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Abstract

The geodesic graph of Riemannian spaces all geodesics of which are orbits of
1-parameter isometry groups was constructed by J. Szenthe in 1976 and it became
a basic tool for studying such spaces, called g.o. spaces. This infinitesimal structure
corresponds to the reductive complement m in the case of naturally reductive spaces.
The systematic study of Riemannian g.o. spaces was started by O. Kowalski and
L. Vanhecke in 1991, when they introduced the most important definitions, classified
the low-dimensional examples and described the basic constructions of this theory.
The aim of this paper is to investigate a connection theoretical analogue of the
concept of the geodesic graph.

1. Introduction

Let M = G/H be a homogeneous space equipped with an invariant connec-
tion ∇. Let g and h denote the Lie algebra of the Lie group G and H , respectively.
The space (M = G/H, ∇) is called affine reductive if there exists an AdH invariant
decomposition g = h + m such that any geodesic γ(t) emanating from the origin
o = H ∈ M is the orbit of a 1-parameter subgroup {exp tX, t ∈ R} of G, where
X ∈ m, and the parallel translation τγ

0,t : Tγ(0)M → Tγ(t)M along the geodesic γ(t)
is the same as the left translation by the 1-parameter subgroup {exp tX, t ∈ R}.
(cf. [6]). A homogeneous manifold M = G/H with an invariant connection ∇ is
called affine geodesic orbit space (g.o. space) if it has the more general property:
each geodesic of M is an orbit of a one-parameter subgroup exp tZ (t ∈ R), Z ∈ g.
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If M = G/H is a homogeneous space equipped with an invariant Riemannian met-
ric g then there exists always an AdH invariant decomposition g = h+m. In general
one can find more than one such decomposition. The Riemannian homogeneous
space (M = G/H, g) is called naturally reductive homogeneous space if there exists
an AdH invariant decomposition g = h + m such that any geodesic γ(t) emanating
from the origin o = H ∈ M is the orbit of a 1-parameter subgroup {exp tX, t ∈ R}
of G, where X ∈ m. The Riemannian homogeneous space (M = G/H, g) is called
a Riemannian g.o. space if it is an affine g.o. space with respect to its Levi–Civita
connection. Obviously, a naturally reductive space (G/H, g) is a Riemannian g.o.
space. Finally, the Riemannian manifold (M, g) is said to be naturally reductive or
g.o. space respectively, if it is naturally reductive or Riemannian g.o. space for some
connected subgroup G of the full isometry group of (M, g).

The first example of a Riemannian g.o. space which is in no way naturally re-
ductive was given by A. Kaplan in 1983 [5]. Before this work it was generally believed
that the Riemannian geodesic orbit property is just equivalent to the natural reduc-
tivity (cf. [1], Theorem 5.4). J. Szenthe in 1976 [14] proposed a deep construction
for the study of affine g.o. spaces with compact isotropy group H , his construction
results the reductive complement m in the special case of affine reductive spaces.
The systematic study of Riemannian g.o. spaces was started by O. Kowalski and
L. Vanhecke in [9], where they introduced the most important definitions, classified
the low-dimensional examples and described the basic constructions of this theory.
They called geodesic graph the infinitesimal structure generalizing the notion of a re-
ductive complement of a subalgebra h in the Lie algebra g the construction of which
was proposed by J. Szenthe for the investigation of affine g.o. spaces. In the last
years interesting papers were devoted to the study of geodesic graphs of Riemannian
g.o. spaces (cf. e.g. [8], [7]). This notion is generalized in Appendix to [8] which more
general structure can be interpreted as an infinitizemial version of some invariant
connection.

The aim of our paper is to show that a connection theoretical version of the
concept of the generalized geodesic graph occurs as a natural canonical connection
of Finsler spaces. This type of connection has been introduced in an early paper of
L. Berwald ([2]) and it is strongly related to the Finsler connection theory of S. S.
Chern (cf. [13]) and of H. Rund ([10], [11]), but it is different from the connections of
Finsler type named as Berwald, Rund or Chern connection. In this paper we give an
invariant treatment of this generalized linear connection, a version of which is used
systematically by Z. Shen for the investigation of Finsler manifolds (cf. [12], [13]).
We reinterpret some results on Riemannian g.o. spaces as informations on invariant
Shen connections. In a following paper we will give a treatment of the curvature
theory of invariant Shen connections and of homogeneous Finsler manifolds.
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2. Shen connections

