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Abstract. In part I of this paper we sharpened and extended
some results of Elsholtz and Harper on the additive decomposabil-
ity of sets of integers with restricted prime factors. In this paper
we will study the multiplicative analogs of the results proved in
part I.

1. Introduction

Firts we recall the notation and definitions from part I [9] that we
will also use here.

A,B, C, . . . denote (finite or infinite) sets of non-negative integers,
and their counting functions are denoted by A(X), B(X), C(X), . . . so
that e.g.

A(x) = |{a : a ∈ A, a ≤ x}|.
The set of the positive integers is denoted by N, and we write N∪{0} =
N0. The set of the rational and positive real numbers is denoted by Q
and R, respectively. The set of the (positive) primes is denoted by P,
and throughout this paper the word “prime” means positive prime.

We will need the following definitions:

Definition 1.1. Let G be an additive semigroup and A,B, C subsets of
G with

(1.1) |B| ≥ 2, |C| ≥ 2.
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Research supported in part by the Eötvös Loránd Research Network (ELKH),

the NKFIH grants K115479, K119528, K128088, and K130909, and by the project
EFOP-3.6.1-16-2016-00022 of the European Union, co-financed by the European
Social Fund.

1
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If

(1.2) A = B + C (= {b+ c : b ∈ B, c ∈ C}),
then (1.2) is called an additive decomposition or briefly a-decomposition
of A, while if a multiplication is defined in G and (1.1) and

(1.3) A = B · C (= {bc : b ∈ B, c ∈ C})
hold, then (1.3) is called a multiplicative decomposition or briefly m-
decomposition of A. Moreover, if A is infinite, and B or C in (1.2) or
(1.3) is finite, then the decomposition is called a finite decomposition
or briefly F-decomposition, and we say that (1.2) and (1.3) is an a-F-
decomposition and m-F-decomposition, respectively.

Definition 1.2. A finite or infinite set A of non-negative integers is
said to be a-reducible if it has an additive decomposition

(1.4) A = B + C with |B| ≥ 2, |C| ≥ 2

(where B ⊂ N0, C ⊂ N0). If there are no sets B, C with these properties,
then A is said to be a-primitive. Moreover, an infinte set A ⊂ N0 is
said to be a-F-reducible if it has a finite a-decomposition of form (1.4),
while if it has no finite decomposition of this type, then it is said to be
a-F-primitive.

Definition 1.3. Two sets A,B of non-negative integers are said to be
asymptotically equal if there is a number K such that A ∩ [K,+∞) =
B ∩ [K,+∞), and then we write A ∼ B.
Definition 1.4. An infinite set A of non-negative integers is said to
be totally a-primitive if every A′ with A′ ⊂ N0, A′ ∼ A is a-primitive,
and it is called totally a-F-primitive if every A′ with A′ ⊂ N0, A′ ∼ A
is a-F-primitive.

The multiplicative analogs of Definitions 1.2 and 1.4 are:

Definition 1.5. If A is an infinite set of positive integers, then it is
said to be m-reducible if it has a multiplicative decomposition

(1.5) A = B · C with |B| ≥ 2, |C| ≥ 2

(where B ⊂ N, C ⊂ N). If there are no such sets B, C then A is said
to be m-primitive. Moreover, an infinite set A ⊂ N is said to be m-F-
reducible if it has a finite decomposition of form (1.5), while if it has no
finite m-decomposition of this type, then it is said to be m-F-primitive.

(We remark that if A ⊂ N0 and 0 ∈ A, then A has a trivial m-
decomposition of form (1.5) with A and {0, 1} in place of B and C,
respectively. To avoid this sort of trivial decompositions, in the last
definition it is better to restrict ourselves to sets A of positive integers.)
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Definition 1.6. An infinite set A ⊂ N is said to be totally m-primitive
if every A′ ⊂ N with A′ ∼ A is m-primitive, and it is called totally
m-F-primitive, if every A′ ⊂ N with A′ ∼ A is m-F-primitive.

2. The problem, and the theorems to prove

In part I we proved the following theorems:

Theorem A. If P = {p1, p2, . . . } ⊂ P (with p1 < p2 < . . . ) is a non-
empty (finite or infinite) set of primes such that there exists a number
x0 with

(2.1) P (x) <
1

51
log log x for x > x0

(where P (x) = |P ∩ [1, x]|), then the set

(2.2) R(P) = {n ∈ N : p | n =⇒ p ∈ P}
is totally a-primitive.

