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Diophantine equations

Ineffective finiteness results over number fields and more generally
over finitely generated domains

A=7Zz,...,z] finitely generated domain (FGD)

ADZ, zi,...,z algebraic or transcendental | Q
Examples: A =7, Ok (K number field), Os (S finite set of places),
VAP ST, ¢

method: Thue-Siegel-Roth—-Schmidt method

Effective finiteness results over number fields
A=17, Ok, Os
method: Baker’s method

Effective results over function fields (no finiteness)

method: Mason,. ..



Extension of the effective theory to the case of finitely generated
domains
- reduction to the number field case and function field case by
effective specializations, use of effective results over number
fields and function fields, Gy (1983) = Thue equations,
decomposable form equations, discriminant equations over a
restricted class of FGD's, Gy (1983)
- combining Gy’s method with a result of Aschenbrenner (2004) =
general method for arbitrary FGD's; Evertse, Gy (2013) = unit
equations

further applications of the general method to:

- Thue equations: Bérczes, Evertse, Gy (2014)

- superelliptic equations, Schinzel-Tijdeman equation:
Bérczes, Evertse, Gy (2014)




generalized unit equations: Bérczes (2015)

Catalan equation: Koymans (2017)

discriminant equations: Evertse-Gy (2017)

decomposable form equations: Evertse-Gy (2027?)
= a great number of applications

In my talk:

| Brief historical overview

Il New general effective results on decomposable form equations
over finitely generated domains and their applications (joint
results with J.-H. Evertse)



|. Brief historical overview

UNIT EQUATIONS: Let a, b,c € A\ {0}
ax+ by =c inx,y € A* (V)

Ineffective finiteness results:
Siegel (1921): A = Ok, K number field, implicit
Mahler (1933): A=Z[(p1 - ... ps)~1], p1,---,Pps primes
Parry (1950): A = Os, S-integers in K

Lang (1960): A arbitrary finitely generated over Z



Effective results over number fields

First general effective finitenetss results, explicit bounds for the
solutions:

Gyéry (1973, 1974): A = Ok, K number field
Gyéry (1979): A= Os, S-integers in K

ax+ by =c inx,y € O%, S-unit equation (Us)

Several improvements of the bounds, e.g. Bugeaud—Gyéry,
Bugeaud, Gyéry—Yu, Le Fourn; the best known bound in terms of S :
Gyéry (2019)

A great number of applications

method of proof: Baker's method; recent alternative effective
methods: Bombieri, Bombieri—-Cohen A = Os, over number fields,
Murty—Pasten, von Kanel, Matschke, Siksek, Bennett,. .. ,modular

method over Z



Generalization for finitely generated A

Let again A = Z[z, ..., z], K quotient field, a, b,c € A\ {0},
ax+ by =c inx,y € A* (V)
Gy (1983): for g <r, {z1,...,24} € {z1,...,2}, maximal algebraically

independent, Ay = Z|[z1, ..., zg], Ko = Q(z1,...,24); 3g € Ao \ {0} and
w € K* integral over Ay such that

AC B := A Llr,w} (C K).

A effectively given if q and the minimal polynomials of z411,..., 2
over Ky are given = g, w and hence B can be determined



It follows from my results:

Theorem A (Gydry, 1983)

The unit equation
ax+ by =c inx,y € B (Us)

has only finitely many solutions in B* (and hence in A* as well). Further,
if q,g,w and a, b, c are effectively given, the solutions of (Ug) can be

effectively determined.

Quantitative version: effective bound for the "size” of the solutions

basic idea of the method of proof, detailed description about 15 pages

reduction to the function field and number field case: in the number field
case sufficiently many effective ring homomorphisms (specializations):
any u = (uy,...,uq) € Z9 yields a ring homomorphism Ay — Z by
substituting u; for z; for i =1,...,q. This map can be extended to a
ring homomorphism B — Q which sends (Ug) to an S-unit equation in a
number field depending on u.



use of effective results over number fields and function fields =

algorithm for solving (Ug)

The method works for B, Z[Xi, ... X;] and a class of other finitely
generated domains of the form A = Z[z,...,z/]. In general it was a

problem: in 1983, no general algorithm was known to select those
solutions x, y € B* of (Ug) for which x,y € A*.



