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Abstract. Skolem’s conjecture states that if an exponential Dio-
phantine equation is not solvable, then it is not solvable modulo an
appropriately chosen modulus. Apart from many concrete equa-
tions, the conjecture has been proved only for rather special classes
of equations. Here we show that the conjecture is valid for the
Catalan equation ux − vy = 1 provided that one of u, v is a prime.
This is the first instance where the conjecture is proved for a family
of equations with more than one terms on the left hand side, of
which the bases are multiplicatively independent.

1. Introduction

Skolem’s conjecture [11] asserts that if an exponential Diophantine
equation is not solvable, then it is not solvable modulo an appropriate
modulus. This principle has been reformulated in slightly different
forms in various papers; see e.g. Schinzel [7], Bartolome, Bilu and
Luca [1] or Bertók and Hajdu [3, 4] for (closely related) variants. Note
that some of these reformulations concern the rational case, others the
algebraic one.

The conjecture and its variants have been proved only in very spe-
cial cases. Schinzel [7] (extending results of Skolem [11]) proved the
corresponding conjecture for equations of the form αx1

1 · · ·αxk
k = β

where α1, . . . , αk and β are fixed elements of a number field, and
x1, . . . , xk are unknown integers. Bartolome, Bilu and Luca [1] proved
another appropriate version of the conjecture for equations of the shape
λ1α

n
1 + · · · + λkα

n
k = 0, where λ1, . . . , λk, and α1, . . . , αk are elements

of a number field K such that the multiplicative group generated by
α1, . . . , αk is of order one, and n is a variable. We note that the results
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in [1] can be derived from those in [7, 8] - though not in a straightfor-
ward way [10]. For other related results, see the papers [8, 9, 5] and
the references therein. We mention that beside these, several particular
equations have been treated by methods based upon Skolem’s princi-
ple and its variants. Here we only mention the papers [3, 2, 4] and the
references given there.

In the present paper we prove that Skolem’s conjecture is valid for
the Catalan equation ux − vy = 1, if u and v are fixed positive integers
one of which is prime and x, y are non-negative integer variables. This
equation has been studied thoroughly. By results of Mihăilesu [6] and
several predecessors we know that the equation has no solutions with
min(u, v, x, y) > 1 apart from (u, v, x, y) = (3, 2, 2, 3). Therefore to
confirm Skolem’s conjecture for this equation, it suffices to show that
for every pair (u, v) ̸= (3, 2) there exists a modulus for which the
corresponding congruence has no solution.

In fact, we shall give a more precise statement, under the extra con-
dition that one of u, v is a prime. Our elementary method of proof will
be the following. We establish certain properties P1, . . . , Pk concerning
a putative solution modulo certain moduli m1, . . . ,mk, respectively. If
the system of these properties is contradicting (resp. allows only a
finite number of solutions), then we get that the equation has no solu-
tions (resp. has only the solutions obtained) modulo m1 · · ·mk (in fact,
already modulo lcm(m1, . . . ,mk)). Interestingly, at some points we can
use a ’global-local’ argument: the knowledge that some equation has
no global solution is used to conclude that a certain congruence is not
solvable.

2. The main result and its proof

Mihăilescu’s celebrated result on Catalan’s equation that we shall
apply reads as follows.

Theorem 2.1 (Mihăilescu [6]). Let u, v, x, y be integers all > 1. Then
the only solution of the equation ux − vy = 1 is given by u = 3, v = 2,
x = 2, y = 3.

We shall derive the following extension towards Skolem’s conjecture.

Theorem 2.2. The equation ux−vy = 1 for fixed positive integers u, v
with one of them prime has only the following solutions in nonnegative
integer variables x, y:
x = 1, y = 0, if u = 2 and v is any positive integer,
x = 1, y is arbitrary, if (u, v) = (2, 1),
x = a, y = 1, if u is any prime and v = ua − 1 for some a ∈ Z>0,
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x = 1, y = 2b, if u is a prime of the form v2
b
+ 1 for some b ∈ Z>0,

x = 1, y = a, if v is any prime and u = va + 1 for some a ∈ Z>0,
x = 2, y = 3, if (u, v) = (3, 2).
For every pair (u, v) with one of them prime there exists a modulus
such that the corresponding congruence has no other solutions than the
Diophantine equation itself has.

