Monogenity, multiple monogenity and power integral bases in number fields

K. Győry (University of Debrecen)

Online Research Seminar "Diophantine Number Theory"

Debrecen, March 5, 2021

Slides have been posted on https://math.unideb.hu/en/talks-kalman-gyory

Table of contents

- Notations, introduction
- General effective finiteness results
- Algorithmic resolution of index form equations, application to (multiply) monogenic orders/number fields
- Monogenic and multiply monogenic number fields
- Multiply monogenic orders in number fields
- Some new effective generalizations

1. Notations, introduction

- K number field, $[K : \mathbb{Q}] = d$, D_K discriminant, O_K ring of integers (maximal order), $D_{K/\mathbb{Q}}(\alpha)$ discriminant of $\alpha \in O_K$
- $O(\subseteq O_K)$ order in K, D_O its discriminant, $I_O(X_2, ..., X_d)$ index form associated with an integral basis $\{1, \omega_2, ..., \omega_d\}$ of O. For $\alpha \in O$ with $\mathbb{Q}(\alpha) = K \Longrightarrow$

$$I_O(\alpha) := [O : \mathbb{Z}[\alpha]] = |I_O(x_2, \dots, x_d)|$$
(1)

the *index* of α in O, where $\alpha = x_1 + x_2\omega_2 + \ldots + x_d\omega_d$, $x_i \in \mathbb{Z}$ for $1 \leq i \leq d$.

- If $f_{\alpha}(X) \in \mathbb{Z}[X]$ minimal (monic) polynomial of $\alpha \in O \Longrightarrow$

$$D(f_{\alpha}) = D_{\mathcal{K}/\mathbb{Q}}(\alpha) = I_{\mathcal{O}}^2(\alpha) D_{\mathcal{O}}.$$
 (2)

- If in particular $O = O_K$, we write D_K , $I(\alpha)$, $I(X_2, \ldots, X_d)$ instead of D_O , $I_O(\alpha)$, $I_O(X_2, \ldots, X_d)$.

Def: $\alpha, \alpha' \in O$ equivalent if $\alpha' = \pm \alpha + a$ with some $a \in \mathbb{Z}$. Then their discriminants and indices coincide.

Def: O resp. K monogenic if

O resp. $O_K = \mathbb{Z}[\alpha]$ for some α in *O*, resp. in O_K , and *n*-times monogenic if

$$O$$
 resp. $O_{\mathcal{K}} = \mathbb{Z}[\alpha_1] = \ldots = \mathbb{Z}[\alpha_n]$

for some pairwise inequivalent $\alpha_1, \ldots, \alpha_n$ in O, resp. in O_K .

Proposition. For O, and in particular for $O = O_K$, the following statements are equivalent:

(i)
$$O = \mathbb{Z}[\alpha]$$
 for some $\alpha \in O$;

(ii) $\{1, \alpha, \dots, \alpha^{d-1}\}$ is a power integral basis in O;

(iii)
$$D(f_{\alpha}) = D_{K/\mathbb{Q}}(\alpha) = D_{O};$$

(iv)
$$I_O(\alpha) = 1;$$

(v) $I_O(x_2, \ldots, x_d) = \pm 1$ solvable in $x_2, \ldots, x_d \in \mathbb{Z}$.

 \implies O resp. K n-times monogenic \Leftrightarrow there are n inequivalent generators for power integral bases in O, resp. in K \Leftrightarrow (v) has n solutions.

2. General effective finiteness results

(motivation for further effective and algorithmic investigations)

First general **effective** finiteness results on *power integral bases* and *monogenity*: in the series of papers of Győry (1973,74,76,78a,78b). **Def:** monic polynomials $f, f' \in \mathbb{Z}[X]$ equivalent if f'(X) = f(X + a) for some $a \in \mathbb{Z} \Rightarrow D(f') = D(f)$. H(f) height of $f \in \mathbb{Z}[X]$, i.e. the maximum of the absolute values of the coefficients of f.

The main result of Part I:

Theorem A (Gy, 1973). Let $D \ge 1$ and $f \in \mathbb{Z}[X]$ a monic polynomial with

$$0 < |D(f)| \le D. \tag{3}$$

Cont., remarks

There are effectively computable constants $c_1(D), c_2(D)$ depending only on D such that

$$\deg f \le c_1(D), \ H(f') \le c_2(D) \tag{4}$$

for some $f' \in \mathbb{Z}[X]$ equivalent to f.

