Effective finiteness results for Diophantine equations over finitely generated domains

 (Survey and new results with J.-H. Evertse)K. Györy
(Debrecen)

Diophantine equations

Ineffective finiteness results over number fields and more generally over finitely generated domains
$A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right]$ finitely generated domain (FGD)
$A \supset \mathbb{Z}, z_{1}, \ldots, z_{r}$ algebraic or transcendental / \mathbb{Q}
Examples: $A=\mathbb{Z}, \mathcal{O}_{K}$ (K number field), \mathcal{O}_{S} (S finite set of places),
$\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right], \ldots$
method: Thue-Siegel-Roth-Schmidt method
Effective finiteness results over number fields

$$
A=\mathbb{Z}, \mathcal{O}_{K}, \mathcal{O}_{S}
$$

method: Baker's method
Effective results over function fields (no finiteness) method: Mason,...

Extension of the effective theory to the case of finitely generated domains

- reduction to the number field case and function field case by effective specializations, use of effective results over number fields and function fields, $\underline{\text { Gy (1983) }} \Rightarrow$ Thue equations, decomposable form equations, discriminant equations over a restricted class of FGD's, Gy (1983)
- combining Gy's method with a result of Aschenbrenner (2004) \Rightarrow general method for arbitrary FGD's; Evertse, Gy (2013) \Rightarrow unit equations
further applications of the general method to:
- Thue equations: Bérczes, Evertse, Gy (2014)
- superelliptic equations, Schinzel-Tijdeman equation:

Bérczes, Evertse, Gy (2014)

- generalized unit equations: Bérczes (2015)
- Catalan equation: Koymans (2017)
- discriminant equations: Evertse-Gy (2017)
- decomposable form equations: Evertse-Gy (202?)
\Rightarrow a great number of applications
In my talk:
I Brief historical overview
II New general effective results on decomposable form equations over finitely generated domains and their applications (joint results with J.-H. Evertse)

I. Brief historical overview

UNIT EQUATIONS: Let $a, b, c \in A \backslash\{0\}$

$$
\begin{equation*}
a x+b y=c \quad \text { in } x, y \in A^{*} \tag{U}
\end{equation*}
$$

Ineffective finiteness results:
Siegel (1921): $A=\mathcal{O}_{K}, K$ number field, implicit
Mahler (1933): $A=\mathbb{Z}\left[\left(p_{1} \cdot \ldots \cdot p_{s}\right)^{-1}\right], p_{1}, \ldots, p_{s}$ primes
Parry (1950): $A=\mathcal{O}_{S}, S$-integers in K
Lang (1960): A arbitrary finitely generated over \mathbb{Z}

Effective results over number fields

First general effective finitenetss results, explicit bounds for the solutions:

Györy (1973, 1974): $A=\mathcal{O}_{K}, K$ number field
Györy (1979): $A=\mathcal{O}_{S}, S$-integers in K

$$
\begin{equation*}
a x+b y=c \quad \text { in } x, y \in \mathcal{O}_{S}^{*}, S \text {-unit equation } \tag{S}
\end{equation*}
$$

Several improvements of the bounds, e.g. Bugeaud-Győry, Bugeaud, Győry-Yu, Le Fourn; the best known bound in terms of S : Győry (2019)

A great number of applications
method of proof: Baker's method; recent alternative effective methods: Bombieri, Bombieri-Cohen $A=\mathcal{O}_{S}$, over number fields, Murty-Pasten, von Känel, Matschke, Siksek, Bennett, . . . , modular method over \mathbb{Z}

Generalization for finitely generated A

Let again $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right], K$ quotient field, $a, b, c \in A \backslash\{0\}$,

$$
\begin{equation*}
a x+b y=c \quad \text { in } x, y \in A^{*} \tag{U}
\end{equation*}
$$

