
Publ. Math. Debrecen

58 / 1-2 (2001), 249–262

Graded Lie algebra associated to a SODE

By ZOLTÁN MUZSNAY (Debrecen)

Abstract. In this paper we introduce a graded Lie algebra associated to a second
order differential equation which gives a powerful tool to the study of the inverse problem
of the calculus of variations. We give effective generalizations of Douglas’ criteria for
the existence of a regular Lagrangian associated to a SODE.

1. Introduction

The inverse problem of the calculus of variations is an old problem
of Differential Geometry consisting of the characterization of second or-
der ordinary differential equations (SODE) derivable from a variational
principle. In this problem one wants to determine whether a given SODE
expresses that the unknown is the critical point of a functional.

One of the most important contribution to this problem is a paper
of J. Douglas [4], where he classifies systems of variational differential
equations of second order in the two-dimensional case. He showed that
the Euler–Lagrange partial differential system

(1.1)
d

dt

∂E

∂yi
− ∂E

∂xi
= 0,
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(where the unknown function is E) associated to a SODE ẍi = f i(x, ẋ),
i = 1, . . . , n, is equivalent to the first order partial differential system

(1.2)

d

dt
gij +

1
2

∂fk

∂yj
gik +

1
2

∂fk

∂yi
gjk = 0,

Ak
j gik −Ak

i gjk = 0,

∂gij

∂yk
− ∂gik

∂yj
= 0,

gij − gji = 0,

det(gij) 6= 0,

where the unknown functions are gij , i, j = 1, . . . , n, and Ai
j are the compo-

nents of the Douglas tensor (called also Jacobi endomorphism). A solution
E of (1.1) gives a solution of (1.2) by taking

(1.3) gij =
∂2E

∂yi∂yj

and conversely, for every solution of (1.2) there exists a regular a solution
E of (1.1) so that (1.3) holds. A solution of (1.2) is called variational
multiplier.

Obstructions to the existence of a variational principle, i.e. integra-
bility conditions of the Euler–Lagrange PDE, are in general very complex.
However, in his article [4] Douglas gives a simple criteria on the existence
of the variational multiplier and therefore on the existence of a variational
principle for SODEs on 2-dimensional manifolds. This criteria can be eas-
ily carried over to the n-dimensional case (see [2], [8], [11]). In [12] the
authors found a double hierarchy of algebraic conditions for the variational
multiplier which is determined by the Douglas tensor, the curvature tensor
and their derivatives.

In this paper we introduce a graded Lie-algebra associated in a nat-
ural way with the SODE using a differential algebraic characterization of
connections and derivations. It contains algebraic conditions on the vari-
ational multiplier and in generic cases it gives a significant part of the
obstruction to the existence of a variational principle (Theorem 2). This
concept is of particular interest when the dimension of the base manifold is
large, because we are able to obtain new information about the structure
of the obstructions (Theorems 4 and 5).
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2. Frölicher–Nijenhuis theory

In this paper we use extensively the Frölicher–Nijenhuis’ theory of
the derivation associated to vector valued forms. A complete description
can be found in [5] or [10]. We recall here only the basic elements of this
theory.

We denote by Λ(M) (resp. Ψ(M)) the C∞(M) modulus of the scalar
(resp. vector valued) forms. The Frölicher–Nijenhuis theory gives a com-
plete description of the derivation of Λ(M) with the help of Ψ(M).

Definition 1. A morphism D : Λ(M) −→ Λ(M) is a derivation of
Λ(M) of degree r if it satisfies the following conditions:

a) D(Λp(M)) ⊂ Λp+r(M),

b) D(aω + bω′) = aDω + bDω′, a, b ∈ R
c) D(ω ∧ π) = Dω ∧ π + (−1)r deg ωω ∧Dπ.

The bracket of two derivations D1 and D2 is defined by

[D1, D2] = D1D2 − (−1)(deg D1)(deg D2)D2D1.

Definition 2. A derivation is called of i∗ type or algebraic, if its action
is trivial on Λo(M), and of d∗ type, if it commutes with the operator d.

