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Communicated by George Washington

Abstract. The aim of this paper is to show that holonomy properties of

Finsler manifolds can be very different from those of Riemannian manifolds.

We prove that the holonomy group of a positive definite non-Riemannian

Finsler manifold of non-zero constant curvature with dimension > 2 cannot

be a compact Lie group. Hence this holonomy group does not occur as the

holonomy group of any Riemannian manifold. In addition, we provide an

example of left invariant Finsler metric on the Heisenberg group, so that

its holonomy group is not a (finite dimensional) Lie group. These results

give a positive answer to the following problem formulated by S. S. Chern

and Z. Shen: Is there a Finsler manifold whose holonomy group is not the

holonomy group of any Riemannian manifold?

1. Introduction

The notion of the holonomy group of a Riemannian manifold can be general-

ized very naturally for a Finsler manifold (cf. e.g. S. S. Chern and Z. Shen, [2],

Chapter 4): it is the group at a point x generated by the canonical homogeneous

(nonlinear) parallel translations along all loops emanated from x. Until now the

holonomy groups of non-Riemannian Finsler manifolds have been described only

in special cases: for Berwald manifolds there exist Riemannian metrics with the

same holonomy group (cf. Z. I. Szabó, [11]), for positive definite Landsberg man-

ifolds the holonomy groups are compact Lie groups consisting of isometries of the
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indicatrix with respect to an induced Riemannian metric (cf. L. Kozma, [4], [5]).

A thorough study of the holonomy group of homogeneous (nonlinear) connections

was initiated by W. Barthel in his basic work [1] in 1963; he gave a construction

for a holonomy algebra of vector fields on the tangent space. A general setting

for the study of infinite dimensional holonomy groups and holonomy algebras of

nonlinear connections was initiated by P. Michor in [7]. However the introduced

holonomy algebras could not be used to estimate the dimension of the holonomy

group since their tangential properties to the holonomy group were not clarified.

The aim of this paper is to show that holonomy properties of Finsler mani-

folds can be very different from those of Riemannian manifolds. We prove that if

the holonomy group of a non-Riemannian Finsler manifold of non-zero constant

curvature with dimension n > 2 is a (finite dimensional) Lie group then its di-

mension is strictly greater than the dimension of the orthogonal group acting on

the tangent space and hence it can not be a compact Lie group. An estimate

for the dimension of the holonomy group will be obtained by investigation of a

Lie algebra of tangent vector fields on the indicatrix, algebraically generated by

curvature vector fields of the Finsler manifold. We call this Lie algebra the curva-

ture algebra and prove that its elements are tangent to one-parameter families of

diffeomorphisms contained in the holonomy group. For non-Riemannian Finsler

manifolds of constant curvature 6= 0 with dimension n > 2 we construct more

than n(n−1)
2 linearly independent curvature vector fields.

In addition, we provide an example of a left invariant singular (non y-global)

Finsler metric of Berwald-Moór-type on the Heisenberg group which has infinite

dimensional curvature algebra and hence its holonomy is not a (finite dimen-

sional) Lie group. These results give a positive answer to the following problem

formulated by S. S. Chern and Z. Shen in [2] (p. 85): Is there a Finsler manifold

whose holonomy group is not the holonomy group of any Riemannian manifold?

This question is contained also in the list of open problems in Finsler geometry

by Z. Shen [10], (March 8, 2009, Problem 34).

2. Preliminaries

Finsler manifold and its canonical connection. A Minkowski functional on a vec-

tor space V is a continuous function F , positively homogeneous of degree two,

i.e. F(λy) = λ2F(y), smooth on V̂ := V \ {0}, and for any y ∈ V̂ the symmetric

bilinear form gy : V × V → R defined by

gy : (u, v) 7→ gij(y)u
ivj =

1

2

∂2F(y + su+ tv)

∂s ∂t

∣

∣

∣

t=s=0
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is non-degenerate. If gy is positive definite for any y ∈ V̂ then F is said positive

definite and (V,F) is called positive definite Minkowski space. A Minkowski func-

tional F is called semi-Euclidean if there exists a symmetric bilinear form 〈 , 〉
on V such that gy(u, v) = 〈u, v〉 for any y ∈ V̂ and u, v ∈ V . A semi-Euclidean

positive definite Minkowski functional is called Euclidean.

A Finsler manifold is a pair (M,F) where M is an n-dimensional manifold and

F : TM → R is a function (called Finsler metric, cf. [9]) defined on the tangent

bundle of M , smooth on T̂M := TM \{0} and its restriction Fx = F|
TxM

is

a Minkowski functional on TxM for all x ∈ M . If the restriction Fx = F|
TxM

of the Finsler metric F : TM → R is positive definite on TxM for all x ∈ M

then (M,F) is called positive definite Finsler manifold. A point x ∈ M is called

(semi-)Riemannian if the Minkowski functional Fx is (semi-)Euclidean.

