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In this paper we are investigating the holonomy structure of Finsler 2-manifolds. 
We show that the topological closure of the holonomy group of a certain class 
of projectively flat Finsler 2-manifolds of constant curvature is maximal, that is 
isomorphic to the connected component of the diffeomorphism group of the circle. 
This class of 2-manifolds contains the standard Funk plane of constant negative 
curvature and the Bryant–Shen-spheres of constant positive curvature. The result 
provides the first examples describing completely infinite dimensional Finslerian 
holonomy structures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The notion of the holonomy group of a Riemannian or Finslerian manifold can be introduced in a very 
natural way: it is the group generated by parallel translations along loops with respect to the associated 
linear, respectively homogeneous (nonlinear) connection. In contrast to the Finslerian case, the Riemannian 
holonomy groups have been extensively studied. One of the earliest fundamental results is the theorem of 
Borel and Lichnerowicz [1] from 1952, claiming that the holonomy group of a simply connected Riemannian 
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manifold is a closed Lie subgroup of the orthogonal group O(n). By now, the complete classification of 
Riemannian holonomy groups is known.

The holonomy properties of Finsler spaces is, however, essentially different from the Riemannian one, 
and it is far from being well understood. Compared to the Riemannian case, only few results are known. 
In [13] it was proved that the holonomy group of a Finsler manifold of nonzero constant curvature with 
dimension greater than 2 is not a compact Lie group. In [15] it has been shown that there exist large 
families of projectively flat Finsler manifolds of constant curvature such that their holonomy groups are not 
finite dimensional Lie groups. In [14] we characterized the projective Finsler manifolds of constant curvature 
having infinite dimensional holonomy group. The proofs in the above mentioned papers give estimates for the 
dimension of tangent Lie algebras of the holonomy group and therefore they do not give direct information 
about the infinite dimensional structure of the holonomy group.

Until now, perhaps because of technical difficulties, not a single infinite dimensional Finsler holonomy 
group has been determined. In this paper we provide the first such a description: we show that the topologi-
cal closure of the holonomy group of a certain class of simply connected, projectively flat Finsler 2-manifolds 
of constant curvature is Diff∞

+ (S1), the connected component of the full diffeomorphism group of the circle. 
This class of Finsler 2-manifolds contains the positively complete standard Funk plane of constant negative 
curvature (positively complete standard Funk plane), and the complete irreversible Bryant–Shen-spheres of 
constant positive curvature [17,3]. We remark that for every simply connected Finsler 2-manifold the topo-
logical closure of the holonomy group is a subgroup of Diff∞

+ (S1). Consequently, in the examples mentioned 
above, the closed holonomy group is maximal. In the proof we use the constructive method developed in 
[15] to study the Lie algebras of vector fields on the indicatrix which are tangent to the holonomy group.

2. Preliminaries

Throughout this article, M is a C∞ smooth manifold, X∞(M) is the vector space of smooth vector fields 
on M and Diff∞(M) is the group of all C∞-diffeomorphism of M . The first and the second tangent bundles 
of M are denoted by (TM, π, M) and (TTM, τ, TM), respectively.

A Finsler manifold is a pair (M, F), where the norm function F : TM → R+ is continuous, smooth on 
T̂M := TM \ {0}, its restriction Fx = F|TxM is a positively homogeneous function of degree one and the 
symmetric bilinear form

gx,y: (u, v) �→ gij(x, y)uivj = 1
2
∂2F2

x(y + su + tv)
∂s∂t

∣∣∣∣
t=s=0

is positive definite at every y ∈ T̂xM .
Geodesics of (M, F) are determined by a system of 2nd order ordinary differential equation ẍi +

2Gi(x, ẋ) = 0, i = 1, . . . , n in a local coordinate system (xi, yi) of TM , where Gi(x, y) are given by

Gi(x, y) := 1
4g

il(x, y)
(

2∂gjl
∂xk

(x, y) − ∂gjk
∂xl

(x, y)
)
yjyk. (1)

