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Abstract. There are many results in the literature concerning linear

combinations of factorials among terms of linear recurrence sequences.

Recently, Grossman and Luca provided effective bounds for such terms

of binary recurrence sequences. In this paper we show that under certain

conditions, even the greatest prime divisor of un − a1m1!− · · · − akmk!

tends to infinity, in an effective way. We give some applications of this

result, as well.

1. Introduction

An integer sequence {un}n≥0 = {un(r, w, u0, u1)}n≥0 is a binary linear

recurrence if the recurrence relation

(1.1) un = run−1 + wun−2 (n ≥ 2)

holds, where r, w ∈ Z\{0} and u0, u1 are integers not both zero. The

polynomial f(x) = x2 − rx − w attached to recurrence (1.1) is called the

characteristic polynomial of the sequence {un}n≥0. We denote the discrimi-

nant of f by ∆ and assume that ∆ 6= 0. Let α and β be the roots of f with

the convention that |α| ≥ |β|. Putting

(1.2) c =
u1 − u0β
α− β

and d =
u0α− u1
α− β

it is well-known that the formula

(1.3) un = cαn + dβn holds for all n ≥ 0.
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For later use we fix the notation

(1.4) Y := max{|u0|, |u1|, |r|, |w|}.

The sequence {un}n≥0 is called non-degenerate, if cdαβ 6= 0 and α/β is not

a root of unity. Taking r = w = u1 = 1, u0 = 0 the sequence {un}n≥0
becomes the classical Fibonacci sequence usually denoted by {Fn}n≥0 for

which α = (1 +
√

5)/2 and β = (1 −
√

5)/2. In [2], Grossman and Luca

showed that for fixed positive integers A and k, the Diophantine equation

(1.5) un =
k∑
i=1

aimi! with |ai| ≤ A

implies that

(1.6) n ≤ c1,

where c1 = c1(k,A) is an effectively computable constant depending only

on k and A. Taking A = 1 and k = 2, it was shown in the same paper that

F12 = 4! + 5! is the largest Fibonacci number which is a sum or difference

of two factorials. Further, in [1], it was shown that F7 = 1! + 3! + 3! is the

largest Fibonacci number which is a sum of three factorials.

Let S = {p1, . . . , pl} be a finite set of primes labelled p1 < · · · < pl and

P = pl(= max{p1, . . . , pl}). We denote by S the set of all positive integers

whose prime factors are all in S. In particular, 0 6∈ S but 1 ∈ S . In [3],

the problem of representing un as a sum between a factorial and an element

from S was considered. Namely, it was proven that for given integers A,B,

the equation

un = Am! +Bs in n,m ∈ Z and s ∈ S

implies that n ≤ c2 holds for all solutions n which are non-trivial (see the

terminology of that paper for nontrivial; for example, when un = 2n + 1,

the solution with m1 = 1, s = 2n for any n when S = {2} is trivial).

Here, c2 is an explicit constant depending only on A,B, S and the sequence

u = {un}n≥0. As a numerical application, in [3] it was shown that F24 =

8!+253371 is the largest Fibonacci number of the form Fn = ±m!±2a3b5c7d;

thus the largest solution when u = {Fn}n≥0, A = B = 1 and S = {2, 3, 5, 7}.
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2. Our results

For an integer m denote by P (m) the greatest prime factor of m with the

convention that P (0) = P (±1) = 1. As before, {un}n≥0 is a non-degenerate

binary recurrence sequence. Further, let k ≥ 1 and A ≥ 1 be fixed positive

integers.

In view of Theorem 1 of Grossman and Luca [2] (see (1.5) and (1.6)) we

have that un −
∑k

i=1 aimi! 6= 0 for all integers a1, . . . , ak with |ai| ≤ A for

i = 1, . . . , k, whenever n > c1. Therefore, it is natural to examine the

parameter

(2.1) P

(
un −

k∑
i=1

aimi!

)
.

In this paper, we study the quantity (2.1) when u has ∆ > 0 and w = ±1.

Without loss of generality (or, replacing A by kA if needed) we assume that

the unknowns mi (i = 1, . . . , k) satisfy

(2.2) m1 > m2 > · · · > mk ≥ 1.

Our main result below implies that

P

(
un −

k∑
i=1

aimi!

)
→∞ as n→∞

in an effective way. Namely, we have the following result.

Theorem 2.1. Let {un}n≥0 be a non-degenerate binary sequence with ∆ > 0

and w = ±1. Assume that |ai| ≤ A for i = 1, . . . , k and the unknowns mi

satisfy (2.2). Put c3 := 16(Y + 2) log(Y + 2), c4 := 5.6 · 1017 log2(Y + 2) and

let n1 := n1(k) be the largest integer solution of the inequality

n < 2.08 ·
(
log(4(A+ 1)) + 21.6c4 log2 n

)k
.

Then

(2.3) P

(
un −

k∑
i=1

aimi!

)
> c5(n),

whenever n > c6, where

c5(n) :=
( n

2.08

) 1
3k+3

(
log(4A)

8
+ 2.7c4 log2 n

)− 1
3
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and

c6 := max{c3, n1}.

As a direct consequence of Theorem 2.1, we have the following result.

Theorem 2.2. Let {un}n≥0 be a non-degenerate binary sequence with ∆ > 0

and w = ±1 and let S = {p1, . . . , pl} be a finite set of primes. Put P :=

max{p1, . . . , pl}. We denote by S the set of all rational integers whose

prime factors are all in S. Further, let k ≥ 1 and A ≥ 1 be fixed positive

integers. Consider the Diophantine equation

(2.4) un = a1m1! + . . .+ akmk! + bs, max{|a1|, |a2|, . . . , |ak|, |b|} ≤ A

in integer unknowns (m1,m2, . . . ,mk, s) satisfying s ∈ S and (2.2). Then

(2.5) n ≤ c7 := max{c6, c8},

where c6 and c4 are defined in the statement of Theorem 2.1 and

c8 := max
{

22k+2 c9 log2k+2
(
(2k + 2)2k+2 c9

)
, (4e2)2k+2

}
with

c9 := 2.08 · (max{P,A})3k+3 · (2c4 log(4A))k+1.

Finally, to show the strength of our above result we completely solve a

simple equation of the above shape.

Theorem 2.3. Let {Fn}n≥0 denote the Fibonacci sequence and S := {2, 3, 5, 7}.
Denote by S the set of all positive integers which have no prime factor out-

side of S. Then all solutions of the equation

(2.6) Fn = m1! +m2! + s in n,m1,m2, s ∈ N, m1 > m2, s ∈ S

are given by

[n,m1,m2, s] ∈ {[5, 2, 1, 2], [6, 2, 1, 5], [6, 3, 1, 1], [7, 2, 1, 10], [7, 3, 1, 6], [7, 3, 2, 5],

[8, 2, 1, 18], [8, 3, 1, 14], [9, 3, 1, 27], [9, 4, 1, 9], [9, 4, 2, 8], [9, 4, 3, 4],

[10, 3, 1, 48], [10, 4, 1, 30], [10, 4, 3, 25], [11, 4, 1, 64], [11, 3, 2, 81],

[11, 4, 2, 63], [12, 5, 3, 18], [13, 5, 1, 112], [13, 3, 2, 225], [14, 5, 1, 256],

[16, 3, 1, 980], [16, 6, 4, 243], [16, 6, 5, 147], [17, 6, 2, 875],

[20, 7, 4, 1701], [24, 8, 7, 1008], [25, 4, 1, 75000], [25, 7, 1, 69984]} .
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3. Linear forms in p-adic logarithms

In this section, we shall present the p-adic version of a lower bound for

linear forms in logarithms of algebraic numbers due to Kunrui Yu [10]. We

begin by recalling some basic notions from algebraic number theory. For an

algebraic number η of degree d over Q, we define the absolute logarithmic

height of η by the formula

h(η) =
1

d

(
log |a0|+

d∑
i=1

log max
(
1, |η(i)|

))
,

where a0 is the leading coefficient of the minimal polynomial of η over Z
and η(i)-s are the conjugates of η in the field of complex numbers.

Let L be an algebraic number field of degree dL and denote by OL the

ring of integers of L. Let π be a prime ideal in OL and denote by eπ the

ramification index of π, and by fπ the residue class degree of π. For the

unique prime number p ∈ Z such that π | pOL, we say that π lies above p.

