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1. Notations, introduction

- K number field, [K : Q] = d , DK discriminant, OK ring of integers

(maximal order), DK/Q(α) discriminant of α ∈ OK

- O(⊆ OK ) order in K ,DO its discriminant, IO(X2, . . . ,Xd) index

form associated with an integral basis {1, ω2, . . . , ωd} of O. For

α ∈ O with Q(α) = K =⇒

IO(α) := [O : Z[α]] = |IO(x2, . . . , xd)| (1)

the index of α in O, where α = x1 + x2ω2 + . . .+ xdωd , xi ∈ Z for

1 ≤ i ≤ d .

- If fα(X ) ∈ Z[X ] minimal (monic) polynomial of α ∈ O =⇒

D(fα) = DK/Q(α) = I 2O(α)DO . (2)

- If in particular O = OK , we write DK , I (α), I (X2, . . . ,Xd) instead of

DO , IO(α), IO(X2, . . . ,Xd).



Definitions of equivalence and monogenity

Def: α, α′ ∈ O equivalent if α′ = ±α+ a with some a ∈ Z. Then their

discriminants and indices coincide.

Def: O resp. K monogenic if

O resp. OK = Z[α] for some α in O, resp. in OK , and n-times

monogenic if

O resp. OK = Z[α1] = . . . = Z[αn]

for some pairwise inequivalent α1, . . . , αn in O, resp. in OK .



Equivalent statements

Proposition. For O, and in particular for O = OK , the following

statements are equivalent:

(i) O = Z[α] for some α ∈ O;

(ii) {1, α, . . . , αd−1} is a power integral basis in O;

(iii) D(fα) = DK/Q(α) = DO ;

(iv) IO(α) = 1;

(v) IO(x2, . . . , xd) = ±1 solvable in x2, . . . , xd ∈ Z.

=⇒ O resp. K n-times monogenic ⇔ there are n inequivalent generators

for power integral bases in O, resp. in K ⇔ (v) has n solutions.



2. General effective finiteness results

(motivation for further effective and algorithmic investigations)

First general effective finiteness results on power integral bases and

monogenity : in the series of papers of Győry (1973,74,76,78a,78b).

Def: monic polynomials f , f ′ ∈ Z[X ] equivalent if f ′(X ) = f (X + a) for

some a ∈ Z ⇒ D(f ′) = D(f ).

H(f ) height of f ∈ Z[X ], i.e. the maximum of the absolute values of

the coefficients of f .

The main result of Part I:

Theorem A (Gy, 1973). Let D ≥ 1 and f ∈ Z[X ] a monic polynomial

with

0 < |D(f )| ≤ D. (3)



Cont., remarks

There are effectively computable constants c1(D), c2(D) depending

only on D such that

deg f ≤ c1(D), H(f ′) ≤ c2(D) (4)

for some f ′ ∈ Z[X ] equivalent to f .

Corollary (Gy, 1973). Up to equivalence, there are only finitely many

monic polynomials f ∈ Z[X ] with a given non-zero discriminant, and

all of them can be, at least in principle, effectively determined.

Remark 1. Hermite (1854,1857) introduced a much more complicated

and weaker equivalence for polynomials of given degree and given

non-zero discriminants, and proved a finiteness theorem on such

polynomials. For monic polynomials, our Corollary implies a

much more precise and effective generalization of Hermite’s

forgotten theorem; see also Evertse, Gy and Remete (202?).



Remark 2. For irreducible cubic polynomials, the finiteness assertion of

the Corollary in ineffective form: Delone (1930) and independently

Nagell (1930). Nagell (1967, 1968) conjectured that this is true for

all irreducible polynomials in Z[X ] of given degree d ≥ 3 and given

discriminant. Our Corollary=⇒proof of Nagell conjecture in

more general and effective form.

Remark 3. Theorem A was obtained independently of Birch and

Merriman (1972). They proved an ineffective finiteness theorem on

binary forms of fixed degree and discriminant from which, for monic

polynomials of fixed degree, an ineffective version of our Corollary

can be deduced. For effective version and generalizations of result

of Birch and Merriman, see Evertse and Gy (1991, 1992).



