
ON ADDITIVE AND MULTIPLICATIVE
DECOMPOSITIONS OF SETS OF INTEGERS

COMPOSED FROM A GIVEN SET OF PRIMES, I.
(ADDITIVE DECOMPOSITIONS.)

K. GYŐRY, L. HAJDU AND A. SÁRKÖZY

Abstract. In earlier papers Elsholtz and Harper, and the authors
of this paper studied additive and multiplicative decomposability
of sets of integers with restricted prime factors. Here we sharpen
some results of Elsholtz and Harper on the additive decomposabil-
ity of such sets by extending them to sets composed from a given
”thin” (finite or infinite) set of primes, and we also study the ad-
ditive decomposability of sets composed from a ”very dense” set
of primes.

1. Introduction

A,B, C, . . . denote (usually infinite) sets of non-negative integers, and
their counting functions are denoted by A(X), B(X), C(X), . . . so that
e.g.

A(X) = |{a : a ≤ X, a ∈ A}|.
The set of the positive integers is denoted by N, and we write N∪{0} =
N0. The set of the rational and real numbers is denoted by Q and R,
respectively. The set of the (positive) primes is denoted by P, and
throughout this paper the word ”prime” means positive prime.

We will need

Definition 1.1. Let G be an additive semigroup and A,B, C subsets of
G with

(1.1) |B| ≥ 2, |C| ≥ 2.
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If

(1.2) A = B + C (= {b+ c : b ∈ B, c ∈ C})
then (1.2) is called an additive decomposition or briefly a-decomposition
of A, while if a multiplication is defined in G and (1.1) and

(1.3) A = B · C (= {bc : b ∈ B, c ∈ C})
hold then (1.3) is called a multiplicative decomposition or briefly m-
decomposition of A. Moreover, if A is infinite and B or C in (1.1) or
(1.2) is finite, then the decomposition is called a finite decomposition
or briefly F-decomposition, and we say that (1.1) and (1.2) is an a-F-
decomposition and m-F-decomposition, respectively.

Definition 1.2. A finite or infinite set A of non-negative integers is
said to be a-reducible if it has an additive decomposition

(1.4) A = B + C with |B| ≥ 2, |C| ≥ 2

(where B ⊂ N0, C ⊂ N0). If there are no sets B, C with these properties
then A is said to be a-primitive or a-irreducible. Moreover, an infinte
set A ⊂ N0 is said to be a-F-reducible if it has a finite a-decomposition
of form (1.4), while if it has no finite decomposition of this type, then
it is said to be a-F-primitive or a-F-irreducible.

Definition 1.3. Two sets A,B of non-negative integers are said to be
asymptotically equal if there is a number K such that A∩ [K,+∞) =
B ∩ [K,+∞) and then we write A ∼ B.

Definition 1.4. An infinite set A of non-negative integers is said to
be totally a-primitive if every A′ with A′ ⊂ N0, A′ ∼ A is a-primitive,
and it is called totally a-F-primitive if every A′ with A′ ⊂ N0, A′ ∼ A
is a-F-primitive.

Definitions 1.2 and 1.4 have multiplicative analogs, as well; we shall
need them in part II of this paper.

Definition 1.5. Denote the greatest prime factor of the positive integer
n by p+(n). Then n is said to be smooth (or friable) if p+(n) is ”small”
in terms of n. More precisely, if y = y(n) is a monotone increasing
function on N assuming positive values and n ∈ N is such that p+(n) ≤
y(n), then we say that n is y-smooth.

2. The problem and the theorems to be proved

Many papers have been written on the non-existence of a-decom-
positions and m-decompositions of certain special sequences; surveys
of results of this type are presented in [3, 4, 8, 9]. In particular, in [4]



DECOMPOSITIONS OF SETS OF INTEGERS 3

Elsholtz and Harper studied the a-decomposability of sets of smooth
numbers (by using sieve methods), while in [6] and [7] the authors of
this paper studied both a-decomposability of sets of smooth numbers
and the multiplicative analog of this problem. Among others, in [4]
Elsholtz and Harper proved:

Theorem A. Let P = {p1, p2, . . . , pr} ⊂ P be any finite set of primes,
and let

(2.1) R(P) = {n ∈ N : p | n =⇒ p ∈ P}.