2.1. Shen connections on the frame bundle

Let M be a differentiable manifold, let π : TM → M and πL : LM → M be
the tangent bundle and the frame bundle of M , respectively. We denote by T M
the open submanifold of TM consisting of nonzero vectors. We consider the direct
products TM ×M LM and T M ×M LM of the bundles TM and LM , respectively
T M and LM , over the base manifold M . Let p1 : TM ×

M
LM → TM and

p2 : TM ×
M

LM → LM be the projections of TM ×
M

LM onto the first and the
second components. We have the commutative diagram:

TM ×
M

LM
p2−−−−→ LM

p1

� �πL

TM
π−−−−→ M

If x → (x1, . . . , xn) is a local coordinate map on M then we denote by (x, y) →
(x1, . . . , xn; y1, . . . , yn) and (x, z) → (x1, . . . , xn; z1

1 , . . . , zn
n) the associated coordi-

nate maps on TM and LM , respectively, where y1, . . . , yn are the coordinates of
the tangent vector y ∈ TxM and z1

1 , . . . , z
n
n are the coordinates of the vectors of the

frame z ∈ LxM with respect to the coordinate basis ( ∂
∂x1 , . . . , ∂

∂xn ).

Definition 2.1. A map

σ : (x, y, z) �→ σ(x, y, z) : TM ×
M

LM → TLM,

which is C∞-differentiable on T M ×
M

LM and continuous on TM ×
M

LM , is called
Shen connection on the manifold M , if

σ(x, y, z) ∈ T(x,z)LM, (C1)
πL∗σ = p1, (C2)
σ(x, λ y, z) = λσ(x, y, z), ∀ λ ∈ R, (C3)

(Rh)∗σ(x, y, z) = σ
(
x, y, Rh z

)
, (C4)

where R : LM × GLn(R) → LM denotes the right action of the linear group
GLn(R) on the fibers. The Shen connection σ is called K-invariant with respect to
a differentiable transformation group µ : K → Diff(M) of M if

(µL

k )∗σ(x, y, z) = σ
(
µkx, (µk)∗y, µL

k z
)

for any k ∈ K, where µL : K → Diff(LM) denotes the associated representation of
K in Diff(LM). If the manifold M is a homogeneous space G/H and σ is invariant
with respect to the group G then we call σ an invariant Shen connection on G/H .

For the sake of simplicity, in the rest of the paper we denote the map µL

k

simply by (µk)∗.
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We remark that every linear connection can be interpreted as a Shen connec-
tion. Indeed, considering the horizontal lift of TM into TLM associated to a linear
connection we obtain a map σ satisfying the above conditions. In this particular
case the map σ is linear with respect to the variable y and it is C∞-differentiable
on the whole manifold TM ×

M
LM .

Using local coordinates (xi) on M and the associated coordinates (xi, yi) and
(xi, zi

j) on TM and on LM respectively, we find that the local coordinate expression
of σ has the shape

σ(xi, yi, zi
j) = yi ∂

∂ xi
+ Γj

k(x, y)zk
l

∂

∂ zj
l

(1)

with some functions Γj
k(x, y), j, k = 1, . . . , n, which are homogeneous of degree 1

with respect to the variable y, i.e. Γj
k(x, λ y) = λΓj

k(x, y) for any λ ∈ R.

Remark 2.2. The notion of Shen connection can be defined analogously for
any principal subbundle πL : Q → M of the frame bundle πL : LM → M . If
we consider such case we say that the Shen connection is defined in the subbundle
πL : Q → M .

Clearly, if a Shen connection is defined in a subbundle of the linear frame
bundle then it can be extended to the linear frame bundle in a natural way. We can
also define the notion of the reduction of Shen connections.

Definition 2.3. Let πL : Q → M be a principal subbundle of the frame
bundle πL : LM → M and let σ : TM ×

M
LM → TLM be a Shen connection. We

say that σ can be reduced to the subbundle πL : Q → M if the restriction of the
map σ to the submanifold TM×

M
Q determines a Shen connection in the subbundle

πL : Q → M . The restricted map TM ×
M

Q → TQ is called the Shen connection
reduced to πL : Q → M .

