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Abstract

In this paper we study the linearizability problem for 3-webs on a two-dimensional manifold. With an explicit computation
we examine a 3-web whose linearizability was claimed in [J. Grifone, Z. Muzsnay, J. Saab, On the linearizability of 3-webs,
Nonlinear Anal. 47 (2001) 2643–2654] and was contested later in [V.V. Goldberg, V.V. Lychagin, On the Blaschke conjecture
for 3-webs, J. Geom. Anal. 16 (1) (2006) 69–115] and [V.V. Goldberg, V.V. Lychagin, On linearization of planar three-webs and
Blaschke’s conjecture, C. R. Acad. Sci. Paris, Ser. I. 341 (3) (2005)]. On the basis of the theories of [J. Grifone, Z. Muzsnay, J.
Saab, On the linearizability of 3-webs, Nonlinear Anal. 47 (2001) 2643–2654], we give an effective method for computing the
linearizability criterion, and we prove that this particular web is linearizable by finding explicitly the affine deformation tensor and
the corresponding flat linear connection.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

On a two-dimensional real or complex differentiable manifold M a 3-web is given by three foliations of smooth
curves in general position. Two websW and W̃ are locally equivalent at p ∈ M , if there exists a local diffeomorphism
on a neighborhood of p which exchanges them. A 3-web is called linear (resp. parallel) if it is given by three
foliations of straight lines (resp. of parallel lines). A 3-web which is equivalent to a linear (resp. parallel) web is
called linearizable (resp. parallelizable). An elegant characterization of parallelizable webs can be given in terms of
the Chern connection associated with a 3-web: a 3-web is parallelizable if and only if the curvature of the Chern
connection – called also Blaschke curvature – vanishes [12].

Basic examples of planar 3-webs come from complex projective algebraic geometry. If C ⊂ P2 is a reduced
algebraic curve of degree 3, not necessarily irreducible and possibly singular, then by duality in P̌2, one can obtain
a 3-web called the algebraic web associated with C ⊂ P2 (cf. for instance [11]). Graf and Sauer proved in 1924 a
theorem which, in web geometry language, can be stated as follows: a linear web is parallelizable if and only if it
is associated with an algebraic curve of degree 3, i.e. its leaves are tangent lines of an algebraic curve of degree 3
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([1], page 24). This theorem is a special case of Niels Henrik Abel’s classical theorem and its converse: the general
Lie–Darboux–Griffiths theorem [6].

The problem of finding a linearizability criterion is a very natural one. Moreover it is also important, for instance
in nomography (cf. [9]): determining whether some nomogram can be reduced to an alignment chart is equivalent
to the problem of determining whether a web is linearizable. Bol suggested a method in [2] for finding a criterion
of linearizability, although he was unable to carry out the computation. He showed that the number of projectively
different linear 3-webs in the plane which are equivalent to a non-parallelizable 3-web is finite and less that 17. The
formulation of the linearizability problem in terms of the Chern connection was suggested by Akivis in a lecture
given in Moscow in 1973. In his approach the linearizability problem is reduced to the solvability of a system
of nonlinear partial differential equations on the components of the affine deformation tensor. Using Akivis’s idea,
Goldberg determined in [3] the first integrability conditions of the system.

By using this approach, Grifone, Muzsnay and Saab solved the linearizability problem [7]. They showed that, in
the non-parallelizable case, there exists an algebraic submanifold A of the space of vector valued symmetric tensors
(S2T ∗

⊗ T ) on a neighborhood of p, expressed in terms of the curvature of the Chern connection and its covariant
derivatives up to order 6, so that the affine deformation tensor is a section of S2T ∗

⊗T with values inA. In particular:

1. The web is linearizable if and only if A 6= ∅.
2. There exist at most 15 projectively non-equivalent linearizations of a non-parallelizable 3-web.

The expressions for the polynomials and their coefficients which define A can be found in [8]. The criterion of
linearizability gives the possibility of making explicit computation on concrete examples to decide whether or not
they are linearizable.

