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Abstract. Recently, we developed a method for the study of holonomy properties of non-
Riemannian Finsler manifolds and obtained that the holonomy group cannot be a compact
Lie group if the Finsler manifold of dimension > 2 has non-zero constant flag curvature.
The purpose of this paper is to move further, exploring the holonomy properties of projec-
tively flat Finsler manifolds of non-zero constant flag curvature. We prove in particular that
projectively flat Randers and Bryant–Shen manifolds of non-zero constant flag curvature
have infinite dimensional holonomy group.
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1 Introduction

In the recent papers [9,10] we have developed a method for the study of holonomy
properties of non-Riemannian Finsler manifolds. Particularly, we obtained in [10],
that the holonomy group cannot be a compact Lie group if the Finsler manifold of
dimension > 2 has non-zero constant flag curvature. We described the first exam-
ple of a Finsler manifold with infinite dimensional holonomy group, namely a left
invariant Berwald–Moór metric on the 3-dimensional Heisenberg group.

The purpose of the present paper is to investigate families of Finsler mani-
folds with interesting geometric structure which have infinite dimensional holon-
omy group. From the viewpoint of non-Euclidean geometry the most important
Riemann–Finsler manifolds are the projectively flat spaces of constant flag curva-
ture. We will turn our attention to non-Riemannian projectively flat Finsler mani-
folds of non-zero constant flag curvature.

There are many examples of non-Riemannian projectively flat Finsler manifolds
of non-zero constant flag curvature. Their classification is related to the smooth
version of Hilbert’s Fourth Problem: characterize (not necessarily reversible) dis-
tance functions on an open subset in Rn such that straight lines are the short-
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2 Z. Muzsnay and P. T. Nagy

est paths. The famous Beltrami’s theorem states that the locally projectively flat
Riemannian manifolds are exactly the manifolds of constant curvature. But for
Finsler manifolds Beltrami’s theorem is not true. In fact, any projectively flat
Finsler manifold has scalar flag curvature, but there are Finsler manifolds of con-
stant flag curvature, which are not projectively flat. The constancy of the flag cur-
vature is a very restrictive property for complete projectively flat Finsler manifolds,
cf. [1–3,5–7], but there are many non-complete examples defined on open domains
in Rn, constructed and studied by Z. Shen, cf. [4, 12–15].

We will consider the following classes of locally projectively flat non-Riemann-
ian Finsler manifolds of non-zero constant flag curvature:

(i) Randers manifolds (cf. [15]),

(ii) manifolds having a 2-dimensional subspace in the tangent space at some
point, on which the Finsler norm is an Euclidean norm (cf. [14, Theorem 1.2,
p. 1715]),

(iii) manifolds having a 2-dimensional subspace in the tangent space at some
point, on which the Finsler norm and the projective factor are linearly depen-
dent (cf. [14, Example 7.1, pp. 1725–1727]).

The first class consists of positively complete Finsler manifolds of negative cur-
vature, the second class contains a large family of (not necessarily complete)
Finsler manifolds of negative curvature, and the third class contains a large fam-
ily of not necessarily complete Finsler manifolds of positive curvature. The met-
rics belonging to these classes can be considered as (local) generalizations of a
one-parameter family of complete Finsler manifolds of positive curvature defined
on S2 by R. Bryant in [1, 2] and on Sn by Z. Shen in [14, Example 7.1]. We
prove that the holonomy group of Finsler manifolds belonging to these classes and
satisfying some additional technical assumption is infinite dimensional.

2 Preliminaries

Throughout this article, M denotes a C1-manifold, X1.M/ denotes the vec-
tor space of smooth vector fields on M and Diff1.M/ denotes the group of all
C1-diffeomorphism of M with the C1-topology.

Spray manifold, horizontal distribution, canonical connection, parallelism

A spray on a manifold M is a smooth vector field S on OTM WD TM n ¹0º ex-
pressed in a standard coordinate system .xi ; yi / on TM as

S D yi
@

@xi
� 2� i .x; y/

@

@yi
; (2.1)
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Projectively flat Finsler manifolds with infinite dimensional holonomy 3

where � i .x; y/ are local functions on TM satisfying

� i .x; �y/ D �2� i .x; y/; � > 0:

A manifold M with a spray S is called a spray manifold .M;S/.
A curve c.t/ is called geodesic if its coordinate functions ci .t/ satisfy the dif-

ferential equations
Rci .t/C � i .c.t/; Pc.t// D 0; (2.2)

where the functions � i .x; y/ are called the geodesic coefficients of the spray man-
ifold .M;S/. The associated homogeneous (nonlinear) parallel translation

�c W Tc.0/M ! Tc.1/M

along a curve c.t/ is defined by parallel vector fields X.t/ D X i .t/ @
@xi along c.t/

satisfying

D PcX.t/ WD

�
dX i .t/

dt
C � ij .c.t/; X.t// Pc

j .t/

�
@

@xi
D 0; � ij WD

@� i

@yj
: (2.3)

Let .TM;�;M/ and .T TM; �; TM/ denote the first and the second tangent bun-
dle of the manifold M , respectively. The horizontal distribution HTM � T TM

associated to the spray manifold .M;S/ is the image of the horizontal lift which is
a vector space isomorphism ly W TxM ! HyTM for every x 2M and y 2 TxM
defined by

ly

�
@

@xi

�
D

@

@xi
� �ki .x; y/

@

@yk
: (2.4)

Then a vector field X.t/ along a curve c.t/ is parallel if and only if it is a solution
of the differential equation d

dt
X.t/ D lX.t/. Pc.t//.