Theorem B. Let P ⊂ P be of the form

(2.3) P = P \ Q where Q ⊂ P
with a finite set Q, and let t ∈ N0, t ≥ 2, or t = ∞. Then the set
R(P) defined by (2.2) has an a-F-decomposition

R(P) = A+ B
such that |A| = ∞ and |B| = t.

Theorem C. For any monotone non-decreasing function f : N → R
with lim

n→∞
f(n) = ∞ there is an infinite set Q ⊂ P satisfying Q(n) <

f(n) for all n ∈ N, such that defining P by (2.3), P is an infinite set
of primes and R(P) is totally a-F-primitive.

In this paper our goal is to prove the multiplicative analogs of these
three theorems. Before formulating the multiplicative analog of Theo-
rem A, observe that defining P by P = {p1, p2, . . . } ⊂ P andR = R(P)
by (2.2) clearly we have

R = R(P) = {1, p1} · R(P),

so that R = R(P) has a non-trivial multiplicative decomposition.
Thus instead of studying the multiplicative decomposability of R(P),
as usual in such a case (see [4, 10, 14] and the reference list of [14]), we
consider the shifted set

(2.4) T = T (P) = R(P) + {1}.
First we shall prove the multiplicative analog of Theorem A:
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Theorem 2.1. If P is defined as in Theorem A (i.e. there exists a
number x0 for which (2.1) holds), and R(P) and T (P) are defined
by (2.2) and (2.4), respectively, then the set T = T (P) is totally m-
primitive.

Here the situation is exactly the same as in the additive case in [9]
where after presenting Theorem A (called Theorem 2.1 in [9]) we wrote:

“We remark that in the proof of Theorem 2.1 all we use is only that
the counting function of the set P satisfies (2.2) [called (2.1) here], and
the elements p1, p2, . . . of P are pairwise coprime but apart from this
we do not use that they are prime. Thus clearly this theorem can be
extended to the case when we assume only that the counting function
of P ⊂ N satisfies (2.2) and its elements are pairwise coprime.”

Similarly, we can extend Theorem 2.1 here to the case when we assume
only that the counting function of P ⊂ N satisfies (2.1) and its elements
are pairwise coprime.

It follows easily from Theorem 2.1 (we leave the details to the reader):

Corollary 2.1. If P = {p1, p2, . . . } ⊂ P with p1 < p2 < . . . is an
infinite set of primes such that there exists a number k0 so that we
have

pk > ee
52k

for k > k0,

then T (P) = R(P) + {1} is totally m-primitive.

We will also prove the multiplicative analogs of Theorems B and C:

Theorem 2.2. Let P ⊂ P be of the form (2.3) with a finite set Q ⊂ P,
and let either t ∈ N and t ≥ 2, or t = ∞. Then the set T = T (P)
defined by (2.4) has a multiplicative decomposition

(2.5) T = T (P) = T (P \ Q) = A · B
such that |A| = ∞ and |B| = t.

We will also show that Theorem 2.2 is sharp in the sense that if Q
in (2.3) is infinite, then no matter how thin Q is, T (P) need not have
a finite m-decomposition of form (2.5):

Theorem 2.3. For any monotone non-decreasing function f : N →
R with lim

n→∞
f(n) = ∞ there exists a set Q ⊂ P with the following

properties: the set P = P \ Q is infinite, we have Q(n) < f(n) for all
n ∈ N, and the set T (P) defined by (2.4) is totally m-F-primitive.

Remark. In the additive case in [9], at the beginning of Section 7
we proposed some unsolved problems. Among others, we asked: “Is it
true, that if Q ⊂ P, Q is infinite, and P is defined by P = P \ Q, then
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R(P)” [defined by (2.2) here] “is totally a-primitive?” Recently Ruzsa
answered this question in the negative by showing in an elementary
but very ingenious way that there exists an infinite set Q ⊂ P such
that for P = P \ Q the set R(P) is not totally a-primitive. One might
like to study the multiplicative analog of this problem (to consider the
totally m-primitivity of T (P) for P = P \Q, Q ⊂ P infinite) and some
other related problems proposed in [9].

