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1. Introduction

A system of second order homogeneous ordinary differential equations (SODE),
whose coefficients functions do not depend explicitly on time, can be identified
with a special vector field, called spray.

The Finsler metrizability problem for a spray S seeks for a Finsler function
whose geodesics coincide with the geodesics of S, [9, 16, 27]. In [22] a set of necessary
and sufficient conditions for the Finsler metrizability problem were formulated in
terms of the holonomy distribution of a spray. In this work, we will use these
conditions to decide whether or not a spray is Finsler metrizable.

For the projective metrizability problem, one seeks for a Finsler function whose
geodesics coincide with the geodesics of S, up to an orientation preserving reparam-
eterization. The projective metrizability problem is known as the Finslerian version
of Hilbert’s fourth problem [1, 10]. In the general case it was Rapcsák [23] who
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obtained, in local coordinates, necessary and sufficient conditions for the projective
metrizability problem of a spray.

The two problems can be viewed as particular cases of the inverse problem
of the calculus of variation. We refer to the review articles [2, 17, 21, 24] for
various approaches of the inverse problem of the calculus of variations. One of
this approaches seeks for the existence of a multiplier matrix that satisfies four
Helmholtz conditions [24]. In [7], these four Helmholtz conditions where reformu-
lated in terms of a semi-basic 1-form. For the particular case of the Finsler metriz-
ability problem, only three of the Helmholtz conditions are independent [7, 16],
while for the projective metrizability problem, only two Helmholtz conditions are
independent, [7]. The formal integrability of these two Helmholtz conditions was
studied in [8] and it lead to some classes of sprays that are projectively metriz-
able: isotropic sprays and arbitrary sprays on 2-dimensional manifold. Within these
classes, we searched for sprays that are not Finsler metrizable. Of great help for us,
at the time, was given by Yang’s example, which was just published online, [28].
Yang shows that for a flat spray of constant flag curvature its projective class con-
tains sprays that are not projectively flat and hence cannot be Finsler metrizable.
In this work, using different techniques, we extend Yang’s example, and we show
that for an arbitrary spray its projective class contains sprays that are not Finsler
metrizable.

The structure of the paper is as follows. In Sec. 2 we give a brief introduction
of the Frölicher–Nijenhuis theory and the canonical structures one can define on
the tangent bundle of a manifold. In Sec. 3 we use the Frölicher–Nijenhuis the-
ory to introduce the main structures one need to discuss the geometry of a spray:
connection, Jacobi endomorphism, curvature, and covariant derivative. We pay a
special attention to projectively related sprays and the role of parameterization for
the corresponding metrizability problem. In Sec. 4 we discuss the Finsler metriz-
ability problem and projective metrizability problem for a spray. For projectively
related sprays we provide in Propositions 4.4 and 4.5 the relations between the
corresponding geometric structures. In Sec. 5, in Theorem 5.1, we prove that for
an arbitrary spray S, there are infinitely many values of a scalar λ such that the
projectively related spray S̃ = S − 2λFC is not Finsler metrizable, where F is a
Finsler function and C the Liouville vector field. For these values of λ, we show
how to reparameterize the geodesics of a Finsler function to transform them into
parameterized curves that cannot be the geodesics of any Finsler function.

2. Preliminaries

In this work M is a real and smooth manifold of dimension n > 1. We denote by
C∞(M), the ring of smooth functions on M , and by X(M), the C∞(M)-module of
vector fields on M . Consider Λ(M) =

⊕
k∈N

Λk(M) the graded algebra of differen-
tial forms on M . We also write Ψ(M) =

⊕
k∈N

Ψk(M) for the graded algebra of
vector-valued differential forms on M .
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In this work, we will discuss some relations between Finsler and projective
metrizability problems for a homogeneous system of second order ordinary differen-
tial equations using the Frölicher–Nijenhuis formalism associated to the system. For
systematic treatments of the Frölicher–Nijenhuis theory, we refer to [12, 14, 15]. For
a vector valued l-form A on M consider the inner product iA, which is a derivation
of degree l−1 and the Lie derivation dA, which is a derivation of degree l, related by

dA = iA ◦ d + (−1)ld ◦ iA.