Gy (1983): for $q \leq r,\left\{z_{1}, \ldots, z_{q}\right\} \subseteq\left\{z_{1}, \ldots, z_{r}\right\}$, maximal algebraically independent, $A_{0}=\mathbb{Z}\left[z_{1}, \ldots, z_{q}\right], K_{0}=\mathbb{Q}\left(z_{1}, \ldots, z_{q}\right) ; \exists g \in A_{0} \backslash\{0\}$ and $w \in K^{*}$ integral over A_{0} such that

$$
A \subseteq B:=A_{0}\left[\frac{1}{g}, w\right] \quad(\subset K) .
$$

A effectively given if q and the minimal polynomials of z_{q+1}, \ldots, z_{r} over K_{0} are given $\Rightarrow g, w$ and hence B can be determined

It follows from my results:

Theorem A (Györy, 1983)

The unit equation

$$
\begin{equation*}
a x+b y=c \quad \text { in } x, y \in B^{*} \tag{B}
\end{equation*}
$$

has only finitely many solutions in B^{*} (and hence in A^{*} as well). Further, if q, g, w and a, b, c are effectively given, the solutions of $\left(U_{B}\right)$ can be effectively determined.

Quantitative version: effective bound for the "size" of the solutions basic idea of the method of proof, detailed description about 15 pages reduction to the function field and number field case: in the number field case sufficiently many effective ring homomorphisms (specializations): any $\boldsymbol{u}=\left(u_{1}, \ldots, u_{q}\right) \in \mathbb{Z}^{q}$ yields a ring homomorphism $A_{0} \rightarrow \mathbb{Z}$ by substituting u_{i} for z_{i} for $i=1, \ldots, q$. This map can be extended to a ring homomorphism $B \rightarrow \overline{\mathbb{Q}}$ which sends $\left(U_{B}\right)$ to an S-unit equation in a number field depending on \boldsymbol{u}.
use of effective results over number fields and function fields \Rightarrow algorithm for solving $\left(U_{B}\right)$

The method works for $B, Z\left[X_{1}, \ldots X_{r}\right]$ and a class of other finitely generated domains of the form $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right]$. In general it was a problem: in 1983, no general algorithm was known to select those solutions $x, y \in B^{*}$ of $\left(U_{B}\right)$ for which $x, y \in A^{*}$.

Generalization for arbitrary finitely generated A (with J.-H. Evertse)

In what follows, another representation for $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right]$.
Put

$$
\begin{aligned}
R=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right], I & =\left\{f \in R: f\left(z_{1}, \ldots, z_{r}\right)=0\right\} \\
\Rightarrow \quad A & \cong R / I
\end{aligned}
$$

I finitely generated ideal

Definitions

- A effectively given if a set of generators of I is given, say

$$
I=\left(f_{1}, \ldots, f_{t}\right)
$$

- for $\alpha \in A, \tilde{\alpha} \in R$ representative of α if $\alpha=\tilde{\alpha}\left(z_{1}, \ldots, z_{r}\right)$
- $\alpha \in A$ is effectively given if a representative of α is given

Consider again the unit equation

$$
\begin{equation*}
a x+b y=c \quad \text { in } x, y \in A^{*} \quad(a, b, c \in A \backslash\{0\}) \tag{U}
\end{equation*}
$$

Theorem B (Evertse-Györy, 2013)

If A and $a, b, c \in A$ are effectively given, the solutions x, y of (U) can be effectively determined.
method of proof: refinement and combination of Györy's method with the following theorem of Aschenbrenner (2004)

Theorem (Aschenbrenner, 2004)

Let $g_{1}, \ldots, g_{m}, g \in R:=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$
Assume that

$$
\begin{equation*}
g_{1} x_{1}+\cdots+g_{m} x_{m}=g \tag{A}
\end{equation*}
$$

is solvable in $x_{1}, \ldots, x_{m} \in R$. If g_{1}, \ldots, g_{m}, g are given then (A) has an effectively computable solution $x_{1}, \ldots, x_{m} \in R$.