We remark that in many applications the metric F is smooth only on an open

cone CM⊂TM \{0}, where CM=∪x∈MCxM is a fiber bundle over M such that

each CxM is an open cone in TxM \{0}. In such case (M,F) is called singular

(or non y-global) Finsler space (cf. [9]).

Geodesics of Finsler manifolds are determined by a system of 2nd order ordi-

nary differential equation:

ẍi + 2Gi(x, ẋ) = 0, i = 1, ..., n

where Gi(x, ẋ) are locally given by

Gi(x, y) :=
1

4
gil(x, y)

(

2
∂gjl

∂xk
(x, y) − ∂gjk

∂xl
(x, y)

)

yjyk.

The associated homogeneous (nonlinear) parallel translation can be defined as

follows: a vector field X(t) = Xi(t) ∂
∂xi along a curve c(t) is said to be parallel if

it satisfies

(1) ∇ċX(t) :=
(dXi(t)

dt
+ Γij(c(t),X(t))ċj(t)

) ∂

∂xi
,

where Γij = ∂Gi

∂yj .

Horizontal distribution, curvature. The geometric structure associated to ∇ can

be given on TM in terms of the horizontal distribution. Let VTM⊂TTM denote

the vertical distribution on TM , VyTM := Kerπ∗,y. The horizontal distribution

HTM⊂TTM associated to (1) is locally generated by the vector fields

(2) l(x,y)

( ∂

∂xi

)

:=
∂

∂xi
+ Γki (x, y)

∂

∂yk
, i = 1, . . . , n.
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For any y ∈ TM we have TyTM = HyTM⊕VyTM . The projectors corresponding

to this decomposition will be denoted by hy and vy. The isomorphism l(x,y) :

TxM → HyTM defined by the formula (2) is called horizontal lift. Then a

vector field X(t) along a curve c(t) is parallel if and only if it is a solution of the

differential equation

(3)
d

dt
X(t) = lX(t)(ċ(t)).

The curvature tensor field characterizes the integrability of the horizontal distri-

bution:

(4) R(x,y)(ξ, η) := v[hξ, hη], ξ, η ∈ T(x,y)TM.

Using local coordinate system we have

R(x,y) =

(

∂Γki
∂xj

−
∂Γkj
∂xi

+ Γmi
∂Γkj
∂ym

− Γmj
∂Γki
∂ym

)

dxi ⊗ dxj ⊗ ∂

∂yk
.

The manifold is called of constant curvature c ∈ R, if for any x ∈ M the local

expression of the curvature is

(5) R(x,y) = c
(

δki gjm(y)ym − δkj gim(y)ym
)

dxi ⊗ dxj ⊗ ∂

∂yk
.

In this case the flag curvature of the Finsler manifold (cf. [2], Section 2.1 pp.

43-46) does not depend either on the point or on the 2-flag.

Indicatrix bundle. Let (M,F) be an n-dimensional Finsler manifold. The indica-

trix IxM at x ∈M is a hypersurface of TxM defined by

IxM := {y ∈ TxM ; F(y) = ±1}.

If the Finsler manifold (M,F) is positive definite then the indicatrix IxM is a

compact hypersurface in the tangent space TxM , diffeomorphic to the standard

(n − 1)-sphere. In this case the group Diff(IxM) of all smooth diffeomorphisms

of IxM is a regular infinite dimensional Lie group modeled on the vector space

X(IxM) of smooth vector fields on IxM . The Lie algebra of the infinite di-

mensional Lie group Diff(IxM) is the vector space X(IxM), equipped with the

negative of the usual Lie bracket, (c.f. A. Kriegl and P. W. Michor [6], Section

43).

We denote by (IM,π,M) the indicatrix bundle of (M,F) and by i : IM →֒
TM the natural embedding of the indicatrix bundle into the tangent bundle

(TM, π,M).
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Parallel translation and holonomy. Let (M,F) be a Finsler manifold. The parallel

translation τc : Tc(0)M → Tc(1)M along a curve c : [0, 1] → R is defined by

vector fields X(t) along c(t) which are solutions of the differential equation (1).

Since τc : Tc(0)M → Tc(1)M is a differentiable map between T̂c(0)M and T̂c(1)M

preserving the value of the Finsler metric, it induces a map

(6) τI

c : Ic(0)M −→ Ic(1)M

between the indicatrices.

Definition. The holonomy group Hol(x) of a Finsler space (M,F) at x ∈ M is

the subgroup of the group of diffeomorphisms Diff(IxM) of the indicatrix IxM

determined by parallel translation of IxM along piece-wise differentiable closed

curves initiated at the point x ∈M .

We note that the holonomy group Hol(x) is a topological subgroup of the

regular infinite dimensional Lie group Diff(IxM), but its differentiable structure

is not known in general.