Basic idea of the proof of Theorem A (see also Part II)

The method is important for algorithmic/computational applications

too; see below.

Reduction to a ’connected’ system of unit equations, effective bound for

the unknown exponents in the unit equations by Baker’s method.

More precisely, let f ∈ Z[X ] monic with (3). After having proved

degf ≤ c1(D), let α1, . . . , αd zeros, L the splitting field of f . Then

(3)=⇒ αi − αj have bounded norms. Further,

(αi − αj) + (αj − αk) + (αk − αi ) = 0 for every i , j , k. (5)



Hence (5)=⇒’connected’ system of unit equations

δijkεijk + τijkνijk = 1, (6)

δijk , τijk finitely many and effectively determinable values, εijk , νijk

unknown units. Represent εijk = ζijkρ
aijk1
1 · · · ρaijkrr and similarly νijk , ζijk

root of unity, ρ1, . . . , ρr fundamental system of units in L with

r ≤ d!− 1. Applying Baker’s method to (6)=⇒effective bound for the

exponents=⇒effective bound for the height of αi − αj for every

i , j=⇒(4).



Further consequences of Theorem A in Parts I-V

Using (1), (2) and equivalence of (i)-(v),

Consequences: up to equivalence, effective finiteness results:

- for algebraic integers α with a given non-zero discriminant (Part I,

quantitative version in Part II); apply D(α) = D(fα), fα minimal

polynomial of α;

in given number field K,

- for α in O, resp. in OK with a given index I (Part III, quantitative

version); apply DK/Q(α) = I 2DK for α ∈ OK ;

- for the solutions of index form equation

IO(x2, . . . , xd) = ±I in x2, . . . , xd ∈ Z

(Part III, quantitative version);

- for α ∈ O resp OK with Z[α] = O resp. OK ⇔ {1, α, . . . , αd−1} power

integral basis (Part III, quantitative form);

- to decide effectively whether O resp. K is monogenic, resp. n-times

monogenic (Part III, quantitative).



Quantitative versions, generalizations

Quantitative versions: in Part II, Theorem A with

c1(D) = 2(1 + logD/ log 3), sharp

c2(D) explicit but large (Baker’s method).

In general, the final explicit bounds are too large for practical use.

Then refined versions of the general method (Gy,1998,2000) must be

combined with reduction and enumeration algorithms; see below.

Generalizations

- D resp. I replaced by pz11 · · · pzss , pi prime, zi ≥ 0 also unknown (Gy

Part V, Trelina)

- relative case, S-integers (Gy Part IV, Papp);

- more general decomposable form equations (Gy, Papp);

- étale algebras over finitely generated domains (Evertse, Gy);

- ”inhomogeneous” case (Gaál);

- analogue results over function fields (Gaál, Gy, Shlapentokh).
...



Applications

Applications

- Diophantine equations; Thue, Mordell, elliptic, superelliptic,

discriminant form, of discriminant type (Bérczes, Brindza, Evertse,

Gy, Haristoy, Papp, Pink, Pintér, Trelina);

- Irreducible polynomials (Gy);

- Canonical number systems (Evertse, Gy, Kovács, Pethő,

Thuswaldner)

- Arithmetic properties of discriminants and indices of elements of OK

(Gy).

...

Uniform upper bounds for the number of solutions (Bérczes, Evertse,

Gy).



Books

For further consequences, generalizations, applications and

quantitative versions, see the books with a great number of

references:

- K. Győry, Résultats effectifs sur la représentation des entiers par des

formes décomposables, Kingston, Canada, 1980.

- W. Narkiewicz, Elementary and Analytic Theory of Algebraic

Numbers, 2nd ed., Springer 1990.

- J.-H. Evertse and K. Győry, Unit Equations in Diophantine Number

Theory, Cambridge University Press, 2015.

- J.-H. Evertse and K. Győry, Discriminant Equations in Diophantine

Number Theory, Cambridge University Press, 2017.

- I. Gaál, Diophantine Equations and Power Integral Bases, 2nd ed.,

Birkhäuser, 2019.



3. Algorithmic resolution of index form equations,

application to (multiply) monogenic orders/number fields

K number field of degree d ≥ 3, O ⊆ OK order, I (X2, . . . ,Xd) index

form associated with a given integral basis of K resp. O.