Generalization for arbitrary finitely generated A (with

J.-H. Evertse)

In what follows, another representation for A =Z[z, ..., z].

Put
R=2Z[Xy,...,.X/], | ={f €eR:f(a,...,z)=0}

= A= R/I
| finitely generated ideal

Definitions

- A effectively given if a set of generators of [ is given, say
I=(f,..., k)
- for a € A, & € R representative of « if « = &(z,...,2)

- « € A'is effectively given if a representative of « is given

Consider again the unit equation

ax+ by =c inx,y € A* (a,b,ce A\{0}) (V)



Theorem B (Evertse-Gydry, 2013)

If A and a, b, c € A are effectively given, the solutions x,y of (U) can be
effectively determined.

method of proof: refinement and combination of Gydry's method with
the following theorem of Aschenbrenner (2004)

Theorem (Aschenbrenner, 2004)

Let gi,...,8m, 8 € R :=Z[X1,..., X/]
Assume that

gix1+ -+ 8mXm =28 (A)

is solvable in x1,...,xm € R. If g1,...,8m, g are given then (A) has an

effectively computable solution xi,...,xm € R.




Theorem = algorithm for deciding whether x,y € B* are contained in

A* or not

Quantitative version of Theorem B

Definition

for a € R = Z[X,...,X], the degreee deg« is the total degree of «,
and the logarithmic height h(«) of « is the logarithm of the maximum
absolute value of its coeffiients. The size of « is defined by

s(a@) := max{1, deg o, h(cx)}.

There are only finitely many oo € R = Z[ X1, ..., X;] of bounded size,
and all of them can be determined effectively.



Theorem B’ (Evertse—Gydry, 2013)

Assume that in A=Z[z,...,z], r > 1. Let 3, b, & be representatives for
a,b,c € Ain R=1Z[Xi,...,X,]. Assume that fi,...,f € R and 4, b, & all have
degree at most d and logarithmic height at most h, where d > 1, h > 1. Then
for each solution (x,y) of (U) ax + by = c in x,y € A*, there are
representatives %, x', 7, y' of x,x %, y,y ! such that

s(%),s(x'), s(7), s(y') < exp{(2d) (h+ 1)},

where c1 is an effectively computable absolute constant > 1.

Theorem B’ = Theorem B, easy



Thue equations

Let A= Z[z,...,z], K quotient field of A, and
F(X,Y)=aoX" +a X" LY +.-- +a,Y" € AX, Y],
b e A\ {0}, n > 3, F has no multiple factor.
F(x,y)=b inx,y €A ()
Ineffective finiteness results
Thue (1909): A =7

Lang (1960): A arbitrary finitely generated domain

Generalization:

Theorem C (Siegel, K number field, 1929; Lang, A finitely generated,

1960)

Let F € K[X, Y] be a polynomial irreducible over K such that the affine
curve F(x,y) = 0 is of genus > 1. Then this curve has only finitely many

points with coordinates in A.




Effective finiteness results for (T)
Baker (1968): A = Z, bound for x,y
Coates (1969): A= Z[(py - ... p;) "]
Kotov-Sprindzuk (1973): A = Os, ring of S-integers in a number
field K

Improvements of the bounds for x, y:

Feldman (1971),. ..

method of proof: Baker's method

Gy (1983): for a restricted class of finitely generated domains A

General case: recall A= Z[z,...,z], K quotient field,
R=Z[X,...,.X]. I ={f €R : f(z1,...,2) = 0} finitely
generated ideal in R; for « € A, & € R representative of « if

a=d(z,...,z)



Theorem D (Bérczes, Evertse, Gy, 2014)

Given generators fi, ..., f; of | and representatives of ag, a1, - .., an, b,
the solutions x,y € A of (T) can be effectively determined

+ quantitative version

method of proof: E-Gy's method

major open problems: make effective the Siegel-Lang Theorem C (first
over Z and then over A)



Superelliptic equations

Let
F(X)=aX"+---+a,€ AlX], be A\ {0},

m > 2, F has no multiple zero

n > 2 if m > 3, superelliptic case
n > 3 if m = 2, hyperelliptic case
Ineffective finiteness results
Siegel (1926), LeVeque (1964): A =Z or Ok, K number field