Then R(P) is totally a-primitive.

(We use a terminology slightly different from the one used by them.)
They also remarked that it follows from Theorem 7 of Tijdeman [11]
that

Theorem B. There exists an infinite set P of primes, such that defin-
ing R(P) again by (2.1), the set R(P) is totally a-primitive.

In this paper our main goal is to sharpen and extend these results by
showing that if P is any ”thin” set of primes, then the same conclusion
holds:

Theorem 2.1. If P = {p1, p2, . . . } ⊂ P (with p1 < p2 < . . . ) is a
non-empty (finite or infinite) set of primes such that there is a number
x0 with

(2.2) P (x) <
1

51
log log x for x > x0

(where P (x) = |P ∩ [1, x]|), then the set R(P) (defined by (2.1)) is
totally a-primitive.

We remark that in the proof of Theorem 2.1 all we use is only that
the counting function of the set P satisfies (2.2), and the elements
p1, p2, . . . of P are pairwise coprime but apart from this we do not use
that they are primes. Thus clearly this theorem can be extended to
the case when we assume only that the counting function of P ⊂ N
satisfies (2.2) and its elements are pairwise coprime.

It follows easily from Theorem 2.1 (we leave the details to the reader):

Corollary 2.1. If P = {p1, p2, . . . } ⊂ P with p1 < p2 < . . . is an
infinite set of primes such that we have

pk > ee
52k

for k > k0,

then R(P) is totally a-primitive.
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By Theorem 2.1, R(P) is totally a-primitive if P is a ”very thin”
set of primes. A natural question to ask is that what happens if P is
”very dense”? If P contains all the primes, i.e. P = P, then defining
R(P) again by (2.1) we have

R(P) = R(P) = N

which is clearly an a-reducible set. Thus one may guess that if P is a
”very dense” set of primes, in other words, if P ⊂ P is of the form

(2.3) P = P \ Q where Q ⊂ P

and Q is a ”very thin” set of primes, then R(P) is always a-reducible.
Indeed, we will prove this in the special case when Q is finite in the
stronger form that then R(P) has an additive decomposition

(2.4) R(P) = A+ B

such that the cardinality of one of A and B can be anything:

Theorem 2.2. Let P ⊂ P be of the form (2.3) with a finite set Q ⊂ P,
and let either t ∈ N0, t ≥ 2, or t = ∞. Then R(P) has an a-F-
decomposition

R(P) = A+ B
such that |A| = ∞ and |B| = t.

We will also prove that Theorem 2.2 is sharp in the sense that if Q
in (2.3) is infinite, then no matter how thin Q is, R(P) need not have
an a-F-decomposition of form (2.4):

Theorem 2.3. For any monotone non-decreasing function f : N → R
with lim

n→∞
f(n) = ∞ there is an infinite set Q ⊂ P satisfying Q(n) <

f(n) for all n ∈ N, such that defining P by (2.3), P is an infinite set
of primes and R(P) is totally a-F-primitive.

There is a large gap between the cases of thin and dense sets of
primes, occurring in Theorem 2.1 and Theorems 2.2 and 2.3, respec-
tively. For sets of primes of positive density Elsholtz [2] gave upper
bounds of possible decompositions, together with certain examples.

(In the second part of this paper we will study the multiplicative
analogs of the problems considered here.)

3. Two lemmas needed in the proof of Theorem 2.1

The crucial tool in the proof of Theorem 2.1 will be a result on unit
equations (as in [6, 7]):
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Lemma 3.1. Let (0 <)q1 < q2 < · · · < qs be prime numbers, write
S = {q1, q2, . . . , qs} and
(3.1)

ZS =
{a
b
: a, b ∈ Z, ab ̸= 0, (a, b) = 1, q ∈ P and q | ab =⇒ q ∈ S

}
.

If A ∈ Q, B ∈ Q and AB ̸= 0, then the S-unit equation

Ax+By = 1, x, y ∈ ZS

has at most 216(s+1) solutions.