When l = 0, which means that A is a vector field, we have that dA = LA, the
usual Lie derivative. For two vector valued forms A ∈ Ψl(M) and B ∈ Ψs(M), the
Frölicher–Nijenhuis bracket of A and B is the unique vector valued (l + s)-form
[A, B] on M such that

d[A,B] = dA ◦ dB − (−1)lsdB ◦ dA. (2.1)

Consider (TM, π, M) the tangent bundle of M and (T̂M := TM\{0}, π, M) the
tangent bundle with the zero section removed. There are some canonical structures
one can associate to the tangent bundle, such as the vertical distribution, Liouville
vector field, and tangent structure. We will use the Frölicher–Nijenhuis theory asso-
ciated to these structures to formulate a geometric setting for a system of SODE,
viewed as a vector field on the tangent bundle, [6, 11, 20, 26].

The vertical distribution is defined as V : u ∈ TM �→Vu = {ξ ∈ TuTM, duπ(ξ) =
0}. This distribution is n-dimensional and integrable, since it is tangent to the leaves
of the regular foliation induced by the submersion π, whose leaves are tangent spaces
to M , π−1(p) = TpM , for p ∈ M . We denote by (xi) local coordinates on the base
manifold M and by (xi, yi) the induced coordinates on TM . It follows that (yi)
are coordinates in the leaves of the foliation, while (xi) are transverse coordinates
for the foliation. An important vertical vector field is the Liouville vector field,
which locally is given by C = yi∂/∂yi. The Liouville vector field will be used to
characterize homogeneous objects on T̂M . For an integer s, we say that a vector
valued form A ∈ Ψl(T̂M) is s-homogeneous if LCA = (s−1)A. A form ω ∈ Λl(T̂M)
is s-homogeneous if LCω = sω.

The tangent structure is the (1, 1)-type tensor field J on TM , which locally
is given by J = ∂/∂yi ⊗ dxi. Tensor J satisfies J2 = 0 and KerJ = Im J = V .
The tangent structure J is integrable, which means that the Frölicher–Nijenhuis
bracket [J, J ] vanishes. Using formula (2.1) it follows that 2d2

J = d[J,J] = 0. Since
[C, J ] = −J it follows that the vector valued 1-form J is 0-homogeneous.

An important class of (vector valued) forms on T̂M that are compatible with
the structures presented above is given by semi-basic forms. A form ω on T̂M is
called semi-basic if it vanishes whenever one of its arguments is a vertical vector
field. Locally, a semi-basic k-form ω on T̂M can be written as

ω =
1
k!

ωi1···ik
(x, y)dxi1 ∧ · · · ∧ dxik .

A 1-form ω on T̂M is semi-basic if and only if iJω = ω ◦ J = 0.
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A vector valued form L on T̂M is called semi-basic if it takes vertical values and
vanishes whenever one of its arguments is a vertical vector field. In local coordinates,
a vector valued semi-basic l-form L on T̂M can be written as

L =
1
l!

Lj
i1···il

(x, y)
∂

∂yj
⊗ dxi1 ∧ · · · ∧ dxil .

A vector valued 1-form L on T̂M is semi-basic if and only if J ◦ L = 0 and iJL =
L ◦ J = 0. The tangent structure J is a vector valued semi-basic 1-form.

3. Sprays and Related Geometric Objects

A system of homogeneous second order ordinary differential equations, whose coef-
ficients functions do not depend explicitly on time, can be identified with a special
vector field on T̂M that is called a spray. In this section, we use the Frölicher–
Nijenhuis theory to associate a geometric setting to a spray, [13]. Within this
geometric setting we will discuss in the next sections the Finsler and projective
metrizability problems and some relations between these two problems.

A vector field S ∈ X(T̂M) is called a spray if JS = C and [C, S] = S. Locally,
a spray can be expressed as follows

S = yi ∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

for some functions Gi defined on domains of induced coordinates on T̂M . The
homogeneity condition, [C, S] = S, for a spray is equivalent with the fact that
functions Gi(x, y) are 2-homogeneous in the fiber coordinates. In this work, we
will consider positive homogeneity only and hence will assume that Gi(x, λy) =
λ2Gi(x, y) for all λ > 0.

A curve c : I → M is called regular if its tangent lift takes values in the slashed
tangent bundle, c′ : I → T̂M . A regular curve is called a geodesic of spray S if
S ◦ c′ = c′′. Locally, c(t) = (xi(t)) is a geodesic of spray S if

d2xi

dt2
+ 2Gi

(
x,

dx

dt

)
= 0. (3.1)

An orientation preserving reparameterization t → t̃(t) of the system (3.1) leads to a
new spray S̃ = S−2PC, [3, 25]. The scalar function P ∈ C∞(T̂M) is 1-homogeneous
and it is related to the new parameter by

d2t̃

dt2
= 2P

(
xi(t),

dxi

dt

)
dt̃

dt
,

dt̃

dt
> 0. (3.2)

Definition 3.1. Two sprays S and S̃ are projectively related if their geodesics
coincide up to an orientation preserving reparameterization.

