Effective finiteness results for Diophantine equations over finitely generated domains (Survey and new results with J.-H. Evertse)

> K. Győry (Debrecen)

> > 2020

Ineffective finiteness results over number fields and more generally over finitely generated domains

$$\begin{split} & A = \mathbb{Z}[z_1, \ldots, z_r] \text{ finitely generated domain (FGD)} \\ & A \supset \mathbb{Z}, \ z_1, \ldots, z_r \text{ algebraic or transcendental } / \mathbb{Q} \\ & \underline{\mathsf{Examples:}} \ A = \mathbb{Z}, \ \mathcal{O}_K \ (K \text{ number field}), \ \mathcal{O}_S \ (S \text{ finite set of places}), \\ & \overline{\mathbb{Z}[X_1, \ldots, X_r], \ldots} \end{split}$$

method: Thue-Siegel-Roth-Schmidt method

Effective finiteness results over number fields

 $A = \mathbb{Z}, \mathcal{O}_{K}, \mathcal{O}_{S}$

method: Baker's method

Effective results over function fields (no finiteness)

method: Mason,...

Extension of the **effective theory** to the case of **finitely generated domains**

- reduction to the number field case and function field case by effective specializations, use of effective results over number fields and function fields, \underline{Gy} (1983) \Rightarrow Thue equations, decomposable form equations, discriminant equations over a restricted class of FGD's, Gy (1983)
- combining Gy's method with a result of <u>Aschenbrenner</u> (2004) ⇒ general method for arbitrary FGD's; <u>Evertse</u>, Gy (2013) ⇒ unit equations

further applications of the general method to:

- Thue equations: Bérczes, Evertse, Gy (2014)
- superelliptic equations, Schinzel–Tijdeman equation: Bérczes, Evertse, Gy (2014)

- generalized unit equations: <u>Bérczes</u> (2015)
- Catalan equation: Koymans (2017)
- discriminant equations: Evertse–Gy (2017)
- decomposable form equations: Evertse-Gy (202?)

 \Rightarrow a great number of ${\it applications}$

In my talk:

- I Brief historical overview
- II New general effective results on decomposable form equations over finitely generated domains and their applications (joint results with J.-H. Evertse)

UNIT EQUATIONS: Let $a, b, c \in A \setminus \{0\}$

$$ax + by = c \quad \text{in } x, y \in A^*$$
 (U)

Ineffective finiteness results:

<u>Siegel</u> (1921): $A = \mathcal{O}_K$, K number field, implicit <u>Mahler</u> (1933): $A = \mathbb{Z}[(p_1 \cdot \ldots \cdot p_s)^{-1}], p_1, \ldots, p_s$ primes <u>Parry</u> (1950): $A = \mathcal{O}_S$, *S*-integers in KLang (1960): A arbitrary finitely generated over \mathbb{Z}

Effective results over number fields

First general effective finitenetss results, explicit bounds for the solutions:

Győry (1973, 1974): $A = \mathcal{O}_K$, K number field

Győry (1979): $A = O_S$, S-integers in K

ax + by = c in $x, y \in \mathcal{O}_{S}^{*}$, S-unit equation (U_{S})

Several **improvements** of the bounds, e.g. <u>Bugeaud–Győry</u>, <u>Bugeaud</u>, <u>Győry–Yu</u>, <u>Le Fourn</u>; the **best known bound** in terms of S : <u>Győry</u> (2019)

A great number of applications

method of proof: Baker's method; recent **alternative effective methods:** <u>Bombieri</u>, <u>Bombieri–Cohen</u> $A = O_S$, over number fields, <u>Murty–Pasten</u>, <u>von Känel</u>, <u>Matschke</u>, <u>Siksek</u>, <u>Bennett</u>,...,modular method over \mathbb{Z} Let again $A = \mathbb{Z}[z_1, \ldots, z_r]$, K quotient field, $a, b, c \in A \setminus \{0\}$,

$$ax + by = c \quad \text{in } x, y \in A^*$$
 (U)

<u>Gy</u> (1983): for $q \leq r$, $\{z_1, \ldots, z_q\} \subseteq \{z_1, \ldots, z_r\}$, maximal algebraically independent, $A_0 = \mathbb{Z}[z_1, \ldots, z_q]$, $K_0 = \mathbb{Q}(z_1, \ldots, z_q)$; $\exists g \in A_0 \setminus \{0\}$ and $w \in K^*$ integral over A_0 such that

$$A \subseteq B := A_0 \left[\frac{1}{g}, w \right] \ (\subset K).$$

A effectively given if q and the minimal polynomials of z_{q+1}, \ldots, z_r over K_0 are given $\Rightarrow g, w$ and hence B can be determined

It follows from my results:

Theorem A (Győry, 1983)

The unit equation

$$ax + by = c \quad \text{in } x, y \in B^*$$
 (U_B)

has only finitely many solutions in B^* (and hence in A^* as well). Further, if q, g, w and a, b, c are effectively given, the solutions of (U_B) can be effectively determined.