Further, it is well known that

pOL =

g∏
i=1

πeii ,

where π1, . . . , πg are prime ideals of OL. The prime ideal π is one of the

primes πi , say π1, and its eπ equals e1. The number fπ is the dimension

of the finite field OL/π over its prime field Z/pZ, or, equivalently, can be

computed via the formula # (OL/π) = pfπ . In the special case L = Q we

have π = p and dL = eπ = fπ = 1.

For a non-zero algebraic number γ ∈ L we write νπ(γ) for the exponent of

π in the factorization in prime ideals of the principal fractional ideal γOL.

It is well known that for every non-zero integer j and prime ideal π of OL

lying above the rational prime p we have

(3.1) νp(j) =
1

eπ
νπ(j).

Let η1, . . . , ηl be non-zero algebraic numbers in L and let

(3.2) Λ =
l∏

i=1

ηdii − 1,

where d1, . . . , dl ∈ Z.
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With the above definitions and notations, Yu [10] proved the following

result.

Lemma 3.1. Let π be a prime ideal in OL lying above the rational prime p

with the convention that π = p and dL = eπ = fπ = 1 if L = Q. Consider

the linear form Λ defined by (3.2) and let

(3.3) D ≥ max{|d1|, . . . , |dl|, 3},

and

(3.4) Hj ≥ max{h(αi), log p} (1 ≤ i ≤ l).

If Λ 6= 0, then

(3.5)

νπ(Λ) ≤ 19(20
√
l + 1dL)2(l+1)el−1π

pfπ

(fπ log p)2
log(e5ldL)H1 · · ·Hl logD.

Following Lenstra, Lenstra and Lovász [5], we recall the definition of

an LLL-reduced basis of a lattice L ⊂ Rn. For a basis {b1, b2, . . . , bn} of

the lattice L the Gram-Schmidt procedure provides an orthogonal basis

{b∗1, b∗2, . . . , b∗n} of L with respect to the inner product < . , . > of Rn given

inductively by

b∗i = bi −
i−1∑
j=1

µijb
∗
j (1 ≤ i ≤ n), µi,j =

< bi, b
∗
j >

< b∗j , b
∗
j >

(1 ≤ j < i ≤ n).

We call a basis {b1, b2, . . . , bn} for a lattice L LLL-reduced if

‖µi,j‖ ≤
1

2
(1 ≤ j < i ≤ n)

and

‖b∗i + µi,i−1b
∗
i−1‖2 ≥

3

4
‖bi−1‖2 (1 < i ≤ n),

where ‖.‖ denotes the ordinary Euclidean length.

To reduce the initial upper bounds for the parameters, we shall also need

the following three standard lemmas.

Lemma 3.2. Let b1, . . . , bn be an LLL-reduced basis of a lattice L ⊂ Rn.

Then c6 := ||b1||2/2n−1 is a lower bound for the length of the shortest vector

of L.

Proof. This is a simplified version of Theorem 5.9 of [9]. �
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Lemma 3.3. Let α1, . . . , αn ∈ R be real numbers and x1, . . . , xn ∈ Z with

|xi| ≤ Xi. Put X0 := maxXi, S :=
∑n−1

i=1 X
2
i , T := 0.5 + 0.5 ·

∑n
i=1Xi and

assume that ∣∣∣∣∣
n∑
i=1

xiαi

∣∣∣∣∣ ≤ c2 exp {−c5Hq}

holds for some positive real constants c2, c5, H and positive integer q. Let

C ≥ (nX0)
n and let L denote the lattice of Rn generated by the columns of

the matrix 
1 . . . 0 0

. . .

0 . . . 1 0

[Cα1] . . . [Cαn−1] [Cαn]

 ∈ Zn×n.

Let c6 denote a lower bound on the length of the shortest non-zero vector of

the lattice L. If c26 > T 2 + S then we have either

H ≤ q

√
1

c5

(
log(Cc2)− log

(√
c26 − S − T

))
,

or

x1 = x2 = · · · = xn−1 = 0, xn = − [Cα0]

Cαn
.

Proof. This is Lemma VI.I of [9]. �

Lemma 3.4. Let z ∈ C with |z − 1| ≤ a ∈ (0, 1). Then

| log z| ≤ − log(1− a)

a
|z − 1|.

Proof. This is Lemma B.2 of [9]. �

4. Preliminary results on binary recurrence sequences

The next lemma contains several known results which are very useful for

the estimates needed in the paper.

Lemma 4.1. Let {un}n≥0 be a non-degenerate binary recurrence sequence

given by (1.3) and let Y defined by (1.4). Then the following hold:

(i) max{h(α), h(β), h(α/β), h(c), h(d), h(c/d)} < 8 log(Y + 2).

(ii) If n > c3 := 16(Y + 2) log(Y + 2) then un 6= 0.

(iii) If n > c3 then |un| > |α|n−c10 logn, where c10 := 4 · 1011 log(Y + 2).
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Proof. (i) is Lemma 8, (ii) is Lemma 9 and (iii) is Lemma 11 of [3]. �

The following lemma is also well-known (see for instance Lemma 1 of [2])

and it provides a lower bound for the p-adic valuation of factorials.

Lemma 4.2. Let p be a prime number and let m be a positive integer. If

m ≥ p, then νp(m!) > m
2p

.

The following lemma is an elementary result due to Pethő and de Weger

[7]. It will be used in the proof of Theorem 2.2. For a proof of Lemma 4.3

we refer to Appendix B of [9].

Lemma 4.3. Let u, v ≥ 0, h ≥ 1 and x ∈ R be the largest solution of

x = u+ v(log x)h. Then

x < max{2h(u1/h + v1/h log(hhv))h, 2h(u1/h + 2e2)h}.

In the proof of Theorem 2.1 we need an upper bound for the quantity of

the form νp(un − t), where t ∈ Z.

Lemma 4.4. Let {un}n≥0 be a non-degenerate sequence given by (1.3) with

∆ > 0 and w = ±1. Further, let Y defined by (1.4). If n > c3 then for

prime p and integer t with un 6= t we have

(4.1) νp(un − t) <
{

c4p
2 log n, if t = 0;

c4p
2 log n log(4|t|), if t 6= 0,

where

(4.2) c4 = c4(Y ) := 5.6 · 1017 log2(Y + 2).

Proof. We have the representation

(4.3) un = cαn + dβn,

where

(4.4) c =
u1 − u0β
α− β

and d =
u0α− u1
α− β

with cdαβ 6= 0 and α/β is not a root of unity. Let L = Q(α). Let p be an

arbitrary but fixed prime and denote by π a prime ideal dividing p in L.

Write eπ and fπ for the ramification index and for the residue class degree

of π, respectively. Since αβ = ±1, it is clear that both of α and β are units

in L = Q(α), and therefore νπ(α) = νπ(β) = 0.



9

Suppose first that t = 0.

Since νπ(α) = 0, we have by (4.3), (3.1), eπ ≥ 1 and the additive property

of the function νπ, that

(4.5) νp(un) = νp(un − t) =
1

eπ
νπ (cαn + dβn) ≤ νπ(c) + νπ(Λ),

where

(4.6) Λ =

(
−d
c

)(
β

α

)n
− 1.

Let us bound the quantities of the right hand side of (4.5). Denote by N (I)

the norm of the ideal I. By (4.4), we clearly have

νπ(c) ≤ νπ(u1 − u0β),

and therefore

pνπ(c) ≤ N (π)νπ(c) ≤ N (π)νπ(u1−u0β) ≤
∣∣NL/Q(u1 − u0β)

∣∣ ≤ Y 3 + 2Y 2

< (Y + 2)3.

So,

(4.7) νπ(c) <
3 log(Y + 2)

log p
.

We next bound νπ(Λ) from above. If Λ = 0 then un = 0 also holds, which

by our assumption n > c3 and (ii) of Lemma 4.1 leads to a contradiction.

Thus, we may suppose that Λ 6= 0. We apply Lemma 3.1 to bound νπ(Λ)

on choosing

l = 2, η1 =
−d
c
, η2 =

β

α
, d1 = 1, d2 = n, dL ≤ 2, fπ ≤ 2, eπ ≤ 2, D = n.

By (i) of Lemma 4.1, we can take

H1 = H2 = max{log p, 8 log(Y + 2)}.

Applying Lemma 3.1, we get

(4.8)

νπ(Λ) ≤ 19 · (20
√

3 · 2)6 · 2 log (4e5)
p2

(log p)2
(max{log p, 8 log(Y + 2)})2 log n.