3. Tangent Lie algebras to subgroups of Diff
∞(M)

Let H be a subgroup of the diffeomorphism group Diff
∞(M) of a differentiable

manifold M and let X∞(M) be the Lie algebra of smooth vector fields on M .

Definition. A vector field X ∈X∞(M) is called strongly tangent to H, if there

exists a C∞-differentiable k-parameter family {φ(t1,...,tk) ∈ H}ti∈(−ε,ε) of diffeo-

morphisms such that

(i) φ(t1,...,tk) = Id, if tj = 0 for some 1 ≤ j ≤ k;

(ii)
∂kφ(t1,...,tk)

∂t1···∂tk

∣

∣

(t1,...,tk)=(0,...,0)
= X.

A vector field X∈X∞(M) is called tangent to H, if there exists a C1-differentiable

1-parameter family {φt ∈ H}t∈(−ε,ε) of diffeomorphisms of M such that φ0 = Id

and ∂φt

∂t

∣

∣

t=0
= X.

A Lie subalgebra g of X∞(M) is called tangent to H, if all elements of g are

tangent vector fields to H.

Theorem 1. Let V be a set of vector fields strongly tangent to the group H ⊂
Diff

∞(M). The Lie subalgebra v of X∞(M) generated by V is tangent to H.

Proof. First, we investigate some properties of vector fields strongly tangent to

the group H.
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Lemma 2. Let {ψ(t1,...,th) ∈ Diff
∞(U)}ti∈(−ε,ε) be a C∞-differentiable h-parameter

family of (local) diffeomorphisms on a neighbourhood U ⊂ R
n, satisfying ψ(t1,...,th) =

Id, if tj = 0 for some 1 ≤ j ≤ h. Then

(i)
∂i1+...+ihψ(t1,...,th)

∂ti11 ... ∂tihh

∣

∣

∣

∣

∣

(0,...,0)

(x) = 0, if ip = 0 for some 1 ≤ p ≤ h;

(ii)
∂h(ψ(t1,...,th))

−1

∂t1 ... ∂th

∣

∣

∣

(0,...,0)
(x) = −∂

hψ(t1,...,th)

∂t1 ... ∂th

∣

∣

∣

(0,...,0)
(x);

(iii)
∂hψ(t1,...,th)

∂t1 ... ∂th

∣

∣

∣

(0,...,0)
(x) =

∂ψ h
√
t,...,

h
√
t)

∂t

∣

∣

t=0
(x)

at any point x ∈ U .

Proof. Assertions (i) and (ii) can be obtained by direct computation. It follows

from (i) that
∂hψ(t1,...,th)

∂t1 ... ∂th

∣

∣

∣

(0,...,0)
(x) is the first non-necessarily vanishing derivative

of the diffeomorphism family {ψ(t1,...,th)} at any point x ∈M . Using

ψ(t1,...,tk)(x) = x+ t1 · · · tk (X(x) + ω(x, t1, . . . , tk)) ,

where lim
ti→0

ω(x, t1, . . . , tk) = 0 we obtain, that

∂

∂t

∣

∣

∣

t=0
ψ( k

√
t,...,

k
√
t)(x) =

∂

∂t

∣

∣

∣

t=0

(

x+ t
(

X(x) + ω(x,
k
√
t, . . . ,

k
√
t)
)

)

= X(x),

which proves (iii). �

We remark that the assertion (iii) means that any vector field strongly tangent

to H is tangent to H.

Now, we generalize a well-known relation between the commutator of vector fields

and the commutator of their induced flows.

Lemma 3. Let {φ(s1,...,sk)} and {ψ(t1,...,tl)} be C∞-differentiable k-parameter,

respectively l-parameter families of (local) diffeomorphisms defined on a neigh-

bourhood U ⊂ R
n. Assume that φ(s1,...,sk) = Id, respectively ψ(t1,...,tl) = Id,

if some of their variables equals 0. Then the family of (local) diffeomorphisms

[φ(s1,...,sk), ψ(t1,...,tl)] defined by the commutator of the group Diff
∞(U) fulfills

[φ(s1,...,sk), ψ(t1,...,tl)] = Id, if some of its variables equals 0. Moreover

∂k+l[φ(s1...sk), ψ(t1...tl)]

∂s1 ... ∂sk ∂t1 ... ∂tl

∣

∣

∣

(0...0;0...0)
(x) = −

[

∂kφ(s1...sk)

∂s1 ... ∂sk

∣

∣

∣

(0...0)
,
∂lψ(t1...tl)

∂t1 ... ∂tl

∣

∣

∣

(0...0)

]

(x)

at any point x ∈ U .
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Proof. The group theoretical commutator
[

φ(s1,...,sk), ψ(t1,...,tl)