I (x2, . . . , xd) = ±1 in x2, . . . , xd ∈ Z. (7)

There are efficient methods for solving (7) in concrete cases⇔for

computing all generators of power integral bases in K resp. in O, up to

degree d ≤ 6 in general, and for certain classes of higher degree fields up

to about degree 15.=⇒ for deciding how many times K resp. O is

monogenic.

For d=3,4, (7)=⇒Thue equations of degree ≤ 4, efficient algorithm;

d=3, (7)=⇒cubic Thue equation, Gaál, Schulte (1989);

d=4, (7)=⇒one cubic and some quartic Thue equations, Gaál,

Pethő, Pohst (1991–1996);



General approach combined with reduction and

enumeration algorithms

In general, for d ≥ 5 the general approach involving unit equations is

needed. Since

(7) ⇔ DK/Q(α) = DK ⇔ D(fα) = DK in α ∈ OK

with minimal polynomial fα ∈ Z[X ], in case of concrete equations (7),

the basic idea of the proof of Theorem A can be combined with further

fundamental algorithms and refinements:

Refined version of the general method: reduction to unit equations

but in considerably smaller subfields in the normal closure L of K . Then

the number of unknown exponents aijk much smaller, ≤ d(d − 1)/2− 1;

cf. Gy (1998), Gy (2000), pp. 197, 206–207, Gaál, Gy (1999), Evertse,

Gy (2017), pp. 90, 119–120. Then bound the exponents by Baker’s

method.



Reduction algorithm: reducing the Baker’s bound by refined versions

of the L3-algorithm; cf. de Weger; Wildanger; Gaál and Pohst.

Enumeration algorithm: determining the small solutions under the

reduced bound ; cf. Wildanger; Gaál and Pohst; Bilu, Gaál and Gy.

=⇒determining all power integral bases=⇒checking the monogenity and

the multiplicity of the monogenity of K .



Examples

Examples: in the most difficult case when K = Q(α), degree d , totally

real, with Galois group (of the normal closure) of K Sd , f ∈ Z[X ]

minimal polynomial of α.

d=3, f (X ) = X 3 − X 2 − 2X + 1, K 9 times monogenic, Gaál, Schulte

(1989);

d=4, f (X ) = X 4 − 4X 2 − X + 1, K 17 times monogenic, Gaál,Pethő,

Pohst (1990’s);

d=5, f (X ) = X 5 − 5X 3 +X 2 +3X − 1, K 39 times monogenic, Gaál, Gy

(1999);

d=6, f (X ) = X 6 − 5X 5 + 2X 4 + 18X 3 − 11X 2 − 19X + 1, K 45 times

monogenic, Bilu, Gaál, Gy (2004);



Books, research papers

Results, methods, references

Books

- B. M. M. de Weger, Algorithms for Diophantine Equations, CW,

Trad 65, Amsterdam, 1989.

- N. P. Smart, the Algorithmic Resolution of Diophantine Equations,

Cambridge University Press, 1998.

- J.-H. Evertse and K. Győry, Discriminant Equations in Diophantine

Number Theory, Cambridge University Press, 2017.

- I. Gaál, Diophantine Equations and Power Integral Bases, 2nd ed.,

Birkhäuser, 2019.

Research papers, a great number of authors, including: Ahmed,

Arnóczki, Bilu, El Fadil, Gaál, Gassert, Guardia, Győry, Hamed, Husnine,

Jadrijevič, Járási, Kashio, Kim, Lavallee, Montes, Motoda, Nakahara,

Nart, Nyul, Olajos, Pethő, Pohst, Remete, Robertson, Schertz, Schulte,

Shah, Smart, Smith, Spearman, Stange, Szabó, Tanoé, de Weger,

Wildanger, Williams, Ziegler,. . .



4. Monogenic and multiply monogenic number fields

selected results and problems

K number field of degree d with ring of integers OK

Distribution of monogenic number fields

for d=1,2, K monogenic;

for d=3, first example for non-monogenic number field: Dedekind (1878);

for fixed d≥3, inifnitely many monogenic and infinitely many

non-monogenic number fields of degree d ;

for d=3,4,6, tables of Gaál (2019): frequency of monogenic number

fields of degree d is decreasing in tendency as |DK | increases.