Recently Goldberg and Lychagin found similar results on the linearizability in [4], but their method is different
from that of [7]. Despite the fact that the two theories concern the same problem and the final results are very similar,
on testing them on an explicit example they lead to different answers. Indeed, consider the 3-web W determined by
the web function f (x, y) := (x + y)e−x , i.e. the 3-web given by the foliations

x = const, y = const, (x + y)e−x
= const. (1)

We can find in [7] the claim that W is linearizable while [5] and [4] state the opposite.
In this present paper, with a computation based on the theory of [7], we prove that the 3-web given by (1) is

linearizable by finding explicitly the affine deformation tensor. Through this example we demonstrate the efficiency
and the correctness of the approach developed in [7].

2. Basic notation and definitions

Let M be a two-dimensional differentiable manifold. The tangent and cotangent space of M will be denoted by T
and T ∗ respectively.

Definition 2.1. A 3-web on M is a triple of foliations {F1, F2, F3} such that the tangent spaces of the leaves of any
two different foliations are complementary subspaces of T .

We will call the leaves of the foliations {F1, F2, F3} horizontal, vertical and transversal. Likewise, we call their tangent
spaces horizontal, vertical and transversal and denote them by T h , T v and T t . We will use Nagy’s formalism (cf.
[12]). In particular, h (resp. v) is the horizontal (resp. vertical) projection, j is the associated product structure, ∇ is
the Chern connection. By the inverse functions theorem, we can find local coordinates (x1, x2) at a neighborhood of
p ∈ M such that W can be written as

x1 = const, x2 = const, f (x1, x2) = const. (2)

Using (2) as a local representation of the web, at every point the horizontal, vertical and transversal spaces are

T h
= Span {∂1} , T v

= Span {∂2} , T v
= Span {∂1 − κ∂2} ,

where κ := ∂1 f/∂2 f and ∂i := ∂/∂xi . Moreover, one has

j (∂1) = κ∂2 and j (∂2) =
1
κ

∂1, (3)
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and therefore the base {e1 := ∂1, e2 := κ∂2} is an adapted base of the web, i.e. e1 ∈ T h , e2 ∈ T v and je1 = e2. The
Chern connection ∇ is determined by

∇∂1∂1 = Γ1∂1, ∇∂2∂2 = Γ2∂2, ∇∂1∂2 = 0, ∇∂2∂1 = 0,

where Γ1 =
κ1
κ

and Γ2 = −
κ2
κ

. The curvature tensor R∇ of the Chern connection is characterized by the function

r :=
κ1κ2 − κ12κ

κ2 =
f11 f 2

2 f12 − f 2
1 f12 f22 − f1 f112 f 2

2 + f 2
1 f122 f2

f 2
2 f 2

1

,

since for i = 1, 2 one has

R∇(∂1, ∂2)∂i = r∂i .

3. The PDE system of linearization

Definition 3.1. A 3-web on a two-dimensional affine space is called linear (resp. parallel) if the leaves of the three
foliations are straight lines (resp. parallel straight lines). A 3-web on M is called linearizable (resp. parallelizable) at
p ∈ M if it is equivalent to a linear (resp. parallel) 3-web modulo a local diffeomorphisms.

The problem of linearizability of webs can be formulated as follows: find a torsion-free flat connection ∇
L such

that the foliations of the web are geodesic with respect to this connection [3]. The existence of such connection is
equivalent to the existence of a symmetric (1, 2)-tensor field L , the linearization or affine deformation tensor, which
satisfies the condition that the connection ∇

L defined as

∇
L
X Y := ∇X Y + L(X, Y )

preserves the web and is flat. A tensor field L in S2T ∗
⊗ T is a linearization if and only if