If max{log p, 8 log(Y + 2)} = log p we obtain by (4.5), (4.7), (4.8), the fact

that p ≥ 2, Y ≥ 1, n > c3 and some routine calculations that

νp(un) = νp(un − t) < 2.5 · 1013 log(Y + 2)p2 log n,



10 A. BÉRCZES, L. HAJDU, F. LUCA, AND I. PINK

while if max{log p, 8 log(Y + 2)} = 8 log(Y + 2) we get

νp(un) = νp(un − t) < 3.72 · 1015 log2 (Y + 2)p2 log n,

leading to a sharper upper bound than stated in the case t = 0.

Assume next that t 6= 0. By β = wα−1 = ±α−1 and (4.3), an easy

calculation gives

(4.9) un − t = cαn + dβn = cαn(α−nz1 − 1)(α−nz2 − 1),

where

(4.10) z1,2 =
t±
√
t2 − 4wncd

2c
.

Recall that L = Q(α) and fix w ∈ {−1, 1} as well as the parity of n. Define

the number field K by

(4.11) K :=

{
L(
√
t2 + 4cd), if wn = −1;

L(
√
t2 − 4cd), if wn = 1.

It is clear that in both cases dK = [K : Q] ≤ 4. Let p be a prime and let p

be a prime ideal in K dividing p. Write ep and fp for the ramification index

and for the residue class degree of p, respectively. Using (3.1), equation

(4.9) gives

(4.12) νp(un − t) =
1

ep

(
νp
(
cαn(α−nz1 − 1)(α−nz2 − 1)

))
.

Since α is a unit also in K and ep ≥ 1, by combining (4.12) with the

additivity of the function νp we get

(4.13) νp(un − t) ≤ νp(c) + νp(α
−nz1 − 1) + νp(α

−nz2 − 1).

Putting Λ1 := α−nz1 − 1 and Λ2 := α−nz2 − 1 inequality (4.13) can be

rewritten as

(4.14) νp(un − t) ≤ νp(c) + νp(Λ1) + νp(Λ2).

Since [K : L] ≤ 2 and νp(c) ≤ νp(u1 − u0β) we have

pνp(c) ≤ N (p)νp(c) ≤ N (p)νp(u1−u0β) ≤
(∣∣NL/Q(u1 − u0β)

∣∣)2 ≤ (Y 3 + 2Y 2)2

< (Y + 2)6,

so

(4.15) νp(c) <
6 log(Y + 2)

log p
.
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We next bound νp(Λi) for i = 1, 2. It is clear that Λi = 0 (i = 1, 2) holds

if and only if αn = zi (i = 1, 2), which by (4.9) is equivalent with un = t.

However, this is excluded. Therefore Λi 6= 0 for i = 1, 2. Note, that if

dK = 4, the number field K is a biquadratic number field. It is well known

that in this case fp ≤ 2. Hence, it is clear that for p ∈ K we are in one of

the following cases

(4.16) (fp = 1 and ep ≤ 4) or (fp = 2 and ep ≤ 2).

In order to bound νp(Λi) for i = 1, 2 from above we use twice Lemma 3.1

with the parameters

l = 2, dK ≤ 4, η1 = α, η2 = z1, d1 = −n, d2 = 1, D = n

to bound νp(Λ1) and with

l = 2, dK ≤ 4, η1 = α, η2 = z2, d1 = −n, d2 = 1, D = n

to bound νp(Λ2). By (i) of Lemma 4.1, we have h(α) < 8 log(Y + 2) and

therefore we may choose in both cases

(4.17) H1 = max{log p, 8 log(Y + 2)}.

Further, by combining (4.10) and (i) of Lemma 4.1 with some well-known

properties of the absolute logarithmic height function h(.), we may write

for i = 1, 2 that

(4.18)

h(zi) ≤ h
(
(2c)−1

)
+ h

(
t±
√
t2 − 4wncd

)
≤ log(4|t|) + 8 log(Y + 2) + h(γ),

where γ =
√
t2 − 4wncd. Since

cd =
±u20 + u0u1r − u21

∆

we obtain

γ =
√
t2 − 4wncd =

√
∆t2 − 4wn(±u20 + u0u1r − u21)

∆
.

Thus, a straightforward calculation leads to

(4.19) h(γ) ≤ 1

2
log
(
|∆|t2 + 4(u20 + |u0||u1||r|+ u21)

)
.

Since ∆ > 0, we have |α| > |β|, which together with w = ±1 = αβ implies

that |β| < 1. Further, since α = r − β, we have |α| ≤ |r| + |β| < Y + 1,
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which together with ∆ = (α− β)2 leads to

(4.20) |∆| < (Y + 2)2.

Now, the combination of (4.19), (1.4) and (4.20) gives

h(γ) <
1

2
log(Y + 2) +

1

2
log((Y + 2)t2 + 4Y 2),

which since Y < Y + 2, Y ≥ 1, |t| ≥ 1 implies that

(4.21) h(γ) <
3

2
log(Y + 2) +

1

2
log(4t2) +

1

2
log

(
1 +

1

12

)
.

Since
1
2

log(4t2)

log(4|t|)
< 1,

we get by (4.18), (4.21), Y ≥ 1 and |t| ≥ 1 that

(4.22) max{h(z1), h(z2)} < 8.75 log(4|t|) log(Y + 2).

Thus, (4.22) shows that we may choose in both cases

(4.23) H2 = max{log p, 8.75 log(4|t|) log(Y + 2)}.

By (4.16), we may write

(4.24) ep
pfp

(fp log p)2
≤ max

{
4p

log2 p
,
p2/2

log2 p

}
≤ 2p2

log2 p
.

Applying Lemma 3.1 we get by (4.14), (4.15) and (4.24) that

νp(un − t) ≤
6 log(Y + 2)

log p
+ 2 · 19(20

√
3 · 4)6 log (8e5) · 2p2

log2 p

× max{log p, 8 log(Y + 2)}max{log p, 8.75 log(Y + 2) log(4|t|)} log n,

which together with p ≥ 2, Y ≥ 1, |t| ≥ 1 and n > c3 ≥ 48 log 3 leads to the

desired upper bound. The proof of Lemma 4.4 is complete. �

The next lemma deals with sums of factorials in binary recurrence se-

quences. This was originally proved by Grossman and Luca (see Theorem

1 of [2]). For our purposes, we need a totally explicit version of Theorem 1

of [2] in the case where ∆ > 0 and w = ±1.
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Lemma 4.5. Let {un}n≥0 be the non-degenerate binary recurrence sequence

given by (1.3) with ∆ > 0 and w = ±1. Further, let k ≥ 1 and A ≥ 1 be

fixed positive integers. Consider the equation

(4.25) un = a1m1! + . . .+ akmk! where |ai| ≤ A (1 ≤ i ≤ k)

in integer unknowns (n,m1, . . . ,mk) with

(4.26) m1 > m2 > · · · > mk ≥ 1.

Then we have n ≤ min(c3, n0), where n0 := n0(k) is the largest positive

integer solution of the inequality

n < 2.08 ·
(
log(4A) + 21.6c4 log2 n

)k
.

Proof. If n ≤ c3, then the statement is automatic. So throughout the proof

we shall assume that n > c3. Consider the equation (4.25) satisfying as-

sumption (4.26). We may assume that there is no vanishing subsum on the

right hand side of (4.25); that is, that we have

(4.27)
∑

i∈I⊂{1,2,...,k}

aimi! 6= 0

for each non-empty subset I ⊂ {1, 2, . . . , k}. Note, that (4.27) can be

assumed without loss of generality, since otherwise we obtain an equation

similar to (4.25) with fewer terms.

For j = 1, . . . , k put

(4.28) Nj =

j∑
i=1

ak+1−imk+1−i!

We show by induction that

(4.29) log |4Nj| <
(
log(4A) + 21.6c4 log2 n

)j
.

For j = 1 we have |4Nj| = |4akmk!|. Further, since n > c3, by applying

Lemma 4.4 with t = 0 and p = 2, we obtain

(4.30) ν2(un) < 4c4 log n.

Further, by (4.26) it is clear that

ν2(un) = ν2(a1m1! + . . .+ akmk!) ≥ ν2(mk!).
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If mk ≥ 4 · (4c4 log n) then Lemma 4.2 yields ν2(mk!) > 4c4 log n, contra-

dicting (4.30). Thus, mk < 4 · (4c4 log n) = 16c4 log n, whence

(4.31)

log |4N1| ≤ log |4ak|+mk logmk < log(4A) + (16c4 log n) log(16c4 log n).