If VTM � T TM is the vertical distribution on TM defined by

VyTM WD Ker��;y ;

then we have the decomposition TyTM D HyTM ˚ VyTM .
Let . OVTM; �; OTM/ be the vertical bundle over OTM WD TM n ¹0º. We denote

by OX1.TM/ the vector space of smooth sections of the bundle . OVTM; �; OTM/.
The horizontal covariant derivative of a section � 2 OX1.TM/ by a vector field
X 2 X1.M/ is given by rX� WD Œh.X/; ��. We can express the horizontal co-
variant derivative of the section

�.x; y/ D � i .x; y/
@

@yi

by the vector field

X.x/ D X i .x/
@

@xi
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4 Z. Muzsnay and P. T. Nagy

as

rX� D

�
@� i .x; y/

@xj
� �kj .x; y/

@� i .x; y/

@yk
C � ijk.x; y/�

k.x; y/

�
Xj

@

@yi
; (2.5)

where

� ijk.x; y/ WD
@� ij .x; y/

@yk
:

Let .��TM; N�; OTM/ be the pull-back bundle of . OTM;�;M/ by the map

� W TM !M:

Clearly, the mapping�
x; y; � i

@

@yi

�
7!

�
x; y; � i

@

@xi

�
W OVTM ! ��TM (2.6)

is a canonical bundle isomorphism. In the following we will use the isomorphism
(2.6) for the identification of these bundles.

The curvature tensor field K.x;y/ D Kijk.x; y/dx
j ˝ dxk ˝ @

@xi on the pull-
back bundle .��TM; N�; OTM/ of the spray manifold .M;S/ in a local coordinate
system is given by

Kijk.x; y/ D
@� ij .x; y/

@xk
�
@� i
k
.x; y/

@xj

C �mj .x; y/�
i
km.x; y/ � �

m
k .x; y/�

i
jm.x; y/:

(2.7)

Finsler manifold, canonical connection, Berwald connection

A Finsler manifold is a pair .M;F /, where M is an n-dimensional smooth mani-
fold and F W TM ! Œ0;1/ is a continuous function, smooth on OTM WD TMn¹0º,
such that its restriction Fx D F jTxM for any x 2M is a positively 1-homogene-
ous function and the symmetric bilinear form

gx;y W .u; v/ 7! gij .x; y/u
ivj D

1

2

@2F 2
x .y C suC tv/

@s @t

ˇ̌̌̌
tDsD0

is positive definite at every y 2 OTxM .
We call F the Finsler function, gx;y the metric tensor of the Finsler mani-

fold .M;F /. The Finsler function is called absolutely homogeneous at x 2M if
Fx.�y/ D j�jFx.y/. If F is absolutely homogeneous at every x 2M , then the
Finsler manifold .M;F / is reversible.
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Projectively flat Finsler manifolds with infinite dimensional holonomy 5

The associated spray is locally given by S D yi @
@xi � 2G

i .x; y/ @
@yi , where the

functions

Gi .x; y/ WD
1

4
gil.x; y/

�
2
@gjl

@xk
.x; y/ �

@gjk

@xl
.x; y/

�
yjyk (2.8)

are the geodesic coefficients of the Finsler manifold .M;F /. The correspond-
ing homogeneous (nonlinear) parallel translation �c W Tc.0/M ! Tc.1/M along
a curve c.t/ is called the canonical homogeneous (nonlinear) parallel translation
of the Finsler manifold .M;F /. The horizontal covariant derivative with respect
to the spray associated to the Finsler manifold .M;F / is called the horizontal
Berwald covariant derivative. If we define

rX� D

�
@�

@xj
�Gkj .x; y/

@�.x; y/

@yk

�
Xj

for a smooth function � W OTM ! R, the horizontal Berwald covariant derivation
(2.5) can be extended to the tensor bundle over .��TM; N�; OTM/.

The Riemannian curvature tensor field R D Ri
jk
.x; y/dxj ˝ dxk ˝ @

@xi on
the pull-back bundle .��TM; N�; OTM/ is

Rijk.x; y/ D
@Gij .x; y/

@xk
�
@Gi

k
.x; y/

@xj

CGmj .x; y/G
i
km.x; y/ �G

m
k .x; y/G

i
jm.x; y/:

The tensor field R characterizes the integrability of the horizontal distribution as-
sociated with the (nonlinear) parallel translation. Namely, R D 0 if and only if the
horizontal distribution is integrable and hence the parallel translation is path-inde-
pendent on simply connected manifolds.

The manifold is called of constant flag curvature � 2 R if for any x 2M the
local expression of the Riemannian curvature is

Rijk.x; y/ D �
�
ıikgjm.x; y/y

m
� ıijgkm.x; y/y

m
�
: (2.9)

In this case the flag curvature of the Finsler manifold does not depend on the point,
nor on the 2-flag (cf. [4, Section 2.1, pp. 43–46]).

A Finsler function F on an open subsetD � Rn is said to be projectively flat if
all geodesic curves are straight lines in D. A Finsler manifold is said to be locally
projectively flat if at any point there is a local coordinate system .xi / in which F

is projectively flat.
Let .x1; : : : ; xn/ be a local coordinate system onM corresponding to the canon-

ical coordinates of the Euclidean space which is projectively related to .M;F /.

