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Abstract. Recently, we developed a method for the study of holonomy properties of non-
Riemannian Finsler manifolds and obtained that the holonomy group cannot be a compact
Lie group if the Finsler manifold of dimension > 2 has non-zero constant flag curvature.
The purpose of this paper is to move further, exploring the holonomy properties of projec-
tively flat Finsler manifolds of non-zero constant flag curvature. We prove in particular that
projectively flat Randers and Bryant—Shen manifolds of non-zero constant flag curvature
have infinite dimensional holonomy group.
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1 Introduction

In the recent papers [9,10] we have developed a method for the study of holonomy
properties of non-Riemannian Finsler manifolds. Particularly, we obtained in [10],
that the holonomy group cannot be a compact Lie group if the Finsler manifold of
dimension > 2 has non-zero constant flag curvature. We described the first exam-
ple of a Finsler manifold with infinite dimensional holonomy group, namely a left
invariant Berwald—Mo6r metric on the 3-dimensional Heisenberg group.

The purpose of the present paper is to investigate families of Finsler mani-
folds with interesting geometric structure which have infinite dimensional holon-
omy group. From the viewpoint of non-Euclidean geometry the most important
Riemann—Finsler manifolds are the projectively flat spaces of constant flag curva-
ture. We will turn our attention to non-Riemannian projectively flat Finsler mani-
folds of non-zero constant flag curvature.

There are many examples of non-Riemannian projectively flat Finsler manifolds
of non-zero constant flag curvature. Their classification is related to the smooth
version of Hilbert’s Fourth Problem: characterize (not necessarily reversible) dis-
tance functions on an open subset in R” such that straight lines are the short-
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est paths. The famous Beltrami’s theorem states that the locally projectively flat
Riemannian manifolds are exactly the manifolds of constant curvature. But for
Finsler manifolds Beltrami’s theorem is not true. In fact, any projectively flat
Finsler manifold has scalar flag curvature, but there are Finsler manifolds of con-
stant flag curvature, which are not projectively flat. The constancy of the flag cur-
vature is a very restrictive property for complete projectively flat Finsler manifolds,
cf. [1-3,5-7], but there are many non-complete examples defined on open domains
in R”, constructed and studied by Z. Shen, cf. [4, 12-15].

We will consider the following classes of locally projectively flat non-Riemann-
ian Finsler manifolds of non-zero constant flag curvature:

(1) Randers manifolds (cf. [15]),

(i) manifolds having a 2-dimensional subspace in the tangent space at some
point, on which the Finsler norm is an Euclidean norm (cf. [14, Theorem 1.2,
p. 1715]),

(iii)) manifolds having a 2-dimensional subspace in the tangent space at some
point, on which the Finsler norm and the projective factor are linearly depen-
dent (cf. [14, Example 7.1, pp. 1725-1727]).

The first class consists of positively complete Finsler manifolds of negative cur-
vature, the second class contains a large family of (not necessarily complete)
Finsler manifolds of negative curvature, and the third class contains a large fam-
ily of not necessarily complete Finsler manifolds of positive curvature. The met-
rics belonging to these classes can be considered as (local) generalizations of a
one-parameter family of complete Finsler manifolds of positive curvature defined
on S2 by R. Bryant in [1,2] and on S” by Z. Shen in [14, Example 7.1]. We
prove that the holonomy group of Finsler manifolds belonging to these classes and
satisfying some additional technical assumption is infinite dimensional.

2 Preliminaries

Throughout this article, M denotes a C°°-manifold, X°°(M) denotes the vec-
tor space of smooth vector fields on M and Diff* (M) denotes the group of all
C°°-diffeomorphism of M with the C *°-topology.

Spray manifold, horizontal distribution, canonical connection, parallelism

A spray on a manifold M is a smooth vector field § on TM := TM \ {0} ex-
pressed in a standard coordinate system (x’, y') on TM as

;0 ; 0
_ 1 _ 1
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where T (x, y) are local functions on TM satisfying
I(x,Ay) = AT (x,y), A>0.

A manifold M with a spray § is called a spray manifold (M, §).
A curve c(t) is called geodesic if its coordinate functions ¢’ (¢) satisfy the dif-
ferential equations
&) + T (c(t),¢é(t) =0, (2.2)
where the functions 'V (x, y) are called the geodesic coefficients of the spray man-
ifold (M, &§). The associated homogeneous (nonlinear) parallel translation

TC(O)M — Tc(l)M

along a curve c(¢) is defined by parallel vector fields X(z) = X' (t) - along c(?)
satisfying

bt = (L0 o

Let (TM,n, M) and (T TM, t, TM) denote the first and the second tangent bun-
dle of the manifold M, respectively. The horizontal distribution XTM C TTM
associated to the spray manifold (M, &) is the image of the horizontal lift which is
a vector space isomorphism [y, : Tx M — H,TM forevery x € M andy € Tx M

defined by ; ;
_ rk
ly (W) oo Li (s y)— (2.4)

Then a vector field X(¢) along a curve c(t) is parallel 1f and only if it is a solution
of the differential equation %X (1) = Ix)(¢(1)).
If VIM C TTM is the vertical distribution on 7'M defined by

+ Ti(c(t). X(1))¢/ (z)) 9 =0, Tj:= (2.3)

VyTM := Ker my y,

then we have the decomposition 7),TM = #,TM & V,TM.