1. vL(h X, hY ) = 0,
2. hL(vX, vY ) = 0,
3. L(h X, hY ) + j L( jh X, jhY ) − hL( jh X, hY ) − hL(h X, jhY ) − jvL( jh X, hY ) − jvL(h X, jhY ) = 0,
4. ∇X L(Y, Z) − ∇Y L(X, Z) + L(X, L(Y, Z)) − L(Y, L(X, Z)) + R∇(X, Y )Z = 0,

holds for any X, Y, Z ∈ T , [7]. Using a local coordinate system, a symmetrical tensor

L = Lk
i j dx i

⊗ dx j
⊗ ∂k ∈ S2T ∗

⊗ T

is a linearization if and only if its components satisfy (4) and (5), where

L2
11 = 0, L1

22 = 0, L2
12 =

1
2
(L1

11 + κL2
22 − 2κL1

12), (4)

is a system of algebraic equations and

r +
∂L1

12

∂x
−

∂L1
11

∂y
+ L2

12L1
12 = 0,

∂L2
12

∂x
− Γ1L2

12 + L2
12L2

12 − L1
11L2

12 = 0,

−
∂L1

12

∂y
+ Γ2L1

12 + L2
22L1

12 − L1
12L1

12 = 0,

r +
∂L2

22

∂x
−

∂L2
12

∂y
− L1

12L2
12 = 0


(5)

is a system of first-order quasi-linear partial differential equations.
A tensor L in S2T ∗

⊗ T satisfying the algebraic conditions (4) is called prelinearization. The prelinearizations
form a three-dimensional subbundle of S2T ∗

⊗ T which will be denoted by E . A section of E is a linearization if it
satisfies (5).
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4. Sketch of the solution of the system of linearization

In this section we describe the steps needed to solve the PDE system of linearization of the affine deformation
tensor. It is composed of the equations of (4) and (5). The method used here is similar to the one used in [7].

As E is a rank-3 vector bundle, it can be parameterized by {s, t, z}, where

s := 2κL1
12 − κL2

22, t := L2
12, z := L1

12.

The parameter s is called the base of the prelinearization and it is a projective invariant of the linearizations: two
prelinearizations are projectively equivalent if and only if they have the same base [7]. Writing the system (5) using
{s, t, z}, the partial derivatives t1, t2, z1, z1 can be expressed explicitly as

t1 = ts +
t ( f11 f2 − f1 f12 + t f2 f1)

f2 f1
,

t2 = t z +
f 3
2 f1s1 − f 3

2 f11s + f12 f 2
2 f1s − 2 f 2

2 f 2
1 s2

3 f 2
2 f 2

1

+
f11 f 2

2 f12 − f 2
1 f12 f22 + f 2

1 f122 f2 − f1 f112 f 2
2

3 f 2
2 f 2

1

,

z1 = t z +
−s2 f 2

2 f 2
1 + 2 f 3

2 f1s1 − 2 f 3
2 f11s + 2 f12 f 2

2 f1s

3 f 2
2 f 2

1

+
f1 f112 f 2

2 − f11 f 2
2 f12 + f 2

1 f12 f22 − f 2
1 f122 f2

3 f 2
2 f 2

1

,

z2 = z2
−

z( f12 f2 − f1 f22 + f 2
2 s)

f2 f1
.

(6)

By consideration of the integrability conditions t12 = t21 and z12 = z21 one can realize that the functions t , z and
their derivatives can be eliminated. In that way one obtains two second-order PDE on s:

I ≡ 0, II ≡ 0, (7)

where

I = s11 − 2κs12 + lower order terms . . . (8)

II = s22 −
2
κ

s12 + lower order terms . . . (9)

(see also [10], equation “(* bis)”). There is no integrability condition coming for the first prolongation of (8) and (9),
but there is one integrability condition coming for the second prolongation. Indeed, using the second prolongation of
(8) and (9), the equation

0 = κ(∂11II − ∂22I) + 2(∂12I − κ2∂12II) (10)

does not contain fourth-order derivatives of s. We express the third-order derivatives of s from (8) and (9) and
substitute them into (10); we obtain a new equation:

III ≡ 0, (11)

where

III = 24κrs12 + lower order terms . . . . (12)

We remark that the integrability condition (12) is identically satisfied if r = 0, i.e. the web is parallelizable. If r 6= 0,
then we have to push forward the computation.