We may assume that n > 16c4, since otherwise we obtain n ≤ 16c4, which

is better than the stated inequality. Since for n > c3(≥ 48 log 3) one has

log log n/ log n < 0.35 we may write by (4.31) that

(4.32) log |4N1| < log(4A) + 21.6c4 log2 n.

Suppose now, that (4.29) holds for some 1 ≤ j < k. By rewriting (4.25)

in the form

(4.33) un −Nj = ak−jmk−j! + . . .+ a1m1!,

we easily see by (4.27) that the right hand side of (4.33) is nonzero and

hence un 6= Nj. Further, by (4.27) Nj 6= 0 also holds. Therefore, we may

apply Lemma 4.4 with p = 2 and t = Nj. We obtain that

(4.34) ν2(un −Nj) < 4c4 log(|4Nj|) log n.

Further, by (4.26) it is clear that

ν2(un −Nj) = ν2(a1m1! + . . .+ ak−jmk−j!) ≥ ν2(mk−j!).

If mk−j ≥ 4 · 4c4 log(|4Nj|) log n then Lemma 4.2 yields

ν2(mk−j!) > 4c4 log(|4Nj|) log n,

contradicting (4.34). Thus, mk−j < 16c4 log(|4Nj|) log n, whence

(4.35)

log |4ak−jmk−j| < log(4A)+(16c4 log(|4Nj|) log n) log(16c4 log(|4Nj|) log n).

We may assume that n > 16c4 log(|4Nj|). Indeed, if n ≤ 16c4 log(|4Nj|), we

then get by (4.29) that

n < 16c4
(
log(4A) + 21.6c4 log2 n

)j
.

Further, since j ≤ k − 1 the above inequality implies that

n < 16c4
(
log(4A) + 21.6c4 log2 n

)k−1
,

which is better than the stated bound for n. Since for n > c3(≥ 48 log 3)

one has log log n/ log n < 0.35 we may write by n > 16c4 log(|4Nj|) and
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(4.35) that

(4.36) log |4ak−jmk−j| < log(4A) + 21.6c4 log(|4Nj|) log2 n.

It is clear that

4Nj+1 = 4Nj + 4ak−jmk−j!,

and hence

|4Nj+1| ≤ |4Nj|+ |4ak−jmk−j!|.
Thus,

|4Nj+1| < |4Nj|+ exp{log(4A) + 21.6c4 log(|4Nj|) log2 n},

which is equivalent to

(4.37) |4Nj+1| < |4Nj|+ 4A|4Nj|21.6c4 log
2 n.

Now, (4.37) implies that

|4Nj+1| ≤ |4Nj|+ 4A|4Nj|21.6c4 log
2 n,

which leads to

log |4Nj+1| < log(4A) + 21.6c4 log2 n log |4Nj|

+ log

(
1 +

1

4A|4Nj|21.6c4(log
2 n)−1

)
.(4.38)

Since A ≥ 1, |Nj| ≥ 1 and 21.6c4(log2 n)− 1 ≥ 1 one has

log

(
1 +

1

4A|4Nj|21.6c4(log
2 n)−1

)
< 0.1,

which by (4.38) yields

(4.39) log |4Nj+1| < log(4A) + 21.6c4 log2 n log |4Nj|+ 0.1.

The combination of (4.29) and (4.39) gives

(4.40) log |4Nj+1| < log(4A) + 21.6c4 log2 n(log(4A) + 21.6c4 log2 n)j + 0.1.

Finally, since

log(4A)+21.6c4 log2 n(log(4A)+21.6c4 log2 n)j < (log(4A)+21.6c4 log2 n)j+1−1,

we obtain by (4.40) that

(4.41) log |4Nj+1| <
(
log(4A) + 21.6c4 log2 n

)j+1
,

finishing the induction.
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Recall that by assumption n > c3, which guarantees that un 6= 0. The

above inductive argument together with (iii) of Lemma 4.1 shows that

log 4 + (n− c10 log n) log |α| < log(4|un|) = log |4Nk|

<
(
log(4A) + 21.6c4 log2 n

)k
,

whence

n <
(
log(4A) + 21.6c4 log2 n

)k( 1

log |α|
+

c10 log n(
log(4A) + 21.6c4 log2 n

)k
)

which together with n > c3, log(4A) > 0, |α| ≥ (1 +
√

5)/2, k ≥ 1 and the

definitions of c10 and c4 implies

(4.42) n < 2.08 ·
(
log(4A) + 21.6c4 log2 n

)k
.

The lemma is proved. �

5. Proof of Theorem 2.1

Proof of Theorem 2.1. Suppose that

(5.1) n > c6 = max{c3, n1}.

Since n1 ≥ n0, Lemma 4.5 implies that

un − (a1m1! + . . .+ akmk!) 6= 0.

Thus, we may write

(5.2) un = a1m1! + . . .+ akmk! + s,

where s 6= 0 is some integer, |ai| ≤ A and

(5.3) m1 > m2 > . . . > mk ≥ 1.

We let P := P (s). By employing an inductive argument similar to the one

applied in Lemma 4.5, we derive an explicit upper bound for n in terms of

P,A, k and Y in equation (5.2), leading to an explicit lower bound for P

and therefore also for P (un − (a1m1! + . . .+ akmk!)).

We may assume without loss of generality that there is no vanishing

subsum on the right hand side of (5.2), that is that

(5.4)
∑

i∈I⊂{1,2,...,k}

aimi! + δs 6= 0
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holds for each non-empty subset I ⊂ {1, 2, . . . , k} and each δ ∈ {0, 1}.
Indeed, if there is an index set I ⊂ {1, 2, . . . , k} and δ ∈ {0, 1} such that∑

i∈I⊂{1,2,...,k}

aimi! + δs = 0,

then (5.2) implies that

(5.5)


un =

∑
i∈{1,2,...,k}\I

aimi! + s, if δ = 0,

un =
∑

i∈{1,2,...,k}\I

aimi!, if δ = 1.

Now, (5.5) shows that for δ = 1 we obtain an equation similar to (4.25)

which for n > n0 cannot happen, while for δ = 0 we get an equation similar

to (5.2) with fewer terms.

If |s| = mi! for some i = 1, . . . , k, then (5.2) leads to an equation of the

form

un = a1m1! + . . .+ ai−1mi−1! + (ai ± 1)mi! + ai+1mi+1 + . . .+ akmk!,

which by Lemma 4.5 gives n ≤ n1, which is a contradiction in view of (5.1).

Put mk+1 := 0 and let m0 be such that max{|s|,m1!} < m0!. By (5.1),

there exists an index 0 ≤ i0 ≤ k such that

(5.6) mk+1−i0 ! < |s| < mk+1−i0−1!,

and for i = 1, . . . , k + 1 we put

(5.7) ti =


ak+1−imk+1−i!, if i ≤ i0,

s, if i = i0 + 1,

a(k+1)−(i−1)m(k+1)−(i−1)!, if i ≥ i0 + 2.

For j = 1, . . . , k + 1, we set

(5.8) Nj :=

j∑
i=1

ti.

We show by induction on j that for 1 ≤ j ≤ k + 1

(5.9) log |4Nj| <
(
log(4A) + 2.7c4P

3 log2 n
)j
.
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For j = 1 we easily see that

N1 = t1 =

{
s, if |s| < mk!,

akmk!, if |s| > mk!.

Case 1. |s| < mk!.

In this case N1 = s. Recall that P = max{p : p | s}. By (5.1), we have

that un 6= 0 and therefore by applying Lemma 4.4 with t = 0 and with each

prime factor p | s, we obtain νp(un) < c4p
2 log n, which yields

(5.10) νp(un) < c4P
2 log n (p | s).

On using (5.3) for every prime p we infer that

(5.11) νp(a1m1! + . . .+ akmk!) ≥ νp(mk!).

If mk ≥ 2P (c4P
2 log n) = 2c4P

3 log n, then Lemma 4.2 and p ≤ P show

that

νp(mk!) >
mk

2p
≥ c4P

2 log n

holds for every p | s, which by (5.2), (5.10) and (5.11) forces

(5.12) νp(un) = νp(s)

to hold for every p | s. Thus, (5.12) and (5.10) imply

log(|s|) =
∑
p|s

νp(s) log p =
∑
p|s

νp(un) log p < c4P
2(log n)π(P ) logP.

Since π(P ) < 2P/logP (see Corollary 1 in [8]), the above inequality leads

to

(5.13) log(4|N1|) = log(4|s|) < log 4 + 2c4P
3 log n.