A vector field X(t) = Xi(t) ∂
∂xi along a curve c(t) is said to be parallel with respect to the associated 

homogeneous (nonlinear) connection if it satisfies

DċX(t) :=
(
dXi(t)

dt
+ Gi

j

(
c(t), X(t)

)
ċj(t)

)
∂

∂xi
= 0, (2)

where Gi
j = ∂Gi

j .
∂y
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The horizontal Berwald covariant derivative ∇Xξ of ξ(x, y) = ξi(x, y) ∂
∂yi by the vector field X(x) =

Xi(x) ∂
∂xi is expressed locally by

∇Xξ =
(
∂ξi(x, y)

∂xj
−Gk

j (x, y)
∂ξi(x, y)

∂yk
+ Gi

jk(x, y)ξk(x, y)
)
Xj ∂

∂yi
, (3)

where we denote Gi
jk(x, y) :=

∂Gi
j(x,y)
∂yk .

The Riemannian curvature tensor field R = Ri
jk(x, y)dxj ⊗ dxk ⊗ ∂

∂xi has the expression

Ri
jk(x, y) =

∂Gi
j(x, y)
∂xk

− ∂Gi
k(x, y)
∂xj

+ Gm
j (x, y)Gi

km(x, y) −Gm
k (x, y)Gi

jm(x, y).

The manifold has constant flag curvature λ ∈ R, if for any x ∈ M the local expression of the Riemannian 
curvature is

Ri
jk(x, y) = λ

(
δikgjm(x, y)ym − δijgkm(x, y)ym

)
.

Assume that the Finsler manifold (M, F) is locally projectively flat. Then for every point x ∈ M there 
exists an adapted local coordinate system, that is a mapping (x1, . . . , xn) on a neighborhood U of x into 
the Euclidean space Rn, such that the straight lines of Rn correspond to the geodesics of (M, F). Then the 
geodesic coefficients are of the form

Gi = Pyi, Gi
k = ∂P

∂yk
yi + Pδik, Gi

kl = ∂2P
∂yk∂yl

yi + ∂P
∂yk

δil + ∂P
∂yl

δik (4)

where P(x, y) is a 1-homogeneous function in y, called the projective factor of (M, F). According to 
Lemma 8.2.1 in [4] p. 155, if (M ⊂ R

n, F) is a projectively flat manifold, then its projective factor can 
be computed using the formula

P(x, y) = 1
2F

∂F
∂xi

yi. (5)

Example 1. (P. Funk, [5–7].) The standard Funk manifold (Dn, F) defined by the metric function

F(x, y) =
√

|y|2 − (|x|2|y|2 − 〈x, y〉2)
1 − |x|2 ± 〈x, y〉

1 − |x|2 (6)

on the unit disk Dn ⊂ R
n is projectively flat with constant flag curvature λ = −1

4 . Its projective factor can 
be computed using formula (5):

P(x, y) = 1
2

±
√

|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉
1 − |x|2 . (7)

We call the standard Funk 2-manifold the standard Funk plane.

Example 2. The Bryant–Shen spheres (Sn, Fα)|α|<π
2
, are the elements of a 1-parameter family of projectively 

flat complete Finsler manifolds with constant flag curvature λ = 1 defined on the n-sphere Sn. The metric 
function and the projective factor at 0 ∈ R

n have the form

F(0, y) = |y| cosα, P(0, y) = |y| sinα, with |α| < π (8)
2
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in a local coordinate system corresponding to the Euclidean canonical coordinates, centered at 0 ∈ R
n. 

R. Bryant in [2,3] introduced and studied this class of Finsler metrics on S2 where great circles are geodesics. 
Z. Shen generalized its construction to Sn and obtained the expression (8) (cf. Example 7.1 in [17] and 
Example 8.2.9 in [4]).