- **Corollary** (Gy, 1973). Up to equivalence, there are only finitely many monic polynomials $f \in \mathbb{Z}[X]$ with a given non-zero discriminant, and all of them can be, at least in principle, effectively determined.
- **Remark 1.** Hermite (1854,1857) introduced a *much more complicated and weaker equivalence* for polynomials of given degree and given non-zero discriminants, and proved a finiteness theorem on such polynomials. For monic polynomials, our <u>Corollary</u> implies a <u>much more precise</u> and <u>effective generalization</u> of Hermite's *forgotten* theorem; see also Evertse, Gy and Remete (202?).

- **Remark 2.** For *irreducible cubic* polynomials, the finiteness assertion of the Corollary in **ineffective** form: Delone (1930) and independently Nagell (1930). Nagell (1967, 1968) <u>conjectured</u> that this is true for all irreducible polynomials in $\mathbb{Z}[X]$ of given degree $d \ge 3$ and given discriminant. Our Corollary \implies proof of Nagell conjecture in more general and <u>effective form</u>.
- Remark 3. <u>Theorem A</u> was obtained *independently* of Birch and Merriman (1972). They proved an *ineffective finiteness theorem* on *binary forms* of **fixed** *degree* and *discriminant* from which, for monic polynomials of **fixed** *degree*, an *ineffective* version of our <u>Corollary</u> can be deduced. For effective version and generalizations of result of Birch and Merriman, see Evertse and Gy (1991, 1992).

The **method** is important for algorithmic/computational applications too; see below.

Reduction to a 'connected' system of unit equations, effective bound for the unknown exponents in the unit equations by Baker's method. More precisely, let $f \in \mathbb{Z}[X]$ monic with (3). After having proved $\overline{degf} \leq c_1(D)$, let $\alpha_1, \ldots, \alpha_d$ zeros, L the splitting field of f. Then (3) $\Longrightarrow \alpha_i - \alpha_j$ have bounded norms. Further,

$$(\alpha_i - \alpha_j) + (\alpha_j - \alpha_k) + (\alpha_k - \alpha_i) = 0 \text{ for every } i, j, k.$$
(5)

Hence $(5) \Longrightarrow$ 'connected' system of unit equations

$$\delta_{ijk}\varepsilon_{ijk} + \tau_{ijk}\nu_{ijk} = 1,\tag{6}$$

 δ_{ijk}, τ_{ijk} finitely many and effectively determinable values, $\varepsilon_{ijk}, \nu_{ijk}$ unknown units. Represent $\varepsilon_{ijk} = \zeta_{ijk} \rho_1^{a_{ijk_1}} \cdots \rho_r^{a_{ijk_r}}$ and similarly ν_{ijk}, ζ_{ijk} root of unity, ρ_1, \ldots, ρ_r fundamental system of units in *L* with $r \leq d! - 1$. Applying Baker's method to (6) \Longrightarrow effective bound for the exponents \Longrightarrow effective bound for the height of $\alpha_i - \alpha_j$ for every $i, j \Longrightarrow$ (4).

Further consequences of Theorem A in Parts I-V

Using (1), (2) and equivalence of (i)-(v),

Consequences: up to equivalence, effective finiteness results:

- for algebraic integers α with a given non-zero discriminant (Part I, quantitative version in Part II); apply $D(\alpha) = D(f_{\alpha})$, f_{α} minimal polynomial of α ;

in given number field K,

- for α in O, resp. in O_K with a given index I (Part III, quantitative version); apply $D_{K/\mathbb{Q}}(\alpha) = I^2 D_K$ for $\alpha \in O_K$;
- for the solutions of index form equation

$$I_O(x_2,\ldots,x_d) = \pm I \text{ in } x_2,\ldots,x_d \in \mathbb{Z}$$

(Part III, quantitative version);

- for $\alpha \in O$ resp O_K with $\mathbb{Z}[\alpha] = O$ resp. $O_K \Leftrightarrow \{1, \alpha, \dots, \alpha^{d-1}\}$ power integral basis (Part III, quantitative form);
- to decide effectively whether O resp. K is monogenic, resp. n-times monogenic (Part III, quantitative).

