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Abstract. We prove Skolem’s conjecture for the exponential Dio-
phantine equation an + tbn = ±cn under some assumptions on the
integers a, b, c, t. In particular, our results together with Wiles’ the-
orem imply that for fixed coprime integers a, b, c Fermat’s equation
an + bn = cn has no integer solution n ≥ 3 modulo m for some
modulus m := m(a, b, c) depending on a, b, c.

1. Introduction

Skolem’s conjecture states that if a purely exponential Diophantine
equation is not solvable, then it is not solvable modulo an appropriate
modulus (see [12]). The conjecture and its variants have been proved
only in certain special cases. One can mention results of Schinzel [9]
concerning the one-term case, Bartolome, Bilu and Luca [1] concerning
the case where the bases generate a multiplicative group of rank one,
Hajdu and Tijdeman [7] concerning equations of the form an − bk = 1,
and Bérczes, Hajdu and Tijdeman [2] concerning equations of the form

an − tbk11 . . . bkℓℓ = ±1. See also Bertók and Hajdu [3, 4] for a result
asserting that in some sense Skolem’s conjecture is valid for “almost
all” equations. For related problems and results concerning recurrence
sequences, one can consult the papers [6, 8, 10, 11], and the references
there and for a more detailed survey of the related literature, see [2] or
[3].
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In this note, we prove that under some natural assumptions, Skolem’s
conjecture is valid for the equations an+tbn = ±cn. Note that our result
contains the case of Fermat’s equation an + bn = cn with fixed coprime
integers a, b, c.

2. The theorem

Theorem 2.1. Let a, b, c, t be integers with gcd(a, b, c) = 1 and |b| ̸= 1,
and let ε ∈ {−1, 1}. Then there exists a modulus m such that the
congruence

(1) an + tbn ≡ εcn (mod m)

has the same solutions in non-negative integers n as the equation

(2) an + tbn = εcn.

Further, such a modulus m can be effectively calculated in terms of
a, b, c, t.

By the famous result of Wiles [14] on Fermat’s Last Theorem for the
case |b| ̸= 1 and since the results in [2] imply that Skolem’s conjecture
holds for the equation an − cn = ±1, the following statement follows
from Theorem 2.1.

Corollary 2.1. Let a, b, c be positive integers with gcd(a, b, c) = 1.
Then there exists a modulus m such that the congruence

an + bn ≡ cn (mod m)

has no solutions in non-negative integers n with n ≥ 3. Further, such
a modulus m can be effectively calculated in terms of a, b, c.

We make some remarks.

Remarks. 1. We note that the coprimality condition in Theorem 2.1
cannot be dropped. Indeed, as one can easily check, the equations

0n + 2n = 4n, 2n + 2n = 4n

have only the solutions n = 0 and n = 0, 1, respectively. However, they
have infinitely many solutions modulo m for any m. This also means
that the versions of Skolem’s conjecture proposed in [3] and [4] should
be carefully reformulated.
2. Observe that Corollary 2.1 implies the validity of Fermat’s conjec-
ture. However, this should not be interpreted as an elementary proof
of Fermat’s Last Theorem, as the proof of Corollary 2.1 via Theorem
2.1 relies on Wiles’ theorem [14].
3. We note that there is a close connection between Theorem 2.1
with ternary linear recurrence sequences which we now describe. The
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notation below will be used in our proof of Theorem 2.1. Let a, b, c, t be
integers with gcd(a, b, c) = 1 and |b| > 1, and let ε ∈ {±1}. Consider
the sequence u := {un}n≥0 given by

(3) un := an + tbn − εcn for all n ≥ 0.

This is a ternary recurrent sequence of integers, that is it satisfies a
linear recurrence of order 3 with constant coefficients which we do not
write down explicitly. Put

Zu := {n ≥ 0 : un = 0}.
The set Zu is called the zero set of the recurrence u and it is an object
which has been frequently studied in the theory of linear recurrences.
It follows from a famous theorem of Skolem–Mahler–Lech that Zu is
finite. In our case the members of Zu are effectively computable using
the theory of linear forms in p-adic logarithms. Indeed, let p be a prime
factor of b. Write νp(m) for the exponent of p in the factorisation of m.
Suppose that Zu contains a element n0 > 0. If p | ac, then p divides
both a and c, which is false. Thus, p does not divide ac and then

n0 ≤ νp(tb
n0) = νp(a

n0 ± cn0) ≪ log n0.

The last inequality holds by linear forms in p-adic logarithms [13]. So,
either there is a prime factor p of b which divides ac in which case
Zu ⊆ {0}, or p does not divide ac in which case the members of Zu are
effectively computable.

3. An auxiliary result

In the proof of Theorem 2.1 we use the following lemma which nowa-
days is a simple consequence of a deep theorem of Bilu, Hanrot and
Voutier [5]. However, the version below follows already from a classical
result of Zsigmondy [15].

Lemma 3.1. Let a, c be coprime non-zero integers with |ac| > 1. Then
apart from at most four values of n ≥ 2 the number cn − an has a
primitive prime divisor, which is a prime factor p such that p - cℓ − aℓ

for any 1 ≤ ℓ < n. The same holds for cn + an.