3. Holonomy group as a subgroup of the diffeomorphism group of the indicatrix

The group Diff∞(K) of diffeomorphisms of a compact manifold K is an infinite dimensional Lie group 
belonging to the class of Fréchet Lie groups. The Lie algebra of Diff∞(K) is the Lie algebra X∞(K) of smooth 
vector fields on K endowed with the negative of the usual Lie bracket of vector fields. Diff∞(K) is modeled 
on the locally convex topological Fréchet vector space X∞(K). A sequence {fj}j∈N ⊂ X∞(K) converges to 
f in the topology of X∞(K) if and only if the vector fields fj and all their derivatives converge uniformly 
to f , respectively to the corresponding derivatives of f . We note that the difficulty of the theory of Fréchet 
manifolds comes from the fact that the inverse function theorem and the existence theorems for differential 
equations, which are well known for Banach manifolds, are not true in this category. These problems have 
led to the concept of regular Fréchet Lie groups (cf. H. Omori [16] Chapter III, A. Kriegl – P.W. Michor 
[11] Chapter VIII). The distinguishing properties of regular Fréchet Lie groups can be summarized as the 
existence of smooth exponential map from the Lie algebra of the Fréchet Lie groups to the group itself, 
and the existence of product integrals, which produces the convergence of some approximation methods for 
solving differential equations (cf. Section III.5 in [16], pp. 83–89). In particular Diff∞(K) is a topological 
group which is an inverse limit of Lie groups modeled on Banach spaces and hence it is a regular Fréchet 
Lie group (Corollary 5.4 in [16]).

Let H be a subgroup of the diffeomorphism group Diff∞(K) of a differentiable manifold K. A vector 
field X ∈ X∞(K) is called tangent to H ⊂ Diff∞(K) if there exists a C1-differentiable 1-parameter family 
{Φ(t) ∈ H}t∈R of diffeomorphisms of K such that Φ(0) = Id and dΦ(t)

dt |t=0 = X. A Lie subalgebra h of 
X∞(K) is called tangent to H, if all elements of h are tangent vector fields to H.

We denote by (IM, π, M) the indicatrix bundle of the Finsler manifold (M, F), the indicatrix IxM at 
x ∈ M is the compact hypersurface IxM := {y ∈ TxM ; F(y) = 1} in TxM which is diffeomorphic to the 
sphere Sn−1, if dim(M) = n. The homogeneous (nonlinear) parallel translation τc : Tc(0)M → Tc(1)M along a 
curve c : [0, 1] → M preserves the value of the Finsler function, hence it induces a map τc: Ic(0)M −→ Ic(1)M
between the indicatrices.

The holonomy group Holx(M) of the Finsler manifold (M, F) at a point x ∈ M is the subgroup of the 
group of diffeomorphisms Diff∞(IxM) generated by homogeneous (nonlinear) parallel translations of IxM
along piece-wise differentiable closed curves initiated at the point x ∈ M . The closed holonomy group is the 
topological closure Holx(M) of the holonomy group with respect of the Fréchet topology of Diff∞(IxM).

We remark that the diffeomorphism group Diff∞(IxM) of the indicatrix IxM is a regular infinite di-
mensional Lie group modeled on the vector space X∞(IxM). In this category the group structure is locally 
determined by the Lie algebra X∞(IxM) of the Lie group Diff∞(IxM) (cf. [11,16]).

For any vector fields X, Y ∈ X∞(M) on M the vector field ξ = R(X, Y ) ∈ X∞(IM) is called a curvature 
vector field of (M, F) (see [13]). The Lie algebra R(M) of vector fields generated by the curvature vector 
fields of (M, F) is called the curvature algebra of (M, F). The restriction Rx(M) := {ξ|IxM ; ξ ∈ R(M)} ⊂
X∞(IxM) of the curvature algebra to an indicatrix IxM is called the curvature algebra at the point x ∈ M .