Let (VTM ., TM ) be the vertical bundle over ™ :=TM \ {0}. We denote
by 5E°°(TM ) the vector space of smooth sections of the bundle ('VTM o TM ).
The horizontal covariant derivative of a section £ € 5A€°°(TM ) by a vector field
X € X°°(M) is given by Vx¢& := [h(X), E]. We can express the horizontal co-
variant derivative of the section

. 0
E(x,y) = SI(X,)/)W

by the vector field
X(x) =
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as
JE (x, 9
Vxé = (% — FJ’-‘(x,y) g (x. ) + Flk(x J’)ék(x Y)) a0 (2.5)
X y dy
where 5 -(
. Ii(x,y)
[p(x,y) = JaT

Let (#*TM, 7w, ™ ) be the pull-back bundle of (f"M , T, M) by the map
7:TM — M.

Clearly, the mapping
i 0 i J £ *
X E— ) x,y.8—):VTM - 2*TM (2.6)
ayt ox?

is a canonical bundle isomorphism. In the following we will use the isomorphism
(2.6) for the identification of these bundles.

The curvature tensor field Ky ) = k(x y)dx/ @ dxk ® 57 on the pull-
back bundle (7*TM, 7, TM ) of the spray manifold (M, &) in a local coordinate
system is given by

o} (x.y)  ATL(x,y)
axk dx/ Q.7
+ 77 (6, )Ty (6. 3) = T (0, )T (3, ).

Kjl:k(x’ J’) =

Finsler manifold, canonical connection, Berwald connection

A Finsler manifold is a pair (M, ¥ '), where M is an n-dimensional smooth mani-
foldand ¥ : TM — [0, c0) is a continuous function, smooth on M :=TM \{0},
such that its restriction ¥y = ¥ |, p for any x € M is a positively 1-homogene-
ous function and the symmetric bilinear form

192F2(y + su + tv)
2 ds ot f=s5=0

gx,y - (U, v) > gl‘j(x,y)uivj =

is positive definite at every y € M.

We call ¥ the Finsler function, gx,, the metric tensor of the Finsler mani-
fold (M, ¥). The Finsler function is called absolutely homogeneous at x € M if
Fr(Ay) = |A|Fx(y). If F is absolutely homogeneous at every x € M, then the
Finsler manifold (M, ¥) is reversible.
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The associated spray is locally given by § = y’ % —2G(x, y)%, where the
functions

. 1 0o .
G (x.y) = Lgil(x. y)( g”( )—%(m))yfyk 2.8)

are the geodesic coefficients of the Finsler manifold (M, ¥). The correspond-
ing homogeneous (nonlinear) parallel translation 7. : TeoyM — Te(1)M along
a curve c¢(¢) is called the canonical homogeneous (nonlinear) parallel translation
of the Finsler manifold (M, ). The horizontal covariant derivative with respect
to the spray associated to the Finsler manifold (M, ¥) is called the horizontal
Berwald covariant derivative. If we define

0
Vi = (a"’, G (x, ) 220)

I (x,y) ) xi

ayk
for a smooth function ¢ : ™ — R, the horizontal Berwald covariant derivation
(2.5) can be extended to the tensor bundle over (7*TM, 7, TM).

The Riemannian curvature tensor field R = R’ e y)dx/ ® dxk ® —, on
the pull-back bundle (7*TM, 7, T M) is

0Gj(x,y) 3G} (x.y)
dxk ax/
+ G (%, )G (X, ¥) — G (x, )Gy (x, ).

The tensor field R characterizes the integrability of the horizontal distribution as-
sociated with the (nonlinear) parallel translation. Namely, R = 0 if and only if the
horizontal distribution is integrable and hence the parallel translation is path-inde-
pendent on simply connected manifolds.

The manifold is called of constant flag curvature A € R if for any x € M the
local expression of the Riemannian curvature is

j’k(x7y) =

R (. y) = A8 gim(x. )™ = 8 iem (x. )¥™). (2.9)

In this case the flag curvature of the Finsler manifold does not depend on the point,
nor on the 2-flag (cf. [4, Section 2.1, pp. 43—46]).

A Finsler function ¥ on an open subset D C R” is said to be projectively flat if
all geodesic curves are straight lines in D. A Finsler manifold is said to be locally
projectively flat if at any point there is a local coordinate system (x?) in which %
is projectively flat.