Authenticated | muzsnay@science.unideb.hu author's copy
Download Date | 2/13/13 6:54 AM



6 Z. Muzsnay and P. T. Nagy

Then the geodesic coefficients (2.8) are of the form

Gi .x; y/ D P .x; y/yi ;

Gik D
@P

@yk
yi CP ıik;

Gikl D
@2P

@yk@yl
yi C

@P

@yk
ıil C

@P

@yl
ıik :

(2.10)

where P is a 1-homogeneous function in y, called the projective factor of .M;F /.
Clearly, any 2-plane in this coordinate system .x1; : : : ; xn/ is a totally geodesic
submanifold of .M;F /.

Remark 2.1. The canonical homogeneous parallel translation

�c W Tc.0/M ! Tc.1/M

in a locally projectively flat Finsler manifold .M;F / along curves c.t/ contained
in the domain of the coordinate system .x1; : : : ; xn/ are linear maps if and only if
the projective factor P .x; y/ is a linear function in y. Hence the non-linearity in y
of the projective factor implies that the locally projectively flat Finsler manifold is
non-Riemannian.

Projectively flat Randers manifolds with constant flag curvature were classified
by Z. Shen in [15]. He proved that any projectively flat Randers manifold .M;F /
with non-zero constant flag curvature has negative curvature. These metrics can be
normalized by a constant factor so that the curvature is �1

4
. In this case .M;F / is

isometric to the Finsler manifold defined by the metric function

F .x; y/ D

p
jyj2 � .jxj2jyj2 � hx; yi2/

1 � jxj2
˙

�
hx; yi

1 � jxj2
C
ha; yi

1C ha; xi

�
(2.11)

on the unit ball Dn � Rn, where a 2 Rn is any constant vector with jaj < 1. Ac-
cording to [4, Lemma 8.2.1, p. 155] the projective factor P .x; y/ can be computed
by the formula

P .x; y/ D
1

2F

@F

@xi
yi :

An easy calculation yields

˙
@F

@xi
yi D

�p
jyj2 � .jxj2jyj2 � hx; yi2/˙ hx; yi

1 � jxj2

�2
�

�
ha; yi

1C ha; xi

�2
;

hence

P .x; y/ D
1

2

�
˙
p
jyj2 � .jxj2jyj2 � hx; yi2/C hx; yi

1 � jxj2
�
ha; yi

1C ha; xi

�
: (2.12)
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Projectively flat Finsler manifolds with infinite dimensional holonomy 7

Holonomy group

Let .M;F / be an n-dimensional Finsler manifold. We denote by .IM;�;M/ the
indicatrix bundle of .M;F /, the indicatrix IxM at x 2M is the compact hyper-
surface

IxM WD ¹y 2 TxM W F .y/ D 1º;

of TxM diffeomorphic to the standard .n � 1/-sphere.
The homogeneous (nonlinear) parallel translation �c W Tc.0/M ! Tc.1/M along

a curve c W Œ0; 1�!M preserves the value of the Finsler function, hence it induces
a map �c W Ic.0/M �! Ic.1/M between the indicatrices.

The group of diffeomorphisms Diff1.IxM/ of the indicatrix IxM is a regular
infinite dimensional Lie group modeled on the vector space X1.IxM/. In this
category of groups one can define the exponential mapping and the group struc-
ture is locally determined by the Lie algebra. The Lie algebra of Diff1.IxM/ is
X1.IxM/ equipped with the negative of the usual Lie bracket.

The holonomy group Holx.M/ of a Finsler space .M;F / at a point x 2M is
the subgroup of the group of diffeomorphisms Diff1.IxM/ of the indicatrix IxM

generated by (nonlinear) parallel translations of IxM along piece-wise differen-
tiable closed curves initiated at the point x 2M . The holonomy groups at different
points of M are isomorphic.

If the Riemannian curvature R of .M;F / vanishes identically, then the (non-
linear) parallel translation is path-independent and hence the holonomy group is
trivial.

Infinitesimal holonomy algebra

A vector field � 2 X1.IM/ on the indicatrix bundle IM is a curvature vector
field of the Finsler manifold .M;F / if there exist vector fields X; Y 2 X1.M/

on M such that � D R.X; Y /.
If x 2M is fixed and X; Y 2 TxM , then the vector field y ! R.X; Y /.x; y/

on IxM is a curvature vector field at x (see [10]).
The Lie algebra R.M/ of vector fields generated by the curvature vector fields

of .M;F / is called the curvature algebra of the Finsler manifold .M;F /. For a
fixed x 2M the Lie algebra Rx.M/ of vector fields generated by the curvature
vector fields at x is called the curvature algebra at x.

The infinitesimal holonomy algebra of the Finsler manifold .M;F / is the small-
est Lie algebra hol�.M/ of vector fields on the indicatrix bundle IM satisfying
the following properties:

(i) any curvature vector field � belongs to hol�.M/,

(ii) if �; � 2 hol�.M/, then Œ�; �� 2 hol�.M/,
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8 Z. Muzsnay and P. T. Nagy

(iii) if � 2 hol�.M/ and X 2 X1.M/, then the horizontal Berwald covariant
derivative rX� also belongs to hol�.M/.

The infinitesimal holonomy algebra at a point x 2M is the Lie algebra

hol�x.M/ WD ¹�jIxM W � 2 hol�.M/º � X1.IxM/

of vector fields on the indicatrix IxM .
One has R.M/ � hol�.M/ and Rx.M/ � hol�x.M/ for any x 2M (see [9]).
LetH be a subgroup of the diffeomorphism group Diff1.M/ of a differentiable

manifold M . A vector field X 2 X1.M/ is called tangent to H � Diff1.M/ if
there exists a C1-differentiable 1-parameter family ¹ˆ.t/ 2 H ºt2R of diffeomor-
phisms of M such that ˆ.0/ D Id and @ˆ.t/

@t
jtD0 D X . A Lie subalgebra g of

X1.M/ is called tangent to H if all elements of g are tangent vector fields to H .
A subgroup H of the diffeomorphism group Diff1.M/ of a manifold M will

be called infinite dimensional if H has an infinite dimensional tangent Lie algebra
of vector fields.