3. The proof of Theorem 2.1

Assume that P satisfies the conditions in Theorem 2.1, however,
contrary to the statement of the theorem, the set T = T (P) (defined
by (2.4)) is not totally m-primitive, so that there are n0 ∈ N and
sets T ′ ⊂ N, A = {a1, a2, . . . } ⊂ N, B = {b1, b2, . . . } ⊂ N (with
a1 < a2 < . . . , b1 < b2 < . . . ) such that

(3.1) T ′ ∩ [n0,∞) = T ∩ [n0,∞),

(3.2) T ′ = A · B
and

(3.3) |A| ≥ 2, |B| ≥ 2.

We will show that these assumptions lead to a contradiction. As in the
additive case in [9] the crucial tool in the proof of this will be a result
on unit equations:

Lemma 3.1. Let (0 <)q1 < q2 < · · · < qs be prime numbers, write
S = {q1, q2, . . . , qs} and
(3.4)

Z∗
S =

{a
b
: a, b ∈ Z, ab ̸= 0, (a, b) = 1, q ∈ P and q | ab =⇒ q ∈ S

}
.

If A ∈ Q, B ∈ Q and AB ̸= 0, then the S-unit equation

Ax+By = 1, x, y ∈ Z∗
S

has at most 216(s+1) solutions.

Proof. See Beukers and Schlickewei [1] or [6], p. 133. □
We will also need the following lemma:

Lemma 3.2. If the set P = {p1, p2, . . . } is an infinite set of primes
which satisfies (2.1), then there are infinitely many k ∈ N such that

(3.5) log pk+1 > 251(log p1 + log p2 + · · ·+ log pk).

Proof. This is Lemma 3.2 in [9]. □
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To deduce a contradiction from (3.1), (3.2) and (3.3), we distinguish
two cases.

CASE 1. Assume first that P is finite; let P = {p1, p2, . . . , ps} (with
p1 < p2 < · · · < ps). The set T (P) (defined by (2.4)) is infinite since
it contains pk1 + 1 for every k ∈ N. Thus it follows from (3.1) that T ′

is also infinite, so that by (3.2) at least one of the sets A and B must
be infinite; we may assume that B is infinite. Then there are infinitely
many b with

(3.6) b ∈ B, b > n0.

For such an integer b write

(3.7) a2b− 1 = x

and

(3.8) a1b− 1 = y.

Then we have

a1x− a2y = a1(a2b− 1)− a2(a1b− 1) = a2 − a1.

Thus the integers x, y defined by (3.7) and (3.8) satisfy the equation

(3.9)
a1

a2 − a1
x− a2

a2 − a1
y = 1,

and taking different b values in (3.6), clearly we get different x, y solu-
tions of this equation. Since there are infinitely many b values satisfying
(3.6), thus it follows that (3.9) has infinitely many x, y solutions of this
type. However, it follows from (2.4) and (3.1) - (3.3), (3.6) - (3.8) that
for i = 1, 2 and b satisfying (3.6) we have

aib ∈ (A · B) ∩ [n0,∞) ⊂ T ′ ∩ [n0,∞) = T ∩ [n0,∞) ⊂ T = R+ {1}
whence

(3.10) aib− 1 ∈ R (for i = 1, 2).

By (3.7), (3.8) and (3.10) we have

(3.11) x, y ∈ R = R(P) ⊂ Z∗
P

where Z∗
P is defined by (3.4) in Lemma 3.1 with P in place of S. Thus

the P-unit equation formed by (3.9) and (3.11) has infinitely many x, y
solution which contradicts Lemma 3.1, and this completes the proof in
CASE 1.

CASE 2. Assume now that P is infinite; let P = {p1, p2, . . . } (with
p1 < p2 < . . . ). By the assumptions in the theorem, P also satisfies
(2.1), so that all the assumptions in Lemma 3.2 hold, thus we may
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apply it. Using this lemma, we obtain that there are infinitely many
k ∈ N satisfying (3.5). Write

(3.12) m = max(a2, b2).

Let K be an integer large enough (in particular, large in terms of n0

in (3.1) and m in (3.12)) which satisfies (3.5) with K in place of k, so
that

(3.13) log pK+1 > 251(log p1 + log p2 + · · ·+ log pK).