]

of the families

of diffeomorphisms satisfies [φ(s1,...,sk), ψ(t1,...,tl)] = Id, if some of its variables

equals 0. Hence

∂i1+...+ik+j1+...+jl [φ(s1,...,sk), ψ(t1,...,tl)]

∂si11 ... ∂sikk ∂t
j1
1 ... ∂till

∣

∣

∣

(0,...,0;0,...,0)
= 0,

if ip = 0 or jq = 0 for some index 1 ≤ p≤ k or 1 ≤ q ≤ l. The families of diffeo-

morphisms {φ(s1,...,sl)}, {ψ(t1,...,tl)}, {φ−1
(s1,...,sl)

} and {ψ−1
(t1,...,tl)

} are the constant

family Id, if some of their variables equals 0. Hence one has

∂k+l[φ(s1,...,sk), ψ(t1,...,tl)]

∂s1 ... ∂sk ∂t1 ... ∂tl

∣

∣

∣

(0,...,0; 0,...,0)
(x) =(7)

=
∂k

∂s1...∂sk

∣

∣

∣

(0...0)

(

∂l
(

φ−1
(s1...sk)◦ ψ

−1
(t1...tl)

◦ φ(s1...sk)◦ ψ(t1...tl)(x)
)

∂t1...∂tl

∣

∣

∣

(0...0)

)

=
∂k

∂s1...∂sk

∣

∣

∣

(0...0)



d(φ−1
(s1...sk))φ(s1...sk)(x)

∂lψ−1
(t1...tl)

∂t1...∂tl

∣

∣

∣

∣

∣

(0,...,0)

(φ(s1...sk)(x))



 ,

where d
(

φ−1
(s1,...,sk)

)

φ(s1,...,sk)(x)
denotes the Jacobi operator of the map φ−1

(s1,...,sk)

at the point φ(s1,...,sk)(x). Using the fact, that {φ(s1,...,sk)} is the constant family

Id, if some of its variables equals 0, and the relation d(φ−1
(0,...,0))φ(s1,...,sk)(x) = Id,

we obtain that (7) can be written as

d
“∂kφ−1

(s1...sk)

∂s1...∂sk

˛

˛

˛

(0...0)

”

x

∂lψ−1
(t1...tl)

(x)

∂t1...∂tl

˛

˛

˛

(0...0)
+ d
“∂lψ−1

(t1...tl)

∂t1...∂tl

˛

˛

˛

(0...0)

”

x

∂kφ(s1...sk)(x)

∂s1...∂sk

˛

˛

˛

(0,...,0)
.

According to assertion (ii) of Lemma 2 the last formula gives

d
“∂kφ(s1...sk)

∂s1 ... ∂sk

˛

˛

˛

(0...0)

”

x

∂lψ(t1...tl)(x)

∂t1 ... ∂tl

˛

˛

˛

(0...0)
− d
“∂lψ(t1...tl)

∂t1 ... ∂tl

˛

˛

˛

(0...0)

”

x

∂kφ(s1...sk)(x)

∂s1 ... ∂sk

˛

˛

˛

(0...0)
,

which is the Lie bracket of vector fields
[

∂lψ(t1,...,tl)

∂t1 ... ∂tl

∣

∣

∣

(0,...,0)
,
∂kφ(s1,...,sk)

∂s1 ... ∂sk

∣

∣

∣

(0,...,0)

]

: U → R
n.

�

Lemma 4. The Lie algebra v has a basis consisting of vector fields strongly

tangent to the group H.

Proof. The iterated Lie brackets of vector fields belonging to V linearly generate

the vector space v. It follows from Lemma 3 that iterated Lie brackets of vector
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fields belonging to V are strongly tangent to the group H. Hence v is linearly

generated by vector fields strongly tangent to H. �

Lemma 5. Linear combinations of vector fields tangent to H are tangent to H.

Proof. IfX and Y are vector fields tangent toH then there exist C1-differentiable

1-parameter families of diffeomorphisms {φt ∈ H} and {ψt ∈ H} such that

φ0 =ψ0 = Id,
∂

∂t

∣

∣

∣

t=0
φt = X,

∂

∂t

∣

∣

∣

t=0
ψt = Y.

Considering the C1-differentiable 1-parameter families of diffeomorphisms {φt◦ψt}
and {φct} one has

X + Y =
∂

∂t

∣

∣

∣

t=0
(φt ◦ ψt), cX =

∂

∂t

∣

∣

∣

t=0
φ(c t), for all c ∈ R

n,

which proves the assertion. �

Lemmas 2 – 5 prove Theorem 1. �

4. Curvature algebra

Definition. A vector field ξ ∈ X(IxM) on the indicatrix IxM is called a cur-

vature vector field of the Finsler manifold (M,F) at x ∈ M , if there exists

X,Y ∈ TxM such that ξ = rx(X,Y ), where

(8) rx(X,Y )(y) := R(x,y)(lyX, lyY )

The Lie subalgebra Rx :=
〈

rx(X,Y ); X,Y ∈ TxM
〉

of X(IxM) generated by

the curvature vector fields is called the curvature algebra of the Finsler manifold

(M,F) at the point x ∈M .

