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Dedicated to Kálmán Győry on the occassion of his 75th birthday.

Abstract. We provide all solutions of the title equation in pos-
itive integers x, k, y, n with 1 ≤ x < 25 and n ≥ 3. For these
values of the parameters, our result gives an affirmative answer to
a related, classical conjecture of Schäffer. In our proofs we com-
bine several tools: Baker’s method (in particular, sharp bounds for
the linear combinations of logarithms of two algebraic numbers),
polynomial-exponential congruences and computational methods.

1. Introduction

Let x and k be positive integers. Write

Sk(x) = 1k + 2k + · · ·+ xk.

The equation

(1) Sk(x) = yn

in unknown positive integers k, n, x, y with n ≥ 2 has a long history.
The case (k, n) = (2, 2) has already been considered by Lucas [9], [10],
Watson [17] and others. Here we do not give details; the interested
reader may consult to the book [15], the papers [4], [1], [3] and the
references given therein.

It is long known that when (k, n) is one of the pairs

(2) (1, 2), (3, 2), (3, 4), (5, 2),

then (1) has infinitely many solutions. These solutions can be described
easily. As the first deep general result, in 1956 Schäffer [14] proved that
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if (k, n) is fixed and is not in the list (2), then equation (1) has only
finitely many solutions. Schäffer’s proof was ineffective. Still, for some
(small) pairs (k, n) he was able to show that equation (1) has only
the trivial solution (x, y) = (1, 1). Beside this, he conjectured that for
(k, n) not in the list (2), equation (1) has the only nontrivial solution
(x, k, y, n) = (24, 2, 70, 2).

Considerably later, Győry, Tijdeman and Voorhove [5] gave an effec-
tive proof for Schäffer’s result, in the much more general case where the
exponent n is also unknown. Moreover, Pintér [12] (under some mild
assumptions) proved that for the nontrivial solutions n < ck log(2k)
holds, where c is an effectively computable absolute constant. For fur-
ther results about equation (1) and its generalizations we refer to the
book [15] and the papers [4], [1], [3], and the references there.

The conjecture of Schäffer has been verified under certain assump-
tions for the parameters involved. Beside the ”small” fixed pairs (k, n)
considered by Schäffer [14], Jacobson, Pintér and Walsh [7] verified the
conjecture for n = 2 and even values of k with 2 ≤ k ≤ 58. Later,
Bennett, Győry and Pintér [1] proved that the conjecture holds for any
n ≥ 2 with 1 ≤ k ≤ 11. Further, Pintér [13] verifed Schäffer’s conjec-
ture for the even values of n with n > 4, provided that k is odd with
1 ≤ k < 170.

Recently, Hajdu [6] proved that Schäffer’s conjecture holds under
certain assumptions made on x, letting all the other parameters free.
Among other results, he has proved that the conjecture is true if x ≡
0, 3 (mod 4) and x < 25. The main tools in the proof of this result
were the 2-adic valuation of Sk(x) and local methods for polynomial-
exponential congruences.

The purpose of the present paper is to extend the results in [6] for
all values of x with x < 25. It is important to mention that for this
purpose we need different tools than those used in [6]. The reason
is that for the remaining values of x with x < 25 (i.e. those with
x ≡ 1, 2 (mod 4)) the methods used in [6] are not applicable. To prove
our main theorem, we need to combine sharp upper bounds for linear
forms in two logarithms and polynomial-exponential congruences, and
we also make use of involved computational facilities. The reason why
we stop at x < 25 (though our method in principle is capable to cover
larger intervals for x) is the following. The total running time of our
computer calculations for x = 21 (the value of x requiring heavy com-
putations) was already around six days. For larger values of x, the
bounds appearing in Table 1 would be significantly worse, resulting in
much longer running times in the computational part. Since solving
the equation for such values of x would rise questions more of technical



ON THE EQUATION 1k + 2k + · · · + xk = yn FOR FIXED x 3

and computational type, and also because of a nice property of x = 24
(being the only value with a non-trivial solution), we decided to stop
at this point.