The following assertion will be an important tool in the next discussion:

� The infinitesimal holonomy algebra hol�.x/ at any point x 2M is tangent to
the holonomy group Hol.x/ ([9, Theorem 6.3].)

Hence we have:

� If the infinitesimal holonomy algebra hol�.x/ at a point x 2M is infinite di-
mensional, then the holonomy group Hol.x/ is infinite dimensional.

3 Holonomy of projective Finsler surfaces of constant curvature

A Finsler manifold .M;F / of dimension 2 is called Finsler surface. In this case
the indicatrix is 1-dimensional at any point x 2M , hence the curvature vector
fields at x 2M are proportional to any given non-vanishing curvature vector field.
It follows that the curvature algebra Rx.M/ has a simple structure: it is at most
1-dimensional and commutative. Even in this case, the infinitesimal holonomy
algebra hol�x.M/ can be higher dimensional, or potentially infinite dimensional.
For the investigation of such examples we use a classical result of S. Lie on the
classification of Lie group actions on 1-manifolds (cf. [8] and [11, Theorem 2.70]):

� If a finite dimensional connected Lie group acts locally effectively on a 1-di-
mensional manifold without fixed points, then its dimension is less than 4.

Proposition 3.1. If the infinitesimal holonomy algebra hol�x.M/ contains four si-
multaneously non-vanishing R-linearly independent vector fields, then the holon-
omy group Holx.M/ is an infinite dimensional subgroup of Diff1.IxM/.
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Projectively flat Finsler manifolds with infinite dimensional holonomy 9

Proof. If the infinitesimal holonomy algebra was finite dimensional, then the di-
mension of the corresponding Lie group acting locally effectively on the 1-dimen-
sional indicatrix would be at least 4, which is a contradiction.

Let .M;F / be a locally projectively flat Finsler surface of non-zero constant
curvature, let .x1; x2/ be a local coordinate system centered at x 2M , corre-
sponding to the canonical coordinates of the Euclidean space which is projectively
related to .M;F / and let .y1; y2/ be the induced coordinate system in the tangent
plane TxM .

In the sequel we identify the tangent plane TxM with R2 with help of the coor-
dinate system .y1; y2/. We will use the Euclidean norm

k.y1; y2/k D

q
.y1/2 C .y2/2

of R2 and the corresponding polar coordinate system .er ; t /, too.
Let '.y1; y2/ be a positively 1-homogeneous function on R2 and let r.t/ be

the 2�-periodic smooth function r W R! R determined by

'.er.t/ cos t; er.t/ sin t / D 1 or '.y1; y2/ D e�r.t/
q
.y1/2 C .y2/2; (3.1)

where

cos t D
y1p

.y1/2 C .y2/2
; sin t D

y2p
.y1/2 C .y2/2

and tan t D
y2

y1
;

i.e. the level set ¹'.y1; y2/ � 1º of the 1-homogeneous function ' in R2 is given
by the parametrized curve t ! .er.t/ cos t; er.t/ sin t /:

Since the curvature � of a smooth curve t ! .er.t/ cos t; er.t/ sin t / in R2 is

� D �
er

p
Pr2 C 1

. Rr � Pr2 � 1/; (3.2)

the vanishing of the expression Rr � Pr2 � 1 means the infinitesimal linearity of the
corresponding positively homogeneous function in R2.

Definition 3.2. Let '.y1; y2/ be a positively 1-homogeneous function on R2 and
let �.t/ be the curvature of the curve t ! .er.t/ cos t; er.t/ sin t / defined by the
equations (3.1). We say that '.y1; y2/ is strongly convex if �.t/ ¤ 0 for all t 2 R.

Conditions (A), (B), (C) in the following theorem imply that the projective fac-
tor P at x0 2M is a non-linear function, and hence, according to Remark 2.1,
.M;F / is a non-Riemannian Finsler manifold.
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10 Z. Muzsnay and P. T. Nagy

Theorem 3.3. Let .M;F / be a projectively flat Finsler surface of non-zero con-
stant curvature. Assume that there exists a point x0 2M such that one of the
following conditions holds:

(A) F induces a scalar product on Tx0
M and the projective factor P at x0 is a

strongly convex positively 1-homogeneous function,

(B) F .x0; y/ is a strongly convex absolutely 1-homogeneous function on Tx0
M ,

and the projective factor P .x0; y/ on Tx0
M satisfies P .x0; y/ D c �F .x0; y/

with 0 ¤ c 2 R,

(C) there is a projectively related Euclidean coordinate system of .M;F / cen-
tered at x0 and one has

F .0; y/ D jyj ˙ ha; yi and P .0; y/ D
1

2

�
˙jyj � ha; yi

�
: (3.3)

Then the holonomy group Holx0
.M/ is infinite dimensional.

Proof. Let .M;F / be a Finsler surface of constant flag curvature covered by a
coordinate system .x1; x2/. Assume that the vector fields

U D U i
@

@xi
; V D V i

@

@xi
2 X1.M/

have constant coordinate functions. Let � D R.U; V / be the corresponding curva-
ture vector field.

Since .M;F / is of constant flag curvature, we can write

Rijk.x; y/ D �
�
ıijgkm.x; y/y

m
� ıikgjm.x; y/y

m
�

with � D const.

