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COMPUTATIONAL EXPERIENCES ON THE DISTANCES

OF POLYNOMIALS TO IRREDUCIBLE POLYNOMIALS

A. Bérczes and L. Hajdu

Abstract. In this paper we deal with a problem of Turán concerning the ’distance’

of polynomials to irreducible polynomials. Using computational methods we prove
that for any monic polynomial P ∈ Z[x] of degree ≤ 22 there exists a monic poly-

nomial Q ∈ Z[x] with deg(Q) = deg(P ) such that Q is irreducible over Q and the
’distance’ of P and Q is ≤ 4.

1. Introduction

Let |P | denote the length of a polynomial P ∈ Z[x], i.e. the sum of the absolute
values of the coefficients of P. By the distance of P,Q ∈ Z[x] we mean |P −Q|. In
1962 P. Turán proposed the following problem (cf. [10]):

Does there exist an absolute constant C1 such that for every P (x) ∈ Z[x] of
degree m, there is a polynomial Q(x) ∈ Z[x] irreducible over Q, satisfying deg(Q)
≤ m and |P −Q| ≤ C1?

This is a very hard problem. It becomes easier if one removes the condition
deg(Q) ≤ m. A. Schinzel [11] proved that for every P ∈ Z[x] of degree m there
are infinitely many irreducible Q ∈ Z[x] such that

|P −Q| ≤
{

2 if P (0) 6= 0,

3 otherwise.

Further, one of these irreducible polynomials Q satisfies

deg(Q) ≤ e(5m+7)(|P |2+3).

This deep theorem gives a partial answer to Turán’s problem.
A similar problem was proposed in 1984 by M. Szegedy (cf. [4]):
Does there exist a constant C2 depending only on m such that for any P ∈ Z[x]

of degree m, P (x) + b is irreducible over Q for some b ∈ Z with |b| ≤ C2?
This problem was partially solved by K. Győry [4]. He proved the following: Let

P ∈ Z[x] be a polynomial of degree m with leading coefficient a0. There exist an
effectively computable constant C3 depending only on m and ω(a0), and b ∈ Z with
|b| ≤ C3 for which P (x) + b is irreducible over Q. (Here ω(a0) denotes the number
of distinct prime divisors of a0.)
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If P is monic, then ω(a0) = 0. Hence for monic polynomials this theorem gives
an affirmative answer to Szegedy’s problem.

Results on the distribution of irreducible polynomials (mod p) (see e.g. [1], [2],
[3], [5]) can make it easier to determine the Turán constant and Szegedy constant,
at least for fixed degree. Using this approach, we give upper bounds for the Turán
constant C1 for monic polynomials P of degree not greater than 22. More precisely,
we prove the following.

Theorem. If 0 ≤ n ≤ 22, then for every monic polynomial P ∈ Z[x] of degree n
there exists an irreducible monic polynomial Q ∈ Z[x] of degree n such that

|P −Q| ≤ 4.

Our computations imply a slightly better result. The details can be found in the
tables occurring in Section 3.

The main idea of the proof is as follows. If Q ∈ Z[x] is a monic polynomial
which is irreducible (mod p) for some prime p, then Q(x) is also irreducible in Z[x].
Hence, given a monic polynomial P ∈ Z[x] and a prime p, for every Q ∈ Z[x]
which is (mod p) irreducible and monic and has the property deg(Q) = deg(P ),
there exists an irreducible monic polynomial R ∈ Z[x] with deg(R) = deg(P ) such
that the distance of R and P in Z[x] is not greater than the distance of Q and
P in Z[x] (mod p). (The precise meaning of the distance of the elements of Z[x]
(mod p) will be given later.) This means that in order to obtain bounds for Turán’s
constant concerning monic polynomials (of fixed degree) it is sufficent to investigate
the elements of Z[x] (mod p), for some prime p.

The investigation of Szegedy’s constants C2 by computational methods seems to
be more difficult.