The structure of the paper is the following. In the next section we
give our main result. In the third section we give an overview of our
strategy to prove our main theorem, and we provide several lemmas.
Finally, in the last section we give the proof of our main result.

2. The main result

Our main result is the following.

Theorem 2.1. All solutions of equation (1) in positive integers x, k, y, n
with x < 25 and n ≥ 3 are given by

(x, k, y, n) = (1, k, 1, n), (8, 3, 6, 4).

As a simple consequence we obtain the following immediate

Corollary 2.1. For x < 25 and n ≥ 3, Schäffer’s conjecture is true.

Remark. We mention that in case of n = 2, in view of the identity

S3(x) =
(
x(x+1)

2

)2
, equation (1) has many more solutions with x < 25.

3. Lemmas

In this section we give some lemmas which are needed in the proof of
Theorem 2.1. First we get rid of those values of x for which equation
(1) is already solved.

Lemma 3.1. Suppose that

x ∈ {1, 2, 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24}.
Then equation (1) with n ≥ 3 has only the trivial solution with (x, y) =
(1, 1).

Proof. The case x = 1 is trivial. When x = 2, the only solution to (1)
is given by (x, k, y, n) = (2, 3, 3, 2) (where we have n = 2). This fact
is well-known; it follows e.g. from the nice result of Mihăilescu [11]
concerning the Catalan equation. All the other cases are handled by
Hajdu [6]. �

In view of the above lemma, we may assume that we have

x ∈ {5, 6, 9, 10, 13, 14, 17, 18, 21, 22}.
In these cases, the strategy of our proof is the following. First, using
Baker’s method (for linear forms in two logarithms) we prove that one
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of the exponential variables k and n has to be ”small”. For this we use
results of Laurent [8]. Then the remaining cases will be handled sepa-
rately. It is important to mention that we need to provide rather sharp
upper bounds for k and n (which makes the proofs of our correspond-
ing lemmas rather technical). The reason is that the ”small” values
of k and n need to be handled separately, one by one, by a numerical
method, and the running time of our algorithm is very sensitive for the
initial upper bounds for these parameters.

When k is small, since x is fixed, the left hand side of equation (1)
is fixed, and we only need to perform a simple check (which for ”large”
values of k can still be rather time consuming). When n is ”small”
then for each possible values of n, we solve (1) locally, as a polynomial-
exponential congruence. At this stage we also make use of the program
package Magma [2]. We note that this is the point where we need to
require the assumption n > 2, since in case of n = 2 some of the
occurring equations cannot be handled locally.

So we start with deriving upper bounds for the exponential variables
k, n in equation (1). As we have mentioned, for this purpose we use
Baker’s method for linear forms in logarithms of two algebraic numbers.
We need to introduce some notation.

For an algebraic number α of degree d over Q, we define the absolute
logarithmic height of α by the following formula:

h(α) =
1

d

(
log |a0|+

d∑
i=1

log max
{

1, |α(i)|
})

,

where a0 is the leading coefficient of the minimal polynomial of α over
Z, and α(1), α(2), ... , α(d) are the conjugates of α in the field of complex
numbers.

Let α1 and α2 be multiplicatively independent algebraic numbers
with |α1| ≥ 1 and |α2| ≥ 1. Consider the linear form in two logarithms:

Λ = b2 logα2 − b1 logα1,

where logα1, logα2 are any determinations of the logarithms of α1, α2

respectively, and b1, b2 are positive integers.
We shall use the following result due to Laurent [8].

Lemma 3.2 ([8], Theorem 2). Let ρ and µ be real numbers with ρ > 1
and 1/3 ≤ µ ≤ 1. Set

σ =
1 + 2µ− µ2

2
, λ = σ log ρ.
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Let a1, a2 be real numbers such that

ai ≥ max {1, ρ| logαi| − log |αi|+ 2Dh(αi)} (i = 1, 2),

where
D = [Q(α1, α2) : Q] / [R(α1, α2) : R] .

Let h be a real number such that

h ≥ max

{
D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2

2

}
.

We assume that
a1a2 ≥ λ2.

Put

H =
h

λ
+

1

σ
, ω = 2 + 2

√
1 +

1

4H2
, θ =

√
1 +

1

4H2
+

1

2H
.