We will refer to the map S → S̃ = S−2PC, for P ∈ C∞(T̂M) a 1-homogeneous
function, as to the projective deformation of spray S. The aim of this work is to
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show that projective deformations, or orientation preserving reparameterizations,
are rigid with respect to an important problem associated to a spray, the Finsler
metrizability problem.

A nonlinear connection is defined by an n-dimensional distribution H : u ∈
T̂M → Hu ⊂ Tu(T̂M) that is supplementary to the vertical distribution, which
means that for all u ∈ T̂M , we have Tu(T̂M) = Hu ⊕ Vu.

Every spray S induces a canonical nonlinear connection through the correspond-
ing horizontal and vertical projectors, [13]

h =
1
2
(Id−[S, J ]), v =

1
2
(Id +[S, J ]). (3.3)

Equivalently, the canonical nonlinear connection induced by a spray can be
expressed in terms of an almost product structure Γ = −[S, J ] = h − v. With
respect to the induced nonlinear connection, a spray S is horizontal, which means
that S = hS. Locally, the two projectors h and v can be expressed as follows

h =
δ

δxi
⊗ dxi, v =

∂

∂yi
⊗ δyi, where

δ

δxi
=

∂

∂xi
− N j

i (x, y)
∂

∂yj
, δyi = dyi + N i

j(x, y)dxj , N i
j(x, y) =

∂Gi

∂yj
(x, y).

For a spray S consider the vector valued semi-basic 1-form

Φ = v ◦ [S, h] = Ri
j(x, y)

∂

∂yi
⊗ dxj , Ri

j = 2
δGi

δxj
− S(N i

j) + N i
kNk

j , (3.4)

which will be called the Jacobi endomorphism.
Another important geometric structure induced by a spray S is the curvature

tensor R. It is the vector valued semi-basic 2-form

R =
1
2
[h, h] =

1
2
Ri

jk

∂

∂yi
⊗ dxj ∧ dxk, Rjk =

δN i
j

δxk
− δN i

k

δxj
. (3.5)

All geometric objects induced by a spray S inherit the homogeneity condition.
Therefore [C, h] = 0, which means that the nonlinear connection is 1-homogeneous.
Also [C, R] = 0, [C, Φ] = Φ and hence the curvature tensor R is 1-homogeneous,
while the Jacobi endomorphism Φ is 2-homogeneous.

The two vector valued semi-basic 1 and 2-forms Φ and R are related as follows:

Φ = iSR, [J, Φ] = 3R. (3.6)

Locally, the two formulae (3.6) can be expressed as follows:

Ri
j = Ri

kjy
k, Ri

jk =
1
3

(
∂Ri

k

∂yj
− ∂Ri

j

∂yk

)
. (3.7)

For the Jacobi endomorphism Φ we say that a continuous function κ ∈ C0(T̂M) is
an eigen function if there exists a non-zero horizontal vector field X ∈ X(T̂M) such
that Φ(X) = κJX . The horizontal vector field X is called an eigen vector field.
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Since the Jacobi endomorphism is 2-homogeneous, it follows that its non-zero eigen
functions are 2-homogeneous functions on T̂M . See [14, p. 58] for more details on
the eigen functions and eigen vector fields for vector valued semi-basic 1-forms on
TM . From first formula (3.6) we obtain that Φ(S) = 0 and hence κ = 0 is always an
eigen function for the Jacobi endomorphism, the corresponding eigen vector field is
the spray S. Therefore, rankΦ ≤ n − 1.

For a spray S, consider HolS ⊂ T (T̂M) the homolnomy distribution generated
by horizontal vector fields and their successive Lie brackets, [22]. If the curvature
R is non-zero, then HolS contains also vertical vector fields. From formula (3.5)
it follows that ImR ⊂ HolS , while from first formula (3.6) it follows that Im Φ ⊂
Im R.

The nonlinear connection induced by a spray S can be characterized also
using an almost complex structure. It is the (1, 1)-type tensor field on T̂M

given by

F = h ◦ [S, h] − J =
δ

δxi
⊗ δyi − ∂

∂yi
⊗ dxi.