2.2. Parallelism

A connection gives us the possibility to introduce the notion of parallel frame
field and parallel vector field along a curve of M . Moreover we can introduce parallel
translation of tangent vectors along curves as well as the notion of geodesics on M .

Definition 2.4. Let γ : [a, b] → M be a differentiable curve on M .

(a) A frame field zt, t ∈ [a, b], along γ is called parallel, if

żt = σ(γt, γ̇t, zt)

for every t ∈ [a, b].
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(b) Let be given a parallel frame field zt along γ. A vector field U(t) along γ is
called parallel if the function t �→ z−1

t (U(t)) : [a, b] → R
n is constant for the

parallel frame field zt along γ. (Here zt is considered as the canonical linear
map R

n → Tγ(t)M .)

The following assertion is an immediate consequence of this definition:

Remark 2.5. If a vector field U(t) along γ is parallel with respect to a parallel
frame field zt then it is parallel with respect to any parallel frame field. Hence the
notion of parallel vector fields along γ is well defined, it is independent of the parallel
frame field used in the definition.

Using the local form (1) of the connection σ we obtain that a frame field
z(t) = zi

j(t) is parallel along γ = x(t) if and only if for any i, j = 1, . . . , n it satisfies
the equation

żi
j(t) − Γi

k(x, ẋ)zk
j = 0.

Now, we can introduce the notion of covariant derivative.

Definition 2.6. The covariant derivative of a vector field U(x) = U i(x) ∂
∂ xi

along the vector field V (x) = V i(x) ∂
∂ xi is given by

∇V U =
(

∂ U i

∂ xj
V j − Γi

j(x
1, . . . , x1; V 1, . . . , V n)U j

)
∂

∂ xi
(2)

A vector field U(t) = U i(t) ∂
∂ xi is parallel along γ if and only if we have

∇ẋU =
(
U̇ i − Γi

j(x
1, . . . , x1; ẋ1, . . . , ẋn)U j

) ∂

∂ xi

=
(
U̇ i(t) − Γi

j(x, ẋ)U j(t)
) ∂

∂ xi
= 0.

Remark 2.7. Canonical covariant derivatives ∇ of Finsler spaces having the
local form (2) occured first in [2], p. 45, equation 14, (cf. also [10], p. 83, equation
2.4). In the last years Z. Shen uses the canonical covariant derivative of type (2)
for the global investigation of Finsler manifolds (cf. [13]).

Using parallelism the notion of the parallel translation τγ
a,t, t ∈ [a, b], along a

differentiable curve γ : [a, b] → M can be introduced as follows:

Definition 2.8. Let z(t) be an arbitrary parallel frame along γ. The parallel
translation τγ

a,t : Tγ(a)M → Tγ(t)M is defined by the equation

τγ
a,t = z(t) · z(a)−1 : Tγ(a)M → Tγ(t)M, t ∈ [a, b].

Clearly, the parallel translation is a linear map.
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Definition 2.9. A curve γ is called a geodesic if γ̇ is parallel along itself.

The differential equation of a geodesic x = (x1(t), . . . , xn(t)) in a local coor-
dinate system has the shape

∇ẋẋ =
(
ẍi(t) − Γi

j(x(t), ẋ(t)) ẋj(t)
) ∂

∂ xi
= 0. (3)

At the end of this section we extend the notion of the holonomy group to Shen
connections.

Definition 2.10. The linear holonomy group at the point o ∈ M of the Shen
connection σ is the linear group acting on ToM which is generated by the paral-
lel translation of tangent vectors from ToM along piecewise differentiable curves
starting and ending at o.

Clearly, if the manifold is connected then the linear holonomy groups at dif-
ferent points are isomorphic.

2.3. Spray associated with a Shen connection

Definition 2.11. A vector field S : TM → TTM on TM is called a spray if
π∗(S) = idTM .