Then we have

log |Λ| ≥ −Ch′ 2a1a2 −
√
ωθh′ − log

(
C ′h′ 2a1a2

)
with

h′ = h+
λ

σ
, C = C0

µ

λ3σ
, C ′ =

√
Cσωθ

λ3µ
,

where

C0 =

(
ω

6
+

1

2

√
ω2

9
+

8λω5/4θ1/4

3
√
a1a2H1/2

+
4

3

(
1

a1
+

1

a2

)
λω

H

)2

.

Using this lemma, we show the following.

Lemma 3.3. Let A = {5, 6, 9, 10, 13, 14, 17, 18, 21, 22} and consider
equation (1) with x ∈ A in integer unknowns (k, y, n) with k ≥ 83, y ≥
2 and n ≥ 3 a prime. Then for y > x2 we have n ≤ n0, for y > 106 even
n ≤ n1 holds, and for y ≤ x2 we have k ≤ k1, where n0 = n0(x), n1 =
n1(x) and k1 = k1(x) are given in Table 1.

Proof. In the course of the proof we will always assume that x ∈ A and
we distinguish three cases according to y > x2, y > 106 or y ≤ x2.

Case I. y > x2

We may suppose, without loss of generality, that n is large enough,
that is

(3) n > n0.

Further, by k ≥ 83 we easily deduce that for every x ∈ A we have

(4) 1k + 2k + · · ·+ xk < 2xk < (x+ 1)k,
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x n0 (y > x2) n1 (y > 106) k1 (y ≤ x2)
5 14, 000 6, 100 78, 000
6 21, 000 10, 100 121, 000
9 52, 000 28, 000 304, 000
10 65, 000 36, 000 381, 000
13 111, 000 64, 000 651, 000
14 129, 000 75, 000 754, 000
17 187, 000 113, 000 1, 099, 000
18 209, 000 127, 100 1, 224, 000
21 278, 000 174, 100 1, 633, 000
22 244, 000 168, 000 1, 466, 000

Table 1. Bounding n and k under the indicated conditions

and

(5) 1k + 2k + · · ·+ (x− 1)k < 2(x− 1)k.

Since y > x2 by (1), (4) and x ≥ 5 we get that

(6) k ≥ 2n.

Using (6) and the fact that n is odd we may write k in the form

(7) k = Bn+ r with B ≥ 1, 0 ≤ |r| ≤ n− 1

2
.

We show that in (7) we have r 6= 0. On the contrary, suppose r = 0.
Then, using (1) and (5) we infer by (7) that

2(x− 1)k > 1 + 2k + · · ·+ (x− 1)k = yn − xk = yn − xBn

= (y − xB)(yn−1 + · · ·+ xB(n−1)) ≥ xB(n−1).

Hence

n <
log x

log
(

x
x−1

) +
log 2

B log
(

x
x−1

) .
This together with x ≤ 22 and B ≥ 1 implies n < 82, which contradicts
(3). Thus, r 6= 0.
On dividing equation (1) by yn we obviously get

(8) 1− xk

yn
=

s

yn
,

where s = 1k + 2k + . . .+ (x− 1)k. Using (7) and (8) we infer that

(9)

∣∣∣∣xr · (xBy
)n
− 1

∣∣∣∣ =
s

yn
.
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Put

(10) Λr =

{
r log x− n log y

xB
if r > 0,

|r| log x− n log xB

y
if r < 0.

In what follows we find upper and lower bounds for log |Λr|. We dis-
tinguish two subcases according to

1− xk

yn
≥ 0.795 or 1− xk

yn
< 0.795,

respectively. If 1 − xk

yn
≥ 0.795 then by (1) and (4) we immediately

obtain a contradiction, so we may assume that the latter case holds.
It is well known (see Lemma B.2 of [16]) that for every z ∈ R with
|z − 1| < 0.795 one has

(11) | log z| < 2|z − 1|.

On applying inequality (11) with z = xk/yn we get by (8), (9), (10)
and xk 6= yn that

(12) |Λr| <
2s

yn
.