For a spray S, consider the map ∇ : X(T̂M) → X(T̂M), given by

∇ = h ◦ LS ◦ h + v ◦ LS ◦ v = LS + h ◦ LSh + v ◦ LSv (3.8)

that will be called the dynamical covariant derivative. By setting ∇f = S(f), for
f ∈ C∞(T̂M), using the Leibniz rule, and the requirement that ∇ commutes with
tensor contraction, we extend the action of ∇ to arbitrary tensor fields and forms on
T̂M , see [7, Sec. 3.2]. The action of ∇ on semi-basic forms coincide with the semi-
basic derivation introduced in [14, Def. 4.2]. From first formula in (3.8) it follows
that ∇h = 0 and ∇v = 0, which means that ∇ preserves both the horizontal and
the vertical distributions. Moreover, we have ∇J = 0, which implies that ∇ has the
same action on horizontal and vertical vector fields. Locally, we can see this from
the following formulae:

∇ δ

δxi
= N j

i

δ

δxj
, ∇ ∂

∂yi
= N j

i

∂

∂yj
.

Using the homogeneity condition [C, S] = S and formula (3.8) it follows that ∇S =
0 and ∇C = 0.

Another geometric structure, induced by a spray, and very important for its
geometry, is the Berwald connection. It is a linear connection on T̂M , and it can
be defined as follows D : X(T̂M) × X(T̂M) → X(T̂M),

DXY = v[hX, vY ] + h[vX, hY ] + J [vX, (F + J)Y ] + (F + J)[hX, JY ]. (3.9)

Using formula (3.9), it follows that Dh = 0 and Dv = 0, which means that the
Berwald connection preserves both the horizontal and vertical distribution. More-
over, we have DJ = 0, which implies that the Berwald connection has the same
action on horizontal and vertical vector fields. Locally, we can see this from the
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following formulae:

D δ

δxi

δ

δxj
=

∂Nk
i

∂yj

δ

δxk
, D δ

δxi

∂

∂yj
=

∂Nk
i

∂yj

∂

∂yk
,

D ∂

∂yi

δ

δxj
= 0, D ∂

∂yi

∂

∂yj
= 0.

Using the fact that the spray S is horizontal, formulae (3.8) and (3.9) it follows
that ∇ = DS . Therefore, DSS = 0 which means that integral curves of the spray S

are geodesics of the Berwald connection.

4. Projectively Related Sprays

In this section, we discuss the two inverse problems of the calculus of variations that
one can associate to a spray: The Finsler metrizability problem and the projective
metrizability problem. Our aim, in the next section, will be to search for sprays that
are not Finsler metrizable, within the projective class of a given spray. For this we
will need some formulae that relate the geometric structures of two projectively
related sprays: connections, Jacobi endomorphisms, and curvatures.

Definition 4.1. By a Finsler function we mean a continuous function F : TM → R

satisfying the following conditions:

(i) F is smooth on T̂M ;
(ii) F is positive on T̂M and F (x, 0) = 0;
(iii) F is positively homogeneous of order 1, which means that F (x, λy) = λF (x, y),

for all λ > 0 and (x, y) ∈ TM ;
(iv) The metric tensor with components

gij(x, y) =
1
2

∂2F 2

∂yi∂yj
(4.1)

has rank n.

Conditions (ii) and (iv) of Definition 4.1 imply that the metric tensor gij

of a Finsler function is positive definite, [18]. The regularity condition (iv) of
Definition 4.1 is equivalent to the fact that the Poincaré–Cartan 2-form of F 2,
ωF 2 = ddJF 2, is non-degenerate and hence it is a symplectic structure. Therefore,
the equation

iSddJF 2 = −dF 2 (4.2)

uniquely determine a vector field S on T̂M that is called the geodesic spray of the
Finsler function.

Definition 4.2. A spray S is called Finsler metrizable if there exists a Finsler
function F that satisfies the Eq. (4.2).

Necessary and sufficient criteria for the Finsler metrizability problem for a spray
S where formulated in [22] using the holonomy distribution HolS . We will use such
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criteria, in the next section, to construct classes of sprays that are not Finsler
metrizable.