A vector field S is a spray if and only if its local expression has the form

S(xi, yi) = yi ∂

∂ xi
+ f i(x, y)

∂

∂ yi
(4)

with some function f i(x, y), i = 1, . . . , n. The notion of spray can be used for
coordinate free formulation of second order ordinary differential equations. Indeed,
a differentiable curve γ : [a, b] → M is called a path of the spray S if its speed curve
γ̇ : [a, b] → TM is an integral curve of S. Clearly, a curve γ(t) = xi(t) is a path of
S if and only if it satisfies the second order differential equation

ẍi = f i(x, ẋ), i = 1, . . . , n. (5)

If there is given a Shen connection σ then one can associate a spray canonically by
the following way: let us denote the R

n-valued map

ϑx(v, z) := z−1(v), v ∈ TxM, z ∈ LxM

by ϑ : TM ×M LM −→ R
n and the map

β(η, z) := ηizi, η = (η1, . . . , ηn) ∈ R
n, z = (z1, . . . , zn) ∈ LxM

by β : R
n × LM −→ TM . We denote by β

(2)
∗ : R

n × TLM −→ TTM the tangent
map of β with respect to its second variable. Then the diagram

TM ×
M

LM
ϑ×σ−−−−→ R

n × TLM
β(2)
∗−−−−→ TTM, (6)
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determines the map Ŝ = β
(2)
∗ ◦ (ϑ × σ) : TM ×

M
LM −→ TTM .

Proposition 2.12. The value Ŝ(v, z) of the map Ŝ : TM ×
M

LM → TTM
depends only on the vector v ∈ TxM , but it is independent of the frame z ∈ LxM .
The vector field S : TM → TTM defined on TM by

S(v) := Ŝ(v, z)

is a spray on M .

Proof. Indeed, using the local expression of σ given by (1) we obtain imme-
diately for v = (xi, yj), z = (xi, zi

j), v = (xi, ηjzi
j) that

(ϑ × σ)(v, z) =


η, yi ∂

∂ xi

∣∣∣∣∣(x,z) + Γj
k(x, y)zk

i

∂

∂ zj
i

∣∣∣∣∣
(x,z)




and therefore

Ŝ(v, z) = β
(2)
∗ (ϑ × σ(v, z))

= yi ∂

∂ xi

∣∣∣∣(x,ηizi) + Γj
k(x, y)ηizk

i

∂

∂ yj

∣∣∣∣
(x,ηizi)

= yi ∂

∂ xi

∣∣∣∣(x,y) + Γj
k(x, y)yk ∂

∂ yj

∣∣∣∣
(x,y)

.

It is clear from this formula that Ŝ is independent of the choice of the reference
frame z. Moreover, we can also see from this computation that the local expression
of S is

S(x, y) = yi ∂

∂ xi

∣∣∣∣(x,y) + Γj
k(x, y)yk ∂

∂ yj

∣∣∣∣
(x,y)

. (7)

Comparing this with (4) we obtain that S is a spray with the functions f i(x, y) =
Γj

k(x, y) yk. �

Definition 2.13. The spray associated with the Shen connection σ is the
vector field Ŝ = β

(2)
∗ ◦(ϑ×σ) : TM → TTM investigated in the previous proposition.

Comparing the differential equation (3) of geodesics of the Shen connection
σ, the differential equation (5) of paths of a spray and the local expression (7) of
the spray associated with the Shen connection σ we obtain the following

Corollary 2.14. A differentiable curve is geodesic with respect to the Shen
connection σ if and only if it is a path of the spray associated with σ.
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3. Invariant Shen connections

3.1. Reductive Shen connections

Let M be a differentiable manifold on which the Lie transformation group
G acts transitively. Let us fix an origin o ∈ M and denote by H the stabilizer of
o ∈ M in the group G and by p : G → G/H the projection map. As usual we call
H the isotropy group of the homogeneous space G/H . Then M is isomorphic to
the factor space G/H with origin H and its tangent space at o ∈ M is isomorphic
to g/h, where g and h are the Lie-algebras of the Lie groups G and H respectively.
The action of G on M is determined by the map

λ : (g, m) �→ λgm = g · m : G × M → M.

We denote by
ϕ : gH → g · o : G/H → M,

the isomorphism between G/H and M , its tangent map

ϕ∗ : (v + h) �→ d

dt

∣∣∣∣
t=0

exp(tv) · o : g/h → ToM

gives the isomorphism between g/h and ToM .
In the following we identify the manifold M with G/H and the tangent space

ToM with g/h by the described isomorphisms ϕ and ϕ∗. Now, we investigate Shen
connections defined on the homogeneous space M = G/H which are invariant under
the transitive transformation group G.