It is well known that the horizontal Berwald covariant derivative rWR of the ten-
sor fieldR D Ri

jk
.x; y/dxj ^ dxk @

@xi vanishes. Indeed, [12, Lemma 6.2.2, p. 85]
yields

rwg.x;y/.u; v/ D �2L.u; v; w/ for any u; v;w 2 TxM:

Moreover we have rW y D 0, rW IdTM D 0 for any vector field W 2 X1.M/,
and L.x;y/.y; v; w/ D 0 (cf. [12, equation (6.28), p. 85]). Hence we obtain that
rWR D 0.

Since the curvature tensor field is skew-symmetric, R.x;y/ acts on the 1-dimen-
sional wedge product TxM ^ TxM . The covariant derivative rW � of the curva-
ture vector field

� D R.U; V / D
1

2
R.U ˝ V � V ˝ U/ D R.U ^ V /

can be written in the form

rW � D R.rW .U ^ V // D R.rWU ^ V C U ^ rW V /:

Authenticated | muzsnay@science.unideb.hu author's copy
Download Date | 2/13/13 6:54 AM



Projectively flat Finsler manifolds with infinite dimensional holonomy 11

We have U ^ V D 1
2
.U 1V 2 � U 2V 1/ @

@x1 ^
@
@x2 and hence

rW � D .U
1V 2 � V 1U 2/W kR

�
rk

�
@

@x1
^

@

@x2

��
; (3.4)

where rk� WD r @

@xk
� . Since

rk

�
@

@x1
^

@

@x2

�
D

�
rk

@

@x1

�
^

@

@x2
C

@

@x1
^

�
rk

@

@x2

�
D Glk1

@

@xl
^

@

@x2
C

@

@x1
^Gmk2

@

@xm

D
�
G1k1 CG

2
k2

� @
@x1
^

@

@x2

we obtain

rW � D
�
G1k1 CG

2
k2

�
W kR.U; V / D

�
G1k1 CG

2
k2

�
W k�:

Since the geodesic coefficients are given by (2.10), we have

rW � D G
m
kmW

k� D 3
@P

@yk
W k�: (3.5)

Hence

rZ.rW �/ D 3rZ

�
@P

@yk
W k�

�
D 3

²
rZ

�
@P

@yk
W k

�
� C

�
@P

@yk
W k

��
@P

@yl
Zl
�³
�:

Let W be a vector field with constant coordinate functions. Then, using (2.10) we
get

rZ

�
@P

@yk
W k

�
D

�
@2P

@xj @yk
�Gmj

@2P

@ym@yk

�
W kZj

D

�
@2P

@xj @yk
�P

@2P

@yk@yj

�
W kZj ;

and hence

rZ.rW �/ D 3

²
@2P

@xj @yk
�P

@2P

@yk@yj
C
@P

@yk

@P

@yj

³
W kZj �: (3.6)

Let x0 2M be the point with coordinates .0; 0/ in the local coordinate system
of .M;F / corresponding to the canonical coordinates of the projectively related
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12 Z. Muzsnay and P. T. Nagy

Euclidean plane. According to [4, Lemma 8.2.1, p. 155] we have

@2P

@x1@y2
�P

@2P

@y1@y2
C
@P

@y1
@P

@y2
D 2

@P

@y1
@P

@y2
�
1

2

@2F 2

@y1@y2
D 2

@P

@y1
@P

@y2
��g12:

Hence the vector fields �
ˇ̌
x0

, r1�jx0
, r2�jx0

and r1.r2�/jx0
are linearly inde-

pendent if and only if the functions

1;
@P

@y1

ˇ̌̌̌
x0

;
@P

@y2

ˇ̌̌̌
x0

;

�
2
@P

@y1
@P

@y2
� � g12

�ˇ̌̌̌
x0

(3.7)

are linearly independent, where g12 D gy. @
@x1 ;

@
@x2 / is the component of the met-

ric tensor of .M;F /.

Lemma 3.4. The functions

@P .0; y/

@y1
;

@P .0; y/

@y2
and P .0; y/

@2P .0; y/

@y1@y2

can be expressed in the polar coordinate system .er ; t / by

@P .0; y/

@y1
D .cos t C Pr sin t /e�r ;

@P .0; y/

@y2
D .sin t � Pr cos t /e�r ;

P .0; y/
@2P .0; y/

@y1@y2
D . Pr2 C 1 � Rr/e�2r sin t cos t;

where the dot refers to differentiation with respect to the variable t .

Proof. We obtain from @e�r

@y1 D �e
�r Pr @t

@y1 and from

�
y2

.y1/2
D

@

@y1

�
y2

y1

�
d tan t
dt

@t

@y1
D

1

cos2 t
@t

@y1

that
@e�r

@y1
D e�r Pr cos2 t

y2

.y1/2
D e�r Pr

y2

.y1/2 C .y2/2
:

Hence

@P .0; y/

@y1
D
@
�
e�r

p
.y1/2 C .y2/2

�
@y1

D e�r
�
Pr

y2p
.y1/2 C .y2/2

C
y1p

.y1/2 C .y2/2

�
:
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Similarly, we have @e�r

@y2 D �e
�r Pr cos2 t 1

y1 D �e
�r Pr y1

.y1/2C.y2/2
: Hence

@P .0; y/

@y2
D
@
�
e�r

p
.y1/2 C .y2/2

�
@y2

D e�r
�
�Pr

y1p
.y1/2 C .y2/2

C
y2p

.y1/2 C .y2/2

�
:

Finally we have

@2P .0; y/

@y1@y2
D
@.sin t � Pr cos t /e�r

@y1
D . Rr�Pr2�1/e�r sin t cos t

1p
.y1/2 C .y2/2

:

Replacing now ' by the function P .0; y/ in the expression (3.1) we get the asser-
tion.