Remark 1. It will be clear from the proof that given u, v, the modulus
m can be explicitly constructed, and can be bounded in terms of u and
v.

Remark 2. Theorem 2.2 and its proof can be reformulated for a
related class of equations, having no solutions at all. For example, we
have that there exists a modulus m such the congruence

u2·ux−v2·vy ≡ 1 (mod m) ((u, v) ̸= (3, 2) and one of u, v is a prime)

has no solutions in non-negative integers x, y.

Proof of Theorem 2.2. We shall consider the equation

(1) ux − vy = 1

modulo different moduli where x, y are nonnegative integers. The proof
is split in cases (u, v) = (3, 2), u = 2, u is an odd prime, and v is prime.

First we consider (u, v) = (3, 2). We investigate equation (1) modulo
16, 27 and 73. Modulo 16 equation (1) yields that we are in one of the
cases

• x ≡ 1 (mod 4) and y = 1,
• x ≡ 2 (mod 4) and y = 3,
• 4 | x.

From (1) modulo 27 we get that one of the following holds:

• x = 1 and y ≡ 1 (mod 18),
• x = 2 and y ≡ 3 (mod 18),
• 9 | y.

Finally, modulo 73 equation (1) yields that we have one of

• x ≡ 1 (mod 12) and y ≡ 1 (mod 9),
• x ≡ 2 (mod 12) and y ≡ 3 (mod 9),
• x ≡ 10 (mod 12) and y ≡ 6 (mod 9).

Hence, in this case the only solutions of (1) mod 16 · 27 · 73 are given
by (x, y) = (1, 1) and (2, 3).
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In what follows, without further mentioning we use that modulo v+1
we get that

(2) x ̸= 0.

Now we consider the case u = 2. We start with the subcase u = 2,
v is even. Then equation (1) modulo 4 gives either x = 0, or x = 1,
y = 0. Hence we see that for u = 2, v is even the congruence

2x − vy ≡ 1 (mod 4(v + 1))

has only the solution (x, y) = (1, 0).
Subsequently we consider the subcase u = 2, v = 1. Then equation

(1) modulo 4 implies x = 1 and y is arbitrary.
Next consider the subcase u = 2, v > 1, v is odd. First we handle

solutions (x, y) with y even. For such solutions equation (1) yields

(3) 2x ≡ 2 (mod v − 1), 2x ≡ 2 (mod v + 1).

As v is odd, we have 4 | v − 1 or 4 | v + 1. Thus congruences (3) can
hold simultaneously only if x = 1. Further, (1) modulo v gives that

(4) if x = 1 then y = 0.

Thus in this subcase the only solution with y even of (1) modulo v(v+
1)(v − 1) is (x, y) = (1, 0).

If y is odd, then equation (1) yields

(5) 2x ≡ 2 (mod v − 1), 2x ≡ 0 (mod v + 1).

The second congruence gives that v + 1 | 2x, hence v must be of the
form v = 2a − 1 with some fixed a ≥ 2. Thus we can write equation
(1) as

(6) 2x − (2a − 1)y = 1 (a ≥ 2),

where modulo 2a we get x ≥ a. If x > a, then (6) modulo 2a+1, in
view of that y is odd, gives a contradiction. If x = a, then (6) modulo
(2a−1)2 yields y = 1. So modulo 2a+1(2a−1)2 we get that (x, y) = (a, 1)
in this case.

Summarizing, in the subcase u = 2, v > 1, v is odd we have that
the only solutions of equation (1) modulo 2(v + 1)(v − 1)v2 are given
by (x, y) = (1, 0), (a, 1). In the latter case v is of the form v = 2a − 1.
This concludes our treatment of the case u = 2.

Assume now that u is an odd prime. We write u− 1 = 2ku0 with u0

odd. Then if x > 0 the congruence

vy ≡ −1 (mod u),
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obtained from (1), implies that the exponent of 2 in y is at most k− 1.
Write y = 2bz with z odd and 0 ≤ b ≤ k − 1. Then equation (1) can
be rewritten as

(7) ux −
(
v2

b
)z

= 1.