Let us suppose that r 6= 0. We have to consider the system formed by (7) and (11), which are second-order
PDE on s. The prolongation of these equations leads us to two integrability conditions. Indeed, considering the
combinations

0 = 24κr∂2I − ∂1III + 2κ∂2III (13)

0 = 24κr∂1II − ∂2III +
2
κ

∂1III (14)
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the new equations do not contain third-order derivatives. Moreover the second-order derivatives of s can be expressed
from (7) and (11); we can substitute them into (13) and (14). In that way we obtain two new equations having special
forms:

0 = −24r(s1)
2
+ 48rs1s2 + α1s1 + β1s2 + γ1 (15)

0 = c24r(s2)
2
+ 48rs1s2 + α2s1 + β2s2 + γ2 (16)

where αi , β i and γ i (i = 1, 2) are determined by the curvature and its derivatives. At the final step one has to take the
derivatives of (15) and (16) with respect to the variables x1 and x2. By expressing (s1)

2 and (s2)
2 from (15) and (16),

respectively, and by putting the corresponding values into the prolonged derived system, we obtain a system of four
equations:

ai s1 + bi s2 + ci s1s2 = d i , i = 1, . . . , 4 (17)

where ai , bi , ci and d i , i = 1, . . . , 4, are determined by the curvature and its derivatives. (17) can be considered as a
linear system in s1, s2 and s1s2. This system is compatible, and the third-order minors are non-zero polynomials in s
of degree 7 ([7], p. 2652). So there exists an open U ⊂ C2 on which

D(s) :=

∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ 6= 0.

Solving on U the linear system (17) using the Cramer formulas, we get

s1 =
A(s)

D(s)
, s2 =

B(s)

D(s)
, s1s2 =

C(s)

D(s)
, (18)

where A, B, and C are given by the corresponding determinant. These functions are polynomial in s. Moreover:

(a) Using the identity s1 · s2 = s1s2 and the expression for the corresponding terms given by (18) we obtain that the
solution s of the linearization system has to take its values on the algebraic manifold defined by Q1(s) = 0, where

Q1(s) := AB − C D (19)

is polynomial in s of degree 18.
(b) For the system (18) the compatibility condition is given by ∂1s2 − ∂2s1 = 0. Using A, B and D, we obtain that s

has to take its values in the algebraic manifold Q2(s) = 0 defined by this compatibility condition.
(c) Just like how the first derivatives are computed in (18), the second-order derivatives can be expressed in a similar

way, and using their expressions in Eqs. (8), (9), (12), (15) and (16) we get five polynomial equations in s:
Qi = 0 (i = 3, . . . , 7).

It follows that s = s(x1, x2) has to take its values in the algebraic manifold A ⊂ E , where

A := {Qi = 0 | i = 1, . . . , 7}.

5. Example

In this section we consider the 3-web determined by the web function

f (x1, x2) := (x1 + x2)e−x1 ,

that is the 3-web W given by the foliations

x1 = const, x2 = const, (x1 + x2)e−x1 = const. (20)

The linearizability of this example was examined by Grifone, Muzsnay and Saab in [7] (page 2563), and the authors
claimed that this particular web is linearizable. However, in [4] (page 38) and [5] (page 171) the authors stated the
opposite.
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Let us examine this example more closely. The Chern connection of the web W is determined by

∇∂1∂1 =
1

x1 + x2 − 1
∂1, ∇∂1∂2 = 0,

∇∂2∂2 =
1

1 − x1 − x2
∂2, ∇∂2∂1 = 0.