Let (x!,...,x™)be alocal coordinate system on M corresponding to the canon-
ical coordinates of the Euclidean space which is projectively related to (M, ¥).
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Then the geodesic coefficients (2.8) are of the form

G'(x,y) = P(x,y)y',

Gi =22\ 4 s
k ayk k> (2.10)
. 2P . AP . AP .

G, = —y' + —68 + —6..
kl 3yk3yly ayk l ay! k

where J is a 1-homogeneous function in y, called the projective factor of (M, ¥').
Clearly, any 2-plane in this coordinate system (x!,...,x") is a totally geodesic
submanifold of (M, ¥).

Remark 2.1. The canonical homogeneous parallel translation
Tc - Tc(o)M — Tc(l)M

in a locally projectively flat Finsler manifold (M, ¥) along curves c(¢) contained
in the domain of the coordinate system (x!, ..., x") are linear maps if and only if
the projective factor & (x, y) is a linear function in y. Hence the non-linearity in y
of the projective factor implies that the locally projectively flat Finsler manifold is
non-Riemannian.

Projectively flat Randers manifolds with constant flag curvature were classified
by Z. Shen in [15]. He proved that any projectively flat Randers manifold (M, ')
with non-zero constant flag curvature has negative curvature. These metrics can be
normalized by a constant factor so that the curvature is —%. In this case (M, ¥) is
isometric to the Finsler manifold defined by the metric function

VIR = (xPly 2= (x.y)?) (x.y) (a.y)
o 1—|x|? i(l—|x|2+1+(a,x)) 21D

on the unit ball D C R”, where a € R” is any constant vector with |a| < 1. Ac-
cording to [4, Lemma 8.2.1, p. 155] the projective factor & (x, y) can be computed
by the formula

F(x.y)

1 0¥
Px,y)=—=—".
) = 7 ot
An easy calculation yields

3F i (VP =(xPyP =) £ 0\ ([ fay) )
5= ( ) - (k)

dx! 1—|x|? 1+ {a,x
hence
> LV = (X2 = (x,0)2) + (x,9) {a,y)
P(x,y) = 5( P 1T (a’x)). (2.12)
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Holonomy group

Let (M, ¥) be an n-dimensional Finsler manifold. We denote by (d M, 7, M) the
indicatrix bundle of (M, ¥'), the indicatrix d,, M at x € M is the compact hyper-
surface

dxM :={y € TxM : ¥ (y) =1},

of Ty M diffeomorphic to the standard (n — 1)-sphere.

The homogeneous (nonlinear) parallel translation ¢ : ;)M — T, ;)M along
acurvec : [0, 1] — M preserves the value of the Finsler function, hence it induces
amap 7¢ : Jo0)M —> J.1)M between the indicatrices.

The group of diffeomorphisms Diff>° (M) of the indicatrix 4, M is a regular
infinite dimensional Lie group modeled on the vector space X°°(JdM ). In this
category of groups one can define the exponential mapping and the group struc-
ture is locally determined by the Lie algebra. The Lie algebra of Diff® (4 M) is
X°(dx M) equipped with the negative of the usual Lie bracket.

The holonomy group Holy (M) of a Finsler space (M, ¥') at a point x € M is
the subgroup of the group of diffeomorphisms Diff> (dx M) of the indicatrix d, M
generated by (nonlinear) parallel translations of J, M along piece-wise differen-
tiable closed curves initiated at the point x € M. The holonomy groups at different
points of M are isomorphic.

If the Riemannian curvature R of (M, F') vanishes identically, then the (non-
linear) parallel translation is path-independent and hence the holonomy group is
trivial.

Infinitesimal holonomy algebra

A vector field § € X°°(d M) on the indicatrix bundle d M is a curvature vector
field of the Finsler manifold (M, %) if there exist vector fields X,Y € X°°(M)
on M suchthat{ = R(X,Y).

If x € M is fixed and X,Y € Tx M, then the vector field y — R(X,Y)(x, y)
on M is a curvature vector field at x (see [10]).

The Lie algebra (M) of vector fields generated by the curvature vector fields
of (M, ¥) is called the curvature algebra of the Finsler manifold (M, ). For a
fixed x € M the Lie algebra i, (M) of vector fields generated by the curvature
vector fields at x is called the curvature algebra at x.

The infinitesimal holonomy algebra of the Finsler manifold (M, %) is the small-
est Lie algebra hol* (M) of vector fields on the indicatrix bundle d M satisfying
the following properties:

(i) any curvature vector field £ belongs to hol* (M),
(i) if & n € hol™ (M), then [£, n] € hol* (M),
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(iii) if € € hol* (M) and X € X°°(M), then the horizontal Berwald covariant
derivative Vx & also belongs to hol™*(M).

The infinitesimal holonomy algebra at a point x € M 1is the Lie algebra
bolX (M) := {&|g,m 1 € € hol™ (M)} C X (IxM)

of vector fields on the indicatrix J, M .