Every derivation is determined by his action on Λo(M) and Λ1(M).
So the i∗ type derivations are those which are completely determined by
their action on Λ1(M), and the d∗ type derivations are determined by their
action on C∞(M).

An i∗ and a d∗ type derivation can be associated to a vector valued
l-form L ∈ Ψl(M), denoted by iL and dL, in the following way:

1. if deg L = 0, (i.e. L ∈ X(M) is a vector field on M):
iLω := ω(L), and
dLω := LLω;

2. if deg L = l > 1:
iLω(X1, . . . , Xl) := ω(L(X1, . . . , Xl)), where ω ∈ Λ1(M);
dLf(X1, · · · , Xl) := df(L(X1, · · · , Xl)), where f ∈ Λo(M),

where ω ∈ Λ1(TM), and LL denotes the Lie derivation with respect to L.
Conversely, it is easy to show that every i∗ or d∗ type derivation can
be written in the above form with the help of some vector valued form.
Therefore we arrive at the following:
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Proposition 3. Let L and M be vector valued differential l- and m-
forms. Then there exists a unique vector valued (l + m)-form (denoted by
[L,M ]) which satisfies the equation

[dL, dM ] = d[L,M ].

By this bracket, Ψ(M) is a graded Lie algebra.

3. Inverse problem of the calculus of variations

We turn our attention to the inverse problem of the variational cal-
culus. A coordinate free formulation of this problem can be given by the
notion of sprays introduced by Klein in [9].

Let J be the canonical vertical endomorphism and C the canonical
vertical vector field. In the local coordinate system (xi) on M and (xi, yi)
on TM ,

J = dxα ⊗ ∂

∂yα
, C = yα ∂

∂yα
.

A vector field S on TM is a spray if JS = C. A curve γ : I −→ M is
associated to the spray S if γ′ is an integral curve of S i.e. Sγ′ = Sγ′′. In
a coordinate system the expression of a spray is

(3.1) S = yα ∂

∂xα
+ fα(x, y)

∂

∂yα
,

and the path (xα(t)) is associated to the spray (3.1) if and only if the
second order differential equation

(3.2)
d2xα

dt2
= fα

(
x,

dx

dt

)

holds. Therefore a spray is a coordinate free presentation of a SODE on
the manifold M .

Definition 4. The Lagrangian function E : TM → R is called regular,
if the 2-form ΩE := ddJE is symplectic.

Using a coordinate system, a Lagrangian E is regular if and only if the
matrix

(
∂2E

∂yα∂yβ

)
is not singular. It is well known that to any Lagrangian

which defines a regular variational problem, a spray (i.e. a SODE) can be
associated, in the following way:
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Theorem 1 [6]. Let E ∈ C∞(TM) be a regular Lagrangian. The
vector field S defined by the equation

(3.3) iSΩE = d(E − LCE)

is a spray, and the paths associated to the spray S are solutions of the
corresponding variational problem.

So the spray S is variational if there exists a regular function E ∈
C∞(TM), so that the equation (3.3) holds.

Remark. Let E be an arbitrary Lagrangian on M and S be a spray.
The associated semi-basic 1-form

(3.4) ωE := iSΩE + dLCE − dE

is called Euler–Lagrange form. The solution of the inverse problem for a
given SODE is a regular Lagrangian such that the equation ωE = 0 holds.

4. Identities satisfied by variational sprays

From now on we shall work on TM , the tangent manifold of M .
Where there is no possibility of confusion, TTM , T ∗TM and T vTM will
be noted as T , T ∗ and T v respectively.

The space of semi-basic scalar (resp. vectorial) l-forms is denoted by
Λl

vT ∗v (resp. ΨlT ∗v ). We recall that a p-form ω ∈ ΛpT ∗ is semi-basic if
ω(X1, . . . , Xp) = 0 when one of the vectors Xi is vertical, and a vector
valued l-form L is semi-basic if L(X1, . . . , Xp) = 0 when one of the vectors
Xi is vertical and its value is vertical.