Quantitative version: effective bound for the "size" of the solutions *basic idea* of the **method of proof**, detailed description about 15 pages

reduction to the function field and number field case: in the number field case sufficiently many **effective** ring homomorphisms (specializations): any $\mathbf{u} = (u_1, \ldots, u_q) \in \mathbb{Z}^q$ yields a ring homomorphism $A_0 \to \mathbb{Z}$ by substituting u_i for z_i for $i = 1, \ldots, q$. This map can be extended to a ring homomorphism $B \to \overline{\mathbb{Q}}$ which sends (U_B) to an S-unit equation in a number field depending on \mathbf{u} .

use of effective results over number fields and function fields \Rightarrow algorithm for solving (U_B)

The method works for B, $Z[X_1, ..., X_r]$ and a class of other finitely generated domains of the form $A = \mathbb{Z}[z_1, ..., z_r]$. In general it was a

problem: in 1983, no general algorithm was known to select those solutions $x, y \in B^*$ of (U_B) for which $x, y \in A^*$.

Generalization for arbitrary finitely generated A (with J.-H. Evertse)

In what follows, **another representation** for $A = \mathbb{Z}[z_1, \ldots, z_r]$.

Put

$$R = \mathbb{Z}[X_1, \ldots, X_r], I = \{f \in R : f(z_1, \ldots, z_r) = 0\}$$

 \Rightarrow

 $A \cong R/I$

I finitely generated ideal

Definitions

- A effectively given if a set of generators of I is given, say $I = (f_1, \ldots, f_t)$
- for $\alpha \in A$, $\tilde{\alpha} \in R$ representative of α if $\alpha = \tilde{\alpha}(z_1, \dots, z_r)$
- $\alpha \in A$ is *effectively given* if a representative of α is given

Consider again the unit equation

$$ax + by = c$$
 in $x, y \in A^*$ $(a, b, c \in A \setminus \{0\})$ (U)

Theorem B (Evertse–Győry, 2013)

If A and a, b, $c \in A$ are effectively given, the solutions x, y of (U) can be effectively determined.

method of proof: *refinement and combination* of *Győry's method* with the following *theorem of Aschenbrenner* (2004)

Theorem (Aschenbrenner, 2004)

Let $g_1, \ldots, g_m, g \in R := \mathbb{Z}[X_1, \ldots, X_r]$ Assume that

$$g_1 x_1 + \dots + g_m x_m = g \tag{A}$$

is solvable in $x_1, \ldots, x_m \in R$. If g_1, \ldots, g_m, g are given then (A) has an effectively computable solution $x_1, \ldots, x_m \in R$.

Remark

Theorem \Rightarrow *algorithm* for deciding whether $x, y \in B^*$ are contained in A^* or not

Quantitative version of Theorem B

Definition

for $\alpha \in R = \mathbb{Z}[X_1, \ldots, X_r]$, the *degreee* deg α is the total degree of α , and the *logarithmic height* $h(\alpha)$ of α is the logarithm of the maximum absolute value of its coefficients. The *size* of α is defined by

 $s(\alpha) := \max\{1, \deg \alpha, h(\alpha)\}.$

There are only **finitely many** $\alpha \in R = \mathbb{Z}[X_1, \dots, X_r]$ of **bounded** size, and all of them can be determined effectively.