One has (M) C hol*(M) and Ry (M) C hol} (M) for any x € M (see [9]).

Let H be a subgroup of the diffeomorphism group Diff*° (M) of a differentiable
manifold M. A vector field X € X°°(M) is called tangent to H C Diff*°(M) if
there exists a €!-differentiable 1-parameter family {®(¢) € H};cr of diffeomor-
phisms of M such that ®(0) = Id and aq(;t(t) |t=0 = X. A Lie subalgebra g of
X°(M) is called tangent to H if all elements of g are tangent vector fields to H .

A subgroup H of the diffeomorphism group Diff®® (M) of a manifold M will
be called infinite dimensional if H has an infinite dimensional tangent Lie algebra
of vector fields.

The following assertion will be an important tool in the next discussion:

o The infinitesimal holonomy algebra hol*(x) at any point x € M is tangent to
the holonomy group Hol(x) ([9, Theorem 6.3].)

Hence we have:

« If the infinitesimal holonomy algebra Hol* (x) at a point x € M is infinite di-
mensional, then the holonomy group Hol(x) is infinite dimensional.

3 Holonomy of projective Finsler surfaces of constant curvature

A Finsler manifold (M, ) of dimension 2 is called Finsler surface. In this case
the indicatrix is 1-dimensional at any point x € M, hence the curvature vector
fields at x € M are proportional to any given non-vanishing curvature vector field.
It follows that the curvature algebra 3, (M) has a simple structure: it is at most
I-dimensional and commutative. Even in this case, the infinitesimal holonomy
algebra hol} (M) can be higher dimensional, or potentially infinite dimensional.
For the investigation of such examples we use a classical result of S. Lie on the
classification of Lie group actions on 1-manifolds (cf. [8] and [11, Theorem 2.70]):

e If a finite dimensional connected Lie group acts locally effectively on a 1-di-
mensional manifold without fixed points, then its dimension is less than 4.

Proposition 3.1. If the infinitesimal holonomy algebra hols (M) contains four si-
multaneously non-vanishing R-linearly independent vector fields, then the holon-
omy group Holyx (M) is an infinite dimensional subgroup of Diff*° (d M).
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Proof. If the infinitesimal holonomy algebra was finite dimensional, then the di-
mension of the corresponding Lie group acting locally effectively on the 1-dimen-
sional indicatrix would be at least 4, which is a contradiction. O

Let (M, ¥) be a locally projectively flat Finsler surface of non-zero constant
curvature, let (x!, x?) be a local coordinate system centered at x € M, corre-
sponding to the canonical coordinates of the Euclidean space which is projectively
related to (M, ) and let (y', y?) be the induced coordinate system in the tangent
plane T,y M.

In the sequel we identify the tangent plane Ty M with R? with help of the coor-
dinate system (y!, y2). We will use the Euclidean norm

I 22 =y (D2 + (#2)?

of R? and the corresponding polar coordinate system (e”, ¢), too.
Let ¢(y!, y?) be a positively 1-homogeneous function on R? and let r(z) be
the 2sr-periodic smooth function r : R — R determined by

pe™@cost,eDsinty =1 or ¢y, y?) =e "D /12 + (122, (3.1)

where
1 2 2
cost = y—’ sint = S and tant = y_1
VOH2 4+ ()2 VD24 (y2)? y

i.e. the level set {¢p(y', y2) = 1} of the 1-homogeneous function ¢ in R? is given
by the parametrized curve t — (¢”® cost, e”® sinr).
Since the curvature k of a smooth curve ¢ — (e") cost, e’ @ sint) in R2 is
e’ . .2
K= (F—i2— 1), (3.2)
2+ 1
the vanishing of the expression i — 72 — 1 means the infinitesimal linearity of the
corresponding positively homogeneous function in R2.

Definition 3.2. Let ¢(y!, y?) be a positively 1-homogeneous function on R? and
let k() be the curvature of the curve 1 — (e"® cost, e”® sinr) defined by the
equations (3.1). We say that ¢(y!, y?) is strongly convex if k(t) # 0 forall t € R.

Conditions (A), (B), (C) in the following theorem imply that the projective fac-
tor P at xo € M is a non-linear function, and hence, according to Remark 2.1,
(M, ¥) is a non-Riemannian Finsler manifold.
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Theorem 3.3. Let (M, F) be a projectively flat Finsler surface of non-zero con-
stant curvature. Assume that there exists a point xo € M such that one of the
following conditions holds:

(A) ¥ induces a scalar product on Ty, M and the projective factor P at xg is a
strongly convex positively 1-homogeneous function,

(B) F(x0.y) is a strongly convex absolutely 1-homogeneous function on Ty, M,
and the projective factor P (xg, y) on Tx, M satisfies P (xo,y) = c-F (xo, y)
with 0 # ¢ € R,

(C) there is a projectively related Euclidean coordinate system of (M, ¥) cen-
tered at xo and one has

1
FO.y)=|yl£{a.y) and <‘P(0,y)=§(i|y|—<a,y))- (3.3)

Then the holonomy group Holy, (M) is infinite dimensional.