Theorem B (Bhargava, Shankar and Wang, 2016, 202?). For given

d ≥ 3, the number of isomorphism classes of monogenic number fields K

of degree d with |DK | ≤ X and with associated Galois group Sd is

≫ X 1/2+1/(d−1).



A weaker equivalence

Def: α, β ∈ OK equivalent if β = ±α+ a for some a ∈ Z ⇒ Z[β] = Z[α]

Theorem A =⇒ Up to equivalence, there are only finitely many α ∈ OK

with OK = Z[α], and they can be effectively determined=⇒effectively

decidable whether K is monogenic, and the multiplicity of the

monogenity can also be effectively determined.

Def: α, β ∈ OK weakly equivalent if β = ±α′ + a for some a ∈ Z and

some conjugate α′ of α (over Q)

equivalence =⇒ weak equivalence



Def: K n times monogenic in weak sense if

OK = Z[α1] = . . . = Z[αn]

for some pairwise weakly inequivalent α1, . . . , αn in OK .

Theorem A =⇒ effectively decidable whether K is n times monogenic in

weak sense

If the Galois group of (the normal closure of) K is Sd =⇒ the two

equivalences coincide

=⇒ in the above examples of degree d = 3, 4, 5, 6 resp., the

corresponding fields K are 9, 17, 39, 45 times monogenic in weak sense



Cyclotomic fields

Cyclotomic fields and their maximal real subfields are monogenic.

p ≥ 3 prime, ξ primitive pth root of unity, K = Q(ξ) pth cyclotomic field

ξ, . . . , ξp−1, 1/(1 + ξ), . . . , 1/(1 + ξp−1)

generate power integral bases in OK ; K 2(p − 1) times monogenic, but

only ξ, 1/(1 + ξ) generate distinct power integral bases. These are

inequivalent in weak sense.

Bremner’s conjecture (1988): no further power integral basis in K in

weak sense

proved for p ≤ 41: Robertson, Wildanger, Russel

If the conjecture is true =⇒ K precisely 2 times monogenic in weak

sense.



Bounds for the multiplicity of monogenity

In the above examples for d = 3, 4, 5, 6, K is at least d2 times

monogenic in weak sense. On the contrary, the first upper bound in

terms of d : Evertse and Gy (1985). The best known upper bound:

Theorem C (Evertse, 2011). Let K be an algebraic number field of

degree d ≥ 4. Then any order in K (including OK ) is at most

24(d+5)(d−2) (8)

times monogenic.

In particular, this provides an upper bound for the multiplicity of the

monogenity of K. Clearly, the bound (8) is valid in case of weak

equivalence as well.

For given d ≥ 3, denote by M(d) the maximal number for which there

exists M(d) times monogenic number field K of degree d .

Problem 1 (Gy, 2000). Is M(d) polynomial or exponential in terms of d?



Arithmetic characterization of monogenic and multiply

monogenic number fields

Hasse’s problem (1960’s): give an arithmetic characterization of

monogenic number fields

A very great number of important results for deciding the monogenity

of certain classes of number fields, including

- cyclotomic fields, abelian number fields;

- various types of quartic and sextic fields;

- multiquadratic fields;

- pure fields;

- composite fields;

...



Various approaches

- infinite parametric families of fields, use of the index form approach;

- ideal theoretic approach, Dedekind’s criterion;

- Montes algorithm, Newton polygons;

- Gröbner bases approach;

- irreducible monic polynomials with square-free discriminant;

- non-squarefree discriminant approach;

...



Books, research papers

Books: Hensel (1908), Hasse (1963), Narkiewicz (1990), Evertse and

Győry (2017), Gaál (2019) with many references.