One can reformulate condition (iv) of Definition 4.1 in terms of the Hessian of
the Finsler function F as follows. Consider

hij(x, y) = F
∂2F

∂yi∂yj
(4.3)

the angular metric of the Finsler function. Using the homogeneity of the Finsler
function F , the metric tensor gij and the angular tensor hij are related by

gij = hij +
∂F

∂yi

∂F

∂yj
= hij +

1
F 2

yiyj . (4.4)

In the above formula (4.4), we did use the following calculation, which follows from
the homogeneity of the Finsler function F ,

yi := gikyk = F
∂F

∂yi
=

1
2

∂F 2

∂yi
. (4.5)

Throughout this work, we will raise and lower indices using the metric tensor gij .
For the covector field with components yi, we show now that its horizontal covariant
derivative, with respect to the Berwald connection, vanishes:

yi|j :=
δyi

δxj
− ∂Nk

i

∂yj
yk = 0. (4.6)

Indeed, we have [
δ

δxi
,

∂

∂yj

]
=

∂Nk
i

∂yj

∂

∂yk
.

If we apply both sides of this formula to F 2, use formula (4.5), and the fact that
dhF 2 = 0 we obtain formula (4.6).

We consider, the components of the (1, 1)-type tensor field

hi
j := gikhkj = δi

j −
1

F 2
yiyj. (4.7)

Metric tensor gij has rank n if and only if angular tensor hij has rank (n − 1),
see [19]. Therefore, the regularity condition of the Finsler function F is equivalent
with the fact that the Poincaré-Cartan 2-form ωF = ddJF has rank 2n − 2.

Definition 4.3. A spray S is projectively metrizable if it is projectively related to
the geodesic spray of a Finsler function.

Equivalently, a spray S is projectively metrizable if its geodesics coin-
cide with the geodesics of a Finsler function, up to an orientation preserving
reparameterization.

Next proposition, provides the relation between the geometric structures of two
projectively related sprays. We will specialize these relations in Proposition 4.5,
when one of the spray is the geodesic spray of a Finsler function.

1250099-8
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Proposition 4.4. Consider S and S̃ two projectively related sprays, and let P ∈
C∞(T̂M) be the 1-homogeneous function such that S̃ = S−2PC. The corresponding
connections, Jacobi endomorphisms, and curvature tensors of the two sprays are
related by the following formulae:

Γ̃ = Γ − 2(PJ + dJP ⊗ C),

h̃ = h − PJ − dJP ⊗ C,

ṽ = v + PJ + dJP ⊗ C,

Φ̃ = Φ + (P 2 − S(P ))J + (2dhP − PdJP −∇dJP ) ⊗ C,

R̃ = R + dJdhP ⊗ C + (PdJP − dhP ) ∧ J.

(4.8)

Proof. Since S̃ = S − 2PC it follows Γ̃ = −[S̃, J ] = −[S − 2PC, J ] = −[S, J ] +
2[PC, J ]. First formula in (4.8) follows, using the homogeneity condition [C, J ] =
−J . Next two formulae are direct consequences of the first one, using the fact that
Γ̃ = h̃ − ṽ and Γ = h − v.

For the fourth formula, we have to relate Φ̃ = ṽ ◦ [S̃, h̃] and Φ = v ◦ [S, h].
Using the homogeneity conditions of the involved geometric objects: C(P ) = P ,
[C, S] = S, [C, h] = 0, and [C, J ] = −J it follows that

[S̃, h̃] = [S, h] − PJ + PΓ − LSdJP ⊗ C + dJP ⊗ C

+ 2dhP ⊗ C − 4PdJP ⊗ C.

Now, if we compose to the left both terms in the above formula by ṽ and use third
formula in (4.8) we obtain fourth formula in (4.8). In this formula we used the fact
that the action of the dynamical covariant derivative ∇ on the semi-basic 1-form
dJP is given by

∇dJP = LSdJP − dvP.

For the last formula in (4.8), using the relation between Φ̃ and Φ, we obtain

3R̃ = [J, Φ̃]

= 3R + dJ (P 2 − S(P )) ∧ J + [J, (2dhP − PdJP −∇dJP ) ⊗ C]. (4.9)

Using the fact that ω = 2dhP −PdJP −∇dJP is a semi-basic form, it follows that

[J, ω ⊗ C] = dJω ⊗ C − ω ∧ J.

In view of these, formula (4.9) becomes

3R̃ = 3R + dJω ⊗ C + (−ω + dJ (P 2 − S(P ))) ∧ J. (4.10)

We compute now dJω. We have

dJω = 2dJdhP − dJ(PdJP ) − dJ∇dJP.
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Using the commutation formula

∇dJ − dJ∇ = −dh + 4iR (4.11)

and the fact that dJ (PdJP ) = 0 it follows that dJω = 3dJdhP . Finally, we have

−ω + dJP 2 − dJS(P ) = −2dhP + 3PdJP + ∇dJP − dJ∇P

= −3dhP + 3PdJP.