Observe that (1) implies

(13) k <
n log y

log x
.

Thus by (12), (5) and (13) we infer that

log |Λr| < −
log
(

x
x−1

)
log x

(log y)n+ log 4.(14)

Next, for a lower bound for log |Λr|, we shall use Lemma 3.2 with

(α1, α2, b1, b2) =

{ (
y
xB
, x, n, r

)
if r > 0,(

xB

y
, x, n, |r|

)
if r < 0.

Using (1) and (4) one can easily check that α1 > 1 and α2 > 1. We show
that α1, α2 are multiplicatively independent. Assume the contrary.
Then the set of prime factors of y coincides with that of x. Since y is odd
(as x 6≡ 0, 3 (mod 4)), hence x is also odd, that is, x ∈ {5, 9, 13, 17, 21}.
If x is a prime, i.e. x ∈ {5, 13, 17}, then y has to be a power of x, and
equation (1) can be written as

1k + 2k + · · ·+ xk = xm, k ≥ 2, m ≥ 2.
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One can verify that this equation has no solution (since xk < xm <
2xk < xk+1). If x = 9, then y has to be a power of 3, and equation (1)
can be written as

1k + 2k + · · ·+ 9k = 3m, k ≥ 2, m ≥ 2.

Taking this equation modulo 4, we have

3 + 2 · (−1)k ≡ (−1)m (mod 4).

This implies that m is even, and we find

1k + 2k + · · ·+ 9k = 9m/2,

which, as we already know, has no solution. If x = 21, then the set of
prime factors of the integer

1k + 2k + · · ·+ 21k

should be {3, 7}. However, we can observe that the above integer is
not divisible by 3 if k is even, and that it is divisible by 11 provided
that k is odd. This is a contradiction. To sum up, we may assume that
α1, α2 are multiplicatively independent.
Now, we apply Lemma 3.2 with the following choice of parameters
(ρ, µ): for every x ∈ A we choose µ = 0.57 uniformly, and set

(15) ρ =

{
7.7 if x ∈ A \ {22},
7 if x = 22.

In what follows we shall derive upper bounds for the quantities

ρ| logαi| − log |αi|+ 2Dh(αi), (i = 1, 2)

occurring in Lemma 3.2. Since D = 1 and α2 > 1, for i = 2 we get

(16) ρ| logα2| − log |α2|+ 2Dh(α2) = (ρ+ 1) log x.

For i = 1 we obtain

(17) ρ| logα1| − log |α1|+ 2Dh(α1) <
ρ+ 1

2
log x+ 2 log y − 2 log g,

where g = gcd(x, y). To verify that (17) is valid we shall estimate
logα1 and h(α1) from above, by using equation (1), i.e. s+xBn+r = yn.
Observe

h(α1) = h

(
xB

y

)
≤ log max{xB, y}−log g =

{
log y − log g if r > 0,

log xB − log g if r < 0.

If r > 0, then

αn1 =
( y

xB

)n
= xr +

s

xBn
= xr

(
1 +

s

xk

)
< 2xr (as s < xk),
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so

logα1 <
log 2

n
+
r

n
log x ≤ log 2

n
+
n− 1

2n
log x,

whence

ρ| logα1| − log |α1|+ 2Dh(α1) <

<

(
log 2

n log x
+
n− 1

2n

)
(ρ− 1) log x+ 2 log y − 2 log g

which by (15), (3) and x ≥ 5 clearly implies (17).
If r < 0, then

αn1 =

(
xB

y

)n
= x−r

(
1− s

yn

)
< x−r = x|r|,

so

logα1 <
|r|
n

log x ≤ n− 1

2n
log x,

and

log xB = logα1 + log y <
n− 1

2n
log x+ log y,

and we get

ρ| logα1| − log |α1|+ 2Dh(α1) <

<

(
n− 1

2n
(ρ− 1) +

n− 1

n

)
log x+ 2 log y − 2 log g,

which by (3) again implies (17).
In view of (16) we can obviously take for every x ∈ A
(18) a2 = (ρ+ 1) log x.