Quantitative versions, generalizations

Quantitative versions: in Part II, Theorem A with

 $c_1(D) = 2(1 + \log D / \log 3)$, sharp

 $c_2(D)$ explicit but large (Baker's method).

In general, the **final** explicit *bounds* are *too large* for *practical use*. Then *refined versions* of the *general method* (Gy,1998,2000) must be combined with *reduction* and *enumeration* algorithms; see below.

Generalizations

- *D* resp. *I* replaced by $p_1^{z_1} \cdots p_s^{z_s}$, p_i prime, $z_i \ge 0$ also *unknown* (Gy Part V, Trelina)
- relative case, S-integers (Gy Part IV, Papp);
- more general decomposable form equations (Gy, Papp);
- étale algebras over finitely generated domains (Evertse, Gy);
- "inhomogeneous" case (Gaál);
- analogue results over function fields (Gaál, Gy, Shlapentokh).

Applications

Applications

- Diophantine equations; Thue, Mordell, elliptic, superelliptic, discriminant form, of discriminant type (Bérczes, Brindza, Evertse, Gy, Haristoy, Papp, Pink, Pintér, Trelina);
- Irreducible polynomials (Gy);
- Canonical number systems (Evertse, Gy, Kovács, Pethő, Thuswaldner)
- Arithmetic properties of discriminants and indices of elements of O_K (Gy).

Uniform upper bounds for the number of solutions (Bérczes, Evertse, Gy).

For further **consequences**, **generalizations**, **applications** and **quantitative versions**, see the **books** with a *great number* of *references*:

- *K. Győry*, Résultats effectifs sur la représentation des entiers par des formes décomposables, Kingston, Canada, 1980.
- *W. Narkiewicz*, Elementary and Analytic Theory of Algebraic Numbers, 2nd ed., Springer 1990.
- J.-H. Evertse and K. Győry, Unit Equations in Diophantine Number Theory, Cambridge University Press, 2015.
- J.-H. Evertse and K. Győry, Discriminant Equations in Diophantine Number Theory, Cambridge University Press, 2017.
- *I. Gaál*, Diophantine Equations and Power Integral Bases, 2nd ed., Birkhäuser, 2019.

3. Algorithmic resolution of index form equations, application to (multiply) monogenic orders/number fields

K number field of degree $d \ge 3$, $O \subseteq O_K$ order, $I(X_2, \ldots, X_d)$ index form associated with a given integral basis of K resp. O.

$$I(x_2,\ldots,x_d) = \pm 1 \text{ in } x_2,\ldots,x_d \in \mathbb{Z}.$$
(7)

There are efficient methods for solving (7) in concrete cases \Leftrightarrow for computing all generators of power integral bases in K resp. in O, up to degree $d \le 6$ in general, and for certain classes of higher degree fields up to about degree 15. \Longrightarrow for deciding how many times K resp. O is monogenic.

General approach combined with reduction and enumeration algorithms

In general, for $d \ge 5$ the general approach involving unit equations is needed. Since

(7)
$$\Leftrightarrow D_{K/\mathbb{Q}}(\alpha) = D_K \Leftrightarrow D(f_\alpha) = D_K \text{ in } \alpha \in O_K$$

with minimal polynomial $f_{\alpha} \in \mathbb{Z}[X]$, in case of *concrete* equations (7), the *basic idea* of the *proof* of *Theorem A* can be *combined* with *further fundamental algorithms* and *refinements:*

Refined version of the general method: reduction to unit equations but in considerably <u>smaller subfields</u> in the normal closure *L* of *K*. Then the number of unknown exponents a_{ijk} <u>much smaller</u>, $\leq d(d-1)/2 - 1$; cf. Gy (1998), Gy (2000), pp. 197, 206–207, Gaál, Gy (1999), Evertse, Gy (2017), pp. 90, 119–120. Then *bound* the exponents by *Baker's method*. **Reduction algorithm:** reducing the Baker's bound by refined versions of the L^3 -algorithm; cf. de Weger; Wildanger; Gaál and Pohst.

Enumeration algorithm: determining the **small** solutions *under the reduced bound*; cf. Wildanger; Gaál and Pohst; Bilu, Gaál and Gy.

 \implies determining all power integral bases \implies checking the monogenity and the multiplicity of the monogenity of K.