A connection Γ can be associated to every spray S defined by the
formula Γ := [J, S] (see [7]): it is easy to check that Γ2 = I and the
eigenspace corresponding to the eigenvalue −1 is the vertical space T v. If
we denote the eigenspace corresponding to the eigenvalue +1 by Th, then
TTM can be decomposed as

TTM = Th ⊕ T v.

Let h and v be the corresponding projectors: h := 1
2 (I +Γ), v := 1

2 (I−Γ).
The curvature of the connection Γ is the vector valued 2-form

R := −1
2
[h, h].
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The almost complex structure F associated to Γ which exchanges the hor-
izontal and the vertical space is defined by

F = h[S, h]− J.

Property 5. Let E be a Lagrangian, Γ a connection on M , h its asso-

ciated horizontal projection, and F the associated almost-complex struc-

ture. The following properties are equivalent:

a) iΓΩE = 0

b) iF ΩE = 0

c) ΩE(hX, hY ) = 0 ∀X,Y ∈ TTM (i.e. the horizontal distribution is

Lagrangian).

A connection is called Lagrangian with respect to E, if it satisfies the

above conditions.

Indeed, we have:

iΓΩE(hX, hY ) = 2ΩE(hX, hY )

iΓΩE(hX, JY ) = ΩE(hX, JY )− ΩE(hX, JY ) = 0

iΓΩE(JX, JY ) = −2ΩE(JX, JY ) = 0,

so a) ⇐⇒ c). On the other hand:

iF ΩE(hX, hY ) = −ΩE(JX, hY )− ΩE(hX, JY ) = −iJΩE(hX, hY ) = 0

iF ΩE(hX, JY ) = −ΩE(JX, JY ) + ΩE(hX, hY ) = ΩE(hX, hY )

iF ΩE(JX, JY ) = ΩE(hX, JY ) + ΩE(JX, hY ) = 0,

so b) ⇐⇒ c).

Property 6. Let E be a Lagrangian on the manifold M . Then

(4.1) dJωE = iΓΩE .

Consequently, if the spray S is variational and E is a Lagrangian associated

to S, then the horizontal distribution associated to the spray S must be

Lagrangian with respect to the symplectic 2-form ΩE .



Graded Lie algebra associated to a SODE 255

Proof. The Euler–Lagrange form can be written in the following
form:

ωE = iSddJE + dLSE − dE = LSdJE − dE

= dJLSE − i[J,S]dE = dJLSE − 2dhE.

Since the vertical distribution is integrable, we get [J, J ] = 0, we have
d2

J = dJ ◦ dJ = d[J,J] = 0. So

dJωE = −2dJdhE = 2dhdJE = 2(ihddJE − dihdjE)

= 2ihΩE − 2ΩE = iΓΩE .

If the spray is variational and E is a Lagrangian associated with S, we
have ωE = 0, then iΓΩE = 0, so the connection associated to the spray is
Lagrangian. ¤

Definition 7. Let S be a spray on M , L ∈ Ψv(TM). The semi-basic
derivation of L with respect to the spray S is

(4.2) L′ := h∗v[S, L]

where h∗L(X1, . . . , Xl) := L(hX1, . . . , hXl).

We have the following

Proposition 8. Let S be a spray on M and L ∈ Ψv(TM). We have

the formula

(4.3) L′ = [S, L] + FL− L∧F.

In particular, suppose that S is variational, E being a Lagrangian associ-

ated to S. If the equation iLΩE = 0 holds, then the equations

(4.4) iL′ΩE = 0, iL′′ΩE = 0, iL′′′ΩE = 0, etc.

hold too.
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Proof. To show the first expression, we note that

L′(X1, . . . , Xl) = v[S,L](hX1, . . . , hXl)

= v[S,L(X1, . . . , Xl)]−
l∑

i=1

L(X1, . . . , [S, hXi], . . . , Xl)

= [S, L(X1, . . . , Xl)]− h[S,L(X1, . . . , Xl)]

−
l∑

i=1

L(X1, . . . , [S, h]Xi, . . . , Xl)−
l∑

i=1

L(X1, . . . , [S, Xi], . . . , Xl)

= [S, L](X1, . . . , Xl) + FL(X1, . . . , Xl)

−
l∑

i=1

L(X1, . . . , h[S, h]Xi, . . . , Xl).