Theorem B' (Evertse-Győry, 2013)

Assume that in $A = \mathbb{Z}[z_1, \ldots, z_r]$, $r \ge 1$. Let $\tilde{a}, \tilde{b}, \tilde{c}$ be representatives for a, b, $c \in A$ in $R = \mathbb{Z}[X_1, \ldots, X_r]$. Assume that $f_1, \ldots, f_t \in R$ and $\tilde{a}, \tilde{b}, \tilde{c}$ all have degree at most d and logarithmic height at most h, where $d \ge 1, h \ge 1$. Then for each solution (x, y) of (U) ax + by = c in x, y $\in A^*$, there are representatives $\tilde{x}, \tilde{x'}, \tilde{y}, \tilde{y'}$ of x, x^{-1}, y, y^{-1} such that

$$s(\tilde{x}), s(\tilde{x'}), s(\tilde{y}), s(\tilde{y'}) \leq \exp\{(2d)^{c_1^r}(h+1)\},$$

where c_1 is an effectively computable absolute constant > 1.

Theorem B' \Rightarrow Theorem B, easy

Thue equations

Let
$$A = \mathbb{Z}[z_1, \dots, z_r]$$
, K quotient field of A , and
 $F(X, Y) = a_0 X^n + a_1 X^{n-1} Y + \dots + a_n Y^n \in A[X, Y],$
 $b \in A \setminus \{0\}, n \ge 3, F$ has no multiple factor.
 $F(x, y) = b \quad \text{in } x, y \in A$ (T)

Ineffective finiteness results

<u>Thue</u> (1909): $A = \mathbb{Z}$: <u>Lang</u> (1960): A arbitrary finitely generated domain <u>Generalization</u>:

Theorem C (Siegel, K number field, 1929; Lang, A finitely generated, 1960)

Let $F \in K[X, Y]$ be a polynomial irreducible over \overline{K} such that the affine curve F(x, y) = 0 is of genus ≥ 1 . Then this curve has only finitely many points with coordinates in A.

Effective finiteness results for (\top)

<u>Baker</u> (1968): $A = \mathbb{Z}$, bound for x, y<u>Coates</u> (1969): $A = \mathbb{Z}[(p_1 \cdot \ldots \cdot p_s)^{-1}]$ <u>Kotov–Sprindžuk</u> (1973): $A = \mathcal{O}_S$, ring of *S*-integers in a number field *K*

Improvements of the <u>bounds</u> for x, y:

Feldman (1971),...

method of proof: Baker's method

Gy (1983): for a restricted class of finitely generated domains A

<u>General case:</u> recall $A = \mathbb{Z}[z_1, ..., z_r]$, K quotient field, $R = \mathbb{Z}[X_1, ..., X_r]$, $I = \{f \in R : f(z_1, ..., z_r) = 0\}$ finitely generated *ideal* in R; for $\alpha \in A, \tilde{\alpha} \in R$ representative of α if $\alpha = \tilde{\alpha}(z_1, ..., z_r)$

Theorem D (Bérczes, Evertse, Gy, 2014)

Given generators f_1, \ldots, f_t of I and representatives of a_0, a_1, \ldots, a_n, b , the solutions $x, y \in A$ of (T) can be effectively determined

+ quantitative version

method of proof: E-Gy's method

major open problems: make effective the Siegel–Lang Theorem C (first over \mathbb{Z} and then over A)

Superelliptic equations

Let

$$F(X) = a_0 X^n + \cdots + a_n \in A[X], \ b \in A \setminus \{0\},$$

 $m \ge 2, F$ has no multiple zero

$$F(x) = by^m \quad \text{in } x, y \in A \tag{HS}$$

 $n \ge 2$ if $m \ge 3$, superelliptic case

 $n \geq 3$ if m = 2, hyperelliptic case

Ineffective finiteness results

Siegel (1926), LeVeque (1964): $A = \mathbb{Z}$ or \mathcal{O}_{K}, K number field

Lang (1960), A arbitrary finitely generated domain

Effective results

<u>Baker</u> (1969): $A = \mathbb{Z}$

Schinzel-Tijdeman (1976): bound for m

<u>Brindza</u> (1984): $A = O_S$, number field case

Brindza (1989): A domain considered by Gy (1983)

Theorem E (B, E, Gy, 2014)

If A and a_0, \ldots, a_n , b are effectively given, then (HS) has only finitely many solutions and all of them can be effectively determined

+ effective bound for m

+ quantitative version

method of proof: E-Gy's method

Generalized unit equations

A finitely generated over \mathbb{Z}, K quotient field, $F \in A[X, Y], \Gamma \subset K^*$ finitely generated

$$(*) \begin{cases} F \text{ has no divisor of the form } X^m Y^n - \alpha \\ \text{or } X^m - \alpha Y^n, m, n \ge 0 \text{ integers, } m + n > 0 \end{cases}$$

$$F(x, y) = 0$$
 in $x, y \in A^*$ or more generally in Γ (GU)