Since the Finsler metric is preserved by parallel translations, its derivatives

with respect to horizontal vector fields are identically zero. Using (4) we obtain,

that the derivative of the Finsler metric with respect to (8) vanishes, and hence

g(x,y)
(

y,R(x,y)(lyX, lyY )
)

= 0, for any y,X, Y ∈ TxM

(c.f. [9], eq. (10.9)). This means that the curvature vector fields ξ= rx(X,Y ) are

tangent to the indicatrix. In the sequel we investigate the tangential properties

of the curvature algebra to the holonomy group of the canonical connection ∇ of

a Finsler manifold.

Proposition 6. Any curvature vector field at x ∈M is strongly tangent to the

holonomy group Hol(x).
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Proof. Indeed, let us consider the curvature vector field rx(X,Y ) ∈ X(IxM),

X,Y ∈TxM and let X̂, Ŷ ∈X(M) be commuting vector fields i.e. [X̂, Ŷ ]=0 such

that X̂x =X, Ŷx = Y . By the geometric construction, the flows {φt} and {ψs}
of the horizontal lifts l(X̂) and l(Ŷ ) are fiber preserving diffeomorphisms of the

bundle IM for any t ∈ R, corresponding to parallel translations along integral

curves of X̂ and Ŷ respectively. Then the commutator

θt,s = [φt, ψs] = φ−1
t ◦ ψ−1

s ◦ φt ◦ ψs : IM → IM

is also a fiber preserving diffeomorphism of the bundle IM for any t, s ∈ R.

Therefore for any x ∈M the restriction

θt,s(x) = θt,s
∣

∣

IxM
: IxM → IxM

to the fiber IxM is a 2-parameter C∞-differentiable family of diffeomorphisms

contained in the holonomy group Hol(x) such that

θ0,s(x) = Id, θt,0(x) = Id, and
∂2

∂t∂s

∣

∣

∣

t=0,s=0
θt,s(x) = rx(X,Y ),

which proves that the curvature vector field rx(X,Y ) is strongly tangent to the

holonomy group Hol(x) and hence we obtain the assertion. �

Theorem 7. The curvature algebra Rx of a Finsler manifold (M,F) is tangent

to the holonomy group Hol(x) for any x ∈M .

Proof. Since by Proposition 6 the curvature vector fields are strongly tangent to

Hol(x) and the curvature algebra Rx is algebraically generated by the curvature

vector fields, the assertion follows from Theorem 1. �

Proposition 8. The curvature algebra Rx of a Riemannian manifold (M, g) at

any point x ∈ M is isomorphic to the linear Lie algebra over the vector space

TxM generated by the curvature operators of (M, g) at x ∈M .

Proof. The curvature tensor field of a Riemannian manifold given by the equa-

tion (4) is linear with respect to y ∈ TxM and hence

R(x,y)(ξ, η) = (Rx(ξ, η))
k
l y
l ∂

∂yk
,

where {Rx(ξ, η))kl } is the matrix of the curvature operator Rx(ξ, η) : TxM →
TxM with respect to the natural basis

{

∂
∂x1 |x, ..., ∂

∂xn |x
}

. Hence any curvature

vector field rx(ξ, η)(y) with ξ, η ∈ TxM has the shape rx(ξ, η)(y) = R(x,y)(ξ, η) =

(Rx(ξ, η))
k
l y
l ∂
∂yk . It follows that the flow of rx(ξ, η)(y) on the indicatrix IxM

generated by the vector field rx(ξ, η)(y) is induced by the action of the linear

1-parameter group exp tRx(ξ, η)) on TxM , which implies the assertion. �
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Remark 9. The curvature algebra of Finsler surfaces is one-dimensional.

Proof. For Finsler surfaces the curvature vector fields form a one-dimensional

vector space and hence the generated Lie algebra is also one-dimensional. �

5. Constant curvature

Now, we consider a Finsler manifold (M,F) of non-zero constant curvature.

In this case for any x ∈ M the curvature vector field rx(X,Y )(y) has the shape

(cf. (5))

r(X,Y )(y) = c
(

δijgkm(y)ym − δikgjm(y)ym
)

XjY k
∂

∂yi
, 0 6= c ∈ R.

Putting yj = gjm(y)ym we can write r(X,Y )(y) = c
(

δijyk − δikyj
)

XjY k ∂
∂yi . Any

linear combination of curvature vector fields has the form

r(A)(y) = Ajk
(

δijyk − δikyj
) ∂

∂yi
,

where A = Ajk ∂
∂xj ∧ ∂

∂xk ∈ TxM ∧ TxM is arbitrary bivector at x ∈M .