Proof. Let (M, ¥ ) be a Finsler surface of constant flag curvature covered by a
coordinate system (x!, x?). Assume that the vector fields

;0 ;0
UZUI—.,VZVI—.E%OO M
ox! ox! (M)
have constant coordinate functions. Let &€ = R(U, V') be the corresponding curva-
ture vector field.

Since (M, ¥) is of constant flag curvature, we can write

R;.k(x, y) = )L(S}gkm(x, VIV =8 gim(x, y)ym) with A = const.
It is well known that the horizontal Berwald covariant derivative Vi R of the ten-
sor field R = R;k (x, y)dx/ A dxk% vanishes. Indeed, [12, Lemma 6.2.2, p. 85]
yields
Vw&(x,y) (. v) = =2L(u,v,w) foranyu,v,w € TxM.

Moreover we have Viyy = 0, Viyldrys = 0 for any vector field W € X°(M),
and Ly y)(y,v, w) = 0 (cf. [12, equation (6.28), p. 85]). Hence we obtain that
VwR =0.

Since the curvature tensor field is skew-symmetric, Ry, acts on the 1-dimen-
sional wedge product 7,y M A T M. The covariant derivative Vi & of the curva-
ture vector field

1
E=RWU,V) = ER(U®V—V®U)=R(U/\V)
can be written in the form

Vwé = R(Vw (U AV)) = R(VwU AV +U AV V).
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Wehave U AV = %(UIV2 — UZVI)(,)%1 A 8%2 and hence

Vwé = (U'V? - V1U2)WkR(Vk (3% A a;iz)) 3.4

where Vi€ 1= V%g. Since
ax

d 0 0 0 0 0
Vk(ax—l A a_) = (Vk@) Nz TN (V"W)

0 0 0 0
_nl v v v m _ Y
= Cn ax! a 0x2 + ox1! a k2 xm
0 0
= (Glil + GlzZ) 3)61 A axz

we obtain
Vwe = (G, + GEL)WKRWU, V) = (G}, + G Wke.
Since the geodesic coefficients are given by (2.10), we have

m ok 0Pk
Ve = G, Whe = 35w (3.5)

Hence

Vz(Vwé) =3Vz (gyi; W"s)

9P 9P o
= e (e ) (5o

Let W be a vector field with constant coordinate functions. Then, using (2.10) we

get
0P 2P 2P :
VZ(—Wk) = ( el )WkZJ

dyk dx7 dyk 7 9ymayk

2 2
:( B.C‘P _ Bﬂ).)Wij,
dx/ dyk aykay/
and hence

2P 2P 0P 9P ko
- - P -+ VAR (3.6)
dxJ ayk aykoys — ayk dyJ
Let xo € M be the point with coordinates (0,0) in the local coordinate system
of (M, ¥) corresponding to the canonical coordinates of the projectively related

V2 (ViE) = 3{
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Euclidean plane. According to [4, Lemma 8.2.1, p. 155] we have
2P P 2P n 0P 0P . AP AP 1 92F2 . 0P 0P
dx1oy2 Aylay2 ~ aylay2  “aylay2 209ylay2 "oyl ay?

Hence the vector fields & |xO, Vi€lxy, V2&|x, and V1(V2§)|y, are linearly inde-

pendent if and only if the functions
AP P
o ( dy! ay?

I 0P 9P
oyl 9y?

are linearly independent, where g1, = gy(axil, axiz) is the component of the met-

ric tensor of (M, F).

Ag12.

(3.7)

X0 X0

Lemma 3.4. The functions

3P (0, 3P (0, I (0,
( y), ©y 20, y) ©.y)
dyl dy2 dyloy2
can be expressed in the polar coordinate system (e”,t) by
a2 (0, .. _
¥ = (cost + rFsint)e ",
dy
(W
# = (sint — Fcost)e ",
dy
322 (0,
P(0, y)J = (F2 4+ 1—F)e " sintcost,
dyloy2
where the dot refers to differentiation with respect to the variable t.
Proof. We obtain from ag;r =—e " i(,g}—tl and from
y2 0 y2\dtant 0t L
(H2  ayl\yl) dr 3yl cos2t dy!
that Go 5 )
e —r . 2 —r- y
T T i T e e
Hence
3L0,y) e V)2 + (1¥?)?)
oyt ay!

y2 y!
=e " (f + )
VOD2+ 022 JOH2+ (0?2



Projectively flat Finsler manifolds with infinite dimensional holonomy 13

Similarly, we have 8;;; = —e " cos? tyil = —e"fW. Hence
320,y) ey + (»¥2)?)
a2 dy?2
- y! y?