Ineffective finiteness results: (*) *necessary*

Lang (1960): finitely many solutions in A^* and in Γ Lang's conjecture: the same in $x, y \in \overline{\Gamma}$, the division group of Γ

$$\overline{\Gamma} := \{ u \in \overline{K}^* : \exists m > 0 \text{ integer}, u^m \in \Gamma \}$$

Liardet (1974,75): proof of Lang's conjecture

Effective finiteness results in number fields

Bombieri–Gubler (2006): (GU), in Γ

Bérczes, Evertse, Gy (2009): (U) in $\overline{\Gamma}$

Bérczes, Evertse, Gy, Pontreau (2009): (GU) in $\overline{\Gamma}$

Effective finiteness result over FGD's

Theorem F (Bérczes, 2015)

If A, Γ are finitely generated and A, Γ, F are effectively given, then (GU) has only finitely many solutions + effective + quantitative

method of proof: Evertse–Gy (2013)

Catalan equation

Let A be a FGD

 $x^m - y^n = 1$ in $x, y \in A \setminus \{0\}$, not root of unity, m, n > 1, mn > 4 (C)

Catalan conjecture (1844): for $A = \mathbb{Z}$, $3^2 - 2^3 = 1$ is the only solution

Tijdeman (1976): $A = \mathbb{Z}$, effective finiteness resultBrindza, Gy, Tijdeman (1986): $A = \mathcal{O}_K$, effective finiteness resultBrindza (1987): $A = \mathcal{O}_S$, effective finiteness resultBrindza (1993): for a class of FGD's effective finiteness resultBaker's methodMihailescu (2002): proof of Catalan conjecture

other method

Theorem G (Koymans, 2017)

If A is an effectively given FGD, then (C) has only finitely many solutions

+ effective + quantitative

method of proof: Evertse-Győry (2013)

Discriminant equations

 $A = \mathbb{Z}[z_1, \dots, z_r], K$ quotient field, L finite extension of $K, D \in A \setminus \{0\}$

many diophantine problems \Rightarrow discriminant equation

$$D(F) = D$$
 in monic $F \in A[X]$ of given
degree $n \ge 2$ having its zeros in L (D_1)

 $F(X), F(X + a) \ (a \in A) \ A$ -equivalent \Rightarrow same discriminant.

Ineffective finiteness results on A-equivalence classes of solutions

Delone, Nagell (1930), independently: $A = \mathbb{Z}$, n = 3

Nagell (1967): $A = \mathbb{Z}$, n = 4, F irreducible

In full generality:

<u>Gy</u> (1982): assume that A is integrally closed (in K). Then (D_1) has only finitely many A-equivalence classes of solutions

Consequences:

L/K finite extension, A_L integral closure of A in L

$$D_{L/K}(\alpha) = D \quad \text{in } \alpha \in A_L \tag{D_2}$$

 $\alpha, \alpha + a \ (a \in A) \ A$ -equivalent \Rightarrow same discriminant

Gy (1982): Up to A-equivalence, (D_2) has only finitely many solutions

$$A_L = A[\alpha] \quad \text{for } \alpha \in A_L \tag{D_3}$$

 $\Leftrightarrow \{1, \alpha, \dots, \alpha^{d-1}\} \text{ power integral basis of } A_L \text{ over } A, \ d = [L : K]$ $\underline{\text{Examples:}} A = \mathbb{Z}, K = \mathbb{Q}, L \text{ quadratic or cyclotomic,}$ $\text{if } \alpha \text{ solution of } (D_3) \Rightarrow \text{ so is } \varepsilon \alpha + a, \varepsilon \in A^*, a \in A$

<u>Gy</u> (1982): Up to multiplication by elements of A^* and translation by elements of A, there are only finitely many $\alpha \in A_L$ with (D_3) .

method of proof: reduction of (D_1) to unit equations; $(D_2) \Rightarrow (D_1)$; $(D_3) \Rightarrow (D_2)$ Effective finiteness results for equations (D_1) , (D_2) , (D_3)