Remark

Theorem \Rightarrow algorithm for deciding whether $x, y \in B^{*}$ are contained in A^{*} or not

Quantitative version of Theorem B

Definition

for $\alpha \in R=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$, the degreee $\operatorname{deg} \alpha$ is the total degree of α, and the logarithmic height $h(\alpha)$ of α is the logarithm of the maximum absolute value of its coeffiients. The size of α is defined by

$$
s(\alpha):=\max \{1, \operatorname{deg} \alpha, h(\alpha)\}
$$

There are only finitely many $\alpha \in R=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ of bounded size, and all of them can be determined effectively.

Theorem B' (Evertse-Györy, 2013)

Assume that in $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right], r \geq 1$. Let $\tilde{a}, \tilde{b}, \tilde{c}$ be representatives for $a, b, c \in A$ in $R=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$. Assume that $f_{1}, \ldots, f_{t} \in R$ and $\tilde{a}, \tilde{b}, \tilde{c}$ all have degree at most d and logarithmic height at most h, where $d \geq 1, h \geq 1$. Then for each solution (x, y) of $(U) a x+$ by $=c$ in $x, y \in A^{*}$, there are representatives $\tilde{x}, \tilde{x}^{\prime}, \tilde{y}, \tilde{y}^{\prime}$ of x, x^{-1}, y, y^{-1} such that

$$
s(\tilde{x}), s\left(\tilde{x^{\prime}}\right), s(\tilde{y}), s\left(\tilde{y}^{\prime}\right) \leq \exp \left\{(2 d)^{c_{1}^{r}}(h+1)\right\}
$$

where c_{1} is an effectively computable absolute constant >1.
Theorem $B^{\prime} \Rightarrow$ Theorem B, easy

Thue equations

Let $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right], K$ quotient field of A, and

$$
F(X, Y)=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n} \in A[X, Y]
$$

$b \in A \backslash\{0\}, n \geq 3, F$ has no multiple factor.

$$
\begin{equation*}
F(x, y)=b \quad \text { in } x, y \in A \tag{T}
\end{equation*}
$$

Ineffective finiteness results

Thue (1909): $A=\mathbb{Z}$

Lang (1960): A arbitrary finitely generated domain Generalization:

Theorem C (Siegel, K number field, 1929; Lang, A finitely generated, 1960)

Let $F \in K[X, Y]$ be a polynomial irreducible over \bar{K} such that the affine curve $F(x, y)=0$ is of genus ≥ 1. Then this curve has only finitely many points with coordinates in A.

Effective finiteness results for (T)

Baker (1968): $A=\mathbb{Z}$, bound for x, y
Coates (1969): $A=\mathbb{Z}\left[\left(p_{1} \cdot \ldots \cdot p_{s}\right)^{-1}\right]$
Kotov-Sprindžuk (1973): $A=\mathcal{O}_{S}$, ring of S-integers in a number field K

Improvements of the bounds for x, y :
Feldman (1971), . .
method of proof: Baker's method
Gy (1983): for a restricted class of finitely generated domains A
General case: recall $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right], K$ quotient field,
$R=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right], I=\left\{f \in R: f\left(z_{1}, \ldots, z_{r}\right)=0\right\}$ finitely generated ideal in R; for $\alpha \in A, \tilde{\alpha} \in R$ representative of α if $\alpha=\tilde{\alpha}\left(z_{1}, \ldots, z_{r}\right)$

Theorem D (Bérczes, Evertse, Gy, 2014)

Given generators f_{1}, \ldots, f_{t} of I and representatives of $a_{0}, a_{1}, \ldots, a_{n}, b$, the solutions $x, y \in A$ of (T) can be effectively determined
$+\underline{\text { quantitative version }}$
method of proof: E-Gy's method
major open problems: make effective the Siegel-Lang Theorem C (first over \mathbb{Z} and then over A)

Superelliptic equations

Let

$$
F(X)=a_{0} X^{n}+\cdots+a_{n} \in A[X], b \in A \backslash\{0\},
$$

$m \geq 2, F$ has no multiple zero

$$
\begin{equation*}
F(x)=\text { by }^{m} \quad \text { in } x, y \in A \tag{HS}
\end{equation*}
$$