Lemma 10. Let (M,F) be a Finsler manifold of non-zero constant curvature.

The curvature algebra Rx at any point x ∈M satisfies

(9) dimRx ≥ n(n− 1)

2
,

where n = dimM .

Proof. Let us consider the curvature vector fields rjk = rx(
∂
∂yj ,

∂
∂yk )(y) at a

fixed point x ∈M . If a linear combination

Ajkrjk = Ajk(δijyk − δikyj)
∂

∂yi
= (Aikyk −Ajiyj)

∂

∂yi
= 2Aikyk

∂

∂yi

of curvature vector fields rjk with constant coefficients Ajk = −Akj satisfies

Ajkrjk = 0 for any y ∈ TxM then one has the linear equation Aikyk = 0 for

any fixed index i. Since the covector fields y1, . . . , yn are linearly independent we

obtain Ajk = 0 for all j, k ∈ {1, . . . , n}. It follows that the curvature vector fields

rjk are linearly independent for any j < k and hence dim Rx ≥ n(n−1)
2 . �

Corollary 11. Let (M, g) be a Riemannian manifold of non-zero constant curva-

ture with n = dimM . The curvature algebra Rx at any point x ∈M is isomorphic

to the orthogonal Lie algebra o(n).
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Proof. The holonomy group of a Riemannian manifold is a subgroup of the

orthogonal group O(n) of the tangent space TxM and hence the curvature alge-

bra Rx is a subalgebra of the orthogonal Lie algebra o(n). Hence the previous

assertion implies the corollary. �

Theorem 12. Let (M,F) be a Finsler manifold of non-zero constant curvature

with n = dimM > 2. If the point x ∈ M is not (semi-)Riemannian then the

curvature algebra Rx at x ∈M satisfies

(10) dimRx >
n(n− 1)

2
.

Proof. We assume dim Rx = n(n−1)
2 . For any constant skew-symmetric matrices

{Ajk} and {Bjk} the Lie bracket of vector fields Aikyk
∂
∂yi and Bikyk

∂
∂yi has

the shape Cikyk
∂
∂yi , where {Cik} is a constant skew-symmetric matrix, too.

Using the homogeneity of ghl we obtain

(11)
∂yh

∂ym
=
∂ghl

∂ym
yl + ghm = ghm

and hence
[

Amk yk
∂

∂ym
, Bih yh

∂

∂yi

]

=

(

Amk Bih
∂yh

∂ym
−Bmk Aih

∂yh

∂ym

)

yk
∂

∂yi

=
(

Bih ghmA
mk −Aih ghmB

mk
)

yk
∂

∂yi
= Cik yk

∂

∂yi
.

Particularly, for the skew-symmetric matrices Eijab = δiaδ
j
b−δibδja, a, b ∈ {1, . . . , n},

we have
[

E
ij
ab yj

∂

∂yi
, Eklcd yl

∂

∂yk

]

=
(

Eihcd ghmE
mk
ab − Eihab ghmE

mk
cd

)

yk
∂

∂yi
= Λimab,cd ym

∂

∂yi
,

where the constants Λijab,cd satisfy Λijab,cd=−Λjiab,cd=−Λijba,cd=−Λijab,dc=−Λijcd,ab.

Putting i = a and computing the trace for these indices we obtain

(12) (n− 2)(gbd yc − gbc yd) = Λlb,cd yl,

where Λlb,cd := Λilib,cd. The right hand side is a linear form in variables y1, . . . , yn.

According to the identity (12) this linear form vanishes for yc = yd = 0, hence

Λlb,cd = 0 for l 6= c, d. Denoting λ
(c)
bd := 1

n−2Λcb,cd (no summation for the index c)

we get the identities

gbd yc − gbc yd = λ
(c)
bd yc − λ

(d)
bc yd (no summation for c and d).
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Putting yd = 0 we obtain gbd
∣

∣

yd=0
= λ

(c)
bd for any c 6= d. It follows λ

(c)
bd is

independent of the index c (6= d). Defining λbd := λ
(c)
bd with some c (6= d) we

obtain from (12) the identity

(13) gbd yc − gbc yd = λbd yc − λbc yd

for any b, c, d ∈ {1, . . . , n}. We have

λcd yb−λcb yd = (gbd yc−gbc yd)−(gdb yc−gdc yb) = (λbd yc−λbc yd)−(λdb yc−λdc yb).

which implies the identity

(λcd yb − λcb yd) + (λdb yc − λdc yb) + (λbc yd − λbd yc) =

= (λcd − λdc) yb + (λdb − λbd) yc + (λbc − λcb) yd = 0.(14)

Since dimM > 2, we can consider 3 different indices b, c, d and we obtain from

the identity (14) that λbc = λcb for any b, c ∈ {1, . . . , n}.
By derivation the identity (13) we get

∂gbd

∂ya
yc −

∂gbc

∂ya
yd + gbd δ

a
c − gbc δ

a
d = λbd δ

a
c − λbc δ

a
d .