. + .
Y T T A
Finally we have

2P(0, y) _d(sint —Fcost)e™" 1

= (F=i2=1)e " sint cost

aylay? dy! [OGD2 + (y2)2
Replacing now ¢ by the function & (0, y) in the expression (3.1) we get the asser-
tion. |

Lemma 3.5. Let r : R — R be a 2m-periodic smooth function such that the in-
equality #(t) — #2(t) — 1 # 0 holds on a dense subset of R. Then the functions

1, (cost + Fsint)e™", (sint — Fcost)e™", (cost + Fsint)(sint — 7 cost)e 2"

(3.8)

are linearly independent.

Proof. The derivative of

r r

(cost + Fsint)e”” and (sint — 7 cost)e”

are
(F —i2—1)e "sint and (¥ — % —1)e”" cost,

respectively, hence the functions (3.8) do not vanish identically. Let us consider a
linear combination

A+ B(cost +Fsint)e”" + C(sint — i cost)e” "
+ D(cost + Fsint)(sint — 7 cost)e 2" =0

with constant coefficients A, B, C, D. Differentiate and divide by e~ (i* — 72 — 1)
and we have

Bsint — C cost — D(cos 2t + 7 sin2t)e” " = 0.
Putting t = 0 and t = 7, we get
C=-De " = per™,
Since e 7 7™ 5 0, we get
C=D=0
andhence A=B=C =D =0. o
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Now, assume that condition (A) of Theorem 3.3 is fulfilled. According to Pro-
position 3.1 if the functions (3.7) are linearly independent, then the holonomy
group Holy, (M) is an infinite dimensional subgroup of Diff>°(Jy, M ). The func-
tion ¥ (xo, y) induces a scalar product on Tx, M, consequently the component g2
of the metric tensor is constant on 7, M . Hence Hol, (M) is infinite dimensional

if the functions
0P 9P AP 0P
W, 02y, Tay?
are linearly independent. This follows from Lemma 3.5 and hence the assertion of
the theorem is true.

Assume that condition (B) is satisfied. We denote ¢(y) = F (xo, y). Using
the expressions (3.7) we obtain that the vector fields &|x,, Vi€|x,, V2£|x, and
V1(V28)|x, are linearly independent if and only if the functions

(3.9)

El

X0

) P e 0P O
’ 8y1 o - ayl’ 3y2 %o - 3y2
aP 9P dp dg 0%¢
2———4 =22 - _po—F_
( ayt ay2 glz) o (2c )3y1 a2~ "oytay?

are linearly independent. According to Lemma 3.4 this is equivalent to the linear
independence of the functions

1, (cost+rsint)e™", (sint —rcost)e ",

(2¢2 = A)(cost + Fsint)(sint — 7 cost) e 2" — A(F — 2 — 1) e " sint cost.

If r = const, then these functions are 1,coste™",sint e ",2c2costsint e 2,

hence the assertion follows from Lemma 3.5. In the following we can assume that
r(t) # const. Let ty € R such that 7(z9) = 0 and k(¢9) # 0. We rotate the coordi-

nate system at the angle —z¢ with respect to the euclidean norm +/(y1)2 + (y2)2,
then we get in the new polar coordinate system that 7(0) = 0 and «(0) # 0. Con-

sider the linear combination
A+ B(cost + Fsint)e”" + C(sint — i cost)e™ "
+ D((2¢* — A)(cost + Fsint)(sint — i cost) e 2" (3.10)
—A(F —F* —1)e " * sint cost) =0

with some constants A, B, C, D. Since the function ¢ is absolutely homogeneous,
the function r(t) is w-periodic. Putting ¢ + 7 into ¢, the value of

A+ DQc?—X)(cost +7sint)(sint —i cost) e 2" —A(F—i2—1)e 2" sint cost
does not change, but the value of

B(cost +7sint)e™" + C(sint —Fcost)e "
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changes its sign. Since Lemma 3.5 implies that the functions (cos? + 7 sint) e™"
and (sint — 7 cost) e™" are linearly independent, we have B = C = 0 and (3.10)

becomes

1 A
Ae?" +D((2c2—x)[—f cos 2t + 5(1—r‘2) sinZZ] —E(i"—ifz— 1)sin2¢ | = 0.

@3.11)
Since 7(0) = 0att = 0, we have A = 0. If D # 0, then (3.11) gives

1 A
(2¢? — A)[—r‘ cos2t + 5(1 —72) sinZZ] — 5(;; — 72— 1)sin2t = 0.

By derivation and putting ¢ = 0 we obtain
(2¢? = V)[—#(0) + 1] = A(#(0) — 1) = 2¢%(1 — #(0)) = 0.