$n \geq 2$ if $m \geq 3$, superelliptic case
$n \geq 3$ if $m=2$, hyperelliptic case

Ineffective finiteness results

Siegel (1926), LeVeque (1964): $A=\mathbb{Z}$ or \mathcal{O}_{K}, K number field
Lang (1960), A arbitrary finitely generated domain

Effective results

Baker (1969): $A=\mathbb{Z}$
Schinzel-Tijdeman (1976): bound for m
Brindza (1984): $A=\mathcal{O}_{S}$, number field case
Brindza (1989): A domain considered by Gy (1983)

Theorem E (B, E, Gy, 2014)

If A and a_{0}, \ldots, a_{n}, b are effectively given, then (HS) has only finitely many solutions and all of them can be effectively determined

+ effective bound for m
+ quantitative version
method of proof: E-Gy's method

Generalized unit equations

A finitely generated over \mathbb{Z}, K quotient field, $F \in A[X, Y], \Gamma \subset K^{*}$ finitely generated

$$
\begin{align*}
& (*)\left\{\begin{array}{l}
F \text { has no divisor of the form } X^{m} Y^{n}-\alpha \\
\text { or } X^{m}-\alpha Y^{n}, m, n \geq 0 \text { integers, } m+n>0
\end{array}\right. \\
& F(x, y)=0 \text { in } x, y \in A^{*} \text { or more generally in } \Gamma \tag{GU}
\end{align*}
$$

Ineffective finiteness results: (*) necessary
Lang (1960): finitely many solutions in A^{*} and in Γ
Lang's conjecture: the same in $x, y \in \bar{\Gamma}$, the division group of Γ

$$
\bar{\Gamma}:=\left\{u \in \bar{K}^{*}: \exists m>0 \text { integer, } u^{m} \in \Gamma\right\}
$$

Liardet $(1974,75)$: proof of Lang's conjecture

Effective finiteness results in number fields
Bombieri-Gubler (2006): (GU), in 「
Bérczes, Evertse, Gy (2009): (U) in $\bar{\Gamma}$
Bérczes, Evertse, Gy, Pontreau (2009): (GU) in $\bar{\Gamma}$
Effective finiteness result over FGD's

Theorem F (Bérczes, 2015)

If A, Γ are finitely generated and A, Γ, F are effectively given, then (GU) has only finitely many solutions + effective + quantitative
method of proof: Evertse-Gy (2013)

Catalan equation

Let A be a FGD

$$
\begin{equation*}
x^{m}-y^{n}=1 \text { in } x, y \in A \backslash\{0\}, \text { not root of unity, } m, n>1, m n>4 \tag{C}
\end{equation*}
$$

Catalan conjecture (1844): for $A=\mathbb{Z}, 3^{2}-2^{3}=1$ is the only solution
Tijdeman (1976): $A=\mathbb{Z}$, effective finiteness result
Brindza, Gy, Tijdeman (1986): $A=\mathcal{O}_{K}$, effective finiteness result
Brindza (1987): $A=\mathcal{O}_{S}$, effective finiteness result
Brindza (1993): for a class of FGD's effective finiteness result

Baker's method

Mihailescu (2002): proof of Catalan conjecture other method

Theorem G (Koymans, 2017)

If A is an effectively given FGD, then (C) has only finitely many solutions + effective + quantitative
method of proof: Evertse-Győry (2013)

Discriminant equations

$A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right], K$ quotient field, L finite extension of $K, D \in A \backslash\{0\}$ many diophantine problems \Rightarrow discriminant equation

$$
\begin{align*}
& D(F)=D \text { in monic } F \in A[X] \text { of given } \\
& \quad \text { degree } n \geq 2 \text { having its zeros in } L \tag{1}
\end{align*}
$$

$F(X), F(X+a)(a \in A) A$-equivalent \Rightarrow same discriminant.
Ineffective finiteness results on A-equivalence classes of solutions
Delone, Nagell (1930), independently: $A=\mathbb{Z}, n=3$
Nagell (1967): $A=\mathbb{Z}, n=4, F$ irreducible