Using (11) we obtain

∂ya

∂yq

(

∂gbd

∂ya
yc −

∂gbc

∂ya
yd

)

+ gbd gcq − gbc gdq =

=
∂gbd

∂yq
yc −

∂gbc

∂yq
yd + gbd gcq − gbc gdq = λbd gcq − λbc gdq.

Since
(

∂gbd

∂yq
yc −

∂gbc

∂yq
yd

)

yb = 0

we get the identity

yd gcq − yc gdq = λbd y
b gcq − λbc y

b gdq.

Multiplying both sides of this identity by the inverse {gqr} of the matrix {gcq}
and taking the trace with respect to the indices c, r we obtain the identity

(n− 1) yd = (n− 1)λbd y
b.

Hence we obtain that gbd y
b = λbd y

b and hence gbd = λbd, which means that

the point x ∈ M is (semi-)Riemannian. From this contradiction follows the

assertion. �
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Theorem 13. Let (M,F) be a positive definite Finsler manifold of non-zero

constant curvature with n = dimM > 2. The holonomy group of (M,F) is a

compact Lie group if and only if (M,F) is a Riemannian manifold.

Proof. We assume that the holonomy group of a Finsler manifold (M,F) of non-

zero constant curvature with dimM ≥ 3 is a compact Lie transformation group

on the indicatrix IxM . The curvature algebra Rx at a point x ∈M is tangent to

the holonomy group Hol(x) and hence dimHol(x) ≥ dimRx. If there exists a not

(semi-)Riemannian point x ∈M then dimRx >
n(n−1)

2 . The (n− 1)-dimensional

indicatrix IxM at x can be equipped with a Riemannian metric which is invariant

with respect to the compact Lie transformation group Hol(x). Since the group of

isometries of an n− 1-dimensional Riemannian manifold is of dimension at most
n(n−1)

2 (cf. Kobayashi [3], p. 46,) we obtain a contradiction, which proves the

assertion. �

Since the holonomy group of a Landsberg manifold is a subgroup of the isometry

group of the indicatrix, we obtain that any Landsberg manifold of non-zero con-

stant curvature with dimension > 2 is Riemannian (c.f. Numata [8]).

We can summarize our results as follows:

Theorem 14. The holonomy group of any non-Riemannian positive definite

Finsler manifold of non-zero constant curvature with dimension > 2 does not

occur as the holonomy group of any Riemannian manifold.

6. Appendix: Finsler metric with infinite dimensional curvature

algebra

Let us consider the singular (non y-global) Finsler manifold (H3,F), where

H3 is the 3-dimensional Heisenberg group and F is a left-invariant Berwald-Moór

metric (c.f. [9], Example 1.1.5, p. 8).

The group H3 can be realized as the Lie group of matrices of the form

[

1 x1 x2

0 1 x3

0 0 1

]

,

where x = (x1, x2, x3) ∈ R
3 and hence the multiplication can be written as

(x1, x2, x3) · (y1, y2, y3) = (x1 + y1, x2 + y2 + x1y3, x3 + y3).

The vector 0 = (0, 0, 0) ∈ R
3 gives the unit element of H3. The Lie algebra

h3 = T0H3 consists of matrices of the form

[

0 a1 a2

0 0 a3

0 0 0

]

, corresponding to the tangent

vector a= a1 ∂
∂x1 + a2 ∂

∂x2 + a3 ∂
∂x3 at the unit element 0 ∈ H3. A left-invariant
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Berwald-Moór Finsler metric F is induced by the (singular) Minkowski functional

F
0
: h3 → R:

F
0
(a) :=

(

a1a2a3
)

2
3

of the Lie algebra in the following way: if y = (y1, y2, y3) is a tangent vector at

x ∈ H3, then

F(x, y) := F
0
(x−1y).

The coordinate expression of the singular (non y-global) Finsler metric F is

F(x, y) =
(

y1
(

y2−x1y3
)

y3
)

2
3 .

Since F is left-invariant, the associated geometric structures (connection, geodesics,

curvature) are also left-invariant and the curvature algebras at different points are

isomorphic. Using the notation

rx(i, j) = rx

( ∂

∂xi
,
∂

∂xj

)

, i, j = 1, 2, 3,

for curvature vector fields, a direct computation yields

rx(1, 2) =
1

4

 

5y12
y32

(x1y3
−y2)3

∂

∂y1
+
y1y32 `

3x1y3 + y2
´

(y2
−x1y3)3

∂

∂y2
+

4y1y33

(y2
−x1y3)3

∂

∂y3

!

