CORRIGENDUM TO THE PAPER "ON A CONJECTURE OF SCHÄFFER CONCERNING THE
 EQUATION $1^{k}+\cdots+x^{k}=y^{n} "$

L. HAJDU

In [1], the following statement is formulated.
Lemma 3.2. Let x be a positive integer. Then we have
$\nu_{3}\left(S_{k}(x)\right)= \begin{cases}\nu_{3}(x(x+1)), & \text { if } k=1, \\ \nu_{3}(x(x+1)(2 x+1))-1, & \text { if } k \text { is even, } \\ 0, & \text { if } x \equiv 1(\bmod 3) \text { and } k \geq 3 \text { is odd }, \\ \nu_{3}\left(k x^{2}(x+1)^{2}\right)-1, & \text { if } x \equiv 0,2(\bmod 3) \text { and } k \geq 3 \text { is odd. }\end{cases}$
Unfortunately, the proof of this statement contains a small gap, and also the last part of the argument is not correctly presented. Now we give a correct and full proof of this statement. Note that Lemma 3.2 as well as all the other statements in [1] hold true.

Proof of Lemma 3.2. To keep the presentation as simple as possible, we only consider the case of odd k. The case of even k has been handled by Sondow and Tsukerman [2]. (This has also been noted in [1]; there [2] is reference [21].)

By the arguments in [1] we may assume that $k \geq 3$ and $x \geq 3$. We proceed by induction on x. Assume that the assertion is valid for all x^{\prime} with $1 \leq x^{\prime}<x$ for all positive integers k.

Since $a^{k} \equiv a(\bmod 3)$ for any integer a for odd k, we clearly have that $S_{k}(x) \equiv 1(\bmod 3)$ whenever $x \equiv 1(\bmod 3)$, yielding $\nu_{3}\left(S_{k}(x)\right)=0$ in this case. So if $x \equiv 1(\bmod 3)$, then the statement holds.

When $x \equiv 0,2(\bmod 3)$, then we distinguish three cases. Assume first that x is of the form $\varepsilon 3^{\alpha}$ with $\varepsilon=1,2$ and $\alpha \geq 1$. In this case the argument in [1] perfectly works. Note that we need the induction hypothesis with $\left(3^{\alpha}-1\right) / 2$ and $3^{\alpha}-1$ for $\varepsilon=1$ and 2 , respectively.

Suppose next that x is of the form $\varepsilon 3^{\alpha}-1$, with ε and α as above. (This is the case not discussed in [1].) Then, by the induction hypothesis and what we have proved previously, the statement is valid for $x+1$, that is

$$
\nu_{3}\left(S_{k}(x+1)\right)=\nu_{1}(k)+2 \alpha-1 .
$$

Thus, since we have $\log k>\nu_{3}(k)$,

$$
\nu_{3}\left((x+1)^{k}\right)=k \alpha>\nu_{3}(k)+2 \alpha-1,
$$

and we obtain

$$
\nu_{3}\left(S_{k}(x)\right)=\nu_{3}\left(S_{k}(x+1)\right)=\nu_{3}(k)+2 \alpha-1=\nu_{3}\left(k x^{2}(x+1)^{2}\right)-1
$$

So the statement follows also in this case.
Finally, assume that x is not of any of the forms above. Then write $x=\sum_{i=1}^{t} \varepsilon_{i} 3^{\alpha_{i}}$ with $\varepsilon_{i}=1,2(i=1, \ldots, t)$ and $\alpha_{1}>\cdots>\alpha_{t} \geq 0$. Set $z=x-\varepsilon_{1} 3^{\alpha_{1}}$. (This is the point where we change the argument in [1]: there we dealt with the number $x-\varepsilon_{t} 3^{\alpha_{t}}$ instead, and it does not work properly.) Observe that by our assumption on x, we have $\max \left(\nu_{3}(z), \nu_{3}(z+1)\right)<\alpha_{1}$. Moreover,

$$
\begin{gathered}
S_{k}(x)=S_{k}\left(\varepsilon_{1} 3^{\alpha_{1}}+z\right)=S_{k}\left(\varepsilon_{1} 3^{\alpha_{1}}\right)+\sum_{i=1}^{z} \sum_{j=0}^{k}\binom{k}{j}\left(\varepsilon_{1} 3^{\alpha_{1}}\right)^{k-j} i^{j}= \\
=S_{k}\left(\varepsilon_{1} 3^{\alpha_{1}}\right)+\sum_{j=0}^{k}\binom{k}{j}\left(\varepsilon_{1} 3^{\alpha_{1}}\right)^{k-j} S_{j}(z)
\end{gathered}
$$