Using the identity h[S, h] = F +J and the hypothesis that L is semi-basic,
we obtain (4.3). Secondly, by the formula (4.3) we have

iL′ΩE = i[S,L]ΩE + iFLΩE − iF∧ΩE = i[S,L]ΩE + iF iLΩE − iLiF ΩE

= LSiLΩE − dLωE + iF iLΩE − iLiF ΩE .

When S is variational and the function E is a Lagrangian associated to S,
then ωE =0 and the connection Γ is Lagrangian, so we have iF ΩE =0
(Properties 5 and 6). If the equation iLΩE =0 holds, we have also iL′ΩE =0
and recursively we obtain (4.4). ¤

Definition 9. Let h be the horizontal projection associated to the con-
nection Γ = [J, S], and L ∈ Ψl

v(TM) a vector valued semi-basic l-form.
The operator

(4.5) dhL := [h,L]

is the semi-basic derivation of L with respect to h.

Proposition 10. Let L be a semi-basic vector valued l-form. Then

dhL is semi-basic. Moreover assume that S is variational, and E is a

Lagrangian associated to S. If the equation iLΩE = 0 holds, then the

equation idhLΩE = 0 holds too.

Proof. It is not difficult to check that if L is a semi-basic vector
valued l-form, then dhL is also semi-basic. Let us show the second part
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of the proposition. Let us assume that S is variational, E is a Lagrangian
associated to S, and L is a vector-valued semi-basic l-form. By the relation

(−1)li[h,L] = ihdL − dLih − dL∧h

and taking into account that L∧h = l L, because L is semi-basic, we have

(−1)lidhLΩE = (−1)li[h,L]ddJE = ihdLddJE − dLihddJE − l dLddJE.

If the equation iLΩE = 0 holds, then

(−1)lidhLΩE = ihdiLddJE − dLi 1
2 (I+Γ)ddJE − l diLddJE

= −l diLddJE − 1
2
dLiΓddJE = 0. ¤

5. Graded Lie algebra associated to a SODE

Definition 11. The graded Lie algebra AS associated to the spray S

is the graded Lie sub-algebra of the vector-valued forms spanned by the
vertical endomorphism J , the Douglas tensor A := v[h, S], and generated
by the action of the semi-basic derivation defined in (4.2), the derivation
dh, and the Frölicher–Nijenhuis bracket [ , ]. The graduation of AS is
given by

(5.1) AS = ⊕n
k=1Ak

S

where Ak
S := AS ∩Ψk(TM).

Remark. Note that J and A are semi-basic and that, as we showed
in the preceding paragraph, the space of semi-basic forms is stable by
semi-basic derivation defined in (4.2), by the derivation dh, and by the
Frölicher–Nijenhuis bracket [ , ]. It follows that AS is a graded Lie sub-
algebra of the vector-valued semi-basic forms.

The importance of the graded Lie algebra associated to a spray is
given by the following:
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Theorem 2. Let S be a variational spray and E a Lagrangian asso-

ciated to S. Then for every element L of AS the equation

(5.2) iLΩE = 0

holds. Therefore elements of AS give algebraic conditions on the varia-

tional multiplier.

Proof. To prove Theorem 2 we will first show that J and A satisfy
the equation (5.2). Then we will prove that all the vector-valued forms
obtained from J and A by a finite number of successive operations which
define AS , also satisfy the equation (5.2).

1. From [J, J ] = 0 we can easily obtain :

(5.3) iJΩE = iJddJE = d2
JE = d[J,J]E = 0,

so the equation (5.2) holds for J .
2. For the Douglas tensor we find

iAΩE = i[h,S]ΩE + iF ΩE = ihLSΩE − LSihΩE + iF ΩE

= ihdωE − LS

(
ΩE +

1
2
dJωE

)
+ iF ΩE

= ihdωE − dωE − 1
2
LSdJωE + iF ΩE

= dhωE − 1
2
LSdJωE + iF ΩE

If S is variational and E is a Lagrangian associated to S, then ωE = 0
and the connection Γ is Lagrangian. Therefore every term vanishes,
and the equation (5.2) also holds for A = L.