By (3.1) and (3.2) we have

T ∩
[
n0,

pK+1

m

]
= T ′ ∩

[
n0,

pK+1

m

]
⊂

⊂
(
A ∩

[
1,

pK+1

m

])
·
(
B ∩

[
1,

pK+1

m

])
.

It follows from this that

(3.14)
∣∣∣T ∩

[
n0,

pK+1

m

]∣∣∣ ≤ A
(pK+1

m

)
· B
(pK+1

m

)
.

So far the sets A and B have played symmetric roles, thus we may
assume that

A
(pK+1

m

)
≤ B

(pK+1

m

)
.

Then it follows from (3.14) that

(3.15) B
(pK+1

m

)
≥
∣∣∣T ∩

[
n0,

pK+1

m

]∣∣∣1/2 .
Now we need a lower bound for the right hand side. By (2.4) we have

(3.16)
∣∣∣T ∩

[
n0,

pK+1

m

]∣∣∣ = ∣∣∣R∩
[
n0 − 1,

pK+1

m
− 1
]∣∣∣ =

= R
(pK+1

m
− 1
)
−R(n0 − 2) > R

(pK+1

m
− 1
)
− n0.

Define the set R′ so that r ∈ R′ if and only if it is of the form

(3.17) r = pα1
1 pα2

2 · · · pαK
K with αi ∈ {0, 1, . . . , 250} for i = 1, 2, . . . , K.

By (3.13), for K large enough and all r ∈ R′ we have

log r = log pα1
1 + log pα2

2 + · · ·+ log pαK
K ≤

≤ 250(log p1 + log p2 + . . .+ log pK) <
1

2
log pK+1,

thus if K is large enough in terms of m, then

(3.18) r < p
1/2
K+1 =

pK+1

p
1/2
K+1

<
pK+1

m
(for all r ∈ R′).
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It follows from (3.17) and (3.18) that

R′ ⊂ R ∩
[
0,

pK+1

m
− 1
]

whence

(3.19) R
(pK+1

m
− 1
)
≥ |R′|.

By (3.17) clearly we have

(3.20) |R′| =
(
250 + 1

)K
> 250K .

It follows from (3.15), (3.16), (3.19) and (3.20) for K large enough that

(3.21)

B
(pK+1

m

)
≥
∣∣∣T ∩

[
n0,

pK+1

m

]∣∣∣1/2 > (R(pK+1

m
− 1
)
− n0

)1/2
≥

≥ (|R′| − n0)
1/2

>
(
250K − n0

)1/2
> 224K .

Now we will complete the proof of Theorem 2.1 by showing that this
lower bound contradicts the statement of Lemma 3.1. Write

(3.22) B′ = B ∩
(
n0,

pK+1

m

]
.

By (3.1), (3.2), (3.12) and (3.22), for all

(3.23) b ∈ B′

and i = 1, 2 we have

(3.24) n0 < b ≤ aib ≤ mb < m· pK+1

m
= pK+1 (for b ∈ B′ and i = 1, 2)

and

(3.25) aib ∈ T ∩ (n0, pK+1] (for b ∈ B′ and i = 1, 2).

Define the integers x, y by

(3.26) a1b = x+ 1,

(3.27) a2b = y + 1.

Then by (2.4) and (3.25) we have

(3.28) x, y ∈ R ∩ [n0, pK+1].

It follows from (3.26) and (3.27) that

a1a2b = a2(a1b) = a2(x+ 1) = a2x+ a2

and

a1a2b = a1(a2b) = a1(y + 1) = a1y + a1
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so that

a2x+ a2 = a1y + a1

whence

(3.29)
a2

a1 − a2
x− a1

a1 − a2
y = 1.