Suppose now that mk < 2c4P
3 log n. Then since mk! ≤ mmk

k , we may write

(5.14) log(|4mk!|) < log 4 + (2c4P
3 log n) log(2c4P

3 log n).

If n < 2c4P
3, then P > n1/3(2c4)

−1/3, which is a sharper lower bound for

P than stated. Therefore, we may assume that n ≥ 2c4P
3 which combined

with (5.14) and with log log n/ log n < 0.35 which holds for n > n1, we get

(5.15) log(|4mk!|) < log 4 + 2.7c4P
3 log2 n.

Since log(|4N1|) = log(|4s|), we obtain from |s| < mk! and (5.15) that

(5.16) log(|4N1|) < log 4 + 2.7c4P
3 log2 n.
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Case 2. |s| > mk!.

In this case, N1 = akmk!. If mk ≥ 2c4P
3 log n then using the same

argument as in Case 1, we get that log(4|s|) < log 4 + 2c4P
3 log n, which

together with mk! < |s| and |ak| ≤ A implies that

(5.17) log(|4N1|) = log(|4akmk!|) < log(|4aks|) < log(4A) + 2c4P
3 log n.

Assume now that mk < 2c4P
3 log n. Then by the argument applied in the

corresponding part of Case 1, we obtain

(5.18) log(|4N1|) = log(|4akmk!|) < log(4A) + 2.7c4P
3 log2 n.

Finally, (5.13), (5.16), (5.17) and (5.18) show that in fact the bound occur-

ring in (5.18) is appropriate for all cases proving the assertion for j = 1.

Assume now that (5.9) holds for some 1 ≤ j < k + 1. Rewrite (5.2) as

(5.19) un −Nj = a1m1! + · · ·+ a`m`! + δs,

where δ ∈ {0, 1} and ` := `(δ, j, k) = k + 1 − j − δ. It is clear that

Nj+1 = Nj + tj+1, where

(5.20) tj+1 =

{
a`m`!, if (δ = 0) or (δ = 1 and |s| > m`!),

s, if δ = 1 and |s| < m`!.

Further, Nj 6= 0 and un − Nj 6= 0 hold in view of (5.4). Thus, we apply

Lemma 4.4 with t = Nj to obtain νp(un − Nj) < c4p
2 log(|4Nj|) log n, for

every prime p. If p | s then p ≤ P , so

(5.21) νp(un −Nj) < c4P
2 log(|4Nj|) log n.

Using (5.3), we get that

(5.22) νp(a1m1! + . . .+ a`m`!) ≥ νp(m`!).

We wish to estimate log |4tj+1|. To do so, we split the proof into three

cases according to the value of tj+1 (see (5.20)).

Assume first that δ = 1 and |s| < m`!.

Then tj+1 = s. If m` ≥ 2P (c4P
2 log(|4Nj|) log n) = 2c4P

3 log(|4Nj|) log n

then Lemma 4.2 and p ≤ P shows that

νp(m`!) >
m`

2p
≥ c4P

2 log(|4Nj|) log n (p | s),
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which by (5.19), (5.21) and (5.22) forces

(5.23) νp(un −Nj) = νp(s) (p | s).

Thus, (5.21) and p ≤ P imply

log(|s|) =
∑
p|s

νp(s) log p =
∑
p|s

νp(un −Nj) log p

< c4P
2 log(|4Nj|)(log n)π(P ) logP.

Since π(P ) < 2P/ logP , the above inequality leads to

(5.24) log(|4tj+1|) = log(4|s|) < log 4 + 2c4P
3 log(|4Nj|) log n.

Suppose now that m` < 2c4P
3 log(|4Nj|) log n. Then, by the same argument

as in the corresponding part of the case j = 1, we obtain

(5.25)

log(4m`!) < log 4 + (2c4P
3 log(|4Nj|) log n) log(2c4P

3 log(|4Nj|) log n).

If n < 2c4P
3 log(|4Nj|) then (5.9); i.e., the induction hypothesis and j ≤ k

yield

n < 2c4P
3(log(4A) + 2.7c4P

3 log2 n)k < (log(4A) + 2.7c4P
3 log2 n)k+1,

which leads to a sharper lower bound for P than stated. Therefore, we

may assume that n ≥ 2c4P
3 log(|4Nj|), which by (5.25), |s| < m`! and

log(log n)/ log n < 0.35 gives

(5.26)

log(|4tj+1|) = log(4|s|) < log(4m`!) < log 4 + 2.7c4P
3 log(|4Nj|) log2 n.

Suppose now that δ = 1 and |s| > m`!.

In this case, we have tj+1 = a`m`!. If m` ≥ 2c4P
3 log(|4Nj|) log n, then

by the same argument as in the corresponding part of the previous case, we

obtain that log(|4s|) is ”small” (by ”small” we mean a quantity bounded

polynomially in both P and log n), that is

log(|4s|) < log 4 + 2c4P
3 log(|4Nj|) log n,

which by |4a`s| > |4a`m`!| gives

(5.27)

log(|4tj+1|) = log(4a`m`!) < log(|4a`s|) < log(4A) + 2c4P
3 log(|4Nj|) log n.



21

Assume now that m` < 2c4P
3 log(|4Nj|) log n. By the same argument as in

the corresponding part of the previous case, we obtain that log(|4a`m`!|) is

”small”, that is

(5.28) log(|4tj+1|) = log(4a`m`!) < log(4A) + 2.7c4P
3 log(|4Nj|) log2 n.

Finally, suppose that δ = 0. Then it is straightforward that tj+1 = a`m`!.

We apply Lemma 4.4 with t = Nj and with some prime p1 | s. We get

(5.29) νp1(un −Nj) < c4P
2 log(|4Nj|) log n.

By (5.3) and (5.19) (with δ = 0) it is clear that for p1 (actually for each

prime p | s), we have

(5.30) νp1(un −Nj) ≥ νp1(m`!).

If m` ≥ 2c4P
3 log(|4Nj|) log n then Lemma 4.2 and p1 ≤ P shows that

νp1(m`!) > c4P
2 log(|4Nj|) log n,

which is a contradiction in view of (5.29) and (5.30). Therefore, we may

suppose that m` < 2c4P
3 log(|4Nj|) log n. By the same argument as in

the corresponding part of the previous case, we obtain that log(|4a`m`!|) is

”small”, that is

(5.31) log(|4tj+1|) = log(4a`m`!) < log(4A) + 2.7c4P
3 log(|4Nj|) log2 n.

Now (5.24), (5.26), (5.27), (5.28) and (5.29) show that in fact the bound

occurring in (5.29) is appropriate for all cases proving that

(5.32) log(|4tj+1|) < log(4A) + 2.7c4P
3 log(|4Nj|) log2 n.

Since Nj+1 = Nj + tj+1, we obtain by (5.32) and the triangle inequality that

|4Nj+1| < |4Nj|+ exp{log(4A) + 2.7c4P
3 log(|4Nj|) log2 n},

whence

(5.33) |4Nj+1| < |4Nj|+ 4A|4Nj|2.7c4P
3 log2 n.

Inequality (5.33) leads to

log |4Nj+1| < log(4A) + 2.7c4P
3 log(|4Nj|) log2 n

+ log

(
1 +

1

4A|4Nj|2.7c4P 3 log2 n−1

)
,
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which by A ≥ 1, |Nj| ≥ 1, P ≥ 2, n > n1 and c4 ≥ 5.6 · 1017 log2 3 yields

(5.34) log |4Nj+1| < log(4A) + 2.7c4P
3 log(|4Nj|) log2 n+ 0.1.

Further, by the combination of (5.34) with the inductive hypothesis (5.9),

we infer that

(5.35)

log |4Nj+1| < log(4A) + 2.7c4P
3 log2 n(log(4A) + 2.7c4P

3 log2 n)j + 0.1.

Since for every u, v ∈ R with u > 1, v > 1 and every integer j ≥ 1 one has

u+ v(u+ v)j < (u+ v)j+1 − 1, we get by (5.35)

log(4A) + 2.7c4P
3 log2 n(log(4A) + 2.7c4P

3 log2 n)j + 0.1

< (log(4A) + 2.7c4P
3 log2 n)j+1 − 0.9,

whence

(5.36) log |4Nj+1| <
(
log(4A) + 2.7c4P

3 log2 n
)j+1

,

finishing the induction.