Examples

Examples: in the <u>most difficult case</u> when $K = \mathbb{Q}(\alpha)$, degree *d*, totally real, with Galois group (of the normal closure) of $K S_d$, $f \in \mathbb{Z}[X]$ minimal polynomial of α .

d=3,
$$f(X) = X^3 - X^2 - 2X + 1$$
, K 9 times monogenic, Gaál, Schulte (1989);

- **d=4**, $f(X) = X^4 4X^2 X + 1$, K 17 times monogenic, Gaál,Pethő, Pohst (1990's);
- **d=5**, $f(X) = X^5 5X^3 + X^2 + 3X 1$, K 39 times monogenic, Gaál, Gy (1999);

d=6, $f(X) = X^6 - 5X^5 + 2X^4 + 18X^3 - 11X^2 - 19X + 1$, K 45 times monogenic, Bilu, Gaál, Gy (2004);

Books, research papers

Results, methods, references

Books

- *B. M. M. de Weger*, Algorithms for Diophantine Equations, CW, Trad 65, Amsterdam, 1989.
- *N. P. Smart*, the Algorithmic Resolution of Diophantine Equations, Cambridge University Press, 1998.
- J.-H. Evertse and K. Győry, Discriminant Equations in Diophantine Number Theory, Cambridge University Press, 2017.
- *I. Gaál*, Diophantine Equations and Power Integral Bases, 2nd ed., Birkhäuser, 2019.

Research papers, a great number of <u>authors</u>, including: Ahmed, Arnóczki, Bilu, El Fadil, Gaál, Gassert, Guardia, Győry, Hamed, Husnine, Jadrijevič, Járási, Kashio, Kim, Lavallee, Montes, Motoda, Nakahara, Nart, Nyul, Olajos, Pethő, Pohst, Remete, Robertson, Schertz, Schulte, Shah, Smart, Smith, Spearman, Stange, Szabó, Tanoé, de Weger, Wildanger, Williams, Ziegler,...

4. Monogenic and multiply monogenic number fields

selected results and problems

K <u>number field</u> of degree d with ring of integers O_K

Distribution of monogenic number fields

for **d=1,2**, *K* monogenic;

for d=3, first example for *non-monogenic* number field: Dedekind (1878); for *fixed* d>3, inifnitely many *monogenic* and infinitely many

non-monogenic number fields of degree *d*;

for **d=3,4,6**, tables of Gaál (2019): frequency of monogenic number fields of degree d is decreasing in tendency as $|D_{\mathcal{K}}|$ increases.

Theorem B (Bhargava, Shankar and Wang, 2016, 202?). For given $d \ge 3$, the number of isomorphism classes of monogenic number fields K of degree d with $|D_K| \le X$ and with associated Galois group S_d is $\gg X^{1/2+1/(d-1)}$.

Def: $\alpha, \beta \in O_K$ equivalent if $\beta = \pm \alpha + a$ for some $a \in \mathbb{Z} \Rightarrow \mathbb{Z}[\beta] = \mathbb{Z}[\alpha]$

Theorem A \implies Up to equivalence, there are only finitely many $\alpha \in O_K$ with $O_K = \mathbb{Z}[\alpha]$, and they can be effectively determined \implies effectively decidable whether K is monogenic, and the multiplicity of the monogenity can also be effectively determined.

Def: $\alpha, \beta \in O_K$ weakly equivalent if $\beta = \pm \alpha' + a$ for some $a \in \mathbb{Z}$ and some conjugate α' of α (over \mathbb{Q})

equivalence \implies weak equivalence

Def: K n times monogenic in weak sense if

$$O_{\mathcal{K}} = \mathbb{Z}[\alpha_1] = \ldots = \mathbb{Z}[\alpha_n]$$

for some pairwise weakly inequivalent $\alpha_1, \ldots, \alpha_n$ in O_K .

Theorem A \implies effectively decidable whether K is n times monogenic in weak sense

If the Galois group of (the normal closure of) K is $S_d \Longrightarrow$ the two equivalences coincide

 \implies in the above **examples** of degree d = 3, 4, 5, 6 resp., the corresponding fields K are 9, 17, 39, 45 *times monogenic in weak sense*

Cyclotomic fields

Cyclotomic fields and their maximal real subfields are monogenic.