Lang (1960), A arbitrary finitely generated domain



Effective results
Baker (1969): A=7Z

Schinzel-Tijdeman (1976): bound for m

Brindza (1984): A = Os, number field case
Brindza (1989): A domain considered by Gy (1983)

Theorem E (B, E, Gy, 2014)

If A and ag, ..., an, b are effectively given, then (HS) has only finitely
many solutions and all of them can be effectively determined

+ effective bound for m

+ quantitative version

method of proof: E-Gy's method



Generalized unit equations

A finitely generated over Z, K quotient field, F € A[X, Y], C K*
finitely generated

(*) F has no divisor of the form X™Y" — «
*

or X™ —aY" m,n >0 integers, m+n >0

F(x,y) =0 inx,y € A% or more generally in I (GU)

Ineffective finiteness results: (x) necessary
Lang (1960): finitely many solutions in A* and in I

Lang's conjecture: the same in x,y € T, the division group of I

F:={u € K : 3m > Ointeger, u™ € r}

Liardet (1974,75): proof of Lang's conjecture



Effective finiteness results in number fields

Bombieri—Gubler (2006): (GU), in
Bérczes, Evertse, Gy (2009): (U) in T

Bérczes, Evertse, Gy, Pontreau (2009): (GU) in T

Effective finiteness result over FGD'’s

Theorem F (Bérczes, 2015)

If A,T are finitely generated and A, T, F are effectively given, then (GU)
has only finitely many solutions + effective + quantitative

method of proof: Evertse-Gy (2013)



Catalan equation

Let A be a FGD

x™—y"=1linx,y € A\ {0}, not root of unity, m,n > 1, mn >4 (C)
Catalan conjecture (1844): for A= Z, 32 — 23 = 1 is the only solution

Tijdeman (1976): A = Z, effective finiteness result

Brindza, Gy, Tijdeman (1986): A = O, effective finiteness result
Brindza (1987): A = Os, effective finiteness result

Brindza (1993): for a class of FGD's effective finiteness result

Baker's method
Mihailescu (2002): proof of Catalan conjecture

other method

Theorem G (Koymans, 2017)

If A is an effectively given FGD, then (C) has only finitely many solutions
+ effective + quantitative

method of proof: Evertse-Gyéry (2013)



Discriminant equations

A =1Zz,...,z], K quotient field, L finite extension of K, D € A\ {0}
many diophantine problems = discriminant equation
D(F) = D in monic F € A[X] of given
degree n > 2 having its zeros in L (Dr)
F(X), F(X + a) (a € A) A-equivalent = same discriminant.
Ineffective finiteness results on A-equivalence classes of solutions
Delone, Nagell (1930), independently: A=7, n=3
Nagell (1967): A=7Z, n=4, F irreducible
In full generality:

Gy (1982): assume that A is integrally closed (in K). Then (Dy) has
only finitely many A-equivalence classes of solutions



Consequences:

L/K finite extension, A; integral closure of A in L
Dy/k(a) =D inae AL (D2)

a,a+ a (a € A) A-equivalent = same discriminant

Gy (1982): Up to A-equivalence, (D) has only finitely many solutions
AL =Ala] fora € A (Ds3)

& {1,a,...,a%1} power integral basis of A, over A, d = [L: K]

Examples: A=7,K = Q, L quadratic or cyclotomic,
if a solution of (D3) = soisea+a,e € A*,ac A

Gy (1982): Up to multiplication by elements of A* and translation by
elements of A, there are only finitely many o € A, with (D3).

method of proof: reduction of (D;) to unit equations; (D2) = (D1);
(Ds) = (D2)



Effective finiteness results for equations (D;), (D), (Ds)

Gy (1973-1976): A=Z, in (D1) L not fixed
Gy (1978-1981): A = Ok, Os, number field case

method of proof: reduction to unit equations, Baker's method
Gy (1984): for a class of finitely generated A over Z

general case
A=1Z[z,...,z], K quotient field, L finite extension of K

L is given effectively if an irreducible P € K[X] is given such that
L~ K[X]/(P)

Theorem H (Evertse—-Gy, 2017)

Assume that A is integrally closed. Then up to A-equivalence, equation
(D1) has only finitely many solutions. Further, if A, L and D are given, all
solutions can be determined effectively.