Using the relation (3.2) condition (B) gives x(0) = ¢’ @ (1 — #(0)) # 0, which
is a contradiction. Hence D = 0 and the vector fields & |x0, Vi€lxy, V2&|x, and
V1(V28)|x, are linearly independent. Using Proposition 3.1 we obtain the asser-
tion.

Suppose now that condition (C) holds. Hence we have

0F y1 1 0F y2 5 2F yly2
~—0,y)=—=xa, -—=0.y)=—=xa", —=0,y)= ,
ay! Iy dy? Iy dylay? ly|3
and

1 1,2
g1z = (y_ ial)(y +a ) (1 i<a,l>)y . (3.12)
[yl [yl MYV

Similarly, we obtain from condition (C) that

BJ 1 0P y2
U )—:|:|y—|—a1 500 == —a?

Using the expressions (3.7) we get that the vector fields & |X<)’ Vi€lxo» V2£|x0s
V1(V28)|x, are linearly independent if and only if the functions

2

7 AR ] B
oy DI 32 |(0,y) |l
and
aP 0P yly? yly?
g = q:<a,l> -2
ay' dy (0.) IyI] 1yl 4

1 2

:F(2+A)(a2ﬂ+a1|y I) 2= Naras
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are linearly independent. Putting

1 ) _ y2
—, sint = —
[yl [yl

we obtain that this condition is true, since the trigonometric polynomials

cost =

1, cost, sint, (1 —A)costsint F (ajcost + apsint)costsint

are linearly independent. Hence Hol,, (M) is infinite dimensional. o

4 Holonomy of projective Finsler manifolds of constant curvature

Now we will prove that the infinitesimal holonomy algebra of a totally geodesic
submanifold of a Finsler manifold can be embedded into the infinitesimal holon-
omy algebra of the entire manifold. This result yields a lower estimate for the
dimension of the holonomy group.

Totally geodesic and auto-parallel submanifolds

Let (M, 8) be a spray manifold. A submanifold M is called totally geodesic if any
geodesic of (M, §) which is tangent to M at some point is contained in M.

A totally geodesic submanifold M of the spray manifold (M, 8) is called auto-
parallel if the homogeneous (nonlinear) parallel translations

Tc © Tc(O)M — Tc(l)M

along curves in the submanifold M leave invariant the tangent bundle 7 M and for
every £ € xo° (T M) the horizontal covariant derivative Vyx £ belongs to ioo(TM ).

Let X,Y € Tx M be tangent vectors at x € M and let K denote the curvature
tensor of (M, &) (cf. equation (2.7)). The mapping

y—> KX, Y)x,y) : TxM — T,yM
is called curvature vector field at x of the spray manifold (M, §).
Lemma 4.1. Let M be a totally geodesic submanifold in a spray manifold (M, 8).
The following assertions hold:
(a) the spray & induces a spray 8 on the submanifold M,

(b) M is an auto-parallel submanifold,

(¢) the curvature vector fields at any point of M can be extended to a curvature
vector field of M.
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Proof. Assume that the manifolds M and M are k-, respectively n = k+ p-dimen-
sional. Let (xl, xk, xk o, x™) be an adapted coordinate system, i.e. the
submanifold M is locally given by the equations K+l = .. = x" = 0. We de-
note the indices running on the values {1,...,k} or {k +1,....n} by o, 8,y
or o, T, respectively. The differential equation (2.2) of geodesics yields that the
geodesic coefficients I'? (x, y) satisfy

ot xko0, 00t vk 0,...,00=0

identically, hence their derivatives with respect to y!, ..., yk are also vanishing.
It follows that
=0 and T¢ wp =0

at any (xt,... ,xko,.. 505y ,...,yk,O, ..., 0). Hence the induced spray S on
M 1is defined by the geodesic coefficients

f‘ﬂ(xl,...,xk;yl,...,yk)=Fﬂ(xl,...,xk,O,...,O;yl,...,yk,O,...,0).

The homogeneous (nonlinear) parallel translation 7. : Ty M — Tc(l)M along
curves in the submanifold M and the horizontal covariant derivative on M with
respect to the spray § coincide with the translation and the horizontal covariant
derivative on M with respect to the spray §. Hence the first two assertions are true.

If y,X,Y € TxM are tangent vectors at x € M, then K(X,Y)(x,y) can be
expressed by

AT (x, y) 8Ff3(x,y) m ;
( Bxﬂ - 8x°‘ + ra (X, Y)Fﬂm(x»)’)

0
_Fﬂ (x. y)F(xm(x y))XaYﬂa i’

Since I'y —OandF‘Tﬂ —Oatany(xl,...,xk,O,...,O;yl,...,yk,O,...,O),we

have
arg 8Fg

axB  dxe
at (xl, o ,xk,O, .. .,0;2}1, R yk,O, ..., 0). Hence the curvature tensors K cor-
responding to the spray § and K corresponding to the spray & satisfy

e _IT y _1/0_
+Dgrg, —TpTg, + TyTg, —T4Tg, =0

KX, Y)(x.y) = K(X.Y)(x,y)

if x €M and y,X,Y € TxM. It follows that for any given X,Y € T, M the
curvature vector field £(y) = K(X,Y)(x,y) at x € M defined on Tx M can be
extended to the curvature vector field £(y) = K(X,Y)(x,y) at x € M defined
onTyM. O
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Theorem 4.2. Let M be a totally geodesic 2-dimensional submanifold of a Finsler
manifold (M, ¥) such that the infinitesimal holonomy algebra Hols (M) of M is
infinite dimensional. Then the holonomy group Holy (M) is infinite dimensional.

