecen, P.O. Box 400.
Hungary
Email address: gyory@science.unideb.hu
Email address: hajdul@science.unideb.hu
A. SÁrkÖZY

EÖtvös Loránd University, Institute of Mathematics
H-1117 Budapest, Pázmány Péter sétány 1/C
Hungary
Email address: sarkozy@cs.elte.hu

[^0]: Date: May 1, 2021.
 2010 Mathematics Subject Classification. 11P45, 11P70.
 Key words and phrases. Additive decompositions, multiplicative decompositions, smooth (friable) numbers, S-unit equations.

 Research supported in part by the NKFIH grants K115479, K119528, K128088, and K130909, and by the projects EFOP-3.6.1-16-2016-00022 and EFOP-3.6.2-16-2017-00015 of the European Union, co-financed by the European Social Fund.