Recall that n > c6 = max{n1, c3}, which guarantees that un 6= 0. The

above inductive argument together with (iii) of Lemma 4.1 shows that

log 4 + (n− c10 log n) log |α| < log(4|un|) = log |4Nk+1|

<
(
log(4A) + 2.7c4P

3 log2 n
)k+1

,

leading to

n <
(
log(4A) + 2.7c4P

3 log2 n
)k+1

(
1

log |α|
+

c10 log n(
log(4A) + 2.7c4P 3 log2 n

)k+1

)
which since n > c3, log(4A) > 0, |α| ≥ (1 +

√
5)/2, k ≥ 1 and the definitions

of c10 and c4 implies that

(5.37) n < 2.08 ·
(
log(4A) + 2.7c4P

3 log2 n
)k+1

.

Finally, (5.37) and P ≥ 2 yield

(5.38) n < 2.08 · P 3k+3

(
log(4A)

8
+ 2.7c4 log2 n

)k+1

,

which is equivalent to

(5.39) P >
( n

2.08

) 1
3k+3

(
log(4A)

8
+ 2.7c4 log2 n

)−1/3
.

The theorem is proved.
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Remark. For the equation

Fn = m1! +m2! + 2a3b5c7d,

where Fn is the Fibonacci sequence, we may use (5.38) (or (5.39)) with

k = 2, A = 1, P = 7, Y = 1, c4 = 5.6 · 1017 log2(Y + 2) = 5.6 · 1017 log2 3 to

obtain

(5.40) n < 2 · 1076 (< 1080).

6. Proof of Theorem 2.2

Proof. It is enough to show that assumption n > c6 implies n < c8 yielding

the desired upper bound (2.5); i.e., n ≤ max{c6, c8} = c7.

Suppose that n > c6 and rewrite equation (2.4) in the form

(6.1) un −
k∑
i=1

aimi! = bs.

We investigate the quantity P
(
un −

∑k
i=1 aimi!

)
; i.e., the greatest prime

divisor of un −
∑k

i=1 aimi!. On one hand, by (6.1) we have

(6.2) P

(
un −

k∑
i=1

aimi!

)
= P (bs) ≤ max{P,A}.

On the other hand, since n > c6, Theorem 2.1 gives

(6.3) P (bs) = P

(
un −

k∑
i=1

aimi!

)
> c5(n),

where c5(n) is defined in the statement of Theorem 2.1. Now, the combina-

tion of (6.2) and (6.3) yields

(6.4) n < 2.08 · (max{P,A})3k+3

(
log(4A)

8
+ 2.7 c4 log2 n

)k+1

.

By A ≥ 1, n > c6 and the definition of c4 we easily see that

1

8 · 2.7 · c4 log2 n
+

1

log(4A)
< 0.74,
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which together with (6.4) yields

(6.5) n < c9 · log2k+2 n,

with

c9 := 2.08 · (max{P,A})3k+3 · (2c4 log(4A))k+1.

Finally, by applying Lemma 4.3 to (6.5) with the parameters

x = n, u = 0, v = c9, h = 2k + 2,

we obtain that n < c8, where

c8 := max
{

22k+2 c9 log2k+2
(
(2k + 2)2k+2 c9

)
, (4e2)2k+2

}
.

The theorem is proved. �

7. Preliminary results on Fibonacci and Lucas numbers

The recurrence sequence {Fn}n≥0 defined by

F0 := 0, F1 := 1;Fn := Fn−1 + Fn−2 (n ≥ 2)

is called the Fibonacci sequence, and the elements belonging to this sequence

are called Fibonacci numbers. The recurrence sequence Ln given by

L0 := 2, L1 := 1;Ln := Ln−1 + Ln−2 (n ≥ 2)

is called the companion sequence of the Fibonacci sequence, and the el-

ements belonging to this sequence are called Lucas numbers. We have

α = (1 +
√

5)/2 and β = (1−
√

5)/2 for the above sequences.

In this section we collect results about Fibonacci and Lucas numbers

which are needed in the proof of Theorem 2.3.

Lemma 7.1. Let Fn denote the nth Fibonacci number.

(1) 2 | Fn ⇐⇒ 3 | n;

(2) for k ≥ 2 we have 2k | Fn ⇐⇒ 3 · 2k−2 | n;

(3) 3k | Fn ⇐⇒ 4 · 3k−1 | n;

(4) 5k | Fn ⇐⇒ 5k | n;

(5) 7k | Fn ⇐⇒ 8 · 7k−1 | n;

(6) 11k | Fn ⇐⇒ 10 · 11k−1 | n;

(7) 13k | Fn ⇐⇒ 7 · 13k−1 | n;

(8) 17k | Fn ⇐⇒ 9 · 17k−1 | n;

(9) 19k | Fn ⇐⇒ 18 · 19k−1 | n;
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(10) 29k | Fn ⇐⇒ 14 · 29k−1 | n.

Proof. This is a simple consequence of the Main Theorem, Lemma 1 and

Lemma 2 of [4]. �

Lemma 7.2. Let Ln denote the nth Lucas number. Then

ν2(Ln) ≤ 2.

Proof. This is a simple consequence of Lemma 2 of [4]. �

Lemma 7.3. Let N be a positive integer not of the form Fm for some

positive integer m. Then for all positive integers n ≥ 3 one has

ν2(Fn −N) < 1730 log(6N2) max{10, log n}2.

Proof. This is Lemma 1 of [1]. �

Lemma 7.4. Let n ≥ 0 be an integer and m ∈ {3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18}.
Assume that

30! | Fn − Fm.
Then the the parity of n and m must be the same.

Proof. We have the following cases to consider:

• if m = 3 then Fn ≡ 2 (mod 8) which by Lemma 7.1 implies that

n ≡ ±3 (mod 12);

• if m = 4 then 3 | Fn which by Lemma 7.1 implies 4 | n;

• if m = 5 then 5 | Fn, which by Lemma 7.1 implies 5 | n. If n would

be even, then by 10 | n we would get 11 | Fn and since 11 | 30! this

contradicts the fact Fm = 5, consequently n must be odd;

• if m = 6 then we have 8 | Fn which by Lemma 7.1 implies 6 | n;

• if m = 7 then we have 13 | Fn which by Lemma 7.1 implies 7 | n
and if n would be even, then we would have 14 | n implying 29 | Fn
which together with Fm = 13 contradicts 30! | Fn − Fm;

• if m = 8 then we have 7 | Fn which by Lemma 7.1 implies 8 | n;

• if m = 9 then we have 17 | Fn which by Lemma 7.1 implies 9 | n
and if n would be even, then we would have 18 | n implying 19 | Fn
which together with Fm = 34 contradicts 30! | Fn − Fm;

• if m = 10 then we have 11 | Fn which by Lemma 7.1 implies 10 | n;

• if m = 12 then we have 16 | Fn which by Lemma 7.1 implies 12 | n;
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• if m = 14 then we have 29 | Fn which by Lemma 7.1 implies 14 | n;

• if m = 18 then we have 8 | Fn which by Lemma 7.1 implies 6 | n.

Thus, we have proved that the parity of n and m must be the same. �

Lemma 7.5. Let m ≤ n be two nonnegative integers such that m ≡ n

(mod 2). Let δ := (−1)(m−n)/2. Then,

Fn − Fm = F(n−δm)/2L(n+δm)/2.

Proof. See Lemma 2 of [6]. �

Lemma 7.6. Let Fn denote the Fibonacci sequence.

(i) Assume that (p, k) ∈ {(2, 267), (3, 168), (5, 114), (7, 95)} and let m2 be

an integer with 1 ≤ m2 ≤ 600. Then the congruence

Fn ≡ m2! (mod pk)

has no solutions in integers 4 ≤ n ≤ 1077.

(ii) Assume that (p, k) ∈ {(2, 56), (3, 36), (5, 26), (7, 21)} and let m2 be an

integer with 1 ≤ m2 ≤ 600. Then the congruence

Fn ≡ m2! (mod pk)

has no solutions in integers 4 ≤ n ≤ 1015.