 $p \geq 3$ prime, ξ primitive pth root of unity, $K = \mathbb{Q}(\xi)$ pth cyclotomic field

$$\xi, \ldots, \xi^{p-1}, 1/(1+\xi), \ldots, 1/(1+\xi^{p-1})$$

generate power integral bases in O_K ; K 2(p-1) times monogenic, but only ξ , $1/(1+\xi)$ generate distinct power integral bases. These are *inequivalent* in weak sense.

Bremner's **conjecture** (1988): no further power integral basis in K in weak sense

proved for $p \leq 41$: Robertson, Wildanger, Russel

If the conjecture is true \implies K precisely 2 times monogenic in weak sense.

Bounds for the multiplicity of monogenity

In the above examples for d = 3, 4, 5, 6, K is at least d^2 times monogenic in weak sense. On the contrary, the first upper bound in terms of d: Evertse and Gy (1985). The best known upper bound:

Theorem C (Evertse, 2011). Let K be an algebraic number field of degree $d \ge 4$. Then any order in K (including O_K) is at most

$$2^{4(d+5)(d-2)}$$
(8)

times monogenic.

In particular, this provides an *upper bound* for *the multiplicity of the monogenity of K*. Clearly, the bound (8) is valid in case of *weak equivalence* as well.

For given $d \ge 3$, denote by M(d) the maximal number for which there exists M(d) times monogenic number field K of degree d.

Problem 1 (Gy, 2000). Is M(d) polynomial or exponential in terms of d?

Arithmetic characterization of monogenic and multiply monogenic number fields

Hasse's problem (1960's): give an arithmetic characterization of monogenic number fields

A very great number of *important results* for *deciding the monogenity* of <u>certain classes</u> of number fields, including

- cyclotomic fields, abelian number fields;
- various types of quartic and sextic fields;
- multiquadratic fields;
- pure fields;
- composite fields;

Various approaches

- infinite parametric families of fields, use of the index form approach;
- ideal theoretic approach, Dedekind's criterion;
- Montes algorithm, Newton polygons;
- Gröbner bases approach;
- irreducible monic polynomials with square-free discriminant;
- non-squarefree discriminant approach;

Books, research papers

Books: Hensel (1908), Hasse (1963), Narkiewicz (1990), Evertse and Győry (2017), Gaál (2019) with many references.

Research papers, a great number of *authors*, including:

Ahmad, Archinard, Arnóczki, Bell, Bérczes, Bilu, Bozlee, Brenner, Brunotte, Cougnard, Delone, Dummit, Evertse, El Fadil, Faddeev, Gaál, Gassert, Gras, Guardia, Győry, Hameed, Hasse, Huard, Husnine, Jadrijevic, Jakhar, Járási, Jones, Katayama, Khan, Khanduja, Kim, Kisilevsky, Kovács, Lavallee, Liang, Merriman, Montes, Motoda, Nakahara, Nart, Nguyen, Nyul, Park, Pethő, Pohst, Ranieri, Remete, Robertson, Russel, Sangwan, Sekigawa, Shah, Simon, Smart, Smith, Spearman, Stange, Sultan, Tanoé, Thérond, Uehara, Wildanger, Williams, Ziegler,...

Problem 2: give an arithmetic characterization of **multiply monogenic** number fields

New arithmetic properties of monogenic number fields and orders

Recently, it has been proved in a *precise* and *quantitative form* that the monogenity has an increasing effect on the class group of number fields and orders; see Bhargava and Varma (2016), Ho, Shankar and Varma (2018), Bhargava, Hanke and Shankar (2020), Siad, Parts I, II (2020), Swaminathan (2020).

The above **examples** of degree d=3,4,5,6 show that the multiplicity of monogenity can be relatively large if the Galois group is S_d , i.e. large.

Problem 3: Has the *size* or *structure* of the *Galois group* any futher effect on the class group of multiply monogenic number fields and orders?

5. Multiply monogenic orders in number fields

Fix number field K with degree $d \ge 3$, and consider varying orders O in K. Theorem C \implies every order in $K \le 2^{4(d+5)(d-2)}$ times monogenic. It can be shown that 'most' orders in K are only few times monogenic. More precisely,

Theorem D (Bérczes, Evertse, Gy, 2013). *There are at most finitely many three times monogenic orders in K*.