For the values a1 we do the following. If we can calculate the exact
value of g = gcd(x, y) then we use for a1 the upper bound occurring in
(17), while if we do not know the exact value of g = gcd(x, y) we use
(17) with g = 1. Namely, we can take a1 as

(19) a1 =

{
ρ+1
2

log x+ 2 log y if x ∈ A \ {22},
ρ+1
2

log x+ 2 log y − 2 log 11 if x = 22.

To see that the choice of a1 for x = 22 is valid we observe that
(20){

Sk(22) ≡ 0 (mod 3) and Sk(22) 6≡ 0 (mod 9) if k is even,

Sk(22) ≡ 0 (mod 11) if k is odd,

Since by (3) n is large in equation (1), we may assume that k is odd,
hence (20) together with (1), implies y ≡ 0 (mod 11). Thus, since y
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must be odd we have gcd(x, y) = g = 11 for x = 22, and from y > x2,
we additionally get that

(21) y ≥ 222 + 11 = 495.

Since µ = 0.57 we get

(22) σ = 0.90755 and λ = 0.90755 log ρ,

whence by (15), (18), (19), (22) and y > x2 we easily check that for
every x ∈ A

a1a2 > λ2

holds. Now, we are going to derive an upper bound h for the quantity

max

{
D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2

2

}
.

Using D = 1, (15), (18), (19), (22), and (21) for x = 22 and y > x2

for x ∈ A \ {22}, for the values of h occurring in Lemma 3.2 we obtain
h = log n+ ε, with ε = ε(x) given in Table 2.

x 5 6 9 10 13
ε 0.2087 0.1014 −0.1026 −0.1494 −0.2573

x 14 17 18 21 22
ε −0.2858 −0.3568 −0.3768 −0.4287 −0.3454

Table 2. Choosing the parameter h = log n + ε occur-
ring in Lemma 3.2 if the case y > x2

Further, by (3) we easily check that for the above values of h assump-
tions of Lemma 3.2 concerning the parameter h are satisfied. Using (3)
again we obtain a lower bound for H and hence upper bounds for ω
and θ. Moreover, using these values of ω and θ by (15), (18), (19), (22)
and (21) for x = 22 and y > x2 for x ∈ A \ {22} we obtain Table 3.
Now, on combining (19), (18), (21) for x = 22 and y > x2 for x ∈
A \ {22} with Table 3 we get

(23)
log 4 + log(C ′a1a2)

log y
< 4.

Further, by Lemma 3.2 we obtain

(24) log |Λr| > −Ch′2a1a2 −
√
ωθh′ − log(C ′h′2a1a2),

whence using (23) and comparing (14) with (24) we get

(25) n <

(
Ch′2a1a2

log y
+

√
ωθ

log y
h′ +

log h′2

log y
+ 4

)
log x

log x
x−1

.
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x H ω θ C0 C C ′ h′

5 6.34 4.0063 1.0820 2.2802 0.2253 0.50 log n+2.2500
6 6.51 4.0059 1.0800 2.2245 0.2198 0.50 log n+2.1427
9 6.90 4.0053 1.0751 2.1331 0.2108 0.50 log n+1.9387
10 6.99 4.0052 1.0741 2.1150 0.2090 0.50 log n+1.8919
13 7.23 4.0048 1.0717 2.0757 0.2051 0.50 log n+1.7840
14 7.29 4.0047 1.0710 2.0662 0.2042 0.50 log n+1.7555
17 7.46 4.0045 1.0700 2.0435 0.2020 0.50 log n+1.6845
18 7.50 4.0045 1.0689 2.0377 0.2014 0.50 log n+1.6645
21 7.63 4.0043 1.0677 2.0224 0.2000 0.50 log n+1.6126
22 7.92 4.0040 1.0652 2.0429 0.2330 0.55 log n+1.6006

Table 3. Lower bounds for H and upper bounds for
ω, θ, C0, C, C

′, h′ occurring in Lemma 3.2 if y > x2

Finally, using (18), (19) and (21) for x = 22 and y > x2 for x ∈ A\{22},
by Table 3 we obtain the desired bounds for n in this case.