Lemma 3.5. Let r W R! R be a 2�-periodic smooth function such that the in-
equality Rr.t/ � Pr2.t/ � 1 ¤ 0 holds on a dense subset of R. Then the functions

1; .cos t C Pr sin t /e�r ; .sin t � Pr cos t /e�r ; .cos t C Pr sin t /.sin t � Pr cos t /e�2r

(3.8)
are linearly independent.

Proof. The derivative of

.cos t C Pr sin t /e�r and .sin t � Pr cos t /e�r

are
. Rr � Pr2 � 1/e�r sin t and . Rr � Pr2 � 1/e�r cos t ;

respectively, hence the functions (3.8) do not vanish identically. Let us consider a
linear combination

AC B.cos t C Pr sin t /e�r C C.sin t � Pr cos t /e�r

CD.cos t C Pr sin t /.sin t � Pr cos t /e�2r D 0

with constant coefficients A;B;C;D. Differentiate and divide by e�t . Rr � Pr2 � 1/
and we have

B sin t � C cos t �D.cos 2t C Pr sin 2t/e�r D 0:

Putting t D 0 and t D � , we get

C D �De�r.0/ D De�r.�/:

Since e�r.0/; e�r.�/ > 0, we get

C D D D 0

and hence A D B D C D D D 0.
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14 Z. Muzsnay and P. T. Nagy

Now, assume that condition (A) of Theorem 3.3 is fulfilled. According to Pro-
position 3.1 if the functions (3.7) are linearly independent, then the holonomy
group Holx0

.M/ is an infinite dimensional subgroup of Diff1.Ix0
M/. The func-

tion F .x0; y/ induces a scalar product on Tx0
M , consequently the component g12

of the metric tensor is constant on Tx0
M . Hence Holx0

.M/ is infinite dimensional
if the functions

1;
@P

@y1

ˇ̌̌̌
x0

;
@P

@y2

ˇ̌̌̌
x0

;
@P

@y1
@P

@y2

ˇ̌̌̌
x0

(3.9)

are linearly independent. This follows from Lemma 3.5 and hence the assertion of
the theorem is true.

Assume that condition (B) is satisfied. We denote '.y/ D F .x0; y/. Using
the expressions (3.7) we obtain that the vector fields �jx0

, r1�jx0
, r2�jx0

and
r1.r2�/jx0

are linearly independent if and only if the functions

1;
@P

@y1

ˇ̌̌̌
x0

D c
@'

@y1
;

@P

@y2

ˇ̌̌̌
x0

D c
@'

@y2�
2
@P

@y1
@P

@y2
� �g12

�ˇ̌̌̌
x0

D .2c2 � �/
@'

@y1
@'

@y2
� �'

@2'

@y1@y2

are linearly independent. According to Lemma 3.4 this is equivalent to the linear
independence of the functions

1; .cos t C Pr sin t / e�r ; .sin t � Pr cos t / e�r ;

.2c2 � �/.cos t C Pr sin t /.sin t � Pr cos t / e�2r � �. Rr � Pr2 � 1/ e�2r sin t cos t:

If r D const, then these functions are 1; cos t e�r ; sin t e�r ; 2c2 cos t sin t e�2r ,
hence the assertion follows from Lemma 3.5. In the following we can assume that
r.t/ ¤ const. Let t0 2 R such that Pr.t0/ D 0 and �.t0/ ¤ 0. We rotate the coordi-
nate system at the angle �t0 with respect to the euclidean norm

p
.y1/2 C .y2/2,

then we get in the new polar coordinate system that Pr.0/ D 0 and �.0/ ¤ 0. Con-
sider the linear combination

AC B.cos t C Pr sin t /e�r C C.sin t � Pr cos t / e�r

CD
�
.2c2 � �/.cos t C Pr sin t /.sin t � Pr cos t / e�2r

� �. Rr � Pr2 � 1/ e�2r sin t cos t
�
D 0

(3.10)

with some constants A;B;C;D. Since the function ' is absolutely homogeneous,
the function r.t/ is �-periodic. Putting t C � into t , the value of

ACD.2c2��/.cos tC Pr sin t /.sin t� Pr cos t / e�2r��. Rr� Pr2�1/ e�2r sin t cos t

does not change, but the value of

B.cos t C Pr sin t / e�r C C.sin t � Pr cos t / e�r
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changes its sign. Since Lemma 3.5 implies that the functions .cos t C Pr sin t / e�r

and .sin t � Pr cos t / e�r are linearly independent, we have B D C D 0 and (3.10)
becomes

Ae2rCD

�
.2c2��/

�
�Pr cos 2tC

1

2
.1� Pr2/ sin 2t

�
�
�

2
. Rr� Pr2�1/ sin 2t

�
D 0:

(3.11)
Since Pr.0/ D 0 at t D 0, we have A D 0. If D ¤ 0, then (3.11) gives

.2c2 � �/

�
�Pr cos 2t C

1

2
.1 � Pr2/ sin 2t

�
�
�

2
. Rr � Pr2 � 1/ sin 2t D 0:

By derivation and putting t D 0 we obtain

.2c2 � �/Œ�Rr.0/C 1� � �. Rr.0/ � 1/ D 2c2.1 � Rr.0// D 0:

Using the relation (3.2) condition (B) gives �.0/ D er.0/.1 � Rr.0// ¤ 0, which
is a contradiction. Hence D D 0 and the vector fields �

ˇ̌
x0

, r1�jx0
, r2�jx0

and
r1.r2�/jx0

are linearly independent. Using Proposition 3.1 we obtain the asser-
tion.