Clearly, different b values satisfying (3.23) define different pairs (x, y)
of integers in (3.26) and (3.27), thus by (3.21) and (3.22) the number
N of these (x, y) solutions of (3.29) is at least

(3.30) N = |B′| =
∣∣∣B ∩

(
n0,

pK+1

m

]∣∣∣ = B
(pK+1

m

)
− B(n0) >

> 224K − n0 > 223K

for K large enough. On the other hand, observe that the coefficients
a2

a1−a2
and a1

a1−a2
in the equation (3.29) are non-zero rational numbers,

and writing S = {p1, p2, . . . , pK}, by (3.28) and the definition of R
(3.29) is an S-unit equation with this S (with |S| = s = K) in the
sense described in Lemma 3.1. Thus by Lemma 3.1 the number N of
its solutions satisfies

(3.31) N < 216(s+1) = 216K+16 < 217K

forK large enough. (3.30) contradicts (3.31) which completes the proof
of Theorem 2.1. □

4. The proof of Theorem 2.2

To derive the statement of the theorem, observe first that if P con-
tains all the primes then

T (P) = {2, 3, 4, . . . }

and the statement is trivial. Thus we may assume that there are some
primes not belonging to P ; denote these primes by q1, q2, . . . , qn. Then
by the Chinese Remainder Theorem we easily see that T (P) is a subset
of N which is periodic modulo Q := q1q2 · · · qn. From this the statement
easily follows, as we can take A = T (P) and B can be any subset of
{b ∈ N : b ≡ 1 (mod Q)} with 1 ∈ B and |B| = t. □

5. The proof of Theorem 2.3

Let f be a function of the type described in the theorem. We con-
struct P with the prescribed properties explicitly. First we define Q,
and then we take P = P \ Q.
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We define the elements of Q recursively, in the following way. For a
positive integer k, put

Hk = {(u, v) : u, v ∈ N, 1 ≤ u, v ≤ k, u ̸= v},
and write

hk = |Hk| = k(k − 1).

Note that H1 = ∅ and h1 = 0. As the first two elements of Q, take two
primes p1, p2 such that

max(2, t2) < p1 < p2

where t2 is arbitrary with f(t2) > 2. Note that h2 = 2, and assume that
for some ℓ ≥ 2, the primes p1, p2, . . . , peℓ with eℓ = h1+h2+ · · ·+hℓ are
already defined. Then choose arbitrary primes peℓ+1, peℓ+2, . . . , peℓ+hℓ+1

satisfying

(5.1) max

(
ℓ+ 1, tℓ+1,

eℓ∏
i=1

pi

)
< peℓ+1 < peℓ+2 < · · · < peℓ+hℓ+1

,

where tℓ+1 is arbitrary with f(tℓ+1) > eℓ + hℓ+1. Then set

Q = {p1, p2, p3, . . . } and P = P \ Q.

It is clear from the definition that Q is infinite and Q(n) < f(n) for all
n ∈ N. The latter statement follows from the definition of tℓ and

tℓ+1 < peℓ+1 < · · · < peℓ+hℓ+1
(ℓ ≥ 1).

To prove that T (P) (defined by (2.4)) is totally m-F-primitive for
this set P , first we show the following property: for any positive integer
k > 1, the set T (P) contains a multiplicatively k-isolated element z,
that is, there is a z ∈ T (P) with z > k and uz/v /∈ T (P) for all (u, v) ∈
Hk. To prove this, let k > 1 be fixed, write (ui, vi) (i = 1, . . . , hk)
for the elements of Hk in any order, and consider the following linear
congruence system:

(5.2)

{
x ≡ 0 (mod pi) (for i = 1, 2, . . . , ek−1),

uix ≡ vi (mod pek−1+i) (for i = 1, 2, . . . , hk).

By (5.1) we have

ui ≤ k < pek−1+i (for i = 1, . . . , hk),

thus the congruence system (5.2) is solvable. Let zk be a solution with
1 ≤ zk ≤ Uk, where

Uk =

ek∏
i=1

pi ;
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since ek = ek−1 + hk, by the Chinese Remainder Theorem such a zk
exists (and in fact, is unique). Put sk = zk − 1, and observe that as
zk ̸= 1, we have sk > 0. Let pj ∈ Q with some j ∈ N. If j > ek, then in
view of (5.1) we have pj > Uk > sk, thus pj ∤ sk. Let now 1 ≤ j ≤ ek.
If 1 ≤ j ≤ ek−1, then by the first congruence of the system (5.2) we
see that pj ∤ sk. On the other hand, if ek−1 + 1 ≤ j ≤ ek then by the
second congruence of the system we have

u(sk + 1) ≡ v (mod pj)

with some (u, v) ∈ Hk. Hence, in view of pj > k again we get pj ∤ sk.
Thus sk ∈ R(P), whence by zk = sk + 1 we get zk ∈ T (P). Assume
that uzk/v ∈ T (P) with some (u, v) ∈ Hk. Then we have

uzk = v(s+ 1)

with some s ∈ R(P). Then by the second set of congruences in (5.2),
we can find a prime p > k in Q such that p | vs. However, in view of
v ≤ k and s ∈ R(P), this is impossible. That is, zk is a multiplicatively
k-isolated element of T (P).