In full generality:

Gy (1982): assume that A is integrally closed (in K). Then $\left(D_{1}\right)$ has only finitely many A-equivalence classes of solutions

Consequences:

L / K finite extension, A_{L} integral closure of A in L

$$
\begin{equation*}
D_{L / K}(\alpha)=D \quad \text { in } \alpha \in A_{L} \tag{2}
\end{equation*}
$$

$\alpha, \alpha+a(a \in A) A$-equivalent \Rightarrow same discriminant
Gy (1982): Up to A-equivalence, $\left(D_{2}\right)$ has only finitely many solutions

$$
\begin{equation*}
A_{L}=A[\alpha] \quad \text { for } \alpha \in A_{L} \tag{3}
\end{equation*}
$$

$\Leftrightarrow\left\{1, \alpha, \ldots, \alpha^{d-1}\right\}$ power integral basis of A_{L} over $A, d=[L: K]$
Examples: $A=\mathbb{Z}, K=\mathbb{Q}, L$ quadratic or cyclotomic,
if α solution of $\left(D_{3}\right) \Rightarrow$ so is $\varepsilon \alpha+a, \varepsilon \in A^{*}, a \in A$
Gy (1982): Up to multiplication by elements of A^{*} and translation by elements of A, there are only finitely many $\alpha \in A_{L}$ with $\left(D_{3}\right)$.
method of proof: reduction of $\left(D_{1}\right)$ to unit equations; $\left(D_{2}\right) \Rightarrow\left(D_{1}\right)$; $\left(D_{3}\right) \Rightarrow\left(D_{2}\right)$

Effective finiteness results for equations $\left(D_{1}\right),\left(D_{2}\right),\left(D_{3}\right)$
Gy (1973-1976): $A=\mathbb{Z}$, in $\left(D_{1}\right) L$ not fixed
Gy (1978-1981): $A=\mathcal{O}_{K}, \mathcal{O}_{S}$, number field case method of proof: reduction to unit equations, Baker's method
Gy (1984): for a class of finitely generated A over \mathbb{Z}

general case

$A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right], K$ quotient field, L finite extension of K
L is given effectively if an irreducible $P \in K[X]$ is given such that $L \cong K[X] /(P)$

Theorem H (Evertse-Gy, 2017)

Assume that A is integrally closed. Then up to A-equivalence, equation $\left(D_{1}\right)$ has only finitely many solutions. Further, if A, L and D are given, all solutions can be determined effectively.

- The condition that A is integrally closed can be weakened to

$$
\left(\frac{1}{n} A^{+} \cap A_{K}^{+}\right) / A^{+} \text {finite, decidable }
$$

where A_{K} is the integral closure of A in K

- Similar results for equations $\left(D_{2}\right),\left(D_{3}\right)$ under some additional conditions
method of proof: reduction to unit equations in L, use of general
Theorem B on unit equations and some effective linear algebra

II. Decomposable form equations

(survey and some new general effective results with J.-H. Evertse)
basic importance in diophantine number theory
$A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right], K$ quotient field, \bar{K} an algebraic closure of $K, b \in K^{*}$

Definition

$F \in K\left[X_{1}, \ldots, X_{m}\right]$ decomposable form, if it factorizes into linear factors, say $\ell_{1}, \ldots, \ell_{n}$ over \bar{K}. Assume that at least three of $\ell_{1}, \ldots, \ell_{n}$ are pairwise linearly independent

Decomposable form equation:

$$
F\left(x_{1}, \ldots, x_{m}\right)=b \quad \text { in } x_{1}, \ldots, x_{m} \in A
$$

$m=2$, Thue equation
Further important classes of decomposable form equations with $m \geq 2$:
norm form equations, discriminant form equations, index form equations

Norm form equations and discriminant form equations

Norm form equation:

$$
\begin{equation*}
N\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)=b \text { in } x_{1}, \ldots, x_{m} \in A \tag{NF}
\end{equation*}
$$

where $\alpha_{1}=1, \alpha_{2}, \ldots, \alpha_{m} \in \bar{K}$, linearly independent over K, $N\left(\alpha_{1} X_{1}+\cdots+\alpha_{m} X_{m}\right)$ norm form with coefficients in K.