Proof. The statement concerning cn−an immediately follows from The-
orem C, Theorem 1.3 and Theorem 1.4 in [5]. The statement for cn+an

is a direct consequence of this assertion as well upon noting that

cn + an =
c2n − a2n

cn − an
holds for all n ≥ 1.

�
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4. The proof of Theorem 2.1 in some special cases

In this section, we take care of some particular cases of Theorem 2.1.
We start with the case when |a| = |c| = 1. If tb = 0, then m = 3 is an

appropriate modulus. If tb ̸= 0, we then let p be a prime divisor of b and
let q be an odd prime which does not divide tb. Then m = p2q(|tb|+3)
is an appropriate choice. Indeed, rewriting (1) as

tbn ≡ εcn − an (mod m),

and considering it only modulo q first we see that εcn − an ̸= 0. Then
considering it modulo p2, we obtain n ≤ 1. Finally, considering it
modulo |tb|+3 we get that n is a solution of the congruence if and only
if it is a solution to (2).

Next we prove Theorem 2.1 in the case where the numbers a, tb, c
are not pairwise coprime.

If a and c are not coprime, then let p be a common prime factor of
a and c. In view of the relation gcd(a, b, c) = 1, we have p - b. Thus,
writing r := νp(t), the congruence

an + tbn ≡ εcn (mod pr+1)

gives n ≤ r. Thus, taking m = (|a|r + |t||b|r + |c|r)pr+1, the theorem
follows. Indeed, the congruence

an + tbn − εcn ≡ 0 (mod m)

yields that n ≤ r, so |un| < m and un ≡ 0 (mod m), which implies
that un = 0.

Next assume that there is a prime factor p of tb such that p | ac. By
what we have already shown, we may assume that p divides one of a, c
but not both. We take m = p(|t|+ 3). Then the congruence

an + tbn − εcn ≡ 0 (mod m)

implies that n cannot be positive otherwise p divides two of an, tbn, cn

but not all three which is not possible. So, the only possibility is n = 0
which gives

1 + t− ε = u0 ≡ 0 (mod |t|+ 3).

Since the integer on the left–hand side has absolute value less than the
modulus, the congruence holds if and only if u0 = 0. This proves the
theorem also in this case.

Finally, consider the theorem in case atbc = 0. Since we may assume
that gcd(a, c) = 1 and gcd(tb, ac) = 1, it follows that either tb = 0 and
|a| = |c| = 1, or |tb| = 1, one of a, c is zero and the other is ±1. One
can easily see that the modulus m = 3 works in all these cases.
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5. The proof of Theorem 2.1 in the general case

Throughout this proof p is prime factor of b. By the previous section,
p is coprime to ac.

Consider first the case ε = 1. Let z(p) the order of appearance of p
in {an − cn}n≥0. This coincides with the order op of the residue class
a/c modulo p, where 1/c modulo p stands for the inverse of c modulo p.
It is also the smallest positive integer k such that ak− ck ≡ 0 (mod p).
Write az(p) − cz(p) = pλpq for some integers λp ≥ 1 and q coprime to p.
Let K = ω(tb) + 6, where ω(m) denotes the number of distinct prime
factors of m.

Assume n > λp + K, pλp+K | m and un ≡ 0 (mod pλp+K)). Then
pλp+K | an − cn. By the properties of the order of appearance, we have

that z(p)pK−1 | n. The numbers az(p)p
k − cz(p)p

k
divide an − cn for

k = 0, . . . , K− 1. Hence, by Lemma 3.1, for each k ≥ 0 with at most 5
exceptions the number az(p)p

k − cz(p)p
k
has a primitive divisor, namely

a prime qk, which does not divide aℓ− cℓ for any ℓ < z(p)pk. Set qk = 1
if k is an exception. Then an − cn is a multiple of Q := q0 · · · qK−1.
Now consider

m1 := pλp+KQ,

and look at the congruence un ≡ 0 (mod m1) when n ≥ n1 := λp +K.
By the above argument, n is divisible by z(p)pK−1, so an−cn is divisible
by Q. Since the modulus is also divisible by Q, it follows that tbn is
divisible by Q. This is false, since ω(Q) ≥ K − 5 > ω(tbn). Therefore,
n < n1.

Set

(4) m := m1

∏
0≤s<n1

s/∈Zu

|us|.

We claim that m works. Indeed, m contains m1 as a factor, so if un ≡ 0
(mod m), then n < n1. If n /∈ Zu, then

m1 · |un| · ℓ = m | un, where ℓ =
∏

0≤s<n1

s̸=n, s/∈Zu

|us|,

and un ̸= 0. Thus, m1ℓ = 1, a contradiction in view of the fact that
m1 > 1.