If we replace these formulae in (4.10) we obtain that last formula in (4.8) is true.

Locally, fourth formula in (4.8) reads as follows

R̃i
j = Ri

j + (P 2 − S(P ))δi
j +

(
2

δP

δxj
− P

∂P

∂yj
−∇

(
∂P

∂yj

))
yi, (4.12)

which is formula (12.17) in [25, p. 176].
In our work, we will be interested in the particular case when the projective

factor is of the form P = λF , where F is a Finsler function and λ is a nonzero real
number.

Proposition 4.5. Consider F a Finsler function and let S be its geodesic spray.
For a nonzero constant λ, consider the projectively related spray S̃ = S − 2λFC.
The corresponding connections, Jacobi endomorphisms, and curvature tensors of
the two sprays are related by the following formulae:

Γ̃ = Γ − 2λ(FJ + dJF ⊗ C),

h̃ = h − λ(FJ + dJF ⊗ C),

ṽ = v + λ(FJ + dJF ⊗ C), (4.13)

Φ̃ = Φ + λ2(F 2J − FdJF ⊗ C),

R̃ = R + λ2FdJF ∧ J.

Proof. First three formulae in (4.13) follow from first three formulae in (4.8) by
replacing P = λF .

Since S is the geodesic spray for the Finsler function F , using Eq. (4.2) it follows
that S(F ) = 0 and hence S(P ) = 0. Moreover, we have dhF = 0 and using the
commutation formula (4.11) it follows that ∇dJF = 0. Therefore, for P = λF , last
two formulae in (4.8) imply the last two formulae in (4.13).

Locally, fourth formula in (4.13), can be expressed, using formula (4.7), as
follows:

R̃i
j = Ri

j + λ2F 2

(
δi
j −

1
F 2

yiyj

)
= Ri

j + λ2F 2hi
j . (4.14)

Formula (4.14) corresponds to formula (4.12) for the particular case when the pro-
jective factor is P = λF .

1250099-10



2nd Reading

July 20, 2012 9:10 WSPC/S0129-167X 133-IJM 1250099

Projective and Finsler Metrizability: Parameterization-Rigidity of the Geodesics

5. Parameterization-Rigidity of the Geodesics
of a Finsler Space

In this section, we consider S the geodesic spray of a Finsler function F . We show
that the most natural projective deformation S → S̃ = S − 2λFC, λ ∈ R leads to
non-Finsler metrizable sprays, for almost all values of λ. Consequently, we obtain
that the projective class of an arbitrary spray contains infinitely many sprays that
are not Finsler metrizable. This result shows how rigid is the Finsler metrizablility
property with respect to certain reparameterization of the geodesics. We provide
the corresponding reparameterization of the geodesics of a Finsler function F that
transforms them into parameterized curves that cannot be the geodesics of any
Finsler function.

Theorem 5.1. Let S be the geodesic spray associated to the Finsler function F .
Then the projective deformation S̃ = S − 2λFC of S is not Finsler metrizable for
almost every value of λ ∈ R.

Proof. Since S is the geodesic spray of the Finsler function F , it satisfies the
Eq. (4.2). It follows that all Helmholtz conditions are satisfied for the spray S,
[7], and hence the Jacobi endomorphism satisfies dΦdJF 2 = 0. In coordinates, this
Helmholtz condition reads as follows: gikRk

j = gjkRk
i . This symmetry condition

implies that the Jacobi endomorphism is diagonalizable. We denote by r = rankΦ,
where r ∈ {0, . . . , n− 1} and κα ∈ C0(T̂M), α ∈ {1, . . . , n− 1}, the eigen functions
of Φ such that the first r eigen functions are not zero.

We fix a point (x0, y0) ∈ T̂M and choose λ ∈ R∗

λ2F 2 + κα �= 0, ∀α ∈ {1, . . . , n − 1}, (5.1)

at the point (x0, y0). We remark that almost every λ ∈ R∗ can be chosen, since only
a finite number is not allowed. Due to the continuity of the Finsler function F and
the eigen functions κα, it follows that there is an open subset U ⊂ T̂M , (x0, y0) ∈ U ,
such that condition (5.1) is satisfied everywhere on U . For the remaining of the
proof, all geometric objects will be considered restricted to U .