The infinitesimal holonomy algebra of (M, F) is the smallest Lie algebra hol∗(M) of vector fields on the 
indicatrix bundle IM satisfying the following properties

a) any curvature vector field ξ belongs to hol∗(M),
b) if ξ ∈ hol

∗(M) and X ∈ X∞(M) then the horizontal Berwald covariant derivative ∇Xξ belongs to 
hol

∗(M).
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The restriction hol∗x(M) := {ξ|IxM ; ξ ∈ hol
∗(M)} ⊂ X∞(IxM) of the infinitesimal holonomy algebra to an 

indicatrix IxM is called the infinitesimal holonomy algebra at the point x ∈ M . One has R(M) ⊂ hol
∗(M)

and Rx(M) ⊂ hol
∗
x(M) for any x ∈ M (see [12]).

Roughly speaking, the image of the curvature tensor (the curvature vector fields) determines the curva-
ture algebra, which generates (with the bracket operation and the covariant derivation) the infinitesimal 
holonomy algebra. Localizing these objects at a point x ∈ M we obtain the curvature algebra and the 
infinitesimal holonomy algebra at x ∈ M .

The following assertion will be an important tool in the next discussion:

The infinitesimal holonomy algebra hol∗x(M) at any point x ∈ M is tangent to the holonomy group 
Holx(M). (Theorem 6.3 in [12].)

The holonomy group and its topological closure are interesting geometrical objects which reflects geo-
metric properties of the Finsler manifold. In the characterization of the closed holonomy group we use the 
following

Proposition 3.1. The group generated by the exponential image of the infinitesimal holonomy algebra hol∗x(M)
at a point x ∈ M with respect to the exponential map exp : X∞(IxM) → Diff∞(IxM) is a subgroup of the 
closed holonomy group Holx(M).

Proof. Let us denote by 〈exp(hol∗x(M))〉 the group generated by the exponential image of hol∗x(M). For 
any element X ∈ hol

∗
x(M) there exists a C1-differentiable 1-parameter family {Φ(t) ∈ Holx(M)}t∈R of 

diffeomorphisms of the indicatrix IxM such that Φ(0) = Id and dΦ
dt |t=0 = X. Then, considering Φ(t) as 

“hair” and using the argument of Corollary 5.4 in [16], p. 85, we get that Φn( t
n ) = Φ( t

n ) ◦ · · · ◦ Φ( t
n ) in 

Holx(M), as a sequence of Diff∞(IxM), converges uniformly in all derivatives to exp(tX). It follows that 
we have

{
exp(tX); t ∈ R

}
⊂ Holx(M)

for any X ∈ hol
∗
x(M) and therefore exp(hol∗x(M)) ⊂ Holx(M). Naturally, if we consider the generated group, 

denoted by 〈exp(hol∗x(M))〉, then the relation is preserved, that is

〈
exp

(
hol

∗
x(M)

)〉
⊂ Holx(M),

which proves the proposition. �
4. The group Diff∞

+ (S1) and the Fourier algebra

Let (M, F) be a Finsler 2-manifold. In this case the indicatrix is diffeomorphic to the unit circle S1, at 
any point x ∈ M . Moreover, if there exists a non-vanishing curvature vector field at x ∈ M then any other 
curvature vector field at x ∈ M is proportional to it, which means that the curvature algebra is at most 
1-dimensional. The infinitesimal holonomy algebra however, can be an infinite dimensional subalgebra of 
X∞(S1), therefore the holonomy group can be an infinite dimensional subgroup of Diff∞

+ (S1), cf. [15].
Let S1 = R mod 2π be the unit circle with the standard counterclockwise orientation. The group Diff∞

+ (S1)
of orientation preserving diffeomorphisms of the S1 is the connected component of Diff∞(S1). The Lie algebra 
of Diff∞

+ (S1) is the Lie algebra X∞(S1) – denoted also by Vect(S1) in the literature – can be written in the 
form f(t) d

dt , where f is a 2π-periodic smooth functions on the real line R. A sequence {fj d
dt}j∈N ⊂ Vect(S1)

converges to f d in the Fréchet topology of Vect(S1) if and only if the functions fj and all their derivatives 
dt
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converge uniformly to f , respectively to the corresponding derivatives of f . The Lie bracket on Vect(S1) is 
given by

[
f
d

dt
, g

d

dt

]
=

(
g
df

dt
− dg

dt
f

)
d

dt
.