2. Notation and algorithms

First we introduce our notation and some concepts that we need in the following.
For every non–negative integer n let c∗n (resp. cn) be the smallest integer such that
for every monic polynomial P ∈ Z[x] of degree n there exists an irreducible (resp.
irreducible monic) polynomial Q ∈ Z[x] of degree not greater than n (resp. of
degree n), such that |P − Q| ≤ c∗n (resp. ≤ cn). For every n ≥ 0, c∗n and cn

obviously exist, and we have c∗n ≤ cn ≤ n + 1. (The second inequality follows from
Eisenstein’s theorem. Namely, if P (x) = xn + an−1x

n−1 + ... + a1x + a0, P ∈ Z[x],
then there exists a polynomial Q(x) = xn + bn−1x

n−1 + ...+ b1x+ b0, Q ∈ Z[x] such
that | bi − ai |≤ 1 if 1 ≤ i ≤ n− 1, | b0 − a0 |≤ 2 and bi is even for 0 ≤ i ≤ n− 1,
but b0 is not divisible by 4. Then, by Eisenstein’s theorem, Q is irreducible, and
|P −Q| ≤ n + 1 clearly holds.)

With this notation, our theorem asserts that

cn ≤ 4 if 0 ≤ n ≤ 22.

As is shown e.g. by P (x) = xn if n is odd, and P (x) = xn − x2 + x if n is even, we
have cn ≥ 2 for n ≥ 3.

For a prime number p, denote by Zp[x] the residue class ring of Z[x] (mod p). If
T ∈ Z[x] is a monic polynomial, denote by Tp(x) the coresponding polynomial in
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Zp[x]. Every P ∈ Zp[x] of degree k has a unique representative of the form
k∑

i=0

bix
i

with bi ∈ Z, −p
2 < bi ≤ p

2 , i = 0, ..., k. For i = 0, ..., k set ci = bi + p, if bi < 0 and

ci = bi otherwise. The p-length of P ∈ Zp[x] is defined as
k∑

i=1

|bi|, and is denoted by

|P |p. By the distance of P,Q ∈ Z[x] (mod p) we mean |(P −Q)p|p. It is convenient
to code the elements of Zp[x]. Using the above notation; let us define the function
fp : Zp[x] −→ N by

fp(P ) =
k∑

i=0

cip
i.

Obviously fp is invertible; its inverse will be denoted by f−1
p .

For every n ≥ 0, denote by cn(p) (resp. c∗n(p)) the smallest integer such that for
each monic P ∈ Zp[x] of degree n there exists an irreducible monic Q ∈ Zp[x] of
degree n (resp. of degree not greater than n) with |P −Q|p ≤ cn(p) (resp. ≤ c∗n(p)).
It is clear that for every n and p we have c∗n(p) ≤ cn(p).

Description of the algorithm. To prove our theorem, it is sufficient to investigate
the monic polynomials in Z[x] (mod p), where p is a prime. Let P ∈ Z[x] be a monic
polynomial of degree n. Then there exists an irreducible monic Q ∈ Zp[x] of degree
n such that |Pp −Q|p ≤ cn(p). Clearly, if R ∈ Z[x] is monic, and Rp(x) = Q(x),
then R is irreducible. Hence we have cn(p) ≥ cn for all n ≥ 0. If the relation
c∗n(p) ≥ c∗n holds, it is not so easy to prove, because for every irreducible monic
Q ∈ Zp[x] of degree k (k < n) there exist a reducible polynomial R ∈ Z[x] of degree
n with Rp(x) = Q(x). (For example, if S is monic in Z[x] with Sp(x) = Q(x),
then one can choose (pxn−k + 1)S(x) as R(x).) So if we want to obtain a bound
for c∗n, then we must examine cn(p). In our algorithms we took the primes p = 2
and p = 3; in these cases (especially when p = 2) the computations are relatively
simple, and with the help of certain filter conditions they can be made relatively
fast.

Consider first the case p = 2. From now on by a polynomial we mean an element
of Z2[x].

It is sufficient to obtain the smallest number kn, for which for every monic
P ∈ Z2[x] of degree n with the property P (0) 6= 0 there exist a monic irreducible
Q ∈ Z2[x] of degree n, such that |P − Q|2 ≤ kn. Then cn(2) = kn + 1 holds,
provided that n ≥ 2. (The case n < 2 is trivial.)

For small degrees, say for n ≤ 13, the values cn(2) can be computed easily, even
the ’compare everything with everything else’ method is fast enough. (At this stage
one can make use of tables containing irreducible polynomials. Such tables can be
found e.g. in [6], [7], [9]. The description of a computer program making certain
tables of this kind can be found in [8] .)

Suppose now that 14 ≤ n ≤ 22. Since in these cases the degree is relatively high,
it is worthwile to use a further filter condition.