For the chosen value of λ, we consider the projectively related spray S̃ = S −
2λFC, with the corresponding projectors h̃, ṽ, and Jacobi endomorphism Φ̃. They
are related to the geometric structures induced by spray S through formulae (4.13).
We will prove first that rank Φ̃ = n − 1 on U . Consider the vector fields

hi = hj
i

δ

δxj
=

δ

δxi
− 1

F 2
yiS, vi = Jhi = hj

i

∂

∂yj
=

∂

∂yi
− 1

F 2
yiC. (5.2)

Since rankhi
j = n− 1 and hi

jy
j = 0 it follows that Hn−1 := Span{h1, . . . , hn} is an

(n−1)-dimensional horizontal sub-distribution, orthogonal to S. Similarly, it follows
that Vn−1 := Span{v1, . . . , vn} is an (n − 1)-dimensional vertical sub-distribution,
orthogonal to C. The above mentioned orthogonality is considered with respect to

1250099-11



2nd Reading

July 20, 2012 9:10 WSPC/S0129-167X 133-IJM 1250099

I. Bucataru & Z. Muzsnay

the Sasaki-type metric tensor on U :

G = gijdxi ⊗ dxj + gijδy
i ⊗ δyj . (5.3)

Therefore, the tangent space to U can be decomposed into four subspaces, orthog-
onal to each other:

TU = Hn−1 ⊕ Span{S} ⊕ Vn−1 ⊕ Span{C}. (5.4)

From formula (5.4) it follows that JHn−1 = Vn−1. Above decomposition, with the
corresponding distributions and some induced foliations, was studied by Bejancu
and Farran in [5].

An important property of the vertical sub-distribution Vn−1 is the following:
For any Y ∈ Vn−1 it follows Y (F ) = 0. Indeed, using formulae (4.5) and (5.2) it
follows that for any vi ∈ Vn−1 we have vi(F ) = 0.

We prove now that the vertical sub-distribution Vn−1 is integrable. Since vi, vj ∈
Vn−1 ⊂ V and the vertical distribution V is integrable, it follows that [vi, vj ] ∈ V =
Vn−1 ⊕ Span{C} and hence

[vi, vj ] = Al
ijvl + BijC, (5.5)

for some locally defined functions Al
ij and Bij on U . If we apply the vector fields in

both sides of formula (5.5) to the Finsler function F , and use the fact that vl(F ) = 0
and C(F ) = F , we obtain 0 = BijF . This implies that Bij = 0 and from formula
(5.5) it follows that vertical sub-distribution Vn−1 is integrable.

For the Jacobi endomorphism Φ, consider Xα ∈ Hn−1, the eigen vector
fields corresponding to the eigen functions κα, α ∈ {1, . . . , n − 1}, which means
that Φ(Xα) = καJXα. Since Xα ∈ Hn−1 it follows JXα ∈ Vn−1 and there-
fore dJF (Xα) = (JXα)F = 0. Now, using fourth formula (4.13) it follows that
Φ̃(Xα) = (λ2F 2 + κα)JXα, for all α ∈ {1, . . . , n − 1}. With the choice (5.1) we
made for λ it follows that Im Φ̃ = Vn−1 and hence rank Φ̃ = n − 1 on U .

We will prove now that S̃ is not Finsler metrizable on U by showing that its
holonomy distribution HoleS , contains the Liouville vector field C. We have that
H̃ = Im h̃ ⊂ HoleS and Vn−1 = Im Φ̃ ⊂ HoleS , which implies h̃i = h̃(hi) ∈ HoleS

and vi ∈ Im Φ̃ ⊂ HoleS . Therefore we have [h̃i, vj ] ∈ HoleS . We will show that one
can choose a pair of indices (i, j) such that the vector field [h̃i, vj ] has a component
along the Liouville vector field.

Since h̃[h̃i, vj ] ∈ HoleS it follows that ṽ[h̃i, vj ] ∈ HoleS . From second formula
(4.13) it follows that h̃i = hi − λFvi and hence we have

ṽ[h̃i, vj ] = ṽ[hi − λFvi, vj ] = ṽ[hi, vj ] − λF [vi, vj ]. (5.6)