Discriminant form equation

$$
\begin{equation*}
D\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)=b \text { in } x_{1}, \ldots, x_{m} \in A \tag{2}
\end{equation*}
$$

where $1, \alpha_{1}, \ldots, \alpha_{m} \in \bar{K}$, linearly independent over K;
$D\left(\alpha_{1} X_{1}+\cdots+\alpha_{m} X_{m}\right)$ discriminant form with coefficients in K.

Ineffective finiteness results on equations $\left(D F_{1}\right),\left(D F_{2}\right)$ and (NF) over number fields:

Schmidt (1971): (NF), $A=\mathbb{Z}$, finiteness criterion, description of the set of solutions
Schlickewei (1977): (NF), $A=\mathbb{Z}_{S}$, finiteness result
method of proof: Subspace theorem
over finitely generated domains A :
Gy (1982): $\left(D F_{1}\right),\left(D F_{2}\right),(N F)$ finiteness, under certain restrictions on ($D F_{1}$), (NF)
method of proof: reduction to unit equations, Lang's theorem
Laurent (1984): (NF), finiteness
Evertse-Gy (1988): $\left(D F_{1}\right),(N F)$, finiteness criteria
Gy (1993): $\left(D F_{1}\right)$, description of the structure of the set of solutions method of proof: reduction to multivariate unit equations

Effective finiteness results

over number fields:
Gy (1976, 1981): $\left(D F_{2}\right), A=\mathbb{Z}, \mathcal{O}_{K}, \mathcal{O}_{S}$
Gy-Papp (1978), Gy (1981): $\left(D F_{1}\right),(N F), A=\mathbb{Z}, \mathcal{O}_{K}, \mathcal{O}_{S}$, under certain restrictions on F
method: Baker's method over a restricted class of finitely generated domains

Gy (1983): $\left(D F_{1}\right),\left(D F_{2}\right),(N F)$, under certain restrictions on ($D F_{1}$), (NF)
method of proof: effective specialization method

Effective finiteness results over arbitrary finitely generated domains

$A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right], K$ quotient field, $F \in K\left[X_{1}, \ldots, X_{m}\right]$ decomposable form, i.e. factorizes into linear forms, say $\ell_{1}, \ldots, \ell_{n}$ over \bar{K}

Decomposable form equation

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{m}\right)=b \quad \text { in } x_{1}, \ldots, x_{m} \in A \tag{1}
\end{equation*}
$$

where $b \in K^{*}$
Let $\mathcal{L}_{F}=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$, suppose \mathcal{L}_{F} has at least 3 pairwise linearly independent linear forms. Further, to simplify the presentation, we assume that rank $\mathcal{L}_{F}=m$.

Definition (Györy and Papp, 1978)

$\mathcal{G}\left(\mathcal{L}_{F}\right)$ graph with vertex system \mathcal{L}_{F} in which $\ell_{i}, \ell_{j}(i \neq j)$ connected by an edge if ℓ_{i}, ℓ_{j} linearly dependent or linearly independent and $\lambda_{i} \ell_{i}+\lambda_{j} \ell_{j}+\lambda_{q} \ell_{q}=0$ for some $q \not \subset\{i, j\}$ with $\lambda_{i}, \lambda_{j}, \lambda_{q} \in L \backslash\{0\}$
$A \cong \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] / \mathcal{I}, \mathcal{I}=\left\{f \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]: f\left(z_{1}, \ldots, z_{r}\right)=0\right\}$, $\mathcal{I}=\left(f_{1}, \ldots, f_{t}\right)$

To state quantitative result we generalize the size of elements $\alpha \in K$ to the case $\alpha \in \bar{K}$.