 $\begin{array}{l} \underline{Gy} \ (1973-1976): \ A = \mathbb{Z}, \ \text{in} \ (D_1) \ L \ \text{not fixed} \\ \\ \underline{Gy} \ (1978-1981): \ A = \mathcal{O}_K, \ \mathcal{O}_S, \ \text{number field case} \\ \\ \hline \textbf{method of proof: reduction to unit equations, Baker's method} \\ \\ \underline{Gy} \ (1984): \ \text{for a class of finitely generated} \ A \ \text{over } \mathbb{Z} \end{array}$

general case

 $A = \mathbb{Z}[z_1, \ldots, z_r], K$ quotient field, L finite extension of K

L is given effectively if an irreducible $P \in K[X]$ is given such that $L \cong K[X]/(P)$

Theorem H (Evertse–Gy, 2017)

Assume that A is integrally closed. Then up to A-equivalence, equation (D_1) has only finitely many solutions. Further, if A, L and D are given, all solutions can be determined effectively.

- The condition that A is integrally closed can be weakened to

$$\left(rac{1}{n}A^+\cap A_K^+
ight)/A^+$$
 finite, decidable

where A_K is the integral closure of A in K

- Similar results for equations (*D*₂), (*D*₃) under some additional conditions
- **method of proof:** reduction to unit equations in *L*, use of general Theorem B on unit equations and some effective linear algebra

II. Decomposable form equations

(survey and some new general effective results with J.-H. Evertse)

basic importance in diophantine number theory

 $A = \mathbb{Z}[z_1, \dots, z_r], K$ quotient field, \overline{K} an algebraic closure of $K, b \in K^*$

Definition

 $F \in K[X_1, \ldots, X_m]$ decomposable form, if it factorizes into linear factors, say ℓ_1, \ldots, ℓ_n over \overline{K} . Assume that at least three of ℓ_1, \ldots, ℓ_n are pairwise linearly independent

Decomposable form equation:

$$F(x_1,\ldots,x_m) = b \quad \text{in } x_1,\ldots,x_m \in A \tag{DF_1}$$

m = 2, Thue equation

Further important classes of decomposable form equations with $m \ge 2$: <u>norm form equations</u>, <u>discriminant form equations</u>, <u>index form</u> <u>equations</u>

Norm form equation:

$$N(\alpha_1 x_1 + \dots + \alpha_m x_m) = b \text{ in } x_1, \dots, x_m \in A$$
 (NF)

where $\alpha_1 = 1, \alpha_2, \ldots, \alpha_m \in \overline{K}$, linearly independent over K, $N(\alpha_1 X_1 + \cdots + \alpha_m X_m)$ norm form with coefficients in K.

Discriminant form equation

$$D(\alpha_1 x_1 + \dots + \alpha_m x_m) = b \text{ in } x_1, \dots, x_m \in A \qquad (DF_2)$$

where $1, \alpha_1, \ldots, \alpha_m \in \overline{K}$, linearly independent over K; $D(\alpha_1 X_1 + \cdots + \alpha_m X_m)$ discriminant form with coefficients in K. Ineffective finiteness results on equations (DF_1) , (DF_2) and (NF) over number fields:

<u>Schmidt</u> (1971): (NF), $A = \mathbb{Z}$, finiteness criterion, description of the set of solutions

<u>Schlickewei</u> (1977): (NF), $A = \mathbb{Z}_S$, finiteness result

method of proof: Subspace theorem

over finitely generated domains A:

<u>Gy</u> (1982): (DF_1) , (DF_2) , (NF) finiteness, under certain restrictions on (DF_1) , (NF)

method of proof: reduction to unit equations, Lang's theorem Laurent (1984): (NF), finiteness

Evertse-Gy (1988): (DF₁), (NF), finiteness criteria

<u>Gy</u> (1993): (DF_1) , description of the structure of the set of solutions **method of proof:** reduction to multivariate unit equations

Effective finiteness results

over number fields:

 $\frac{\text{Gy}}{(DF_1)}$ (DF₁), (DF₂), (NF), under certain restrictions on (DF₁), (NF)

method of proof: effective specialization method

 $A = \mathbb{Z}[z_1, \dots, z_r], K$ quotient field, $F \in K[X_1, \dots, X_m]$ decomposable form, i.e. factorizes into linear forms, say ℓ_1, \dots, ℓ_n over \overline{K}

Decomposable form equation

$$F(x_1,\ldots,x_m)=b \quad \text{in } x_1,\ldots,x_m \in A, \qquad (DF_1)$$

where $b \in K^*$ Let $\mathcal{L}_F = \{\ell_1, \dots, \ell_n\}$, sup

Let $\mathcal{L}_F = \{\ell_1, \ldots, \ell_n\}$, suppose \mathcal{L}_F has at least 3 pairwise linearly independent linear forms. Further, to simplify the presentation, we assume that rank $\mathcal{L}_F = m$.