Proof. See Beukers and Schlickewei [1] or [5], p. 133. �

We will also need the following lemma:

Lemma 3.2. If the set P = {p1, p2, . . . } is an infinite set of primes
which satisfies (2.2), then there are infinitely many k ∈ N such that

(3.2) log pk+1 > 251(log p1 + log p2 + · · ·+ log pk).

Proof. Assume that contrary to the statement of the lemma there is a
positive integer k0 such that for k ∈ N, k ≥ k0 we have
(3.3)
log pk+1 ≤ 251(log p1 + log p2 + · · ·+ log pk) (for k = k0, k0 + 1, . . . ).

Our goal is to deduce a contradiction from (3.3).
Let k0 denote the smallest positive integer with

pk0 > x0

(where x0 is the number defined in the theorem), and let K be a large
positive integer, in particular, let K > x0. (Note that here, indeed,
K can be taken large since P is assumed to be infinite.) Now we will
derive from (3.3) by induction on i that for

(3.4) i = 0, 1, 2, . . . , K − k0

we have

(3.5) log pK+1 ≤ 251(1 + 251)i(log p1 + log p2 + · · ·+ log pK−i).

This holds trivially for i = 0 by (3.3) and since K > k0 is assumed.
Assume now that (3.5) holds for some

(3.6) i ∈ {0, 1, . . . , K − k0 − 1}.



6 K. GYŐRY, L. HAJDU AND A. SÁRKÖZY

Then by (3.3) (with K − i− 1 in place of k), it follows from (3.5) that

log pK+1 ≤ 251(1+251)i((log p1+log p2+· · ·+log pK−i−1)+log pK−i) =

= 251(1 + 251)i((log p1 + log p2 + · · ·+ log pK−i−1)+

+ 251(log p1 + log p2 + · · ·+ log pK−i−1)) =

= 251(1 + 251)i+1(log p1 + log p2 + · · ·+ log pK−(i+1))

so that (3.5) also holds with i + 1 in place of i, which proves that,
indeed, (3.5) holds for every i satisfying (3.4). Thus, in particular,
(3.5) holds with K − k0 in place of i:

log pK+1 ≤ 251(1 + 251)K−k0(log p1 + log p2 + · · ·+ log pk0).

Taking the logarithm of both sides we get for K → ∞ that

(3.7) log log pK+1 ≤ K log(1 + 251) +O(1).

Now define X by

X = X(K) = pK+1

so that by K → ∞ we also have X = X(K) → ∞. Then clearly

P (X) = K + 1.

Thus it follows from (3.7) that for K → ∞ (so that also X → ∞) we
have

log logX ≤ (P (X)− 1) log(1 + 251) +O(1) < 50P (X)

which contradicts (2.2) if K and thus also X = X(K) is large enough,
and this completes the proof of Lemma 3.2. �

4. Completion of the proof of Theorem 2.1

Assume that P satisfies the conditions in Theorem 2.1, however,
contrary to the statement of the theorem, the set R = R(P) (defined
by (2.1)) is not totally a-primitive, so that there are a number n0 ∈ N
and sets R′ ⊂ N,

A = {a1, a2, . . . } ⊂ N0, B = {b1, b2, . . . } ⊂ N0

(with a1 < a2 < . . . , b1 < b2 < . . . ) such that

(4.1) R′ ∩ [n0,∞) = R∩ [n0,∞),

(4.2) R′ = A+ B
and

(4.3) |A| ≥ 2, |B| ≥ 2.
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If P is finite, then by Theorem A there are no n0, R′, A, B with
these properties, thus it suffices to study the case when

(4.4) P is infinite.

By the definition of P and (4.4), we may apply Lemma 3.2. Then we
obtain that there are infinitely many k ∈ N which satisfy (3.2). Let K
be such an integer large enough so that

(4.5) log pK+1 > 251(log p1 + log p2 + · · ·+ log pK)

and, in particular, let

(4.6) pK > n0.

Write m = max(a2, b2). Then by (4.1), (4.2) and (4.6) we have

R∩ [n0, pK+1 −m] = R′ ∩ [n0, pK+1 −m] ⊂
⊂ (A ∩ [0, pK+1 −m]) + (B ∩ [0, pK+1 −m])

whence

(4.7) |R ∩ [n0, pK+1 −m]| ≤ A(pK+1 −m) ·B(pK+1 −m).