Proof. (i) The problem is finite since all parameters and unknowns in the

congruence are bounded. However, a direct computation is not possible

due to the size of the range of n. Thus, we used the constructive method

indicated below. For given m2 and p we first we solved the congruence

Fn ≡ m2! (mod p)

by checking all values of 0 ≤ n ≤ π(p), where π(p) denotes the pth Pisano-

period. Then we worked inductively. If the solutions of the congruence

Fn ≡ m2! (mod pu)

are s1, . . . , st modulo π(p)pu−1 then the solutions of the congruence

(7.1) Fn ≡ m2! (mod pu+1)

must be among si + jπ(p)pu−1 (i = 1, . . . , t, j = 0, 1, . . . , p − 1) modulo

π(p)pu. Here one must be careful again, since computing the Fibonacci num-

ber of index si + jπ(p)pu−1 after a while is not possible, so instead we com-

puted recursively the values αsi+jπ(p)p
u

(mod Iu) and βsi+jπ(p)p
u

(mod Iu)
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where α and β are the roots of the companion polynomial of the Fibonacci

sequence and Iu denotes the ideal of the ring of integers of Q(α) generated

by pu for u = 1, . . . , k. Clearly as αsi (mod Iu) and αjπ(p)p
u−1

(mod Iu) were

already computed in the previous step, we only raised αjπ(p)p
u−1

(mod Iu)

to power p and multiplied the result by αsi (mod Iu) to obtain αsi+jπ(p)p
u

(mod Iu), and did the same for β. This procedure worked fast, and we could

check the congruence

αsi+jπ(p)p
u − βsi+jπ(p)pu ≡ (α− β)m2! (mod Iu+1)

to decide whether si + jπ(p)pu−1 is a solution of (7.1) or not. The above

algorithm programmed in Magma proved our assertion for given m2, p, k in

under a few seconds.

(ii) The very same algorithm proves this statement in even less running

time. �

8. Proof of Theorem 2.3

Proof. By (5.40) we infer that for any solution of the equation (2.6) we must

have

n ≤ 1077.

We will split the analysis into cases.

Case I. Assume m1! ≥
√
Fn.

Then we have

(8.1) Fn ≤ (m1!)
2

and we further split our treatment of Case I. into subcases:

Case I(1). Assume m1 ≤ 104.

Then we have

m1! < (m1)
m1 ≤ 104·104 ,

and by (8.1) we obtain

Fn < (m1!)
2 < 108·104 , so n < 3.828 · 105.
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By Lemma 7.1, we have

ν2(Fn) ≤ 2 + ν2(n/3) ≤ 2 + log2

n

3
≤ 2 + log2

3.828 · 105

3
< 19,

ν3(Fn) ≤ 1 + ν3(n/4) ≤ 1 + log3

n

4
≤ 1 + log3

3.828 · 105

4
< 12,

ν5(Fn) ≤ ν5(n) ≤ log5 n ≤ log5(3.828 · 105) < 8,

ν7(Fn) ≤ 1 + ν7(n/8) ≤ 1 + log7

n

8
≤ 1 + log7

3.828 · 105

8
< 7

Case I(1)(i). Assume m2 ≥ 49.

Then we clearly have

ν2(m1! +m2!) ≥ 47 > ν2(Fn), ν3(m1! +m2!) ≥ 22 > ν3(Fn),

ν5(m1! +m2!) ≥ 12 > ν5(Fn), ν7(m1! +m2!) ≥ 8 > ν7(Fn).

Thus, equation (2.6) implies

(8.2)
ν2(s) = ν2(Fn), ν3(s) = ν3(Fn),

ν5(s) = ν5(Fn), ν7(s) = ν7(Fn).

Now we compute the list L of all values

m1! +m2! for 49 ≤ m2 < m1 ≤ 104

and we check for each 1 ≤ n ≤ 3.828 · 105 whether Fn − s ∈ L, where

s = 2ν2(Fn)3ν3(Fn)5ν5(Fn)7ν7(Fn).

Since the size of L and the number of values for Fn is large, and also the

values with which we need to do arithmetic are too large, instead of checking

equality we check congruences

Fn − s ≡ m1! +m2! (mod p)

for p = 20011, 20021, 20023. Denote the list L mod p by Lp. First for every

u = 0, 1, . . . , 20010 we collected all indices i such that L20011[i] = u in a list

Ju. Then for the smallest positive residue u ≡ Fn − s (mod 20011) and

for all indices j in J [u] we checked if L20021[j] ≡ Fn − s (mod 20021) and

L20023[j] ≡ Fn − s (mod 20023) holds. If for all j in J [u] one of the above

congruences was false, then we excluded n from the list of possible solutions

(at least in this case). The computation took 1085 seconds on an Intel

Xeon W-2245 3.90GHz CPU processor and the only values for n which were
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not excluded by this procedure were n = 198489, 228652, 375659. Then,

as explained above, s = 2ν2(Fn)3ν3(Fn)5ν5(Fn)7ν7(Fn) is fixed and we computed

the value Fn−s. If Fn−s = m1!+m2! with m1 > m2, then m1! is the largest

factorial which is smaller than Fn − s, and we checked that Fn − s−m1! is

not a factorial, thus excluding that value of n, too. In the three remaining

cases we obtained the following data:

n s m1

198489 2 11444

228652 3 12987

375659 1 20271

and we conclude that none of the values n = 198489, 228652, 375659 is a

solution in this case.

Case I(1)(ii). Assume 1 ≤ m2 ≤ 48 and m1 ≥ 56.

Then we additionally have m1 −m2 ≥ 8 which clearly implies

νp(m1! +m2!) = νp(m2!) for p ∈ S.

Thus, whenever for every p ∈ S either νp(m2!) 6= νp(Fn) or

νp(m2!) = νp(Fn) and
Fn

pνp(Fn)
6≡ m2!

pνp(m2!)
(mod p),

then we must have

νp(s) = min(νp(m2!), νp(Fn)) for p ∈ S.

Thus, s is explicitly given. So, we compute Fn − s and exclude all such

values of n for which Fn− s is not the sum of two factorials, as we did it in

Case I(1)(i). There are 1338980 cases when the pairs (n,m2) do not fulfill

the above conditions. For each such pair (n,m2) we compute for each p ∈ S
the value νp(Fn −m2!) and we see that

νp(Fn −m2!) < νp(56!) < νp(m1!),

which implies that

νp(s) = νp(Fn −m2!) for p ∈ S.

Thus, also in these cases s is explicitly given, and then we compute Fn−s and

exclude all such values of n for which Fn−s is not the sum of two factorials,

as we did it in Case I(1)(i). There are only 3 cases where the above procedure



30 A. BÉRCZES, L. HAJDU, F. LUCA, AND I. PINK

does not work, namely (n,m2) = (1, 1), (2, 1), (3, 2), when we do have Fn =

m2!, which clearly cannot lead to a solution. The computation of this case

took 2018 seconds on a Intel Xeon W-2245 3.90GHz CPU processor.

Case I(1)(iii). Assume 1 ≤ m2 ≤ 48 and m1 ≤ 55.

Then

m1! ≤ 5555

and by (8.1) we obtain

Fn ≤ (m1!)
2 ≤ 55110, so n < 920.

Now for n < 920, 1 ≤ m2 ≤ 48 and m2 < m1 ≤ 55 we check whether

Fn −m1!−m2! ∈ S ,

and if yes, then we have found a solution of our equation. Altogether, we

found the solutions listed in Theorem 2.3. This case had a running time of

a few seconds. (Clearly, one could also check for the condition Fn ≤ (m1!)
2

if interested only on the solutions belonging to Case I.)

Case I(2). Assume m1 > 104.

In this case we still have (8.1) (i.e. Fn ≤ (m1!)
2) since we are in a subcase

of Case I. Further, recall that by (5.40) all solutions of the equation (2.6)

have

(8.3) n ≤ 1077.

This together with Lemma 7.1 shows that

ν2(Fn) ≤ 2 + ν2(n/3) ≤ 2 + log2

n

3
≤ 2 + log2

1077

3
< 257,

ν3(Fn) ≤ 1 + ν3(n/4) ≤ 1 + log3

n

4
≤ 1 + log3

1077

4
< 162,

ν5(Fn) ≤ ν5(n) ≤ log5 n ≤ log5(1077) < 111,

ν7(Fn) ≤ 1 + ν7(n/8) ≤ 1 + log7

n

8
≤ 1 + log7

1077

8
< 92.

Case I(2)(i). Assume m1 > 104 and m2 ≥ 600.



31

Then we have

(8.4)
ν2(m1! +m2!) ≥ 596 > ν2(Fn), ν3(m1! +m2!) ≥ 297 > ν3(Fn),

ν5(m1! +m2!) ≥ 148 > ν5(Fn), ν7(m1! +m2!) ≥ 98 > ν7(Fn).

This proves that we again have (8.2) implying that

s ≤ 225731625111792.

Using Lemma 7.3, we obtain

ν2(Fn − s) < 1730 log(6s2) log2 n ≤ 1730 log(2515332552227184) log2(1077)

< 1010.9.

This gives

m2

2
+
m2

4
+
m2

8
≤ ν2(m2!) = ν2(Fn − s) = 1010.9.