Proof. According to Lemma 4.1 any curvature vector field of M atx e M C M
defined on J, M can be extended to a curvature vector field on the indicatrix
Jx M. Hence the curvature algebra 3t (M) of the submanifold M can be em-
bedded into the curvature algebra R (M) of the manifold (M, ¥ ). Assume that £
is a vector field belonging to the infinitesimal holonomy algebra hol; (M) which
can be extended to the vector field & belonging to the infinitesimal holonomy al-
gebra hol}(M). Any given vector field X € X%°(M) can be extended to a vec-
tor field X € X°°(M), hence the Berwald horizontal covariant derivative along
X € X%°(M) of £ can be extended to the Berwald horizontal covariant derivative
along X € X°°(M) of the vector field . It follows that the infinitesimal holonomy
algebra hol} (M) of the submanifold M can be embedded into the infinitesimal
holonomy algebra hol s (M) of the Finsler manifold (M, ¥ ). Consequently, the in-
finitesimal holonomy algebra hols (M) is infinite dimensional and hence the holo-
nomy group Holy (M) is an infinite dimensional subgroup of Diff>® (4, M). |

This result can be applied to locally projectively flat Finsler manifolds, as they
have for each tangent 2-plane a totally geodesic submanifold which is tangent to
this 2-plane.

Corollary 4.3. If a locally projectively flat Finsler manifold has a 2-dimensional
totally geodesic submanifold satisfying one of the conditions of Theorem 3.3, then
its holonomy group is infinite dimensional.

According to equations (2.11) and (2.12) the projectively flat Randers manifolds
of non-zero constant curvature satisty condition (C) of Theorem 3.3. We can apply
Corollary 4.3 to these manifolds and we get the following

Theorem 4.4. The holonomy group of any projectively flat Randers manifolds of
non-zero constant flag curvature is infinite dimensional.

R.Bryant in [1, 2] introduced and studied complete Finsler metrics of positive
curvature on S2. He proved that there exists exactly a 2-parameter family of Finsler
metrics on S? with curvature = 1 with great circles as geodesics. Z. Shen gener-
alized a 1-parameter family of complete Bryant metrics to S” satisfying

F(0,y) = |y|cosa, L(0,y) = |y|sina 4.1)

with |a| < Z in a coordinate neighbourhood centered at 0 € R” (cf. [14, Exam-
ple 7.1] and [4, Example 8.2.9]).
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We investigate the holonomy groups of two families of metrics, containing the
1-parameter family of complete Bryant—Shen metrics (4.1). The first family in the
following theorem is defined by condition (A), which is motivated by [4, Theo-
rem 8.2.3]. There is given the following construction:

If ¢ = ¥(y) is an arbitrary Minkowski norm on R” and ¢ = ¢(y) is an ar-
bitrary positively 1-homogeneous function on R”, then there exists a projectively
flat Finsler metric ¥ of constant flag curvature —1, defined on a neighbourhood
of the origin, such that ¥ and its projective factor & satisfy ¥ (0, y) = ¥ (y) and
P(0.y) = ¢(y).

Condition (B) in the next theorem is confirmed by [14, Example 7, p. 1726],
where it is proved that for an arbitrary given Minkowski norm ¢ and || < 5 there
exists a projectively flat Finsler function ¥ of constant curvature = 1 defined on
a neighbourhood of 0 € R”, such that

F0,y) =¢(y)cost and P(0,y) = ¢(y)sind.

Conditions (A) and (B) in Theorem 3.3 together with Corollary 4.3 yield the fol-
lowing

Theorem 4.5. Let (M, ) be a projectively flat Finsler manifold of non-zero con-
stant curvature. Assume that there exists a point xo € M and a 2-dimensional to-
tally geodesic submanifold M through xq such that one of the following conditions
holds:

(A) F induces a scalar product on TxOM , and the projective factor P on TxOM
is a strongly convex positively 1-homogeneous function,

(B) F(x0,y) on TXOM is a strongly convex absolutely 1—_h0m0geneous Sfunction
on Tx, M, and the projective factor P (xg, y) on Tx, M satisfies
P(x0.y) = ¢ F(xo,y)
with 0 # ¢ € R.

Then the holonomy group Holy, (M) is infinite dimensional.
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