Definition

For $\alpha \in \bar{K}$, let $\operatorname{deg}_{K} \alpha$ the degree of α over K. A tuple or representatives for $\alpha:\left(g_{0}, \ldots, g_{n}\right)$, where $g_{0}, \ldots, g_{n} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right], g_{0} \notin \mathcal{I}$ and

$$
X^{n}+\frac{g_{1}\left(z_{1}, \ldots, z_{r}\right)}{g_{0}\left(z_{1}, \ldots, z_{r}\right)} X^{n-1}+\cdots+\frac{g_{n}\left(z_{1}, \ldots, z_{r}\right)}{g_{0}\left(z_{1}, \ldots, z_{r}\right)}
$$

monic minimal polynomial of α over K. We say that $\operatorname{deg}\left(g_{0}, \ldots, g_{n}\right) \leq d$, logarithmic height $h\left(g_{0}, \ldots, g_{n}\right) \leq h$ if $\operatorname{deg} g_{i} \leq d$, $h\left(g_{i}\right) \leq h$ for $i=0, \ldots, n$.

Definition

Given $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right) \in A^{m}$, a representative for \boldsymbol{x} is a tuple $\tilde{\boldsymbol{x}}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{m}\right)$ with $\tilde{x}_{i} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right], x_{i}=\tilde{x}_{i}\left(z_{1}, \ldots, z_{r}\right)$ for $i=1, \ldots, m$. The size of \tilde{x} is defined by

$$
s(\tilde{\boldsymbol{x}}):=\max _{i} s\left(\tilde{x}_{i}\right)=\max _{i} \max \left(1, \operatorname{deg} \tilde{x}_{i}, h\left(\tilde{x}_{i}\right)\right)
$$

$$
\begin{equation*}
F(x)=\ell_{1}(x) \ldots \ell_{n}(x) \quad \text { in } \quad x \in A^{m} \tag{1}
\end{equation*}
$$

Theorem I (Evertse-Gy, 202?)

Suppose the following:

- $\mathcal{G}\left(\mathcal{L}_{F}\right)$ is connected;
- the generators f_{1}, \ldots, f_{t} of \mathcal{I} have degree $\leq d$ and logarithmic height $\leq h$;
- b and the coefficients of $\ell_{1}, \ldots, \ell_{n}$ have tuples of representatives of degree $\leq d$ and logarithmic height $\leq h$;
- the coefficients of $\ell_{1}, \ldots, \ell_{n}$ have degree $\leq D$ over K.

Then every solution \boldsymbol{x} of $\left(D F_{1}\right)$ is represented by $\tilde{\boldsymbol{x}} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]^{m}$ such that

$$
s(\tilde{\boldsymbol{x}}) \leq \exp \left(\left(2 m n \cdot D^{D m n} d\right)^{\exp O(r)} h\right)
$$

Theorem I has many consequences and applications.
$A \cong \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] / I$ where $I=\left\{f \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]: f\left(z_{1}, \ldots, z_{r}\right)=0\right\}$ finitely generated ideal, $I=\left(f_{1}, \ldots, f_{t}\right) ; A$ effectively given if f_{1}, \ldots, f_{t} effectively given

Definition

A finite extension L of K effectively given if it is given in the form $K[X] /(P), P$ effectively given monic, irreducible in $K[X] ; L=K(\Theta)$, $\Theta:=X(\bmod P) \Rightarrow$ any $\beta \in L, \beta=\sum_{i=0}^{d-1} a_{i} \Theta^{i}$ with $a_{0}, \ldots, a_{d-1} \in K$, $d=[L: K] ; \beta \in L$ given / can be determined effectively if a_{0}, \ldots, a_{d-1} are given / can be determined effectively.

$$
\begin{equation*}
F(x)=\ell_{1}(x) \ldots \ell_{n}(x) \quad \text { in } \quad x \in A^{m} \tag{1}
\end{equation*}
$$

Theorem I \Rightarrow

Theorem J (Evertse-Gy, 202?)