Definition (Győry and Papp, 1978)

 $\mathcal{G}(\mathcal{L}_F)$ graph with vertex system \mathcal{L}_F in which ℓ_i, ℓ_j $(i \neq j)$ connected by an edge if ℓ_i, ℓ_j linearly dependent or linearly independent and $\lambda_i \ell_i + \lambda_j \ell_j + \lambda_q \ell_q = 0$ for some $q \not\subset \{i, j\}$ with $\lambda_i, \lambda_j, \lambda_q \in L \setminus \{0\}$

$$A \cong \mathbb{Z}[X_1,\ldots,X_r]/\mathcal{I}, \ \mathcal{I} = \{f \in \mathbb{Z}[X_1,\ldots,X_r] : f(z_1,\ldots,z_r) = 0\},\$$

$$\mathcal{I} = (f_1,\ldots,f_t)$$

To state <u>quantitative</u> result we generalize the <u>size</u> of elements $\alpha \in K$ to the case $\alpha \in \overline{K}$.

Definition

For $\alpha \in \overline{K}$, let deg_K α the degree of α over K. A tuple or representatives for α : (g_0, \ldots, g_n) , where $g_0, \ldots, g_n \in \mathbb{Z}[X_1, \ldots, X_r]$, $g_0 \notin \mathcal{I}$ and

$$X^{n} + \frac{g_{1}(z_{1}, \ldots, z_{r})}{g_{0}(z_{1}, \ldots, z_{r})}X^{n-1} + \cdots + \frac{g_{n}(z_{1}, \ldots, z_{r})}{g_{0}(z_{1}, \ldots, z_{r})}$$

monic minimal polynomial of α over K. We say that $\deg(g_0, \ldots, g_n) \leq d$, logarithmic height $h(g_0, \ldots, g_n) \leq h$ if $\deg g_i \leq d$, $h(g_i) \leq h$ for $i = 0, \ldots, n$.

Definition

Given $\mathbf{x} = (x_1, \dots, x_m) \in A^m$, a representative for \mathbf{x} is a tuple $\tilde{\mathbf{x}} = (\tilde{x}_1, \dots, \tilde{x}_m)$ with $\tilde{x}_i \in \mathbb{Z}[X_1, \dots, X_r]$, $x_i = \tilde{x}_i(z_1, \dots, z_r)$ for $i = 1, \dots, m$. The size of $\tilde{\mathbf{x}}$ is defined by

$$s(\tilde{\boldsymbol{x}}) := \max_{i} s(\tilde{x}_i) = \max_{i} \max(1, \deg \tilde{x}_i, h(\tilde{x}_i))$$

$$F(\mathbf{x}) = \ell_1(\mathbf{x}) \dots \ell_n(\mathbf{x})$$
 in $\mathbf{x} \in A^m$ (DF_1)

Theorem I (Evertse–Gy, 202?)

Suppose the following:

- $\mathcal{G}(\mathcal{L}_F)$ is connected;
- the generators f₁,..., f_t of *I* have degree ≤ d and logarithmic height ≤ h;
- b and the coefficients of l₁,..., l_n have tuples of representatives of degree ≤ d and logarithmic height ≤ h;
- the coefficients of ℓ_1, \ldots, ℓ_n have degree $\leq D$ over K.

Then every solution \mathbf{x} of (DF_1) is represented by $\mathbf{\tilde{x}} \in \mathbb{Z}[X_1, \dots, X_r]^m$ such that

$$s(\tilde{\mathbf{x}}) \leq \exp((2mn \cdot D^{Dmn}d)^{\exp O(r)}h).$$

Theorem I has many consequences and applications.

 $A \cong \mathbb{Z}[X_1, \ldots, X_r]/I$ where $I = \{f \in \mathbb{Z}[X_1, \ldots, X_r] : f(z_1, \ldots, z_r) = 0\}$ finitely generated ideal, $I = (f_1, \ldots, f_t)$; A effectively given if f_1, \ldots, f_t effectively given

Definition

A finite extension *L* of *K* effectively given if it is given in the form K[X]/(P), *P* effectively given monic, irreducible in K[X]; $L = K(\Theta)$, $\Theta := X \pmod{P} \Rightarrow \arg{\beta \in L, \beta} = \sum_{i=0}^{d-1} a_i \Theta^i$ with $a_0, \ldots, a_{d-1} \in K$, $d = [L : K]; \beta \in L$ given / can be determined effectively if a_0, \ldots, a_{d-1} are given / can be determined effectively.

$$F(\mathbf{x}) = \ell_1(\mathbf{x}) \dots \ell_n(\mathbf{x}) \quad \text{in} \quad \mathbf{x} \in A^m \tag{DF}_1$$

Theorem I \Rightarrow

Theorem J (Evertse–Gy, 202?)