So far the sets A and B have played symmetric roles, thus we may
assume that

A(pK+1 −m) ≤ B(pK+1 −m).

Then it follows from (4.7) that for K large enough we have

(4.8) B(pK+1 −m) ≥ |R ∩ [n0, pK −m]|1/2 ≥

≥ (|R ∩ [0, pK+1]| −m− n0)
1/2 >

1

2
(R(pK+1))

1/2

since R is infinite. Now we define the set R̃ so that r ∈ R̃ if and only
if r is of the form

(4.9) r = pα1
1 pα2

2 · · · pαK
K (for all r ∈ R̃)

with

(4.10) αi ∈ {0, 1, . . . , 250} for i = 1, 2, . . . , K.

Then by (4.5), (4.9) and (4.10), clearly for all r ∈ R̃ and K large
enough we have

(4.11)

r = pα1
1 pα2

2 · · · pαK
K ≤ (p1p2 · · · pK)2

50

= e2
50(log p1+log p2+...+log pK) <

< e
1
2
log pK+1 = p

1/2
K+1 < pK+1 −m (for all r ∈ R̃).
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It follows from (4.9) and (4.11) that

R̃ ⊂ R ∩ [0, pK+1 −m− 1]

whence

(4.12) |R̃| ≤ R(pK+1 −m− 1).

By (4.9) and (4.10) clearly we have

(4.13) |R̃| =
(
250 + 1

)K
.

It follows from (4.8), (4.12) and (4.13) that for K large enough we have

(4.14) B(pK+1 −m) >
1

2
(R(pK+1))

1/2 ≥ 1

2
(R(pK+1 −m− 1))1/2 ≥

≥ 1

2
(|R̃|)1/2 = 1

2

(
250 + 1

)K/2
> 224K .

Now we will complete the proof of Theorem 2.1 by showing that this
lower bound for B(pK+1−m) contradicts the statement of Lemma 3.1.
Write

(4.15) B′ = B ∩ (n0, pK+1 −m).

By (4.1), (4.2), (4.3) and (4.15), for all

(4.16) b ∈ B′

and i = 1, 2 we have
(4.17)
n0 < b ≤ ai+b ≤ m+b < m+(pK+1−m) = pK+1 (for b ∈ B′ and i = 1, 2)

and

(4.18) ai + b ∈ R ∩ (n0, pK+1) (for i = 1, 2).

Define x ∈ N and y ∈ N by

(4.19) a1 + b = x

and

(4.20) a2 + b = y

so that we have

(4.21) y − x = a2 − a1.

Now write S = {p1, p2, . . . , pK}. Then by the definition of R and
(4.18), both x in (4.19) and y in (4.20) are composed from the primes
in S so that by (3.1) we have

(4.22) x, y ∈ ZS .
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(4.21) and (4.22) form an S-unit equation (as defined in Lemma 3.1),
and x, y in (4.19) and (4.20) is a solution of this equation for every b
satisfying (4.16), so that this equation must have at least |B′| solutions.
By (4.14) and (4.15), for K large enough we have

(4.23) |B′| = |B ∩ (n0, pK+1 −m)| ≥ B(pK+1 −m− 1)−B(n0) ≥
≥ B(pK −m)− 1− (n0 + 1) > 224K − n0 − 2 > 223K ,

so that the S-unit equation formed by (4.21) and (4.22) has more than
223K solutions.

On the other hand, by Lemma 3.1, for K large enough this equation
may have only at most

216(s+1) = 216(K+1) < 217K

solutions, which is smaller, than the lower bound 223K for the number
of solutions obtained in (4.23), and this contradiction completes the
proof of Theorem 2.1. �

5. Proof of Theorem 2.2

We will need the following lemma:

Lemma 5.1. For m ∈ N, m ≥ 2 and for 0 ≤ h < m write

Nh = {n ∈ N0 : n ≡ h (mod m)}.
Then for any H ⊂ {0, 1, . . . ,m− 1} the set

NH :=
∪
h∈H

Nh

is a-reducible. Moreover, for any t ∈ N with 2 ≤ t ≤ ∞ there exists a
set Bt ⊂ N0 such that |Bt| = t and we have

(5.1) NH = NH + Bt.