Case II. y > 106

We work as in the previous case. Namely, we apply Lemma 3.2 again,
the only difference is that in this case for y we may write y > 106. We
may suppose, without loss of generality, that n is large enough, that is

(26) n > n1.

Further, we choose µ = 0.57 uniformly, and set

(27) ρ =



9.6 if x = 5, 6, 9, 10, 13, 14,

9.5 if x = 17,

9.4 if x = 18,

9.3 if x = 21,

8.9 if x = 22.

As before, we may take a1 and a2 as in (19) and (18).
Thus by (27), (19), (18) and y > 106 for the values of h occurring in
Lemma 3.2 we obtain h = log n− ε, with ε = ε(x) given in Table 4.
On combining (18), (19), (26), (27) with y > 106 and with Table 4 we
obtain Table 5.
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x 5 6 9 10 13
ε 0.0938 0.1851 0.3572 0.3964 0.4866

x 14 17 18 21 22
ε 0.5103 0.5662 0.5795 0.6195 0.5866

Table 4. Choosing the parameter h = log n− ε occur-
ring in Lemma 3.2 if y > 106

x H ω θ C0 C C ′ h′

5 5.25 4.0091 1.1000 2.1395 0.1554 0.4 log n+2.1680
6 5.47 4.0084 1.0956 2.1075 0.1531 0.4 log n+2.0767
9 5.90 4.0072 1.0884 2.0540 0.1492 0.4 log n+1.9046
10 6.01 4.0070 1.0867 2.0428 0.1484 0.4 log n+1.8654
13 6.25 4.0064 1.0832 2.0189 0.1467 0.4 log n+1.7752
14 6.31 4.0063 1.0824 2.0130 0.1462 0.4 log n+1.7515
17 6.51 4.0059 1.0800 1.9983 0.1472 0.4 log n+1.6851
18 6.59 4.0058 1.0788 1.9942 0.1490 0.4 log n+1.6613
21 6.75 4.0055 1.0769 1.9840 0.1504 0.4 log n+1.6106
22 6.86 4.0054 1.0756 1.9814 0.1594 0.4 log n+1.5995

Table 5. Lower bounds for H and upper bounds for
ω, θ, C0, C, C

′, h′ occurring in Lemma 3.2 if y > 106

Now, on combining (18), (19) and y > 106 with Table 5 we get

(28)
log 4 + log(C ′a1a2)

log y
< 4.

Further, by Lemma (3.2) we obtain

(29) log |Λr| > −Ch′2a1a2 −
√
ωθh′ − log(C ′h′2a1a2),

whence using (28) and comparing (14) with (29) we obtain

(30) n <

(
Ch′2a1a2

log y
+

√
ωθ

log y
h′ +

log h′2

log y
+ 4

)
log x

log x
x−1

.

Finally, using also (18), (19) and y > 106, by Table 5 we obtain the
desired bounds for n in this case.

Case III. y ≤ x2

In order to obtain the desired upper bounds for k we may clearly assume
that k is large, namely

(31) k > k1.
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Since y ≤ x2 we have by (1) that

(32) n > bk/2c.
Hence by (32), we can write

(33) n = Bk + r with B ≥ 1, 0 ≤ |r| ≤
⌊
k

2

⌋
.

Further, using the same argument as in Case I, by x ∈ A and k ≥ 83
we may suppose that in (33) we have r 6= 0.
We divide our equation (1) by xk. Then, by (33) we infer

(34) yr
(
yB

x

)k
− 1 =

s

xk
,

where s = 1k + 2k + · · ·+ (x− 1)k. Thus, yr
(
yB

x

)k
> 1. Put

(35) Λr = b2 logα2 − b1 logα1,

where

(36) (α1, α2, b1, b2) =


(

x
yB
, y, k, r

)
if r > 0,(

yB

x
, y, k, |r|

)
if r < 0.

It is easy to see α1 > 1 and α2 > 1, moreover similarly to Case I we
obtain that α1 and α2 are multiplicatively independent. We find upper
and lower bounds for log |Λr|. Since for every z ∈ R with z > 1 we
have | log z| < |z − 1| it follows by (34), (35), (36) and (5) that

(37) log |Λr| < −k log

(
x

x− 1

)
+ log 2.