If $\mathcal{G}(\mathcal{L}_F)$ is connected, then equation (DF_1) has only finitely many solutions. Moreover, if the coefficients of ℓ_1, \ldots, ℓ_n belong to a finite extension L of K and if A, K, L, b and the coefficients of ℓ_1, \ldots, ℓ_n are given effectively, then all solutions can be effectively determined.

method of proof of Theorems I and J: following <u>Gy-Papp</u> (1978) over number fields, use the connectedness of $\mathcal{G}(\mathcal{L}_F)$, reduce (DF_1) to a finite system of unit equations over a finitely generated overring A' of A in L, apply the effective Theorems B resp. B' (<u>Evertse-Gy</u>, 2013) on unit equations, and utilize so-called 'degree-height estimates'.

Theorems I and J \Rightarrow

- For $m=2\Rightarrow$ Theorem D (Bérczes, Evertse, Gy, 2014) on Thue equations
- For m > 2, more general version (Evertse–Gy, 202?): G(L_F) not necessarily connected, rank L_F ≤ m
- The first assertion of Theorem J: Gy (1982)
- The second assertion of **Theorem I** for a restricted class of *A*: <u>Gy</u> (1983)

alternative proof: Evertse–Gy (2013) method, i.e. reduction to the number field and function field case, effective specializations, use of effective results over number fields and function fields; see also Gy (1983)

Consequences of Theorem I:

Norm form equation

$$N(\alpha_1 x_1 + \dots + \alpha_m x_m) = b \quad \text{in } x_1, \dots, x_m \in A$$
 (NF)

more general version of Therem J \Rightarrow

Theorem K (Evertse–Gy, 202?)

Suppose that in (NF) α_m is of degree ≥ 3 over $K(\alpha_1, \ldots, \alpha_{m-1})$. Then equation (NF) has only finitely many solutions with $x_m \neq 0$. Further, if $A, K, L, \alpha_1, \ldots, \alpha_m$ and b are effectively given, all solutions of (NF) with $x_m \neq 0$ can be effectively determined. + quantitative version

- The first assertion of Theorem K: Gy (1982)
- The second assertion of **Theorem K** for a restricted class of *A*: Gy (1983)
- \geq 3 and $x_m \neq$ 0 necessary

Discriminant form equation

$$D(\alpha_1 x_1 + \dots + \alpha_m x_m) = b \quad \text{in } x_1, \dots, x_m \in A \qquad (DF_2)$$

Theorem $J \Rightarrow$

Theorem L (Evertse–Gy, 20?)

Under the above assumptions concerning (DF_2) , equation (DF_2) has only finitely many solutions. Moreover, if $A, K, L, \alpha_1, \ldots, \alpha_m$ and b are effectively given, all solutions of (DF_2) can be effectively determined. + <u>quantitative</u> <u>version</u>

- The first assertion of Theorem L: Gy (1982)
- The second assertion of Theorem L for a restricted class of A: Gy (1983)

Applications to *index form equations* and *integral elements of given discriminant*

More general versions of equations (DF_1) , (NF), (DF_2)

$$F(x_1,\ldots,x_m) \in bA^*$$
 in $x_1,\ldots,x_m \in A$ (DF_1^*)

 \Rightarrow e.g. simple ring extensions of A

Many other applications of Theorems B-L and their more general versions

Our general effective method \Rightarrow general program

Given a polynomial equation

$$P(\mathbf{x}) = 0 \quad \text{in } \mathbf{x} \in A^m \tag{(*)}$$

If we have <u>effective finiteness results</u> for the (S-) integral solutions of the corresponding equation <u>over number fields</u> and <u>effective results</u> <u>over function fields</u> of char 0, <u>our method</u> gives an <u>effective finiteness</u> <u>result</u> for equation (*)

+quantitative versions

THANK YOU FOR YOUR ATTENTION!