The bound **three** is *best possible* in the sense that there are number fields having infinitely many two times monogenic orders, see below. **Def.** The order O in K is called of **type I** if there are $\alpha, \beta \in O$ and $\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \in GL(2, \mathbb{Z})$ such that

$$O = \mathbb{Z}[\alpha] = \mathbb{Z}[\beta], \ \beta = \frac{a_1\alpha + a_2}{a_3\alpha + a_4}, \ a_3 \neq 0$$
(9)

Then α , β **not** equivalent, i.e. O two times monogenic.

One can prove that every two times monogenic order in a cubic field is of **type I**. Further, if K is <u>not</u> a <u>CM-field</u> (i.e., not a totally complex quadratic extension of a totally real field), then K has *infinitely many two times* monogenic orders of **type I**.

Def. The order O in K is called of **type II** if there are $\alpha, \beta \in O$ and $a_0, a_1, a_2, b_0, b_1, b_2 \in \mathbb{Z}$ with $a_2b_2 \neq 0$ such that

$$O = \mathbb{Z}[\alpha] = \mathbb{Z}[\beta], \ \beta = \mathbf{a}_0 + \mathbf{a}_1 \alpha + \mathbf{a}_2 \alpha^2, \ \alpha = \mathbf{b}_0 + \mathbf{b}_1 \beta + \mathbf{b}_2 \beta^2.$$
(10)

Then α, β not equivalent, so O two times monogenic.

Type II orders exist only in *quartic number fields*. Further, there exist *quartic number fields* with *infinitely many orders of* **type II**.

Theorem E (Bérczes, Evertse, Gy, 2013). Let K be a number field of degree $d \ge 4$, whose normal closure has Galois group S_d . Then

- (i) If d = 4, then apart from finitely many exceptions every multiply monogenic order in K is two times monogenic of type I or II.
- (ii) If d ≥ 5, then apart from finitely many exceptions every multiply monogenic order in K is two times monogenic of type I.
- **Problem 4.** Is Theorem E valid without the assumption on the Galois group?

Method of proof of Theorems D and E: reduction to unit equations in more than two unknowns, and use of ineffective finiteness theorems on these equations. **Problem 5.** Make effective Theorems D and E

This seems to be very hard. At present, it is not known how to make the results on unit equations in more than two unknowns effective.

Theorem F. (Evertse, Gy, Remete, 202?). For every $d \ge 5$ there exists number field K of degree d having a two times monogenic order which is not of type I.

Explicit examples

Explicit examples for Theorem F (Evertse, Gy, Remete, 202?): Let $d \ge 5$ and $g^{(d)}(X) := \begin{cases} X^d + X^{d-1} - 1 \text{ if } d \text{ odd}, \\ X^d + X^{d-1} + X^{d-2} + 1 \text{ if } d \text{ even}. \end{cases}$

By results of Selmer (1965) resp. Ljunggren (1960), $g^{(d)}(X)$ is irreducible over \mathbb{Q} . Let

$$f^{(d)}(X) := \begin{cases} X^{\frac{d+1}{2}} - X^{\frac{d-1}{2}} + 1 \text{ if } d \text{ odd}, \\ X^{\frac{d+2}{2}} + X^{\frac{d}{2}} + X^{\frac{d-2}{2}} + X + 1 \text{ if } d \text{ even} \end{cases}$$

It is easy to check that

$$f^{(d)}(X^2) - X = \begin{cases} g^{(d)}(X)(X-1) \text{ if } d \text{ odd}, \\ g^{(d)}(X)(X^2 - X + 1) \text{ if } d \text{ even.} \end{cases}$$
(11)

Then, if α is a zero of $g^{(d)}(X)$, (11) implies that $\alpha = f^{(d)}(\alpha^2)$, whence $\alpha \in \mathbb{Z}[\alpha^2]$ and $\mathbb{Z}[\alpha] \subseteq \mathbb{Z}[\alpha^2]$. But $\mathbb{Z}[\alpha^2] \subseteq \mathbb{Z}[\alpha]$, so $\mathbb{Z}[\alpha] = \mathbb{Z}[\alpha^2]$.