We shall use the fact that if a polynomial is irreducible then it has an odd
number of nonzero coefficients. We shall need some lists in our algorithm. Let
T1 be a list of those 2048 polynomials which have nonzero constant terms and
whose degrees are ≤ 11. Those polynomials, whose 2-length is even are (in some
order) in the first 1024 place, and the others (in some order) are in the remaining
places. Denote by T2 a list of 2n−12 elements, consisting of zeros and ones. If
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k−1 = εn−132n−13 + ...+ε12+ε0, εi ∈ {0, 1}, i = 0, ..., n−13 then the kth element
of T2 is 1 if the 2-length of the polynomial Pk(x) = εn−13x

n−13 + ... + ε1x + ε0 is
even, and 0 if it is odd. (By the help of the function f2, these lists can be obtained
by using a simple recursion.)

Our algorithm is the following. Consider the polynomials

xn, xn +x12, xn +x13, xn +x13 +x12, xn +x14, . . . , xn +xn−1 + . . . +x13 +x12.

At the kth step we work with the polynomial Bk(x) = xn+x12Pk(x), 1 ≤ k ≤ 2n−12.
Consider the polynomials Bk(x) + C(x), C(x) ∈ T1. Using the lists T1 and T2

the parity of the 2-length of Bk(x) + C(x) can be determined easily. Hence it is
sufficient to change the coefficients of Bk(x)+C(x) either at one or three, or at zero
or two places, and determine the irreducibility of these transformed polynomials.
(We have tested every occuring polynomial only once; we had a list in which we
indicated whether a polynomial was tested yet, and if it was, then it is irreducible
or not.) If every polynomial Bk(x) + C(x) can be transformed into an irreducible
polynomial, then we have cn(2) ≤ 4. If for some polynomial Bk(x) + C(x) all the
polynomials obtained by a transformation are reducible, then we have cn(2) > 4.
Our computations proved the first assertion, that is we have cn(2) ≤ 4, if 14 ≤ n ≤
22. If we change the coefficients of the polynomials at most two places, then we get
cn(2) > 3, 14 ≤ n ≤ 22, and we obtain the extreme polynomials given in our tables.
(If n and p are fixed, then by an extreme polynomial we mean a monic P ∈ Zp[x]
of degree n for which |P − Q|p = cp(n) for some irreducible monic Q ∈ Zp[x] of
degree n, and |P − Q′|p ≥ cp(n) for every irreducible monic Q′ ∈ Zp[x] of degree
n.)

Consider now the case p = 3. From now on a polynomial means an element of
Z3[x].

In this case, if n ≥ 2, it is sufficient to compute the smallest integer kn, such that
for every monic polynomial P of degree n with the property P (0) = 1 there exist a
monic irreducible polynomial Q for which |(P −Q)3|3 ≤ kn or |(P +1−Q)3|3 ≤ kn

holds. Then we have cn(3) = kn + 1, if 2 ≤ n ≤ 12. (The case n < 2 is trivial.) In
case p = 3, the filter condition used in case p = 2 could not be applied easily, hence
our algorithm for p = 3 was simpler (but less efficient) than for p = 2. It worked
in the same way as in the case of p = 2 (using similar lists), but of course without
the mentioned filter.

We would like to mention that in our programs we have dealt with the codes of
the polynomials instead of the polynomials themselves. (The codes were given by
the functions f2 and f3, respectively.)

The algorithms were written in MAPLE. The computation time for p = 2 and
n = 22 was about 180 hours on a SUN Sparcstation 10.

We finish this section with a few remarks.
Remark 1. Our experiences suggest (which is not surprising) that the computation
time (using these algorithms) is exponential in the degree. That is why we stopped
at n = 22. Using probabilistic algorithms one can hopefully get bounds for Turán’s
constant for higher degrees as well.
Remark 2. The use of primes greater than 3 would probably give better bounds,
but, of course, it would increase the computation time. We have no experience in
this direction.
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Remark 3. From our computations a similar result follows for polynomials in Z[x]
with leading coefficients divisible neither by 2, nor by 3. Using other primes, more
general results could be obtained.

3. Tables

We created some tables by means of the above algorithms.

Description of the tables.
I. We computed the values of cn(2) for 0 ≤ n ≤ 22. In the third column we

include polynomials, which show that the corresponding values of cn(2) are sharp.
Except for degrees 0, 1, 4, 6, 7 and 9 we choose an extreme polynomial P (x) of degree
n, n ≤ 22, for which P (x)− xn + 1 is irreducible. (For the excluded degrees there
are no such extreme polynomials.) We conjecture that for every n ≥ 10 there exists
an extreme polynomial having this property. For n ≤ 17 we gave the number of the
extreme polynomials as well. In the last column of the table there are polynomials
which are irreducible, and whose distance to the extreme polynomial occurring in
the preceding column is cn(2).