The curvature is given by

R∇(∂1, ∂2)∂i =
1

(x1 + x2 − 1)2 ∂i ,

for i = 1, 2. Therefore the Chern connection is non-flat and the web W is not parallelizable. Following the
computation described in the previous section one can find that (19) is

Q1(s) = (1 + s)Q̃1(s), (21)

where Q̃1 is polynomial in s of degree 18 and has the form

Q̃1(s) =

17∑
k=0

(
δ(k)∑

i+ j=0

αi jk(x i
1x j

2 + x j
1 x i

2)

)
sk

where δ(0) = 15, δ(1) = 16 and δ(k) = 17 for 3 ≤ k ≤ 17. The coefficients αi jk ∈ R can be computed easily with a
computer algebra system like Maple. From (21) it is obvious that

s(x1, x2) ≡ −1 (22)

is a solution for the polynomial Q1(s). Moreover, it is easy to check that (22) is a solution of all the polynomials
Qi (s) for i = 2, . . . , 7. This shows that the web is linearizable. Let us go further and find the linearization explicitly.
By substituting s(x1, x2) ≡ −1 into (6) one obtains that

t1 = t2
− t +

t

x1 + x2 − 1
,

t2 = t z,

z1 = t z −
1

(x1 + x2 − 1)2 ,

z2 = z2
−

2z

x1 + x2 − 1
.

(23)

There are two solutions of the differential system (23):

Solution 1

t (x1, x2) = 0,

z(x1, x2) =
1 − x1 − a

(−1 + x1 + x2)(x2 − a)
,

(24)

Solution 2


t (x1, x2) =

(−1 + x1 + x2)e−x1

(x1 + x2)e−x1 + ax2 + b
,

z(x1, x2) =
e−x1 + a − x1a + b

((x1 + x2)e−x1 + ax2 + b)(x1 + x2 − 1)

(25)

where a and b are arbitrary constants.

Solution 1. Here we consider the solution (24) of (23). Rewriting the expressions for t (x1, x2) and z(x1, x2) with the
help of (22) we can determine the components of the affine deformation tensor L:

L1
11 = −1, L2

22 = −
x2 − 2 + 2x1 + a

(x1 + x2 − 1)(x2 − a)
,

L2
12 = 0, L1

12 =
1 − x1 − a

(−1 + x1 + x2)(x2 − a)
.
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The deformed connection ∇
L in the standard base is given by the following equations:

∇
L
∂1

∂1 = ∇∂1∂1 + L(∂1, ∂1) =
κ1

κ
∂1 + L1

11∂1 =
x1 + x2 − 2
1 − x1 − x2

∂1 (26)

∇
L
∂1

∂2 = ∇∂1∂2 + L(∂1, ∂2) = L1
12∂1 + L2

12∂2 =
1 − x1 − a

(−1 + x1 + x2)(x2 − a)
∂1 (27)

∇
L
∂2

∂1 = ∇∂2∂1 + L(∂2, ∂1) = L1
12∂1 + L2

12∂2 =
1 − x1 − a

(−1 + x1 + x2)(x2 − a)
∂1 (28)

∇
L
∂2

∂2 = ∇∂2∂2 + L(∂2, ∂2) = −
κ2

κ
∂2 + L2

22∂2 =
2

a − x2
∂2. (29)

It is obvious that ∇
L
∂i

∂ j − ∇
L
∂ j

∂i = 0 and therefore the torsion of ∇
L is zero. Moreover, at every point the horizontal,

vertical and transversal spaces are

T h
= Span {∂1} , T v

= Span {∂2} , T v
= Span {∂1 − κ∂2} ,

where κ = ∂1 f/∂2 f = 1 − x1 − x2. The Eq. (26) (resp. (29)) shows that the covariant derivative of a horizontal
(resp. vertical) vector field with respect to a horizontal (resp. vertical) vector field is horizontal (resp. vertical).
Moreover, we have

∇(∂1−κ∂2)(∂1 − κ∂2) = ∇∂1∂1 − κ∇∂2∂1 − κ∇∂1∂2 − (∂1κ)∂2 + κ(∂2κ)∂2 + κ2
∇∂2∂2

=
2x2

1 + x2
2 + 3x1x2 + (a − 4)(x1 + x2) + 2

(−1 + x1 + x2)(a − x2)
(∂1 − κ∂2)

which shows that the covariant derivative of a transversal vector field with respect to a transversal vector field is
transversal. Direct calculation shows that ∇

L is flat; that is its curvature tensor is identically zero.