For a lower bound, we again use Lemma 3.2. We choose µ = 0.57
uniformly (i.e. for every x ∈ A), and set

(38) ρ =


6.0 if x = 5,

6.1 if x = 6, 9, 10,

6.2 if x = 13, 14, 17, 18, 21,

5.6 if x = 22.

Moreover, using the same argument as in Case I by y ≤ x2 and 11 =
gcd(22, y) we may take

(39) a1 =

{
(ρ+ 3) log x if x ∈ A \ {22},
(ρ+ 1) log x+ 2 log 2 if x = 22
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and

(40) a2 = 2 · (ρ+ 1) log x.

Since µ = 0.57 we get

(41) σ = 0.90755 and λ = 0.90755 log ρ,

whence by (38), (39), (40), (41) we easily check that for every x ∈ A

a1a2 > λ2

holds. Now, we are going to derive an upper bound h for the quantity

max

{
D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2

2

}
.

Using (38), (39), (40), (41) for h occurring in Lemma 3.2 we obtain
h = log n+ ε, with ε = ε(x) given in Table 6.

x 5 6 9 10 13
ε 0.1216 0.0112 −0.1928 −0.2397 −0.3507
x 14 17 18 21 22
ε −0.3792 −0.4502 −0.4702 −0.5221 −0.3945

Table 6. Choosing the parameter h = log n + ε occur-
ring in Lemma 3.2 if the case y ≤ x2

On combining (31), (38), (39), (40), (41) with Table 6 we obtain Table
7.

x H ω θ C0 C C ′ h′

5 8.09 4.0039 1.0638 2.0737 0.3030 0.70 log k+1.9134
6 8.23 4.0037 1.0626 2.0412 0.2901 0.67 log k+1.8195
9 8.67 4.0034 1.0594 1.9876 0.2825 0.66 log k+1.6155
10 8.78 4.0033 1.0586 1.9768 0.2810 0.66 log k+1.5686
13 8.97 4.0032 1.0573 1.9542 0.2704 0.64 log k+1.4739
14 9.04 4.0031 1.0569 1.9486 0.2696 0.64 log k+1.4454
17 9.23 4.0030 1.0557 1.9353 0.2678 0.64 log k+1.3744
18 9.28 4.0030 1.0554 1.9318 0.2673 0.63 log k+1.3544
21 9.42 4.0029 1.0545 1.9229 0.2661 0.63 log k+1.3025
22 9.93 4.0026 1.0517 1.9338 0.3179 0.75 log k+1.3283

Table 7. Lower bounds for H and upper bounds for
ω, θ, C0, C, C

′, h′ occurring in Lemma 3.2 if y ≤ x2
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Further, on using Table 7 and Lemma 3.2 we obtain

(42) log |Λr| > −Ch′2a1a2 −
√
ωθh′ − log(C ′h′2a1a2),

whence, on comparing (37) with (42) we get

k <
Ch′2a1a2 +

√
ωθh′ + log(2C ′h′2a1a2)

log
(

x
x−1

) .

Finally, using (38), (39), (40), by Table 7 we obtain the desired bounds
for k in this case. Thus our lemma is proved.

�

Lemma 3.3 gives us sharp estimates for either n or k, depending on
some further assumptions. Now we give some lemmas which take care
of the cases where one of n, k is ”small”.

Lemma 3.4. Let A = {5, 6, 9, 10, 13, 14, 17, 18, 21, 22}. Then equation
(1) with x ∈ A has no solutions under the following assumption:

3 ≤ n ≤ n1, n prime or n = 4,

where n1 is the bound (depending on x) specified in Table 1.