- The condition that A is integrally closed can be weakened to
1y + +pos :
—AT N AL | /AT finite, decidable
n

where Ak is the integral closure of A in K

- Similar results for equations (D,), (D3) under some additional
conditions

method of proof: reduction to unit equations in L, use of general

Theorem B on unit equations and some effective linear algebra



Il. Decomposable form equations

(survey and some new general effective results with J.-H. Evertse)

basic importance in diophantine number theory

A=7Z|z,...,z],K quotient field, K an algebraic closure of K, b € K*

Definition
F € K[Xi,...,Xn] decomposable form, if it factorizes into linear factors,
say (1,...,0, over K. Assume that at least three of /y,...,¢, are

pairwise linearly independent

Decomposable form equation:
F(x1,...,Xm)=b inxy,...,xm €A (DFy)
m = 2, Thue equation

Further important classes of decomposable form equations with m > 2:

norm form equations, discriminant form equations, index form

equations



Norm form equations and discriminant form equations

Norm form equation:
N(aixi + -+ amxm) = bin x,...,x, € A (NF)

where a; = 1,2, ..., am € K, linearly independent over K,
N(aa X1 + -+ - + amXy) norm form with coefficients in K.

Discriminant form equation
D(aixy+ -+ QmXm) = bin x1,...,xm € A (DF,)

where 1,a1,...,am, € K, linearly independent over K
D(a1 Xy + -+ + amXy) discriminant form with coefficients in K.




Ineffective finiteness results on equations (DF;), (DF;) and (NF)
over number fields:
Schmidt (1971): (NF), A = Z, finiteness criterion, description of the
set of solutions
Schlickewei (1977): (NF), A = Zs, finiteness result
method of proof: Subspace theorem

over finitely generated domains A:

Gy (1982): (DF1), (DF2), (NF) finiteness, under certain restrictions
on (DF;), (NF)

method of proof: reduction to unit equations, Lang's theorem

Laurent (1984): (NF), finiteness

Evertse—Gy (1988): (DFy), (NF), finiteness criteria

Gy (1993): (DFy), description of the structure of the set of solutions

method of proof: reduction to multivariate unit equations



Effective finiteness results

over number fields:

Gy (1976, 1981): (DF;), A= Z,0k, Os

Gy—Papp (1978), Gy (1981): (DFy), (NF), A= Z, 0k, Os,
under certain restrictions on F

method: Baker's method

over a restricted class of finitely generated domains

Gy (1983): (DF1), (DF2), (NF), under certain restrictions on
(DF1), (NF)
method of proof: effective specialization method



Effective finiteness results over arbitrary finitely generated domains

A=7Zz,...,z], K quotient field, F € K[Xy,..., Xu]
decomposable form, i.e. factorizes into linear forms, say ¢4, ..., £, over K

Decomposable form equation
F(x1,...,Xm) =b inxy,...,xm €A, (DFy)
where b € K*
Let Lr = {¢1,...,4,}, suppose Lr has at least 3 pairwise linearly
independent linear forms. Further, to simplify the presentation, we
assume that rank L = m.

Definition (Gy8ry and Papp, 1978)

G(LF) graph with vertex system Lr in which ¢;, ¢; (i # j) connected by
an edge if ¢;,/; linearly dependent or linearly independent and
Aili + A\ilj + Aglq = 0 for some q ¢ {i,j} with X\;, \j,A\qg € L\ {0}




AXZ[X,..., X)/T. T={fe€Z[X,....X] : f(z,...,2) =0}
I=(f,....f)

To state quantitative result we generalize the size of elements o € K
to the case o € K.

Definition

For a € K, let degj a the degree of o over K. A tuple or representatives
for a : (go,.--,8&n), Where go, ..., 80 € Z[X1,..., X/], 80 ¢ T and

Xn+gl(zla...yzr)X,,_]__’_.“_’_gn(Z]_,...,Zr)
go(z1,...,2) go(z1,.--,2)

monic minimal polynomial of a over K. We say that
deg(go, - -, 8n) < d, logarithmic height h(gp,...,g,) < hif degg; < d,
h(gi) < hfori=0,...,n.