Proposition 3.1. Let M = G/H be a connected homogeneous space equipped
with an invariant Shen connection σ : TM ×

M
LM → TLM . Let z0 ∈ LoM be a

fixed reference frame at the origin o. Then the mapping

Λz0 : g �→ (λg)∗z0 : G → LM

is an imbedding of the Lie group G into the frame bundle LM .

Proof. First, we notice that the maps λg, g ∈ G are transformations of
M preserving the Shen connection σ. Hence the transformations λg, g ∈ G map
geodesics of M into geodesics. It follows that if the transformation λg fixes the origin
o and its tangent map (λg)∗ fixes the reference frame z0 then (λg)∗ : ToM → ToM
is the identity map idToM on ToM . Hence λg preserves the geodesics emanated
from the origin o ∈ M from which follows that λg is locally the identity map. Let
F be the set fixed points f ∈ M of λg such that (λg)∗ induces the identity map on
the tangent space TfM . Clearly, this set F is closed in M . But it follows from the
previous arguments that for any f ∈ F the map λg induces the identity map in a
suitable neighbourhood of f . It follows that F = M since F is open and closed in
the connected manifold M , consequently λg : M → M is the identity map. Hence
Λz0 is an injective imbedding. �
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Now we investigate a class of Shen connections which have similar properties
as the canonical connections of reductive homogeneous spaces.

Definition 3.2. An invariant Shen connection σ : TM×M LM → TLM given
on the manifold M = G/H is called reductive if for any geodesic γ(t) emanating
from the origin o ∈ M there exists a suitable X ∈ g such that

(a) γ(t) is the orbit of a 1-parameter subgroup {exp tX, t ∈ R} of G, i.e.

γ(t) = λexp tXo = (exp tX) · o,

(b) the parallel translation τγ
o,t : Tγ(o)M → Tγ(t)M along γ(t) is the same as the

translation by the 1-parameter subgroup {exp tX, t ∈ R}, i.e.

τγ
o,t = (λexp tX)∗ : ToM → T(exp tX)·o .

According to 3.1 the Lie group G is diffeomorphic to the total space Λz0G
of the subbundle πL : Λz0G → M , where identity element e ∈ G corresponds to
the reference frame z0 ∈ LoM and the Lie algebra g corresponds to the tangent
space Tz0LM . The diffeomorphism Λz0 induces a bundle isomorphism between the
principal bundles p : G → G/H and πL : Λz0G → M .

Proposition 3.3. Let σ : TM ×
M

LM → TLM be a reductive invariant
Shen connection. Then it can be reduced to the subbundle πL : Λz0G → M of
πL : LM → M .

Proof. We have to prove that the image σ(TM ×
M

Λz0G) of the connection
map σ is contained in the manifold TΛz0G. We know from the definition of parallel
translation of frames that the subset σ(TM × {z0}) of the image σ(TM ×

M
Λz0G)

consists of the tangent vectors of parallel translated frames along curves emanated
from the origin o. Hence it follows from the definition of the g.o. property that
σ(TM × {z0}) ⊂ (Λz0)∗g. Both of the connection map σ and the manifold TΛz0G
are invariant with respect to the action of the transformation group G from which
we obtain that σ(TM ×M Λz0G) is contained in TΛz0G. �

Clearly for a reductive invariant Shen connection σ the parallel translation of
frames leaves invariant the submanifold TΛz0G ⊂ TLM of frames. It follows that
the linear holonomy group of σ is isomorphic to a subgroup of the fibre group of
the principal bundle πL : Λz0G → M . Hence we obtain:

Corollary 3.4. If σ is a reductive invariant Shen connection on the homo-
geneous space M = G/H then its linear holonomy group is isomorphic to a subgroup
of the isotropy group H.
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3.2. (Non-linear) horizontal lift

Let M = G/H be a homogeneous space, where H ⊂ G are Lie groups and
h ⊂ g are the corresponding Lie algebras. The tangent space ToM at the origin o
can be identified by the factor space g/h. The linear isotropy representation of the
subgroup H on the tangent space ToM is given by

h �→ (λh)∗ : H → GL(ToM), h ∈ H.