Suppose now that condition (C) holds. Hence we have

@F

@y1
.0; y/ D

y1

jyj
˙ a1;

@F

@y2
.0; y/ D

y2

jyj
˙ a2;

@2F

@y1@y2
.0; y/ D �

y1y2

jyj3
;

and

g12 D

�
y1

jyj
˙ a1

��
y2

jyj
˙ a2

�
�

�
1˙

�
a;
y

jyj

��
y1y2

jyj2
: (3.12)

Similarly, we obtain from condition (C) that

@P

@y1
.0; y/ D ˙

y1

jyj
� a1;

@P

@y2
.0; y/ D ˙

y2

jyj
� a2:

Using the expressions (3.7) we get that the vector fields �
ˇ̌
x0

, r1�jx0
, r2�jx0

,
r1.r2�/jx0

are linearly independent if and only if the functions

1;
@P

@y1

ˇ̌̌̌
.0;y/

D ˙
y1

jyj
� a1;

@P

@y2

ˇ̌̌̌
.0;y/

D ˙
y2

jyj
� a2

and

2
@P

@y1
@P

@y2
� �g12

ˇ̌̌̌
.0;y/

D �

�
a;
y

jyj

�
y1y2

jyj2
C .1 � �/

y1y2

jyj2

� .2C �/

�
a2
y1

jyj
C a1

y2

jyj

�
C .2 � �/a1a2

Authenticated | muzsnay@science.unideb.hu author's copy
Download Date | 2/13/13 6:54 AM



16 Z. Muzsnay and P. T. Nagy

are linearly independent. Putting

cos t D
y1

jyj
; sin t D

y2

jyj

we obtain that this condition is true, since the trigonometric polynomials

1; cos t; sin t; .1 � �/ cos t sin t � .a1 cos t C a2 sin t / cos t sin t

are linearly independent. Hence Holx0
.M/ is infinite dimensional.

4 Holonomy of projective Finsler manifolds of constant curvature

Now we will prove that the infinitesimal holonomy algebra of a totally geodesic
submanifold of a Finsler manifold can be embedded into the infinitesimal holon-
omy algebra of the entire manifold. This result yields a lower estimate for the
dimension of the holonomy group.

Totally geodesic and auto-parallel submanifolds

Let .M;S/ be a spray manifold. A submanifold NM is called totally geodesic if any
geodesic of .M;S/ which is tangent to NM at some point is contained in NM .

A totally geodesic submanifold NM of the spray manifold .M;S/ is called auto-
parallel if the homogeneous (nonlinear) parallel translations

�c W Tc.0/M ! Tc.1/M

along curves in the submanifold NM leave invariant the tangent bundle T NM and for
every � 2 OX1.T NM/ the horizontal covariant derivativerX� belongs to OX1.T NM/.

Let X; Y 2 TxM be tangent vectors at x 2M and let K denote the curvature
tensor of .M;S/ (cf. equation (2.7)). The mapping

y ! K.X; Y /.x; y/ W TxM 7! TxM

is called curvature vector field at x of the spray manifold .M;S/.

Lemma 4.1. Let NM be a totally geodesic submanifold in a spray manifold .M;S/.
The following assertions hold:

(a) the spray S induces a spray NS on the submanifold NM ,

(b) NM is an auto-parallel submanifold,

(c) the curvature vector fields at any point of NM can be extended to a curvature
vector field of M .
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Proof. Assume that the manifolds NM andM are k-, respectively nD kCp-dimen-
sional. Let .x1; : : : ; xk; xkC1; : : : ; xn/ be an adapted coordinate system, i.e. the
submanifold NM is locally given by the equations xkC1 D � � � D xn D 0. We de-
note the indices running on the values ¹1; : : : ; kº or ¹k C 1; : : : ; nº by ˛; ˇ; 
or �; � , respectively. The differential equation (2.2) of geodesics yields that the
geodesic coefficients �� .x; y/ satisfy

�� .x1; : : : ; xk; 0; : : : ; 0Iy1; : : : ; yk; 0; : : : ; 0/ D 0

identically, hence their derivatives with respect to y1; : : : ; yk are also vanishing.
It follows that

��˛ D 0 and ��˛ˇ D 0

at any .x1; : : : ; xk; 0; : : : ; 0Iy1; : : : ; yk; 0; : : : ; 0/. Hence the induced spray NS on
NM is defined by the geodesic coefficients

N�ˇ .x1; : : : ; xkIy1; : : : ; yk/ D �ˇ .x1; : : : ; xk; 0; : : : ; 0Iy1; : : : ; yk; 0; : : : ; 0/:

The homogeneous (nonlinear) parallel translation �c W Tc.0/M ! Tc.1/M along
curves in the submanifold NM and the horizontal covariant derivative on NM with
respect to the spray S coincide with the translation and the horizontal covariant
derivative on NM with respect to the spray NS . Hence the first two assertions are true.