Since $d \geq 5$, there are no $a_1, a_2, a_3, a_4 \in \mathbb{Z}$ with $a_3 \neq 0$ and

$$\alpha^2 = \frac{a_1\alpha + a_2}{a_3\alpha + a_4}$$

Consequently, $O := \mathbb{Z}[\alpha] = \mathbb{Z}[\alpha^2]$ is a two times monogenic order in the number field $K := \mathbb{Q}(\alpha)$ of degree d which is not of **type I**.

Remark. It seems to be an extremely hard **problem** to describe completely the multiply monogenic orders in a number field.

Application to canonical number systems

K number field of degree \geq 3, O and order in K.

Def. $\alpha \in O$, $\alpha \neq 0$ is called a basis of a canonical number system (or CNS basis) for O if every nonzero element of O can be represented in the form

$$a_0 + a_1 \alpha + \ldots + a_m \alpha^m$$

with $m \ge 0$, $a_i \in \{0, 1, \dots, |N_{K/\mathbb{Q}}(\alpha)| - 1\}$ for $i = 0, \dots, m$ and $a_m \ne 0$.

CNS is a *natural generalization* of *radix representations* of rational integers to algebraic integers.

Def. When there exists a CNS in O, then O is called a CNS order.

Such orders have been intensively investigated, see e.g. the survey paper Brunotte, Huszti, Pethő (2006).

Kovács (1981) proved that *O* is a CNS order \Leftrightarrow *O* is monogenic. If α is a CNS basis in $O \Longrightarrow O = \mathbb{Z}[\alpha]$. Conversely, if $O = \mathbb{Z}[\alpha]$ then there are infinitely many α' equivalent to α such that α' is a CNS basis for *O*. For a characterization of CNS bases in *O*, see Kovács and Pethő (1991).

Consequence of the **Corollary** to **Theorem A** (Gy, 1973) \implies up to equivalence, there are only finitely many canonical number systems in O, and all them can be effectively determined.

- **Def.** *O* is said to be *n* times *CNS* order if there are at least *n* pairwise inequivalent *CNS* bases in *O*.
- **Theorem D** (Bérczes, Evertse, Gy, 2013) \Longrightarrow

Corollary. There are at most finitely many three times CNS orders in K

6. Some new effective generalizations

(motivation for further investigations)

K number field, $D \neq 0$ integer

Corollary of **Theorem A** from Gy (1973) \implies Up to equivalence, the equation

$$\mathcal{D}_{\mathcal{K}/\mathbb{Q}}(\alpha) = \mathcal{D} \text{ in } \alpha \in \mathcal{O}_{\mathcal{K}}$$
 (12)

has only finitely many solutions + effective

In the **books** Evertse, Gy (2017) and Gaál (2019) many results mentioned in Sections 2 and 3 above are generalized for the relative case, over the rings of (S-) integers of number fields. Further generalizations are given for the finitely generated case in the **books** Evertse, Gy (2017) and

Evertse and Győry, *Effective results and methods for Diophantine equations over finitely generated domains*, Cambridge University press, to appear. Let $A = \mathbb{Z}[z_1, \ldots, z_r]$ be a *finitely generated domain* with *algebraic* or *transcendental* generators z_1, \ldots, z_r , M quotient field of A, Ω a *finite étale* M-algebra (i.e. a direct product of finite extensions K_1, \ldots, K_t of M). Let O be an A-order of Ω (i.e. an A-subalgebra of the integral closure of A in Ω , which spans Ω as an M-vector space).

Def. $\alpha, \alpha' \in O$ A-equivalent if $\alpha' - \alpha \in A \Longrightarrow D_{\Omega/M}(\alpha') = D_{\Omega/M}(\alpha)$ B^+ additive group of a ring B, D a non-zero element of A As a generalization of (12), consider the discriminant equation

$$D_{\Omega/M}(\alpha) = D \text{ in } \alpha \in O.$$
 (13)

Theorem G (Evertse and Gy, 202?). If

$$(O \cap M)^+ / A^+ \text{ finite}, \tag{14}$$

then the set of $\alpha \in O$ with (13) is a union of finitely many A-equivalence classes. Moreover, if A, Ω, O and D are given effectively in a well-defined way, one can determine a set consisting of precisely one element from each of these classes.

For $A = \mathbb{Z}$, $M = \mathbb{Q}$, Ω =number field K, $O = O_K$, Theorem G \Longrightarrow the above theorem concerning equation (12).

The condition (14) necessary and decidable.

THANK YOU FOR YOUR ATTENTION!