3. From Propositions 8 and 10, respectively we know that if iLΩE = 0
holds for L ∈ AS then iL′ΩE = 0, idhLΩE = 0, hold too.

4. Let K ∈ Ak
S , L ∈ Al

S be semi-basic vector-valued forms, such that
iKΩE = 0 and iLΩE = 0. Since K and L are semi-basic, we have
L∧K ≡ 0 and hence

(−1)li[K,L]ΩE =
(
iKdL − (−1)l(m−1)dLiK − dL∧K

)
ΩE

= iK(iLd− diL)ddJE − (−1)l(m−1)dLiKddJE − dL∧KddJE

= iKdiLΩE − (−1)l(m−1)dLiKΩE = 0.
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On the other side, it is easy to see that (5.2) gives algebraic condition on
the variational multiplier. Indeed, if the spray is variational and E is a
regular Lagrangian associated with S, then locally one has

(5.4) ΩE =
1
2

(
∂2E

∂xα∂yβ
− ∂2E

∂yα∂xβ

)
dxα ∧ dxβ − ∂2E

∂yα∂yβ
dxα ∧ dyβ .

If L ∈ Ψl(TM) is semi-basic, then

iLΩE =
1
l!

∑

α∈Sl+1

ε(α)Lβ
α1...αl

∂2E

∂yβ∂yαl+1
dxα1 ∧ · · · ∧ dxαl+1 ,

where Sp+l−1 denotes the (p+ l−1)!-order symmetric group and ε(α) the
sign of α. Then the equation iLΩE = 0 is an algebraic equation

(5.5)
∑

α∈Sl+1

ε(α)Lβ
α1...αl

g
βαl+1

= 0

in the variational multiplier gαβ = ∂2E
∂yα∂yβ . ¤

Remark. From the construction of AS it is clear that AS contains the
Douglas tensor and its semi-basic derivatives with respect to S. On the
other hand, the curvature tensor R is related to A by the equation R =
1
3 [J,A], so AS also contains R and its semi-basic derivatives. Therefore
AS contains the double hierarchy of algebraic conditions for the variational
multiplier founded in [12].

Theorem 3. If at x ∈ TM one has

rank
{
J,A,A′, . . . , A(k), . . .

}
k∈R >

n(n + 1)
2

,

then S is not variational in the neighborhood of x.

Proof. Let us suppose that S is variational, E is an associated reg-
ular Lagrangian, and gij = ∂2E

∂yi∂yj is a variational multiplier. For every
L ∈ A1

S the condition iLΩE = 0 gives

gikLk
j = gjkLk

i .

i.e. L is symmetric with respect to g. Since the tensors J,A, A′, A′′, . . .
. . . , A(

n(n+1)
2 −1) are elements of AS , we have iA(k)ΩE = 0. Therefore, if
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the spray is variational, then the tensors J,A, A′, A”, . . . ,A(
n(n+1)

2 −1) are
self-adjoint with respect to g. But the space of the (1 − 1) tensors which
are self-adjoint with respect to a regular matrix is n(n+1)

2 -dimensional.

Consequently if the spray is variational, then J,A, A′, A′′, . . . , A(
n(n+1)

2 −1)

are linearly dependent. ¤
If dim M = 2, then AS only contains J , A and the hierarchy given

by its semi-basic derivatives A′, A′′, etc. However, if dim M > 2, then we
find other hierarchies in AS which give, in the generic case, new neces-
sary conditions for the variational multipliers. We arrive at the following
generalization of the Theorem 3:

Theorem 4. Let S be a spray and x ∈ TM . If there exists an integer
k < n for which

(5.6) dimAk
S(x) > k

(
n + 1
k + 1

)
,

then the spray is not variational in a neighborhood of x.