If y;X; Y 2 Tx NM are tangent vectors at x 2 NM , then K.X; Y /.x; y/ can be
expressed by �

@� i˛.x; y/

@xˇ
�

@� i
ˇ
.x; y/

@x˛
C �m˛ .x; y/�

i
ˇm.x; y/

� �mˇ .x; y/�
i
˛m.x; y/

�
X˛Y ˇ

@

@xi
:

Since ��˛ D 0 and ��
˛ˇ
D 0 at any .x1; : : : ; xk; 0; : : : ; 0Iy1; : : : ; yk; 0; : : : ; 0/, we

have
@��˛

@xˇ
�

@��
ˇ

@x˛
C ��˛�

�
ˇ� � �

�
ˇ�

�
˛� C �


˛�

�
ˇ � �



ˇ
��˛ D 0

at .x1; : : : ; xk; 0; : : : ; 0Iy1; : : : ; yk; 0; : : : ; 0/. Hence the curvature tensors NK cor-
responding to the spray NS and K corresponding to the spray S satisfy

NK.X; Y /.x; y/ D K.X; Y /.x; y/

if x 2 NM and y;X; Y 2 Tx NM . It follows that for any given X; Y 2 Tx NM the
curvature vector field N�.y/ D NK.X; Y /.x; y/ at x 2 NM defined on Tx NM can be
extended to the curvature vector field �.y/ D K.X; Y /.x; y/ at x 2 NM defined
on TxM .
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18 Z. Muzsnay and P. T. Nagy

Theorem 4.2. Let NM be a totally geodesic 2-dimensional submanifold of a Finsler
manifold .M;F / such that the infinitesimal holonomy algebra hol�x.

NM/ of NM is
infinite dimensional. Then the holonomy group Holx.M/ is infinite dimensional.

Proof. According to Lemma 4.1 any curvature vector field of NM at x 2 NM �M
defined on Ix NM can be extended to a curvature vector field on the indicatrix
IxM . Hence the curvature algebra Rx. NM/ of the submanifold NM can be em-
bedded into the curvature algebra Rx.M/ of the manifold .M;F /. Assume that N�
is a vector field belonging to the infinitesimal holonomy algebra hol�x.

NM/ which
can be extended to the vector field � belonging to the infinitesimal holonomy al-
gebra hol�x.M/. Any given vector field NX 2 X1. NM/ can be extended to a vec-
tor field X 2 X1.M/, hence the Berwald horizontal covariant derivative along
NX 2 X1. NM/ of N� can be extended to the Berwald horizontal covariant derivative

alongX 2 X1.M/ of the vector field � . It follows that the infinitesimal holonomy
algebra hol�x.

NM/ of the submanifold NM can be embedded into the infinitesimal
holonomy algebra hol�x.M/ of the Finsler manifold .M;F /. Consequently, the in-
finitesimal holonomy algebra hol�x.M/ is infinite dimensional and hence the holo-
nomy group Holx.M/ is an infinite dimensional subgroup of Diff1.IxM/.

This result can be applied to locally projectively flat Finsler manifolds, as they
have for each tangent 2-plane a totally geodesic submanifold which is tangent to
this 2-plane.

Corollary 4.3. If a locally projectively flat Finsler manifold has a 2-dimensional
totally geodesic submanifold satisfying one of the conditions of Theorem 3.3, then
its holonomy group is infinite dimensional.

According to equations (2.11) and (2.12) the projectively flat Randers manifolds
of non-zero constant curvature satisfy condition (C) of Theorem 3.3. We can apply
Corollary 4.3 to these manifolds and we get the following

Theorem 4.4. The holonomy group of any projectively flat Randers manifolds of
non-zero constant flag curvature is infinite dimensional.

R. Bryant in [1, 2] introduced and studied complete Finsler metrics of positive
curvature on S2. He proved that there exists exactly a 2-parameter family of Finsler
metrics on S2 with curvature D 1 with great circles as geodesics. Z. Shen gener-
alized a 1-parameter family of complete Bryant metrics to Sn satisfying

F .0; y/ D jyj cos˛; P .0; y/ D jyj sin˛ (4.1)

with j˛j < �
2

in a coordinate neighbourhood centered at 0 2 Rn (cf. [14, Exam-
ple 7.1] and [4, Example 8.2.9]).
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We investigate the holonomy groups of two families of metrics, containing the
1-parameter family of complete Bryant–Shen metrics (4.1). The first family in the
following theorem is defined by condition (A), which is motivated by [4, Theo-
rem 8.2.3]. There is given the following construction:

If  D  .y/ is an arbitrary Minkowski norm on Rn and ' D '.y/ is an ar-
bitrary positively 1-homogeneous function on Rn, then there exists a projectively
flat Finsler metric F of constant flag curvature �1, defined on a neighbourhood
of the origin, such that F and its projective factor P satisfy F .0; y/ D  .y/ and
P .0; y/ D '.y/.

Condition (B) in the next theorem is confirmed by [14, Example 7, p. 1726],
where it is proved that for an arbitrary given Minkowski norm ' and j#j < �

2
there

exists a projectively flat Finsler function F of constant curvature D 1 defined on
a neighbourhood of 0 2 Rn, such that

F .0; y/ D '.y/ cos# and P .0; y/ D '.y/ sin#:

Conditions (A) and (B) in Theorem 3.3 together with Corollary 4.3 yield the fol-
lowing

Theorem 4.5. Let .M;F / be a projectively flat Finsler manifold of non-zero con-
stant curvature. Assume that there exists a point x0 2M and a 2-dimensional to-
tally geodesic submanifold NM through x0 such that one of the following conditions
holds:

(A) F induces a scalar product on Tx0
NM , and the projective factor P on Tx0

NM

is a strongly convex positively 1-homogeneous function,

(B) F .x0; y/ on Tx0
NM is a strongly convex absolutely 1-homogeneous function

on Tx0
M , and the projective factor P .x0; y/ on Tx0

NM satisfies

P .x0; y/ D c � F .x0; y/

with 0 ¤ c 2 R.

Then the holonomy group Holx0
.M/ is infinite dimensional.
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