Let now X be any subset of N with X ∼ T (P). Let n0 ∈ N such
that

X ∩ [n0,∞) = T (P) ∩ [n0,∞).

Further, assume that contrary to the statement of the theorem we have

X = B · C (|B| ≥ 2, |C| ≥ 2)

with, say, C finite. Write C = {c1, c2, . . . , cm} (c1 < c2 < · · · < cm)
with m ≥ 2. Put k = n0cm. By the property above, T (P) contains a
multiplicatively k-isolated element z. It follows from the two equalities
above that z ∈ X , thus it cannot be written in the form

z = bci (with some b ∈ B, i ∈ {1, . . . ,m}).
Take any j ∈ {1, 2, . . . ,m} with j ̸= i, and put

z0 = bcj.

Then z0 ∈ X , z0 ̸= z. Observe that by z0 = zcj/ci and z > k = n0cm
we have z0 > n0, whence z0 ∈ T (P). However, this by 1 ≤ ci, cj ≤ k
contradicts the fact that z is multiplicatively k-isolated. Hence the
statement follows. □

6. Open problems

In this section we will present open problems related to the problems
and results studied in this paper and our earlier papers [7, 8, 9, 10, 11,
12].
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Ostmann was the first who proposed to study the decomposability of
a set defined by a multiplicative property: in [13] he conjectured that
the set P of the primes is totally a-primitive. This famous conjecture is
still unsolved in its original form, however, there are some interesting
partial results. In particular, Elsholtz [2, 3] proved that there are no
sets A,B, C of non-negative integers such that

(6.1) P = A+ B + C with |A| ≥ 2, |B| ≥ 2, |C| ≥ 2.

Ostmann’s problem can be generalized in the following way:
Let ω(n) and Ω(n) denote the number of distinct prime factors and

the total number of prime factors of the positive integer n, respectively.

Problem 6.1. Is it true that if k ∈ N then

a) the set

Pk = {n : n ∈ N, ω(n) = k},
b) the set

P+
k = {n : n ∈ N, Ω(n) = k}

is totally a-primitive?

Note that the special case k = 1 of a) is Ostmann’s problem.

Problem 6.2. Is it true that if k ∈ N then

a) the set

P̄k = {n : n ∈ N, ω(n) ≤ k},
b) the set

P̄+
k = {n : n ∈ N, Ω(n) ≤ k}

is totally a-primitive?

Probably the answer is affirmative in each of the four cases in Prob-
lems 6.1 and 6.2 but to prove this seems to be too difficult; then as a
partial result one might like to prove that the sets defined in the four
problems have no ternary decompositions (like the one in (6.1)).

The multiplicative analogs of Problems 6.1 a), 6.1 b), 6.2 a), 6.2 b)
are

Problem 6.3. Is it true that the set

a) Pk + {1},
b) P+

k + {1},
c) P̄k + {1},
d) P̄+

k + {1}
is totally m-primitive?
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Another important special set defined by a multiplicative property
is the set of the squarefree integers:

M = {n : n ∈ N, |µ(n)| = 1}.

Problem 6.4. Is it true that the set M is totally a-primitive?

(Again, first one might like to study the existence of ternary decom-
positions.)

Problem 6.5. Is it true that the set M+ {1} is totally m-primitive?

One may also consider the opposite of the property in the definition
of the set M. A positive integer n is said to be powerful if in its
canonical form the exponent of every prime is at least 2. Denote the
set of these numbers by M̄:

M̄ = {n : n ∈ N, p ∈ P ∧ p | n =⇒ p2 | n}.

Problem 6.6. Is it true that the set M̄ is totally a-primitive?

Problem 6.7. Is it true that the set M̄+ {1} is totally m-primitive?