For the last equality in the above formula we did use that vj(F ) = 0 and hence
ṽ[λFvi, vj ] = λF ṽ[vi, vj ]. From third formula (4.13) it follows that the restrictions
of v and ṽ to the vertical distribution V coincide. Since vi, vj ∈ Vn−1 and Vn−1 is
integrable it follows that [vi, vj ] ∈ Vn−1. Therefore, ṽ[vi, vj ] = v[vi, vj ] = [vi, vj ] ∈
Vn−1 ⊂ HoleS , and using formula (5.6) it follows that ṽ[hi, vj ] ∈ HoleS .
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Using third formula (4.13), we obtain

ṽ[hi, vj ] = v[hi, vj ] + λFJ [hi, vj ] + λ(J [hi, vj ])(F )C ∈ HoleS . (5.7)

Using formula (3.9) it follows that the first two vector fields in the right-hand side
of the above formula can be expressed in terms of the Berwald connection as follows

v[hi, vj ] = Dhivj = hl
ih

k
j|l

∂

∂yk
, J [hi, vj ] = −Dvj vi = vi(hk

j )
∂

∂yk
. (5.8)

In formula (5.8), hk
j|l represents the horizontal covariant derivative of the (1, 1)-type

tensor field hk
j with respect to the Berwald connection:

hk
j|l =

δhk
j

δxl
+ hi

j

∂Nk
i

∂yl
− hk

i

∂N i
j

∂yl
.

We show that Dhivj ∈ Vn−1 ⊂ HoleS . Since the Berwald connection preserves
the vertical distribution it follows that Dhivj ∈ V and in view of the orthogonal
decomposition V = Vn−1 ⊕ Span{C}, it remains to show that G(Dhivj , C) = 0.
From first formula (5.8) and formula (5.3) we have

G(Dhivj , C) = G

(
hl

ih
k
j|l

∂

∂yk
, ys ∂

∂ys

)
= hl

ih
k
j|lgksy

s = hl
ih

k
j|lyk = 0. (5.9)

For the last equality in formula (5.9) we did use that hk
j yk = 0 and hence its

horizontal covariant derivative with respect to the Berwald connection is zero as
well: 0 = (hk

j yk)|l = hk
j|lyk + hk

j yk|l = hk
j|lyk, since due to formula (4.6) we have

yk|l = 0.
Let us evaluate now, the vector field J [hi, vj ] using the second formula (5.8).

Using formula (4.7), we have

J [hi, vj ] = −Dvj vi =
1

F 2
yivj +

1
F 2

hijC. (5.10)

Using formula (5.10) and the fact that v[hi, vj ] ∈ HoleS , it follows that the last two
terms in formula (5.6) can be written as follows

HoleS  λFJ [hi, vj ] + λ(J [hi, vj ])(F )C =
λ

F
yivj +

2λ

F
hijC, (5.11)

which implies that hijC ∈ HoleS for all pairs of indices (i, j). Since rank(hij) =
n − 1 and n > 1 it follows that there is at least one pair (i, j) such that hij �=
0. Therefore C ∈ HoleS and according to Theorem 2 of [22] this proves that the
restriction of S̃ to U is not Finsler metrizable and hence the spray S̃ is not Finsler
metrizable.

A direct consequence of the Theorem 5.1 is given by the following corollary.

Corollary 5.2. For any spray its projective class contains infinitely many sprays
that are not Finsler metrizable.
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In the case when the geodesic spray S of a Finsler function F has constant flag
curvature κ [4], it follows that all eigen functions of the Jacobi endomorphism are
κα = κF 2, α ∈ {1, . . . , n − 1}. In this case, the condition (5.1) becomes

κ + λ2 �= 0. (5.12)

It follows that one can choose λ ∈ R∗ such that condition (5.12) and hence condition
(5.1) is satisfied everywhere on T̂M .

The particular case when the geodesic spray S of a Finsler function F is flat and
has constant flag curvature κ was studied by Yang in [28] using different techniques
but the same condition (5.12). Yang’s example has been used also in [8] to provide
examples of sprays that are projectively metrizable and not Finsler metrizable.

We will show now how to reparameterize the geodesics of a Finsler function
F such that the new parameterized curves are not the geodesics for any Finsler
function. Consider F a Finsler function with geodesic equations given by the sys-
tem (3.1), where t is the arc length of the Finsler function F . Consider λ ∈ R

∗

satisfying the condition (5.12). According to Theorem 5.1 we have to search for a
new parameterization t̃ that satisfies Eq. (3.2). It follows that the reparameteriza-
tion t̃ = c1t+c2e

2λt of the system (3.1) leads to a system of second order differential
equations that is not Finsler metrizable, for c1, c2 real constants such that c1 > 0
and λc2 > 0.
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