Thus, m2 ≤ 8
7
· 1010.9 < 1011 and

m2! ≤ mm2
2 ≤ (1011)10

11

< 1011·1011 .

Hence,

m2! + s ≤ 1011·1011 + 225731625111792 < 2 · 1011·1011 .

Now we use again Lemma 7.3 to obtain

ν2(Fn − (s+m2!)) < 1730 log(6(s+m2!)
2) log n

≤ 1730 log(6 · 4 · 1022∗1011) log2(1077) < 1020.45,

and consequently

m1

2
< ν2(m1!) = ν2(Fn − (s+m2!)) < 1020.45.

We get m1 < 2 · 1020.45 < 1020.8 and this implies

m1! ≤ mm1
1 ≤ (1020.8)10

20.8

< 1020.8·1020.8 < 101022.12 .

Now we get

Fn = m1! +m2! + s ≤ 101022.12 + 1011·1011 + 225731625111792 < 2 · 101022.12 ,

so

n < 1023.
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We repeat the above procedure. Using Lemma 7.1, this shows that

ν2(Fn) ≤ 2 + ν2(n/3) ≤ 2 + log2

n

3
≤ 2 + log2

1023

3
< 77,

ν3(Fn) ≤ 1 + ν3(n/4) ≤ 1 + log3

n

4
≤ 1 + log3

1023

4
< 48,

ν5(Fn) ≤ ν5(n) ≤ log5 n ≤ log5(1023) < 33,

ν7(Fn) ≤ 1 + ν7(n/8) ≤ 1 + log7

n

8
≤ 1 + log7

1023

8
< 28.

By the assumption m2 ≥ 600 we get again (8.4) so equations (8.2) hold

implying that

(8.5)
ν2(s) < 77, ν3(s) < 48,

ν5(s) < 33, ν7(s) < 28.

Now using a short computer program we consider the equation

Fn = m1! +m2! + s

modulo primes between 100 and 600. For each such prime p we have

Fn ≡ s (mod p)

and the computer search shows that this congruence is fulfilled simultane-

ously for all primes between 100 and 600 if and only if

s ∈ {1, 2, 3, 5, 8, 21, 144}.

That is, we must have

s = Fm for m = 1, 2, 3, 4, 5, 6, 8, 12.

Now our equation (2.6) takes the form

(8.6) Fn − Fm = m1! +m2!

with m = 1, 2, 3, 4, 5, 6, 8, 12. By Lemma 7.4, in equation (8.6) the parity of

n and m must be the same. So, we can use Lemma 7.5 and we obtain

F(n−δm)/2L(n+δm)/2 = m1! +m2!,

where δ = ±1. Recall that since m2 ≥ 600, we have

ν2(m1! +m2!) ≥ 596,

and since ν2(Lk) ≤ 2 (see Lemma 7.2), we obtain that

ν2(F(n−δm)/2) ≥ 594.
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However, this shows that

n ≥ 3 · 2592 > 1077,

which contradicts (8.3). So, we have shown that in Case I(2)(i) our equation

has no solution.

Case I(2)(ii) Assume that m1 > 104 and m2 < 600.

Now we show that in this case

(8.7)
ν2(s) < 267, ν3(s) < 168,

ν5(s) < 114, ν7(s) < 95.

For if not assume for example that ν2(s) ≥ 267. Consider the equation (2.6)

as a congruence modulo 2267. Thus we obtain that for any solution of (2.6)

fulfilling the conditions of this subcase we have

Fn ≡ m2! (mod 2267).

However, by Lemma 7.6 (i), this has no solutions with 4 ≤ n ≤ 1077. But

solutions with n > 1077 do not exist at all, and since m1 is large n < 4 also

cannot happen in this case. So we conclude that if there exists a solution

in the present subcase, then it must have ν2(s) < 267. A similar reasoning

proves the other inequalities of (8.7).

Now since s ≤ 226731685114795 we may use again the ideas implemented in

Case I(2)(i). We have

m2! + s ≤ 600! + 226731685114795 ≤ 101410

and using again Lemma 7.3 we obtain

ν2(Fn − (s+m2!)) < 1730 log(6(s+m2!)
2) log2 n

≤ 1730 log(6 · 102820) log2(1077) < 1011.55.

Consequently,
m1

2
< ν2(m1!) = ν2(Fn − (s+m2!)) < 1011.55,

so we get m1 < 2 · 1011.55 < 1012. This implies

m1! ≤ mm1
1 ≤ (1012)10

12

< 1012·1012 < 101013.1 .

Now we conclude by

Fn = m1! +m2! + s ≤ 101013.1 + 600! + 226731685114795 < 2 · 101013.1 ,
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so

n < 1015.

Using Lemma 7.6 (ii) the same way as we used its statement (i) at the

beginning of this case, we obtain that

(8.8)
ν2(s) < 56, ν3(s) < 36,

ν5(s) < 26, ν7(s) < 21.

Now using a short computer program as in Case I(2)(i) we considered the

equation

Fn = m1! +m2! + s

modulo primes between 100 and 800. For each such prime p we have

Fn ≡ m2! + s (mod p)

and the computer search shows that this congruence is fulfilled simultane-

ously for all primes between 100 and 800 if and only if

m2! + s ∈ {2, 3, 5, 8, 13, 21, 34, 55, 144, 377, 2584}.

That is, we must have

m2! + s = Fm for m = 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18.

The running time for this computation was 112 seconds on a Intel Xeon

W-2245 3.90GHz CPU processor.

Now our equation (2.6) takes the form

(8.9) Fn − Fm = m1!

with m = 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18. By Lemma 7.4, in equation (8.9)

the parity of n and m must be the same. So, we can use Lemma 7.5 and

we obtain

F(n−δm)/2L(n+δm)/2 = m1!,

where δ = ±1. Recall that by m1 ≥ 104 we have

ν2(m1!) ≥ 9995,

and since by Lemma 7.2 we have ν2(Lk) ≤ 2, we obtain that

ν2(F(n−δm)/2) ≥ 9993.

However, this shows that

n ≥ 3 · 29993 > 1077,
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which contradicts (8.3). So we have shown that in Case I(2)(i) our equation

has no solution.

Case II. We assume m1! ≤
√
Fn.

Then from equation (2.6) with the notation s = 2a3b5c7d we obtain

(8.10) 1− 2a3b
√

5
2c+1

7dα−n = (
√

5 ·m1! +
√

5 ·m2! + α−n)α−n

and by the condition of Case II we have

(8.11)

∣∣∣1− 2a3b
√

5
2c+1

7dα−n
∣∣∣ < (2

√
5
√
Fn + α−n

)
α−n ≤

≤
(

2
4
√

5α
n
2 + α−n

)
α−n ≤ 4

α
n
2

.

We clearly may assume that n > 10, so 4/αn/2 < 0.4. Now using Lemma

3.4 we infer that

|a log 2+b log 3+(2c+1) log
√

5+d log 7−n logα| < − log 0.6

0.4
·4·α−

n
2 <

6

α
n
2

.

The conditions of Lemma 3.3 are fulfilled with

n = 5, α1 = log 2, α2 = log 3, α3 = log
√

5, α4 = log 7, α5 = logα,

and

x1 = a, x2 = b, x3 = 2c+ 1, x4 = d, x5 = −n, X = 2 · 1070 + 1,

c2 = 6, c5 = 0.5 · logα, H = 1070, q = 1.

Choosing C = 10400 and using the LLL-algorithm implemented in Magma

we obtain an LLL-reduced basis of L. By Lemma 3.2 we get a lower bound

c6 for the length of the shortest vector of L. Finally, Lemma 3.3 provides

the upper bound H ≤ 3077. Now using Lemma 3.3 with

H = 3078, X0 = 2 · 3078 + 1, C = 1028

by the above procedure we infer that H ≤ 219. Now we use once more

Lemma 3.3 with H = 220, X0 = 2 · 220 + 1, C = 1024, and by the above

procedure we get

H ≤ 199.

This shows that n < 200 and consequently, m2 < m1 < 36. So to conclude

the proof of our theorem for all natural numbers n < 200 and m2 < m1 < 36
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with Fn − m1! − m2! > 0 we check whether there exist a, b, c, d ∈ N such

that

Fn −m1!−m2! = 2a3b5c7d,

and we get exactly the solutions listed in Theorem 2.3. (Clearly, one could

also check the condition Fn > (m1!)
2 if interested only in the solutions

belonging to Case II.) �
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