Proof. Let S be a spray and E a regular Lagrangian. We consider
for every k = 1, . . . , n the morphism

ΛkT ∗v ⊗ T v ψk−→ Λk+1T ∗v
L −→ iLΩE .

By the regularity of E the 2-form ΩE is symplectic, and the morphism ψk

is onto. Indeed, it is easy to see that if {X1, . . . , Xn} is a basis of T v, then
α1, . . . , αn ∈ T ∗ defined by αi = iXiΩE , gives a basis of T ∗v . Consequently

(5.7)
{
αi1 ∧ · · · ∧ αik

∧ αik+1

}
1≤i1<···<ik+1≤n

is a basis of Λk+1T ∗v and

(5.8)
{
αi1 ∧ · · · ∧ αik

⊗Xik+1

}
1≤i1<···<ik≤n, 1≤ik+1≤n

gives a basis of ΛkT ∗v ⊗ T v. Moreover, if the components of Λ ∈ Λk+1T ∗v
with respect to the basis (5.7) are Λi1...ik+1 , then Λ = ψk(L) where L =
Λi1...ik+1αi1 ∧ · · · ∧ αik

⊗Xik+1 . This proves that ψk is onto. Therefore

rankψk = dim Λk+1T ∗v =
(

n

k + 1

)
=

n!
(k + 1)!(n + 1− k)!

,
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and

dimKer ψk = n ·
(

n

k

)
−

(
n

k + 1

)
(5.9)

=
k(n + 1)n!

(k + 1)!(n− k)!
= k ·

(
n + 1
k + 1

)

On the other hand using Theorem 2 we have

Ak
S ⊂ Kerψk.

But if the inequality (5.6) holds, then dimAk
S > dim Ker ψk, and conse-

quently the spray is not variational. ¤

Definition 12. Let S be a spray x ∈ TM , and let us consider the
system of linear equations

(5.10)
{ ∑

i∈Sl+1

ε(i)Lj
i1...il

xjil+1 = 0
∣∣∣ L ∈ AS(x)

}

in the symmetric variables xij (xij = xji) where Lj
i1...il

are the components
of L ∈ AS(x). The rank of the linear equations (5.10) is called the rank of
the spray at x.

Remark. As equation (5.5) shows, the rank of a spray gives the num-
ber of independent equations satisfied by the variational multipliers. Con-
sequently, if the system (5.10) does not have a solution with det(xij) 6= 0,
then there is no variational multiplier for S, and therefore the spray is
non-variational. Thus we arrive at

Theorem 5. If at x ∈ TM we have

rank S(x) ≥ n(n + 1)
2

then S is non-variational in a neighborhood of x.
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262 Zoltán Muzsnay : Graded Lie algebra associated to a SODE

References

[1] I. M. Anderson, Aspects of the inverse problem to the calculus of variations,
Arch. Math. Brno 24 no. 4 (1988), 181–202.

[2] I. M. Anderson and G. Thompson, The Inverse Problem of the Calculus of
Variations for Ordinary Differential Equations, Mem. AMS 98 (1992), 473.

[3] M. Crampin, W. Sarlet, E. Martinez, G. B. Byrnes and G. E. Prince,
Towards a geometrical understanding of Douglas’s solution of the inverse problem
of the calculus of variations, Inv. Probl. 10 (1994), 245–260.

[4] J. Douglas, Solution to the inverse problem of the calculus of variations, Trans.
Amer. Math. Soc. 50 (1941), 71–128.

[5] A. Fr�olicher and A. Nijenhuis, Theory of vector-valued differential forms, Proc.
Kon. Ned. Akad. A 59 (1956), 338–359.
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ZOLTÁN MUZSNAY
INSTITUTE OF MATHEMATICS AND INFORMATICS
UNIVERSITY OF DEBRECEN
H–4010 DEBRECEN, P.O. BOX 12
HUNGARY

E-mail: muzsnay@math.klte.hu

(Received December 30, 1999; revised August 31, 2000)