The corresponding action of H on the factor space g/h is the induced action of the
adjoint representation h �→ Adh : H → GL(g) of H on the factor space g/h, i.e. an
arbitrary h ∈ H acts on a coset X + h ∈ g/h by the map X + h �→ Adh(X + h) =
Adh(X)+h. We denote this induced action of h ∈ H on g/h by Ad(g/h)

h : g/h → g/h.
If there is given a reductive decomposition g = h + m of the Lie algebra g then a
natural map g/h → m ⊂ g can be defined. In the case of reductive invariant
Shen connections we define the notion of (non-linear) reductive lift which is a not
necessarily linear version of the previous map. Such kind of maps are introduced
by J. Szenthe [14] for the investigation of affine g.o. spaces:

Definition 3.5. A map ξ : g/h → g is called (non-linear) horizontal lift if
the following conditions are satisfied:

(a) ξ is Ad(H)-invariant, which means

ξ(Ad(g/h)
h (X + h)) = Adh(ξ(X + h)), for all h ∈ H, X ∈ g.

(b) ξ is homogeneous, i.e. ξ(λX + h) = λξ(X + h), for every X ∈ g and λ ∈ R.
(c) (ξ(X + h) − X) ∈ h for any X ∈ g.

A (non-linear) horizontal lift ξ : g/h → g is called C∞-differentiable (or analytic) if
it is continuous on g/h and C∞-differentiable (or analytic) on g/h \ {0}.

Clearly, ξ is differentiable linear map if and only if it is differentiable at the
origin 0 ∈ g/h, too. In this case the image ξ(g/h) is a reductive complement of the
Lie subalgebra h in g.

One can associate (non-linear) horizontal lifts with reductive invariant Shen
connections.

Proposition 3.6. Let M = G/H be a homogeneous space, where H ⊂ G
are Lie groups and h ⊂ g are the corresponding Lie algebras. Let σ be a reductive
invariant Shen connection. Then the restriction

σ
∣∣
ToM×{z0}: ToM × {z0} → Tz0Λz0G

of the map σ to the tangent space ToM at the reference frame z0 determines a
differentiable (non-linear) horizontal lift by the use of the identifications M = G/H,
ToM = g/h and Tz0Λz0G = g.
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Proof. Since the Shen connection map σ is reduced to the frame subbundle
πL : Λz0G → M of πL : LM → M , it is left invariant. The property (C4) in
the definition 2.1 of Shen connections implies that σ is right invariant on the fiber
π−1

L (o) and hence the map σ
∣∣
ToM×{z0} satisfies the property (a) of a (non-linear)

horizontal lift. The conditions (b) and (c) for a (non-linear) horizontal lift follow
from the properties (C3) and (C2) in the definition 2.1 of a Shen connection. �

Definition 3.7. Let σ be a reductive invariant Shen connection given on
the homogeneous space M = G/H . The differentable (non-linear) horizontal lift ξ :
g/h → g determined by the restriction σ

∣∣
ToM×{z0} of the map σ to the tangent space

ToM at the reference frame z0 is called the (non-linear) horizontal lift associated
with the Shen connection σ.

Proposition 3.8. Let us identify the manifold M with the homogeneous space
G/H, the tangent space ToM with the factor space g/h, the subbundle πL : Λz0G →
M of frames with the principal bundle p : G → G/H. If ξ : g/h → g is a
C∞-differentiable (non-linear) horizontal lift then the map σ : TM ×

M
Λz0G →

TΛz0G defined at the point (x, u, z) ∈ TM ×M Λz0G by the value σ(x, u, z) =
(x, (λg)∗ξ((λg)−1

∗ (u))) is a reductive Shen connection in the bundle πL : Λz0G → M ,
where λg (g ∈ G) is the unique map such that λg : o �→ x and (λg)∗ : z0 �→ z.

Proof. Clearly, the map σ : TM×
M

Λz0G → TΛz0G is invariant with respect
to the action of G on Λz0G. It follows from the defining properties of ξ that the
map σ satisfies the properties (C1) - (C3) of a Shen connection. The property (C4)
is fulfilled, too, since the (non-linear) horizontal lift is AdH -invariant. Hence the
map σ : TM ×M Λz0G → TΛz0G determines an invariant Shen connection in the
principal bundle.