If $\mathcal{G}\left(\mathcal{L}_{F}\right)$ is connected, then equation $\left(D F_{1}\right)$ has only finitely many solutions. Moreover, if the coefficients of $\ell_{1}, \ldots, \ell_{n}$ belong to a finite extension L of K and if A, K, L, b and the coefficients of $\ell_{1}, \ldots, \ell_{n}$ are given effectively, then all solutions can be effectively determined.
method of proof of Theorems I and J: following Gy-Papp (1978) over number fields, use the connectedness of $\mathcal{G}\left(\mathcal{L}_{F}\right)$, reduce $\left(D F_{1}\right)$ to a finite system of unit equations over a finitely generated overring A^{\prime} of A in L, apply the effective Theorems B resp. B' (Evertse-Gy, 2013) on unit equations, and utilize so-called 'degree-height estimates'.

Theorems I and J \Rightarrow

- For $\mathrm{m}=2 \Rightarrow$ Theorem D (Bérczes, Evertse, Gy, 2014) on

Thue equations

- For $m>2$, more general version (Evertse-Gy, 202?): $\mathcal{G}\left(\mathcal{L}_{F}\right)$ not necessarily connected, rank $\mathcal{L}_{F} \leq m$
- The first assertion of Theorem J: Gy (1982)
- The second assertion of Theorem I for a restricted class of A :

Gy (1983)
alternative proof: Evertse-Gy (2013) method, i.e. reduction to the number field and function field case, effective specializations, use of effective results over number fields and function fields; see also Gy (1983)

Consequences of Theorem I:

Norm form equation

$$
\begin{equation*}
N\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)=b \quad \text { in } x_{1}, \ldots, x_{m} \in A \tag{NF}
\end{equation*}
$$

more general version of Therem $\mathbf{J} \Rightarrow$

Theorem K (Evertse-Gy, 202?)

Suppose that in (NF) α_{m} is of degree ≥ 3 over $K\left(\alpha_{1}, \ldots, \alpha_{m-1}\right)$. Then equation (NF) has only finitely many solutions with $x_{m} \neq 0$. Further, if $A, K, L, \alpha_{1}, \ldots, \alpha_{m}$ and b are effectively given, all solutions of (NF) with $x_{m} \neq 0$ can be effectively determined. + quantitative version

- The first assertion of Theorem K: Gy (1982)
- The second assertion of Theorem \mathbf{K} for a restricted class of A :

Gy (1983)

- ≥ 3 and $x_{m} \neq 0$ necessary

Discriminant form equation

$$
\begin{equation*}
D\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)=b \quad \text { in } x_{1}, \ldots, x_{m} \in A \tag{2}
\end{equation*}
$$

Theorem J \Rightarrow

Theorem L (Evertse-Gy, 20?)

Under the above assumptions concerning $\left(D F_{2}\right)$, equation $\left(D F_{2}\right)$ has only finitely many solutions. Moreover, if $A, K, L, \alpha_{1}, \ldots, \alpha_{m}$ and b are effectively given, all solutions of $\left(D F_{2}\right)$ can be effectively determined. + quantitative version

- The first assertion of Theorem L: Gy (1982)
- The second assertion of Theorem \mathbf{L} for a restricted class of A: Gy (1983)

Applications to index form equations and integral elements of given discriminant
More general versions of equations $\left(D F_{1}\right),(N F),\left(D F_{2}\right)$

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{m}\right) \in b A^{*} \quad \text { in } \quad x_{1}, \ldots, x_{m} \in A \tag{1}
\end{equation*}
$$

\Rightarrow e.g. simple ring extensions of A
Many other applications of Theorems B-L and their more general versions

Our general effective method \Rightarrow general program

Given a polynomial equation

$$
\begin{equation*}
P(\boldsymbol{x})=0 \quad \text { in } \boldsymbol{x} \in A^{m} \tag{*}
\end{equation*}
$$

If we have effective finiteness results for the $(S-)$ integral solutions of the corresponding equation over number fields and effective results over function fields of char 0 , our method gives an effective finiteness result for equation (*)

+ quantitative versions

Thank you for your attention!