Proof. Observe that for any B ⊂ N0 with 0 ∈ B we have

NH = NH + B.
Thus (5.1) holds if Bt is any set with 0 ∈ Bt, |Bt| = t. The statement
of the lemma follows from this. �

To complete the proof of Theorem 2.2, observe first that if Q = ∅,
then P = P in (2.3) so that R(P) = N thus the claim is trivial. Thus
we may assume that Q ̸= ∅; let Q = {p1, p2, . . . , pk}. Then we have

R(P) = {n : n ̸≡ 0 (mod pi) for i = 1, . . . , k}.
Thus R(P) is the union of those residue classes modulo m = p1p2 · · · pk
whose elements are coprime with m, so that Lemma 5.1 can be applied
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with R(P) in place of NH, and then applying the lemma the result
follows. �

6. Proof of Theorem 2.3

Let f(n) be a function satisfying the assumptions in the theorem.
We will define the set Q in (2.3) by recursion. Let t2 ∈ N be any
number with f(t2) > 2, and let the first two elements of Q be any
primes p1, p2 with t2 < p1 < p2. Now assume that k ∈ N, k ≥ 1, and
the primes p1, p2, . . . , p2k have been defined. Then let t2k+2 ∈ N be any
number with f(t2k+2) > 2k + 2 , and let p2k+1, p2k+2 be any primes
satisfying

(6.1) max

(
t2k+2,

2k∏
i=1

pi

)
< p2k+1 < p2k+2.

Let Q = {p1, p2, . . . } and define P by (2.3). Then clearly Q is infinite
and Q(n) < f(n) for all n ∈ N.

Now we will show that R(P) is totally a-F-primitive. First we prove
the following property: for any k ∈ N the set R(P) contains a ”k-
isolated” element, i.e. an

(6.2) r ∈ R(P) with r > k and r ± i /∈ R(P) for i = 1, 2, . . . , k.

To prove this, fix k, and consider the following linear congruence sys-
tem:

(6.3)

{
x ≡ i (mod pi) (for i = 1, 2, . . . , k),

x ≡ −i (mod pk+i) (for i = 1, 2, . . . , k).

By the Chinese remainder theorem this system is solvable, and writing

Mk :=
2k∏
i=1

pi, there is a unique solution rk with 1 ≤ rk ≤ Mk. Let

(6.4) pj ∈ Q
with some j ∈ N.

If j > 2k, then by (6.1) we have

pj ≥ p2k+1 >

2k∏
i=1

pi = Mk ≥ rk

thus pj - rk. On the other hand, if 1 ≤ j ≤ 2k, then we have

(6.5) pj > j

(since pj is at least as large as the j-th prime, which is at least as large
as j +1). By the definition of rk, (6.3) and j ≤ 2k, we also have either
pj | rk − j or pj | rk + j; by (6.5), in both cases it follows again that
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pj - rk. Thus rk has no prime divisor satisfying (6.4), so that by (2.3),
all the prime factors of rk belong to P , thus rk ∈ R(P). Moreover, rk
is a solution of (6.3) thus rk − i ̸= 1 for i = 1, 2, . . . , k whence rk > k,
and it also follows from (6.3) (with rk in place of x) that rk± i /∈ R(P)
for i = 1, 2, . . . , k. So that all the requirements in (6.2) hold with rk in
place of r thus, indeed, rk is a k-isolated element in R(P).

Now assume that contrary to the statement of Theorem 2.3, R(P)
is not totally a-F-primitive, i.e. there exist R′ ⊂ N0, A ⊂ N0, B ⊂ N0

and n0 ∈ N such that

(6.6) R′ ∩ [n0,∞) = R(P) ∩ [n0,∞),

(6.7) R′ = A+ B, 2 ≤ |A|, 2 ≤ |B| < ∞.

We will derive a contradiction from these assumptions. Write B =
{b1 < b2 < · · · < bm} (with m ≥ 2). Let

(6.8) k = n0 + bm,

and let r be a k-isolated element of R(P) satisfying (6.2). Then by
(6.2), (6.6), (6.7) and (6.8) we have r ∈ R′, and there are a ∈ A, bi ∈ B
such that

r = a+ bi.