Let now ε = −1. Then

un ≡ 0 (mod p)

yields that either n = 0 or

(5) an + cn ≡ 0 (mod p).
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The case n = 0 can be handled again using a modulus which is a
multiple of |t|+3. So, we may focus on solutions n > 0 of (5). Assume
that p is odd. Then a/c has even order op modulo p. Putting now
z(p) = op/2, we have that

az(p) + cz(p) ≡ 0 (mod p),

and z(p) is the smallest positive integer s such that

as + cs ≡ 0 (mod p).

We take K similarly as in the case when ε = 1, namely K = ω(tb) + 6.
Consider the congruence un ≡ 0 (mod pλp+K), where we put again
λp := νp(a

z(p) + cz(p)). As in the case ε = 1, we have z(p)pK−1 | n and
n/(z(p)pK−1) is odd. The rest of the argument is similar to the case

ε = 1. Namely, we work with az(p)p
ℓ
+ cz(p)p

ℓ
where ℓ = 0, 1, . . . , K − 1

which are all divisors of an+bn since p and n/(z(p)pK−1) are both odd.
Assume now that b is a power of 2. Then a, c are odd. We now put

r := ν2(a + c). Then the congruence un ≡ 0 (mod 2r+1) implies that
n ≤ r. Indeed, if n ≥ r+1, we would then get that 2r+1 divides an+cn.
This is is not possible if n is even since then ν2(a

n+cn) = 1 < r+1 and
it is not possible if n is odd since ν2(a

n + cn) = ν2(a+ c) = r < r + 1.
Hence, n ≤ r. Now the proof finishes as in the case ε = 1 by taking m
given by formula (4) with m1 = 2r+1 and n1 replaced by r + 1.

Hence, the theorem follows also in this case, and the proof is com-
plete.

�

6. Generalisations and an Open Problem

We start this section by reviewing the main idea of the proof of
Theorem 2.1. It uses essential divisibility properties of the numbers
an − εcn. In particular, our proof cannot be modified to cover values
of the coefficient ε different from ±1. The condition |b| > 1 guarantees
that b has a prime factor p. Taking a modulus m divisible by p to a
large exponent forces an−εcn to be divisible by a large power of p which
in turn forces n to be a multiple of z(p)pk for a large value of k. By the

primitive divisor theorem Lemma 3.1, the number az(p)p
k − εcz(p)p

k
has

many prime factors as k is large, namely the primitive prime factors
of az(p)p

ℓ − εcz(p)p
ℓ
for ℓ = 0, 1, . . . , k. Taking a modulus m which

incorporates these prime factors for ℓ = 0, 1, . . ., the congruence forces
all these prime factors to also divide tb, which puts a bound on k. In a
nut–shell that was the idea with the case ε = −1 and p = 2 requiring
a bit of extra care. This simple idea can be generalised as follows:
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Theorem 6.1. Let a, c, b1, . . . , bk, t be integers, gcd(a, c, b1 . . . bk) = 1,
|bi| > 1, for i = 1, . . . , k. Let ε = ±1 and

u(x, y1, . . . , yk) := ax − εcx + tby11 · · · bykk .

Put

Zu = {(x, y1, . . . , yk) ∈ Zk+1
≥0 : x ≤ max{yi}, u(x, y1, . . . , yk) = 0}.

Then Zu is finite. Furthermore, there exists m := m(a, c, b1, . . . , bk, t)
such that u(x, y1, . . . , yk) ≡ 0 (mod m) implies (x, y1, . . . , yk) ∈ Zu.

We only sketch the proof, which is based on the same idea. Namely,
assume that y1 is large. Take a prime factor p1 of b1 (assume p1 is odd
for simplicity) and incorporate a large power of p1 into the modulus
m. This forces ax − εcx to be divisible by a large power of p1. It is
possible that ax − εcx = 0. This case can be taken care of by asking
m to be divisible by a prime q not dividing tb1 · · · bk. In the case when
ax − εcx is not zero, the coprimality condition gcd(a, c, tb1 · · · bk) = 1
implies that ac is coprime to p1 and that x is divisible by z(p1)p

K1
1 with

a large K1. Thus, a
x−εcx is divisible by many “small primes”, namely

the primitive prime factors of az(p1)p
ℓ
1 − εcz(p1)p

ℓ
1 for ℓ = 0, 1, . . . , K1. If

K1 is large and we incorporate all these primes into m, then the con-
gruence implies that tb1 . . . bk must be divisible by many primes which
leads to a contradiction. This bounds y1. The remaining exponents
can be bounded in a similar way. The condition x ≤ max{y1, . . . , yk}
(or a more relaxed version of it asking x to be bounded in terms of
max{y1, . . . , yk}) is imposed in order to insure that once all the yi’s
have been bounded, then x is bounded as well. The proof finishes by
taking a modulus m which is also a multiple of the product of all the
nonzero values of u(x, y1, . . . , yk) in the bounded range of the nonzero
integer variables x, y1, . . . , yk. It would be nice to obtain a similar con-
clusion without the condition x is bounded in terms of max{y1, . . . , yk}.
We leave this as a challenge to the reader.

Problem 6.1. Does the conclusion of Theorem 6.1 hold without the
hypothesis that x is bounded in terms of max{y1, . . . , yk}?
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