II. This table contains all the extreme polynomials of degree 2 ≤ n ≤ 6 in case
p = 2.

III. We computed the values of cn(3) for 0 ≤ n ≤ 12. The extreme polynomials
show that the corresponding values of cn(3) are sharp. The irreducible polynomi-
als in the last column have the property that their distance to the corresponding
extreme polynomial is cn(3).

IV. Using tables I and III we obtained bounds for cn (and hence for c∗n) for
0 ≤ n ≤ 22.
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Table I. p = 2

n cn(2) Extreme polynomials
(and their number)

A nearest irreducible
polynomial

0 0 − (0) −
1 0 − (0) −
2 2 x2 (1) x2 + x + 1
3 2 x3 (1) x3 + x + 1
4 3 x4 + x2 (1) x4 + x + 1
5 3 x5 + x (2) x5 + x2 + 1
6 3 x6 + x2 (7) x6 + x + 1
7 3 x7 + x2 (17) x7 + x + 1
8 4 x8 (1) x8 + x4 + x3 + x + 1
9 3 x9 + x2 (72) x9 + x + 1

10 4 x10 + x8 + x7 + x6+
+x4 + x3 + x2 (1) x10 + x8 + x7 + x6 + 1

11 4 x11 + x9 + x8 + x7 + x5 (2) x11 + x9 + x8 + x7+
+x3 + x + 1

12 4 x12 + x9 + x7 + x2 + x (4) x12 + x7 + x5 + x + 1
13 4 x13 (16) x13 + x6 + x4 + x + 1

14 4 x14 + x9 + x7 + x6 + x5 + x4 + x2 (48) x14 + x7 + x5 + x4+
+x3 + x2 + 1

15 4 x15 + x7 + x5 + x3 + x (83) x15 + x7 + x4 + x + 1
16 4 x16 (168) x16 + x6 + x2 + x + 1

17 4 x17 + x8 + x7 + x4+
+x3 + x2 + x

(334) x17 + x8 + x3 + x + 1

18 4 x18 + x10 + x8 + x3 + x x18 + x10 + x9 + x + 1
19 4 x19 x19 + x6 + x2 + x + 1
20 4 x20 + x10 + x7 + x3 + x x20 + x17 + x10 + x + 1
21 4 x21 + x9 + x8 + x5 + x4 x21 + x10 + x9 + x4 + 1

22 4 x22 + x12 + x9 + x7 + x6 + x3 + x x22 + x15 + x7 + x6+
+x3 + x + 1

Table II. p = 2

Degree All extreme polynomials
2 x2

3 x3

4 x4

5 x5 + x
x5 + x4

6

x6 + x2

x6 + x3 + x2 + x
x6 + x4

x6 + x4 + x3 + x2

x6 + x5 + x3 + x
x6 + x5 + x4 + x3

x6 + x5 + x5 + x4 + x3 + x2 + x
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Table III. p = 3

n cn(3) Extreme polynomials A nearest irreducible polynomial
0 0 − −
1 0 − −
2 1 x2 x2 + 1
3 2 x3 x3 − x2 + 1
4 2 x4 − x2 + x x4 − x2 − 1
5 2 x5 x5 − x− 1
6 2 x6 − x2 + x x6 + x− 1
7 3 x7 + x4 + x x7 + x5 + x + 1

8 3 x8 − x7 − x6 + x5 + x3 − x x8 − x7 − x6 + x5+
+x3 − x2 + x + 1

9 3 x9 − x5 + x3 + x x9 − x8 − x7 − x5 + x3 + x + 1

10 3 x10 − x7 − x6 + x5 + x3 − x x10 − x9 − x8 − x7 − x6+
+x5 + x3 − x + 1

11 3 x11 + x5 − x3 − x x11 − x10 − x8 + x5 − x3 − x + 1

12 3 x12 − x11 − x10 − x9 − x8 − x7−
−x6 − x5 − x4 + x3 + x2 + x

x12 + x11 − x10 + x9 − x8 − x7−
−x6 − x5 − x4 + x3 + x2 + x− 1

Table IV.

Degree n Bound for cn

0 0
1 0
2 1
3 2
4 2
5 2
6 2
7 3
8 3
9 3
10 3
11 3
12 3
13 4
14 4
15 4
16 4
17 4
18 4
19 4
20 4
21 4
22 4
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