Consider any bj ∈ B with j ̸= i, and write

r′ = a+ bj.

Then r′ ̸= r, and it follows from (6.7) that we have

(6.9) r′ ∈ R′.

Observe that then by (6.2) and (6.8) we have

r′ = r + bj − bi > k + bj − bi = (n0 + bm) + bj − bi =

= n0 + bj + (bm − bi) ≥ n0 + bj ≥ n0,

so that by (6.6) and (6.9), r′ ∈ R(P). However, r ̸= r′ by bj ̸= bi,
moreover, by (6.8),

(0 <)|r′ − r| = |bj − bi| ≤ max(bj, bi) ≤ bm ≤ k

which contradicts the fact that r is k-isolated in R(P). �
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7. Further remarks, problems and conjectures

In Theorems 2.1, 2.2 and 2.3 we have studied only the extreme cases
when the set P of primes generating R(P) is very thin (its counting
function P (x) is such that P (x) ≪ log log x and then R(P) is totally
a-primtive) or it is very dense (it is of the form (2.3) where Q is either
finite when R(P) is always a-F-reducible or it is ”almost finite”). It
is a natural question to ask: what happens if P is between these two
extreme cases? As the density of P increases from very small to very
large so thatR(P) changes from totally a-primitive to a-reducible, then
how and when does this change happen, and what can one say on the
a-decomposability of R(P) for a ”typical” (randomly chosen) set P
midway? It seems hopeless to give a more or less complete answer to
these questions but, at least, we may formulate some guesses what to
expect and we may propose some problems to study for making initial
steps toward the direction guessed.

Theorems 2.2 and 2.3 inspire the following problem:

Problem 7.1. Is it true, that if Q ⊂ P, Q is infinite, and P is defined
by P = P \ Q, then

a) R(P) (defined by (2.1)) is totally a-F-primitive?
b) R(P) is totally a-primitive?

We conjecture that the answer is affirmative in both cases, however,
to prove this seems to be difficult in case a), and even more difficult in
case b). The first step in this direction could be to settle the following
(slightly easier) problems:

Problem 7.2. Does a set P ⊂ P exist such that its counting function
P (x) satisfies P (x)/ log log x → ∞ and R(P) is

a) totally a-F-primitive?
b) totally a-primitive?

For sure the answer is affirmative in both cases (even we think that
the counting function of such a set P may increase much faster than
log log x in both cases), and of course if this is shown in case b), then
this implies that it is so in case a) as well; however, it seems much
easier to handle case a).

A much more difficult version of this problem is the following:

Problem 7.3. Is it true that there are functions f(x), g(x) with
f(x)/ log log x → ∞ and g(x)/ log log x → ∞ such that for every P ⊂ P

a) with P (x) ≪ f(x) the set R(P) is a-F-primitive?
b) with P (x) ≪ g(x) the set R(P) is a-primitive?
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Again, we think that the answer is affirmative in both cases, but
to show this, probably one needs different approach (we remark that
Lemma 3.1 is sharp apart from constant factors).

Moreover, we remark that the natural approach to prove the affirma-
tive answer to the questions in Problem 7.2 would be to give construc-
tive proofs. However, there is another different approach using measure
theory which may function more efficiently in some cases: instead of
constructing sets P with the desired properties, we may give existence
proofs by showing that there are many sets possessing these proper-
ties. To use such approach we may start out from results of Volkmann
[12, 13], Wirsing [14] and the third author [10].

Let Σ denote the set of the subsets of N0, Σ2 the set of the subsets
in Σ that have at least two elements, and Σ∞ the set of the infinite
subsets in Σ. Let Φ denote the set of the a-reducible sets in Σ, so
that Φ = Σ2 + Σ2. To study subsets (defined by additive properties)
in Σ by using measure theory, Wirsing proposed to consider the usual
mapping of Σ into the interval [0, 1]: for A = {a1, a2, . . . } ∈ Σ (with
a1 < a2 < . . . ) let

(7.1) ϱ(A) =
∑
ai∈A

1

2ai+1
.

(Clearly, (7.1) defines a one-to-one mapping between the infinite sets
A ∈ Σ and the points in the interval (0, 1].) For Γ ⊂ Σ we will write

ϱ(Γ) = {ϱ(A) : A ∈ Γ}.