Research papers, a great number of authors, including:

Ahmad, Archinard, Arnóczki, Bell, Bérczes, Bilu, Bozlee, Brenner,

Brunotte, Cougnard, Delone, Dummit, Evertse, El Fadil, Faddeev, Gaál,

Gassert, Gras, Guardia, Győry, Hameed, Hasse, Huard, Husnine,

Jadrijevic, Jakhar, Járási, Jones, Katayama, Khan, Khanduja, Kim,

Kisilevsky, Kovács, Lavallee, Liang, Merriman, Montes, Motoda,

Nakahara, Nart, Nguyen, Nyul, Park, Pethő, Pohst, Ranieri, Remete,

Robertson, Russel, Sangwan, Sekigawa, Shah, Simon, Smart, Smith,

Spearman, Stange, Sultan, Tanoé, Thérond, Uehara, Wildanger,

Williams, Ziegler,. . .

Problem 2: give an arithmetic characterization of multiply monogenic

number fields



New arithmetic properties of monogenic number fields and

orders

Recently, it has been proved in a precise and quantitative form that the

monogenity has an increasing effect on the class group of number

fields and orders; see Bhargava and Varma (2016), Ho, Shankar and

Varma (2018), Bhargava, Hanke and Shankar (2020), Siad, Parts I, II

(2020), Swaminathan (2020).

The above examples of degree d=3,4,5,6 show that the multiplicity

of monogenity can be relatively large if the Galois group is Sd , i.e. large.

Problem 3: Has the size or structure of the Galois group any futher

effect on the class group of multiply monogenic number fields and

orders?



5. Multiply monogenic orders in number fields

Fix number field K with degree d ≥ 3, and consider varying orders O in

K . Theorem C =⇒ every order in K ≤ 24(d+5)(d−2) times monogenic.

It can be shown that ’most’ orders in K are only few times monogenic.

More precisely,

Theorem D (Bérczes, Evertse, Gy, 2013). There are at most finitely

many three times monogenic orders in K .

The bound three is best possible in the sense that there are number

fields having infinitely many two times monogenic orders, see below.

Def. The order O in K is called of type I if there are α, β ∈ O and(
a1 a2

a3 a4

)
∈ GL(2,Z) such that

O = Z[α] = Z[β], β =
a1α+ a2
a3α+ a4

, a3 ̸= 0 (9)

Then α, β not equivalent, i.e. O two times monogenic.



Two times monogenic orders of types I and II

One can prove that every two times monogenic order in a cubic field is

of type I. Further, if K is not a CM-field (i.e., not a totally complex

quadratic extension of a totally real field), then K has infinitely many two

times monogenic orders of type I.

Def. The order O in K is called of type II if there are α, β ∈ O and

a0, a1, a2, b0, b1, b2 ∈ Z with a2b2 ̸= 0 such that

O = Z[α] = Z[β], β = a0 + a1α+ a2α
2, α = b0 + b1β + b2β

2. (10)

Then α, β not equivalent, so O two times monogenic.

Type II orders exist only in quartic number fields. Further, there exist

quartic number fields with infinitely many orders of type II.



Theorem E (Bérczes, Evertse, Gy, 2013). Let K be a number field of

degree d ≥ 4, whose normal closure has Galois group Sd . Then

(i) If d = 4, then apart from finitely many exceptions every multiply

monogenic order in K is two times monogenic of type I or II.

(ii) If d ≥ 5, then apart from finitely many exceptions every multiply

monogenic order in K is two times monogenic of type I.

Problem 4. Is Theorem E valid without the assumption on the Galois

group?

Method of proof of Theorems D and E: reduction to unit equations in

more than two unknowns, and use of ineffective finiteness theorems on

these equations. Problem 5. Make effective Theorems D and E

This seems to be very hard. At present, it is not known how to make the

results on unit equations in more than two unknowns effective.

Theorem F. (Evertse, Gy, Remete, 202?). For every d ≥ 5 there exists

number field K of degree d having a two times monogenic order which is

not of type I.



Explicit examples

Explicit examples for Theorem F (Evertse, Gy, Remete, 202?): Let d ≥ 5 and

g (d)(X ) :=

X d + X d−1 − 1 if d odd,

X d + X d−1 + X d−2 + 1 if d even.

By results of Selmer (1965) resp. Ljunggren (1960), g (d)(X ) is irreducible over

Q. Let

f (d)(X ) :=

X
d+1
2 − X

d−1
2 + 1 if d odd,

X
d+2
2 + X

d
2 + X

d−2
2 + X + 1 if d even.