Solution 2. Here we consider the solution (25) of (23). Completing the expression of t (x1, x2) and z(x1, x2) with (22)
we can find that the components of L , the affine deformation tensor, are

L1
11 =

(x1 + x2 − 2)e−x1 − ax2 − b

(x1 + x2)e−x1 + ax2 + b

L2
22 =

(2 − x1 − x2)e−x1 − a(2x1 + x2 − 2) + b

(x1 + x2 − 1)((x1 + x2)e−x1 + ax2 + b)

L1
12 =

e−x1 − ax1 + a + b

(x1 + x2 − 1)((x1 + x2)e−x1 + ax2 + b)

L2
12 =

(x1 + x2 − 1)e−x1

(x1 + x2)e−x1 + ax2 + b
.

The deformed connection ∇
L in the standard basis is given by the following equations:

∇
L
∂1

∂1 =

(
1

x1 + x2 − 1
+

(x1 + x2 − 2)e−x1 − ax2 − b

(x1 + x2)e−x1 + ax2 + b

)
∂1 (30)

∇
L
∂1

∂2 =
e−x1 + a − x1a + b

((x1 + x2)e−x1 + ax2 + b)(x1 + x2 − 1)
∂1 +

(x1 + x2 − 1)e−x1

(x1 + x2)e−x1 + ax2 + b
∂2, (31)

∇
L
∂2

∂1 =
e−x1 + a − x1a + b

((x1 + x2)e−x1 + ax2 + b)(x1 + x2 − 1)
∂1 +

(x1 + x2 − 1)e−x1

(x1 + x2)e−x1 + ax2 + b
∂2, (32)

∇
L
∂2

∂2 =
−2(e−x1 + a)

(x1 + x2)e−x1 + ax2 + b
∂2. (33)

As in the previous case, ∇
L
∂i

∂ j − ∇
L
∂ j

∂i = 0 and the torsion of ∇
L is zero. Eq. (30) (resp. (33)) shows that the

covariant derivative of a horizontal (resp. vertical) vector field with respect to a horizontal (resp. vertical) vector field



Author's personal copy

1602 Z. Muzsnay / Nonlinear Analysis 68 (2008) 1595–1602

is horizontal (resp. vertical). We have

∇(∂1−κ∂2)(∂1 − κ∂2) = ∇∂1∂1 − κ∇∂2∂1 − κ∇∂1∂2 − (∂1κ)∂2 + κ(∂2κ)∂2 + κ2
∇∂2∂2

=
(x1 + x2)

2e−x1 + (4a + b)(x1 + x2) − a(2x2
1 + x2

2 + 3x2x1 + 2)

(x1 + x2 − 1)((x1 + x2)e−x1 + ax2 + b)
(∂1 − κ∂2)

which shows that the covariant derivative of a transversal vector field with respect to a transversal vector field is
transversal. As in the previous case, ∇

L is flat, i.e. its curvature tensor is identically zero.
As the direct calculations show in both cases:

1. the connection ∇
L preserves the web, that is the three families of leaves are auto-parallel curves with respect to it;

2. ∇
L is torsion free;

3. ∇
L is flat; that is its curvature tensor is identically zero.

The properties 1–3. show that the corresponding affine deformation tensor L in both cases is a linearization of the
web W .

Remark. Solutions 1 and 2 correspond to different linearizations. However, these linearizations are projectively
equivalent. Indeed, the parameter s, called the base of the linearization, is a projective invariant of the linearizations:
two linearizations are projectively equivalent if and only if they have the same base. Here the two linearizations have
the same base (s(x1, x2) ≡ −1) which shows that they are projectively equivalent.
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