For S ⊂ [0, 1] let λ(S) denote the Lebesgue measure of S, while the
Hausdorff dimension of S will be denoted by dimS. (The definition
and some basic properties of the Hausdorff dimension are presented in
[10]. In particular, for all S ⊆ T ⊆ [0, 1] we have

0 ≤ dimS ≤ dimT ≤ dim[0, 1] = 1,

and if S ⊂ [0, 1] and dimS < 1, then λ(S) = 0.)
In [14] Wirsing proved:

Theorem C. We have

λ(ϱ(Φ)) = 0.

So that, in terms of the Lebesgue measure, almost all x ∈ [0, 1] are
such that if ϱ(A) = x (with an infinite A), then A is a-primitive (and it
would be easy to see that here ”a-primitive” can be replaced by ”totally
a-primitive”); thus we may briefly say that A is (totally) a-primitive
for almost all A ∈ Σ.
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In [13] Volkmann gave a different proof for Theorem C and he also
gave upper bounds for the Hausdorff dimension of ϱ(S) for certain
special subsets S of Φ. The third author [10] sharpened these results
of Wirsing and Volkmann by proving

Theorem D. We have

dim ϱ(Φ) < 1− 10−3.

In [12] Volkmann gave a lower bound for dim ϱ(Φ):

Theorem E. We have

dim ϱ(Φ) ≥ dim ϱ({0, 1}+ Σ2) =
log γ

log 2

(
>

4

5

)
where γ is the (single) positive solution of the equation

z3 − 2z2 + z − 1 = 0.

In [10] it was also shown that

Theorem F. We have

dim ϱ(Σ∞ + Σ∞) ≥ 1

3
.

The remark after Theorem C inspires the following question: is it
true that R(P) is (totally) a-primitive for almost all P ⊂ P? We
conjecture that the answer is affirmative. To formulate this conjecture
more precisely, we have to introduce some more notation. Let Ψ denote
the set of those sets P ⊂ P for which R(P) is a-reducible:

Ψ = {P ⊂ P : R(P) ∈ Σ2 + Σ2}.
Moreover, we have to replace the mapping ϱ : Σ → [0, 1] in (7.1) by
the mapping η : P → [0, 1] defined so that if P ⊂ P and qi denotes the
i-th prime: q1 = 2, q2 = 3, q3 = 5, . . . , then let

η(P) =
∑
i:qi∈P

1

2i+1
,

and for Γ ⊂ P let η(Γ) be the set consisting of the points η(P) with
P ∈ Γ:

η(Γ) = {η(P) : P ∈ Γ}.
In Theorems C,D,E,F (and in other results in [10, 12, 13, 14] and in
some related papers) subsets of Σ defined by additive properties are
studied by using the mapping ϱ and measure theory; one might like
to study the ”P, η analogs” of these ”Σ, ϱ problems”. However, it
seems to be more difficult to handle the P, η problems, than their Σ, ϱ



DECOMPOSITIONS OF SETS OF INTEGERS 15

analogs, thus we will ease the Σ, ϱ problems slightly when formulating
their P, η analogs.

The first P, η problem of this type to attack is certainly the following
one:

Problem 7.4. Is it true that

λ(η(Ψ)) = 0 ?

We conjecture that this is true, perhaps even dim η(Ψ) < 1 holds
but this seems to be much more difficult to prove.

Theorems E and F inspire the following two problems:

Problem 7.5. Is it true that

dim η({P ⊂ P : R(P) ∈ {0, 1}+ Σ2}) > 0 ?

Problem 7.6. Is it true that

dim η({P ⊂ P : R(P) ∈ Σ∞ + Σ∞}) > 0 ?

Probably the answer to the questions in both Problem 7.5 and Prob-
lem 7.6 is affirmative; one might like to give lower bounds for the
dimensions in both cases but it seems to be hopelessly difficult to de-
termine their exact values.
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[6] K. Győry, L. Hajdu, A. Sárközy, On additive and multiplicative decompositions
of sets of integers with restricted prime factors, I. (Smooth numbers.) Indag.
Math. 32 (2021), 365–374.
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