Definition

Given x = (x,...,xm) € A™, a representative for x is a tuple
X = ()?1, . ,)?m) with X; € Z[Xl, R ,X,], Xj = )?,'(21, c. ,Z,—) for

i=1,...,m. The size of X is defined by

s(x) := maxs(X;) = maxmax(1, deg X;, h(X;))




F(x)=01(x)...¢p(x) in xe€A™ (DFy)

Theorem | (Evertse-Gy, 2027)

Suppose the following:
- G(LF) is connected,;

- the generators fi, ..., f; of T have degree < d and logarithmic
height < h;
- b and the coefficients of {1, ..., £, have tuples of representatives of

degree < d and logarithmic height < h;
- the coefficients of 41, ...,£, have degree < D over K.

Then every solution x of (DFy) is represented by X € Z[X1,..., X,]™
such that
s(%) < exp((2mn - DP™ )= O() ),

Theorem | has many consequences and applications.




A2 Z[X, ..., X ]/l where | ={f € Z[X1,...,X/] : f(z1,...,2) =0}
finitely generated ideal, | = (fi,. .., f); A effectively given if f,... f;
effectively given

Definition

A finite extension L of K effectively given if it is given in the form
K[X]/(P), P effectively given monic, irreducible in K[X]; L = K(©),
©:=X (mod P) = any B e L, B =501 a0 with ap,...,a4_1 € K,
d=[L:K]; g €L given / can be determined effectively if ag, ...,ad—1

are given / can be determined effectively.




F(x)=41(x)... fo(x) in xe€A™ (DF)

Theorem | =

Theorem J (Evertse-Gy, 2027)

If G(LF) is connected, then equation (DFy) has only finitely many
solutions. Moreover, if the coefficients of {1, . ..,{, belong to a finite
extension L of K and if A, K, L, b and the coefficients of {1, ...,¢, are
given effectively, then all solutions can be effectively determined.

method of proof of Theorems | and J: following Gy—Papp (1978) over
number fields, use the connectedness of G(Lf), reduce (DF;) to a finite
system of unit equations over a finitely generated overring A’ of Ain L,
apply the effective Theorems B resp. B' (Evertse-Gy, 2013) on unit
equations, and utilize so-called 'degree-height estimates’.



Theorems | and J =
- For m =2 = Theorem D (Bérczes, Evertse, Gy, 2014) on
Thue equations
- For m > 2, more general version (Evertse-Gy, 2027): G(LF) not
necessarily connected, rank L < m
- The first assertion of Theorem J: Gy (1982)
- The second assertion of Theorem | for a restricted class of A:
Gy (1983)
alternative proof: Evertse-Gy (2013) method, i.e. reduction to the

number field and function field case, effective specializations,
use of effective results over number fields and function fields;
see also Gy (1983)



Consequences of Theorem I:

Norm form equation
N(agxys + -+ amxm) = b inxy,...,xm €A (NF)

more general version of Therem J =

Theorem K (Evertse—Gy, 2027)

Suppose that in (NF) an, is of degree > 3 over K(au,...,am—1). Then
equation (NF) has only finitely many solutions with xn,, # 0. Further, if
A K, L ai,...,an and b are effectively given, all solutions of (NF) with

Xm 7 0 can be effectively determined. + quantitative version

- The first assertion of Theorem K: Gy (1982)

- The second assertion of Theorem K for a restricted class of A:
Gy (1983)
- >3 and x,, # 0 necessary



Discriminant form equation
D(aixa+ -+ amxm) =b inxy,...,xm €A (DF)
Theorem J =

Theorem L (Evertse—Gy, 207)

Under the above assumptions concerning (DF2), equation (DF2) has only
finitely many solutions. Moreover, if A, K, L, au,...,am and b are effectively
given, all solutions of (DF,) can be effectively determined. + quantitative

version

- The first assertion of Theorem L: Gy (1982)
- The second assertion of Theorem L for a restricted class of A: Gy (1983)

Applications to index form equations and integral elements of given
discriminant
More general versions of equations (DF;), (NF), (DF2)

F(xt,...,xm) € A" in xi,...,xm €A (DFY)
= e.g. simple ring extensions of A

Many other applications of Theorems B—L and their more general versions



Our general effective method = general program

Given a polynomial equation
P(x)=0 inxe A" (%)

If we have effective finiteness results for the (S—) integral solutions of

the corresponding equation over number fields and effective results

over function fields of char 0, our method gives an effective finiteness

result for equation (x)

+quantitative versions



THANK YOU FOR YOUR ATTENTION!

J