hold, where $S_{0}(y)=y$. We have $\nu_{3}\left(S_{k}\left(\varepsilon_{1} 3^{\alpha_{1}}\right)\right)=\nu_{3}(k)+2 \alpha_{1}-1$. Further, letting $\nu_{3}^{(j)}=\nu_{3}\left(\binom{k}{j}\left(\varepsilon_{1} 3^{\alpha_{1}}\right)^{k-j} S_{j}(z)\right)$ for $0 \leq j \leq k$, we get

$$
\begin{gathered}
\nu_{3}^{(k)}=\nu_{3}\left(k z^{2}(z+1)^{2}\right)-1, \\
\nu_{3}^{(0)}=k \alpha_{1}+\nu_{3}(z), \\
\nu_{3}^{(1)}=\nu_{3}(k)+(k-1) \alpha_{1}+\nu_{3}(z(z+1)),
\end{gathered}
$$

and for $1<j<k$,

$$
\begin{gathered}
\nu_{3}^{(j)}=\nu_{3}\left(\binom{k}{j}\right)+(k-j) \alpha_{1}+\nu_{3}(z(z+1)(2 z+1))-1, \text { if } j \text { is even, } \\
\nu_{3}^{(j)}=\nu_{3}\left(\binom{k}{j}\right)+(k-j) \alpha_{1}+\nu_{3}\left(j z^{2}(z+1)^{2}\right)-1, \text { if } j \text { is odd. }
\end{gathered}
$$

Recalling $\max \left(\nu_{3}(z), \nu_{3}(z+1)\right)<\alpha_{1}$ and noting that $s-1-\log s \geq 0$ for any positive integer s, we obtain

$$
\begin{gathered}
\nu_{3}^{(0)}-\nu_{3}^{(k)}>(k-2) \alpha_{1}-\nu_{3}(k)+1 \geq k-1-\log k \geq 0, \\
\nu_{3}^{(1)}-\nu_{3}^{(k)}>(k-2) \alpha_{1}+1 \geq k-1 \geq 0 .
\end{gathered}
$$

Using further

$$
\nu_{3}\left(\binom{k}{j}\right)=\nu_{3}\left(\binom{k}{k-j}\right) \geq \max \left(\nu_{3}(k)-\nu_{3}(j), \nu_{3}(k)-\nu_{3}(k-j)\right)
$$

for $1<j<k$, we get

$$
\nu_{3}^{(j)}-\nu_{3}^{(k)}>(k-j-1) \alpha_{1}-\nu_{3}(k-j) \geq k-j-1-\log (k-j) \geq 0
$$

if j is even, and

$$
\nu_{3}^{(j)}-\nu_{3}^{(k)} \geq(k-j) \alpha_{1}>0
$$

if j is odd. Hence

$$
\nu_{3}^{(k)}<\nu_{3}^{(j)}(0 \leq j<k) \quad \text { and } \quad \nu_{3}^{(k)}<\nu_{3}\left(S_{k}\left(\varepsilon_{1} 3^{\alpha_{1}}\right)\right) .
$$

Therefore we obtain

$$
\nu_{3}\left(S_{k}(x)\right)=\nu_{3}^{(k)}=\nu_{3}\left(k z^{2}(z+1)^{2}\right)-1 .
$$

As $\nu_{3}(x)=\nu_{3}(z)$ and $\nu_{3}(x+1)=\nu_{3}(z+1)$, hence the lemma follows.
Note that the argument in [1] goes along the same lines. However, because of the not appropriate choice of z (indicated before), it does not work properly, some inequalities in the proof of Lemma 3.2 in [1] fail in certain cases.

Acknowledgements

The author is grateful to Gamze Savas (Uludag University) for driving his attention to the inaccuracies in the proof, and to the referee for the useful and helpful comments.

References

[1] L. Hajdu, On a conjecture of Schäffer concerning the equation $1^{k}+\cdots+x^{k}=$ y^{n}, J. Number Theory 155 (2015), 129-138.
[2] J. Sondow and E. Tsukerman, The padic order of power sums, the ErdősMoser equation, and Bernoulli numbers, arXiv:1401.0322v1 [math.NT] 1 Jan 2014.
L. Hajdu

University of Debrecen, Institute of Mathematics
H-4010 Debrecen, P.O. Box 12.
Hungary
E-mail address: hajdul@science.unideb.hu