This equation modulo v2
b
+1 yields v2

b
+1 | ux. So we have v2

b
+1 = ua

with some bounded a ≥ 1. However, by Theorem 2.1 we know that
this may happen only when a = 1 or b = 0. That is, either v2

b
+ 1 = u

for some b with 1 ≤ b ≤ k − 1, or (1) modulo
∏k−1

b=0 (v
2b + 1) implies

that y is odd.
So if u is an odd prime then solutions (x, y) with y even may only

occur if u = v2
b
+ 1 for some b with 1 ≤ b ≤ k − 1 and (1) can be

rewritten as

(8) (v2
b

+ 1)x − (v2
b

)z = 1,

where z is odd. We know that v > 1, because u is odd. If z ≥ 3, then
(8) modulo v2

b+1
yields v | x. Furthermore (8) modulo (v2

b
+ 1)v − 1

implies

(v2
b

+ 1)v − 1 | v2bz.

By expanding the left-hand side we get v2
b+1(tv + 1) | v3·2b for some

integer t > 0 using that b > 0. This is impossible. If z = 1, then from
(8) modulo (v2

b
+1)2 we get that x = 1. Summarizing, in this subcase

the only solution of equation (1) modulo v2
b+1((v2

b
+1)v − 1)(v2

b
+1)2

is (x, y) = (1, 2b) provided that u = v2
b
+ 1 is an odd prime.

Still supposing that u is an odd prime, now we look at the solutions
(x, y) with y is odd. We consider (1) modulo v+1 and obtain v+1 | ux.
Then v is of the form v = ud − 1 with some fixed d ≥ 1, and we can
rewrite (1) as

ux − (ud − 1)y = 1.

The above equation modulo ud yields that x ≥ d. If x = d, then (1)
modulo (ud−1)2 immediately yields y = 1. If x > d, then modulo ud+1

we would get u | y. Then modulo (ud−1)u+1 we get (ud−1)u+1 | ux,
whence (ud − 1)u + 1 = ue with e > 0 fixed. By Theorem 2.1 this
implies (u, v) = (3, 2), which has been considered already. Altogether
we see that the only solution of (1) modulo ud+1((ud−1)u+1)(ud−1)2

in this subcase excluding (u, v) = (3, 2) is given by (x, y) = (d, 1) when
v = ud − 1.

We can summarize the case where u is an odd prime and (u, v) ̸=
(3, 2) as follows:
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• if u = v2
b
+ 1 for some b with 1 ≤ b ≤ k − 1 then equation (1)

modulo v(u−1)(uv−1)u2 has the only solution (x, y) = (1, 2b),
• if v = ud−1 with some d ≥ 1 then (1) modulo u(v+1)(vu+1)v2

has the only solution (x, y) = (d, 1),
• if none of the above relations hold for u, v then equation (1) has

no solutions modulo
∏k−1

b=0 (v
2b + 1).

Consider now the case v is a prime. We immediately see modulo v
that u ̸= 1. Further, by what we have proved already, we may also
assume that u > 2. Taking (1) modulo u− 1 we find that u− 1 has to
be of the form u − 1 = va with some fixed a ≥ 1. Hence equation (1)
takes the form

(9) (va + 1)x − vy = 1 (a ≥ 1).

This equation modulo va shows that y ≥ a. If y = a, then modulo
(va + 1)2 we get that x = 1. If y > a, then considering equation (9)
modulo va+1, we get that v | x. Then modulo (va + 1)v − 1 we obtain
that (va + 1)v − 1 | vy. So (va + 1)v − 1 = vb with some fixed b ≥ 1.
In view of Theorem 2.1 this implies (u, v) = (3, 2), which has been
considered already. Summarizing, we get that in this case excluding
(u, v) = (3, 2), the only solution of (1) modulo u2v(u−1)(uv−1)(v+1)
is given by (x, y) = (1, a) in case u− 1 is of the form va.

On combining all the above results we conclude that Theorem 2.2 is
valid. �
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