Proof. We use the following strategy. Fix a value of x ∈ A and also fix
n such that either n = 4 or 3 ≤ n ≤ n1 is a prime. Take the smallest
prime p1 of the form 2in+ 1 with i ∈ Z. Let o1 := p1− 1. Consider all
values of k = 1, . . . , o1, and check whether Sk(x) (mod p1) is a perfect
power or not. Let K(o1) be the set of all those values of k (mod o1)
for which Sk(x) (mod p) is a perfect power. Then take the next prime
p2 of the form p2 := 2in + 1 with i ∈ Z. Put o2 := lcm(o1, p2 − 1),
and construct the set K0(o2) of all those numbers 1, . . . , o2 which are
congruent to elements of K(o1) modulo o1. Considering now equa-
tion (1) modulo p2, exclude from the set K0(o2) all those elements k
for which Sk(x) (mod p2) is not a perfect power. Thus we get the
set K(o2) of all possible values of k (mod o2) for which a solution is
possible. Continue this procedure by taking new primes p3, p4, . . . , pl
of the form 2in + 1 with i ∈ Z, until the set K(ol) becomes empty.
Then we conclude that equation (1) has no solution for the given x
and n. We have performed the above computation in the computer
algebra package Magma [2] for every x ∈ A and every prime n with
3 ≤ n ≤ n1 and n = 4 concluding the proof of our lemma. The
Magma code and the list of primes p1, . . . , pl can be downloaded from
the link ”http://math.unideb.hu/berczes-attila/linkek.html” under the
name ”Results for Skx”.

�
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Lemma 3.5. Let A = {5, 6, 9, 10, 13, 14, 17, 18, 21, 22}. Assume that
equation (1) has a solution (x, k, y, n) with x ∈ A such that either:

(i) k ≥ 83 and x2 < y ≤ 106, or
(ii) k ≥ 83 and y ≤ x2.

Then we have n < 12.

Proof. In the case (ii), by Lemma 3.3 we immediately get k ≤ k1. In
the case of (i), by Lemma 3.3 we get n ≤ n0, which together with (1)
and the assumption y ≤ 106 gives the estimate

k <
n log y

log x
≤ 6n0 log 10

log x
.

Put k0 := max
{

6n0 log 10
log x

, k1

}
, which for given x is a fixed number.

For given x ∈ A let us take any fix value of k with 2 ≤ k ≤ k0.
For every prime 2 ≤ p ≤ 106 we check whether Sk(x) is divisible by p
(in fact we compute Sk(x) (mod p) and we check if it is 0 or not). If
p divides Sk(x), then we check if Sk(x) is also divisible by p12 or not.
During our computations for every possible pair (x, k) we either found
that there is no prime p ≤ 106 dividing Sk(x) at all, which by y ≤ 106

proves there is no solution, or we could find a prime divisor p ≤ 106

of Sk(x) with the property that p12 does not divide Sk(x) leading to
the conclusion that n < 12. The computations were performed again
in Magma [2]. �

Lemma 3.6. The only solution of equation (1) with 5 ≤ x < 25 and
n ≥ 3 under the assumption k ≤ 100 is (x, k, y, n) = (8, 3, 6, 4).

Proof. A direct computation of Sk(x) for all possible pairs (k, x) corre-
sponding to the requirements of Lemma 3.6, and checking whether it
is a perfect power can be done in Magma [2] in a few seconds. �

4. Proof of Theorem 2.1

In principle the proof is a simple combination of the above proved
lemmas, namely of Lemma 3.3, Lemma 3.4, Lemma 3.5 and Lemma
3.6.

Proof of Theorem 2.1. Clearly, it is enough to prove the theorem for
n = 4 and for odd prime values of n. Further, the cases

x ∈ {1, 2, 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24}

are handled by Lemma 3.1. So now we only need to prove Theorem
2.1 for x ∈ A = {5, 6, 9, 10, 13, 14, 17, 18, 21, 22}.
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We split the proof into several subcases. The case k ≤ 100 is com-
pletely covered by Lemma 3.6, so for the rest of the proof we may
assume k > 100. If y > 106 then by Lemma 3.3 we have n ≤ n1,
and by Lemma 3.4 we know that there is no solution for 3 ≤ n ≤
n1, n prime or n = 4. This concludes the proof of Theorem 2.1 when-
ever y > 106.

For y ≤ 106 by Lemma 3.5 we have n < 12. Thus by x ≥ 5 from (1)
we get the estimate

k <
n log y

log x
≤ 66 log 10

log 5
< 100,

which has been treated already. �
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