It is easy to check that

f (d)(X 2)− X =

g (d)(X )(X − 1) if d odd,

g (d)(X )(X 2 − X + 1) if d even.
(11)

Then, if α is a zero of g (d)(X ), (11) implies that α = f (d)(α2), whence

α ∈ Z[α2] and Z[α] ⊆ Z[α2]. But Z[α2] ⊆ Z[α], so Z[α] = Z[α2].



Since d ≥ 5, there are no a1, a2, a3, a4 ∈ Z with a3 ̸= 0 and

α2 =
a1α+ a2
a3α+ a4

.

Consequently, O := Z[α] = Z[α2] is a two times monogenic order in the

number field K := Q(α) of degree d which is not of type I.

Remark. It seems to be an extremely hard problem to describe completely the

multiply monogenic orders in a number field.

Application to canonical number systems

K number field of degree ≥ 3, O and order in K .

Def. α ∈ O, α ̸= 0 is called a basis of a canonical number system (or CNS

basis) for O if every nonzero element of O can be represented in the form

a0 + a1α+ . . .+ amα
m

with m ≥ 0, ai ∈ {0, 1, . . . , |NK/Q(α)| − 1} for i = 0, . . . ,m and am ̸= 0.

CNS is a natural generalization of radix representations of rational integers

to algebraic integers.



Def. When there exists a CNS in O, then O is called a CNS order.

Such orders have been intensively investigated, see e.g. the survey

paper Brunotte, Huszti, Pethő (2006).

Kovács (1981) proved that O is a CNS order ⇔ O is monogenic.

If α is a CNS basis in O =⇒ O = Z[α]. Conversely, if O = Z[α] then
there are infinitely many α′ equivalent to α such that α′ is a CNS basis

for O. For a characterization of CNS bases in O, see Kovács and Pethő

(1991).

Consequence of the Corollary to Theorem A (Gy, 1973) =⇒ up to

equivalence, there are only finitely many canonical number systems in O,

and all them can be effectively determined.

Def. O is said to be n times CNS order if there are at least n pairwise

inequivalent CNS bases in O.

Theorem D (Bérczes, Evertse, Gy, 2013) =⇒

Corollary. There are at most finitely many three times CNS orders in K



6. Some new effective generalizations

(motivation for further investigations)

K number field, D ̸= 0 integer

Corollary of Theorem A from Gy (1973) =⇒ Up to equivalence, the

equation

DK/Q(α) = D in α ∈ OK (12)

has only finitely many solutions + effective

In the books Evertse, Gy (2017) and Gaál (2019) many results mentioned

in Sections 2 and 3 above are generalized for the relative case, over the

rings of (S−) integers of number fields. Further generalizations are given

for the finitely generated case in the books Evertse, Gy (2017) and

Evertse and Győry, Effective results and methods for Diophantine

equations over finitely generated domains, Cambridge University press, to

appear.



A new effective generalization

Let A = Z[z1, . . . , zr ] be a finitely generated domain with algebraic or

transcendental generators z1, . . . , zr , M quotient field of A, Ω a finite

étale M-algebra (i.e. a direct product of finite extensions K1, . . . ,Kt of

M). Let O be an A-order of Ω (i.e. an A-subalgebra of the integral

closure of A in Ω, which spans Ω as an M-vector space).

Def. α, α′ ∈ O A-equivalent if α′ − α ∈ A =⇒ DΩ/M(α′) = DΩ/M(α)

B+ additive group of a ring B, D a non-zero element of A



As a generalization of (12), consider the discriminant equation

DΩ/M(α) = D in α ∈ O. (13)

Theorem G (Evertse and Gy, 202?). If

(O ∩M)+/A+ finite, (14)

then the set of α ∈ O with (13) is a union of finitely many A-equivalence

classes. Moreover, if A,Ω,O and D are given effectively in a well-defined

way, one can determine a set consisting of precisely one element from

each of these classes.

For A = Z, M = Q, Ω =number field K , O = OK , Theorem G =⇒ the

above theorem concerning equation (12).

The condition (14) necessary and decidable.



Thank you for your attention!