Now, we prove that the Shen connection σ is reductive. Let be given a tangent
vector u ∈ ToM and let z(t) = (λexp tξ(u))∗z0 be the orbit of z0 with respect to the
1-parameter subgroup exp tξ(u), t ∈ R. This orbit corresponds to the 1-parameter
subgroup exp tξ(u), t ∈ R of G by the identification of the subbundle πL : Λz0G →
M of frames with the principal bundle p : G → G/H . We show that z(t) is
a parallel frame field along the curve πL(z(t)), or equivalently, that its tangent
vector is given by the value of the map σ at the tangent vector of the projection
curve πL(z(t)) and at the frame z(t). Indeed, the tangent vector at t ∈ R of
the corresponding curve exp tξ(u) in G is (λexp tξ(u))∗ξ(u) which corresponds to the
value σ

(
exp tξ(u), (λexp tξ(u))∗u, (λexp tξ(u))∗ξ(u)

)
by the identification, which means

that z(t) is a parallel frame field. Similarly we obtain that the tangent vector of
p(exp tξ(u)), corresponding to πL(z(t)), is the vector (λexp tξ(u))∗u which is a parallel
vector field along p(exp tξ(u)). Hence the projected curve πL(z(t)) is a geodesic
tangent to u ∈ ToM and the parallel translation along this geodesic coincides with
the action (λexp tξ(u))∗ of the 1-parameter group exp tξ(u). This result means that
the Shen connection σ is reductive. �
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The previous propositions give the following

Theorem 3.9. There exists a bijective correspondance between differentiable
(non-linear) horizontal lifts of the factor space g/h and reductive Shen connections
on the homogeneous space G/H.

3.3. Riemannian g.o. spaces

Let (M = G/H, g) be a homogeneous Riemannian manifold with origin o =
H ∈ M = G/H and let πO : OM → M denote the orthonormal subbundle of
OM ⊂ LM of the linear frame bundle πL : LM → M of M . Let z0 ∈ OoM be a
fixed orthonormal reference frame at the origin o. Then the mapping

Λz0 : g �→ (λg)∗z0 : G → OM

is an imbedding of the Lie group G into the frame bundle OM . Since the mapping
Λz0 induces an isomorphism of the isotropy subgroup H onto a subgroup of the or-
thogonal group O(n, R) the Cartan–Killing form of O(n, R) determines an invariant
Riemannian metric on the subgroup H . The following statement is a reformulation
of a

Theorem of J. Szenthe. Let (M = G/H, g) be a Riemannian g.o. space.
For a given AdH-invariant decomposition g = m + h there exists a canonical (non-
linear) horizontal lift ξ : g/h → g such that for any X + h ∈ g/h \ {0} the orbit of
{exp tξ(X + h), t ∈ R} through the origin o = H ∈ G/H is a geodesic.

(Cf. [14], [9].) We notice that the construction of J. Szenthe depends on the
chosen AdH -invariant decomposition g = m + h. The construction depends on the
choice of the invariant Riemannian metric on the isotropy group H , but for the
simplicity we fixed this metric previously.

The canonical horizontal lift of J. Szenthe can be described by the following
construction:

For each given coset X + h ∈ g/h, X �= 0 put

q(X+h) = {A ∈ h : [A, X + h] ⊂ h}.

Clearly, q(X+h) is a subalgebra of h. Next, let N(X+h) be the normalizer of q(X+h)

in h, i.e.

N(X+h) =
{
B ∈ h : [B, A] ∈ q(X+h) for all A ∈ q(X+h)

}
.

Proposition 3.10. Let g = m + h be an AdH-invariant decomposition of the
Lie algebra g. We identify the tangent space ToM with the subspace m ⊂ g. Let
X ∈ m \ {0} be the tangent vector of a geodesic through o ∈ M which is the orbit of
the 1-parameter isometry group exp t(X + A) where A ∈ h. Then A ∈ N(X+h).



invariant shen connections and geodesic orbit spaces 49

Proof. Using the AdH -invariant decomposition g = m + h one has that if
X ∈ m then q(X+h) = {A ∈ h : [A, X ] = 0}. The detailed proof of the statement
A ∈ N(X+h) is given in [14].