,

rx(1, 3) =
1

4

 

y12
y3
`

6x1y3
−11 y2

´

(x1y3
−y2)3

∂

∂y1
+

4y1y32
x1
`

2x1y3
−3 y2

´

(y2
−x1y3)3

∂

∂y2
+

+
y1y32 `

7x1y3
−11 y2

´

(y2
−x1y3)3

∂

∂y3

!

,

rx(2, 3) =
1

4

 

4y13
y3

(x1y3
−y2)3

∂

∂y1
+
y12

y3
`

6x1y3
−y2

´

(y2
−x1y3)3

∂

∂y2
+

5y12
y32

(y2
−x1y3)3

∂

∂y3

!

.

The curvature vector fields r0(i, j), i, j = 1, 2, 3, at the unit element 0 ∈ H3

generate the curvature algebra r0. Let us denote Y k,m := y1k
y3m

y2k+m−1 , k,m ∈ N,

and consider the vector fields

(15) Ak,m(a1, a2, a3) = a1Y k+1,m ∂

∂y1

∣

∣

∣

0
+ a2Y k,m

∂

∂y2

∣

∣

∣

0
+ a3Y k,m+1 ∂

∂y3

∣

∣

∣

0
,

with (a1, a2, a3) ∈ R
3 and k,m ∈ N. Then the curvature vector fields r0(i, j) at

0 ∈ H3 can be written in the form

r0(1, 2) =
1

4
A

1,2(−5, 1, 4), r0(1, 3) =
1

4
A

1,1(11, 0,−11), r0(2, 3) =
1

4
A

2,1(−4,−1, 5).

Proposition 15. The curvature algebra rx at any point x ∈ M is a Lie algebra

of infinite dimension.
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Proof. Since the Finsler metric is left-invariant, the curvature algebras at dif-

ferent points are isomorphic. Therefore it is enough to prove that the curvature

algebra r0 at 0∈H3 has infinite dimension. We prove the statement by contra-

diction: let us suppose that r0 is finite dimensional.

A direct computation shows that for any (a1, a2, a3), (b1, b2, b3) ∈ R
3 one has

[

Ak,m(a1, a2, a3), Ap,q(b1, b2, b3)
]

= Ak+p,m+q(c1, c2, c3)

with some (c1, c2, c3) ∈ R
3. It follows that any iterated Lie bracket of curvature

vector fields r0(i, j), i, j = 1, 2, 3, has the shape (15) and hence there exists a

basis of the curvature algebra r0 of the form {Aki,mi(a1
i , a

2
i , a

3
i )}Ni=1, where N ∈ N

is the dimension of r0. We can assume that {(ki,mi)}Ni=1 forms an increasing

sequence, i.e. (k1,m1) ≤ (k2,m2) ≤ · · · ≤ (kN ,mN ) holds with respect to the

lexicographical ordering of N × N. We can consider the vector fields

4

11
r0(1, 3) = A1,1(1, 0,−1), 4r0(1, 2) = A1,2(−5, 1, 4), 4r0(2, 3) = A2,1(−4,−1, 5)

as the first three members of this sequence. Hence 1 ≤ kN ,mN and
[

A1,1(1, 0,−1), AkN ,mN (a1
N , a

2
N , a

3
N )
]

= A1+kN ,1+mN (c1, c2, c3)

belongs to r0, too, where c1 = (kN −mN − 1)a1
N + 2a2

N − a3
N , c2 = (kN −mN )a2

N

and c3 = a1
N − 2a2

N + (kN −mN + 1)a3
N . Since kN < 1 + kN , mN < 1 +mN we

have c1 = c2 = c3 = 0 and hence the homogeneous linear system

0 = (kN −mN − 1)a1
N + 2a2

N − a3
N ,

0 = (kN −mN )a2
N ,

0 = a1
N − 2a2

N + (kN −mN + 1)a3
N

has a solution (a1
N , a

2
N , a

3
N ) 6= (0, 0, 0). It follows that kN = mN .

Similarly, computing the Lie bracket

0 =
[

A1,2(−5, 1, 4), AkN ,kN (a1
N , a

2
N , a

3
N )
]

= A1+kN ,2+kN (d1, d2, d3)

Since kN < 1 + kN < 2 + kN we have d1 = d2 = d3 = 0 giving the homogeneous

linear system

0 =(−3kN + 5)a1
N − 15a2

N + 10a3
N ,

0 = − a1
N + (3 − 3kN )a2

N − 2a3
N ,

0 = − 4a1
N + 12a2

N − (3kN + 8)a3
N

for (a1
N , a

2
N , a

3
N ). The determinant of this system vanishes only for kN = 0 which

is a contradiction. �
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Corollary 16. The holonomy group of the Finsler manifold (H3,F) has an in-

finite dimensional tangent Lie algebra.

We remark here, that it remains an interesting open question: Is there a nonsin-

gular (y-global) Finsler manifold whose holonomy group is infinite dimensional?
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