It is an interesting feature of Problem 6.7 that it establishes a link
between our papers [10, 11, 12] (in which we studied total m-primitivity
of shifted polynomial sets) and [7, 8, 9] (in which we studied total m-
primitivity of shifted sets defined by a multiplicative property). Indeed,
the set M̄ defined above is defined by a multiplicative property, thus
M̄ + {1} is of the second type. On the other hand, clearly m̄ ∈ M̄ if
and only if there are x ∈ N, y ∈ N such that m̄ = x3y2, thus M̄+ {1}
can be also considered as a shifted polynomial set:

(6.2) M̄+{1} = {f(x, y) : x ∈ N, y ∈ N}+{1} with f(x, y) = x3y2.

We wrote in [11]:

“Conjecture 1. If k, ℓ ∈ N, k > 1 and ℓ > 1 then

{xkyℓ + 1 : (x, y) ∈ N2}

is totally m-primitive.

Here the difficulty is that in general the problem reduces to a dio-
phantine equation in four variables, and we know much less on such
equations than on equations in two variables. However, one might like
to prove at least non-trivial partial results:

Problem 2’. Is it true that if ℓ ∈ N, ℓ is odd, and ℓ > 1 then the set
{x2yℓ + 1 : (x, y) ∈ N2} is totally m-primitive? ... Can one decide this
at least for ℓ = 3?”
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Observe that the set in the special case described at the end of this
problem is exactly the set defined in (6.2). Denote this set by

(M̄+ {1} =) D = {d1, d2, . . . } (with d1 < d2 < . . . ).

Then it can be shown by our standard approach that the total m-
primitivity of D would follow from the affirmative answer to the fol-
lowing question:

Problem 6.8. Is it true that if A,B,C are fixed positive integers and
z → ∞ then the number of solutions of the equation

Am− Bm′ = C, m,m′ ∈ M∩ [0, z]

is o(z1/4)?

(We conjecture that this is true, even the number of solutions is o(zε)
for any ε > 0.)
In [9] we remarked that it follows from a result of Wirsing [15] that

in a well-defined sense almost all subsets of N0 are totally a-primitive;
this fact can be used for proving the existence of totally a-primitive
subsets possessing certain prescribed properties. Let Φ denote the set
of the a-reducible subsets of N0, define the mapping ϱ from the subsets
of N0 into the interval [0, 1] so that for A = {a1, a2, . . . } ⊂ N0 (with
a1 < a2 < . . . ) let

ϱ(A) =
∑
ai∈A

1

2ai+1

(this defines a one-to-one mapping between the infinite sets A ⊂ N0

and the points in the interval (0, 1]). If Γ is a set of subsets of N0 then
let

ϱ(Γ) = {ϱ(A) : A ∈ Γ},
and for S ⊂ [0, 1] let λ(S) denote the Lebesgue measure of S. Wirsing
[15] proved that

λ(ϱ(Φ)) = 0.

The next problem is to prove the multiplicative analog of this re-
sult. Let Ψ denote the set of the m-reducible subsets of N, define the
mapping σ from the subsets of N into the interval [0, 1) so that for
A = {a1, a2, . . . } ⊂ N (with a1 < a2 < . . . ) let

σ(A) =
∑
ai∈A

1

2ai
,

if Γ is a set of subsets of N then let

σ(Γ) = {σ(A) : A ∈ Γ}.
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Problem 6.9. Is it true that

λ(σ(Ψ)) = 0 ?

In [9] we also presented some results and problems on the Hausdorff
dimension dim σ(S) for certain additively defined sets S of subsets of
N0. The multiplicative analogs of some of these problems are:

Problem 6.10. Is it true that

(dim σ(Ψ) ≥) dim σ({1, 2} · A : A ⊂ N) > 0 ?

Problem 6.11. Is it true that

dim σ(A · B : A,B are infinite subsets of N) < 1 ?
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University of Debrecen, Institute of Mathematics
H-4002 Debrecen, P.O. Box 400.
Hungary
Email address : gyory@science.unideb.hu

L. Hajdu
University of Debrecen, Institute of Mathematics
H-4002 Debrecen, P.O. Box 400.
and ELKH-DE Equations, Functions, Curves and their Applications

Research Group
Hungary
Email address : hajdul@science.unideb.hu

A. Sárközy
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