Let g = m + h and g = m′ + h be two different AdH -invariant decomposi-
tions and let X ∈ m \ {0} and X ′ = X + C ∈ m′ \ {0} represent the same tangent
vector from ToM , i.e. C ∈ h. Then the subalgebras {A ∈ h : [A, X ] = 0} and
{A′ ∈ h : [A′, X ′] = 0} coincide since [A′, X ′] = [A′, X + C] = 0 implies [A′, X ] = 0
and conversely. Hence the result is independent of the chosen AdH -invariant de-
composition of g. (Cf. [8], p. 225.) �

Let N(X+h) = q(X+h) + c(X+h) be the orthogonal decomposition with respect
to the AdH-invariant scalar product ( , ) on h determined by the given invariant
Riemannian metric of the isotropy group H . Then the (non-linear) horizontal lift
ξ : g/h → g which is determined by the construction of J. Szenthe can be identified
with a map ξ : m → g uniquely characterized by the condition ξ(X)−X ∈ c(X+h) for
any X ∈ m\{0}. (Cf. [14]), or equivalently, the value of the map X → (ξ(X)−X) :
m → h is orthogonal to the subalgebra q(X+h) at each vector X ∈ m.

Definition 3.11. The map X → (ξ(X) − X) : m → h the value of which
is orthogonal to the subalgebra q(X+h) at each vector X ∈ m \ {0} is called the
geodesic graph.

Explicit expression for geodesic graphs are described in [4], [8], [3], [7]. All
known examples of Riemannian g.o. spaces which are not naturally reductive show
that the (non-linear) horizontal lifts ξ : g/h → g determined by the Szenthe’s
construction have essential singularities. Hence we introduce the following notion:

Definition 3.12. A (non-linear) horizontal lift ξ : g/h → g is called dif-
ferentiable with singularities if the map ξ : g/h → g is differentiable on an open
dense AdH -invariant subset of g/h. The map σ : TM ×M Λz0G → TΛz0G deter-
mined by the construction of Proposition 3.8 is called a differentiable reductive Shen
connection with singularities.

Definition 3.13. A reductive Shen connection σ (with singularities) de-
fined on the orthonormal frame bundle of a homogeneous Riemannian manifold
(M = G/H, g) is called naturally reductive Shen connection (with singularities)
if the geodesic spray of the Riemannian manifold (M, g) coincides with the spray
associated with the Shen connection σ.

From the previous definition follows that the spray associated with a naturally
reductive Shen connection with singularities is differentiable. One can formulate the
following

Theorem 3.14. Let (G/H, g) be a Riemannian g.o. space. For a given AdH-
invariant decomposition g = m + h the Szenthe’s construction determines a unique
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naturally reductive Shen connection (with singularities) of the Riemannian g.o. space
(G/H, g).

Proof. According to Szenthe’s theorem there exists a canonical (non-linear)
horizontal lift ξ : g/h → g such that for any X + h ∈ g/h \ {0} the orbit of
{exp tξ(X + h), t ∈ R} through the origin o = H ∈ G/H is a geodesic. This (non-
linear) horizontal lift is differentiable, possibly with singularities. Indeed, according
to Theorem 2.1 in [8] the corresponding geodesic graph X → (ξ(X) − X) : m →
h can be uniquely expressed by a rational map on an open dense subset in m.
Hence the map σ : TM ×M Λz0G → TΛz0G determined by the construction of
Proposition 3.8 determines a differentiable reductive Shen connection, eventually
with singularities. �

O. Kowalski and Ž. Nikčević in Appendix to [8] generalized the notion of
geodesic graph as follows:

Definition 3.15. Let (G/H, g) be a Riemannian g.o. space and g = m + h
an AdH -invariant decomposition of the corresponding Lie algebra g. A general
geodesic graph for G/H is an AdH -equivariant map η : m → h which is analytic on
a dense open subset of m and such that for each vector X ∈ m \ {0} the orbit of
{exp t(X + η(X)), t ∈ R} through the origin o = H ∈ G/H is a geodesic.

In the case of naturally reductive spaces U(3)/U(2) and U(2, 1)/U(2) they
constructed examples of general (non-linear) geodesic graphs which are analytic on
m\{0} and hence the associated naturally reductive Shen connection is differentiable
(cf. equation (A) in Proposition 1). This motivates the following

Problem. Find classes of Riemannian g.o. spaces (G/H, g) which are not
naturally reductive but their geodesic graphs are C∞-differentiable or analytic on
m \ {0} and hence there exists an associated naturally reductive Shen connection in
the frame bundle corresponding to p : G → G/H.
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