The Fourier algebra F(S1) on S1 is the Lie subalgebra of Vect(S1) consisting of vector fields f d
dt such that 

f(t) has finite Fourier series, i.e. f(t) is a Fourier polynomial. The vector fields { d
dt , cosnt d

dt , sinnt d
dt}n∈N

provide a basis for F(S1). A direct computation shows that the vector fields

d

dt
, cos t d

dt
, sin t

d

dt
, cos 2t d

dt
, sin 2t d

dt
(9)

generate the Lie algebra F(S1). The complexification F(S1) ⊗R C of F(S1) is called the Witt algebra W(S1)
on S1 having the natural basis {ieint d

dt}n∈Z, with the Lie bracket [ieimt d
dt , ie

int d
dt ] = i(m − n)ei(n−m)t d

dt .

Lemma 4.1. The group 〈exp(F(S1))〉 generated by the topological closure of the exponential image of the 
Fourier algebra F(S1) is the orientation preserving diffeomorphism group Diff∞

+ (S1).

Proof. The Fourier algebra F(S1) is a dense subalgebra of Vect(S1) with respect to the Fréchet topology, i.e. 
F(S1) = Vect(S1). This assertion follows from the fact that any r-times continuously differentiable function 
can be approximated uniformly by the arithmetical means of the partial sums of its Fourier series (cf. [9], 
2.12 Theorem). The exponential mapping is continuous (cf. Lemma 4.1 in [16], p. 79), hence we have

exp
(
Vect

(
S

1)) = exp
(
F
(
S1

))
⊂ exp

(
F
(
S1

))
⊂ Diff∞

+
(
S

1) (10)

which gives for the generated groups the relations

〈
exp

(
Vect

(
S

1))〉 ⊂
〈
exp

(
F
(
S1

))〉
⊂ Diff∞

+
(
S

1). (11)

Moreover, the conjugation map Ad : Diff∞
+ (S1) × Vect(S1) satisfies the relation

h exp sξh−1 = exp sAd(h)ξ

for every h ∈ Diff∞
+ (S1) and ξ ∈ Vect(S1). Clearly, the Lie algebra Vect(S1) is invariant under conjugation 

and hence the group 〈exp(Vect(S1))〉 is also invariant under conjugation. Therefore 〈exp(Vect(S1))〉 is a 
non-trivial normal subgroup of Diff∞

+ (S1). On the other hand Diff∞
+ (S1) is a simple group (cf. [8]) which 

means that its only non-trivial normal subgroup is itself. Therefore, we have 〈exp(Vect(S1))〉 = Diff∞
+ (S1),

and using (11) we get

〈
exp

(
F
(
S1

))〉
= Diff∞

+
(
S

1). �
5. Holonomy of the standard Funk plane and the Bryant–Shen 2-spheres

Using the results of the preceding chapter we can prove the following statement, which provides a useful 
tool for the investigation of the closed holonomy group of Finsler 2-manifolds.

Proposition 5.1. If the infinitesimal holonomy algebra hol∗x(M) at a point x ∈ M of a simply connected 
Finsler 2-manifold (M, F) contains the Fourier algebra F(S1) on the indicatrix at x, then Holx(M) is iso-
morphic to Diff∞

+ (S1).
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Proof. Since M is simply connected we have

Holx(M) ⊂ Diff∞
+
(
S

1). (12)

On the other hand, using Proposition 3.1, we get

exp
(
F
(
S

1)) ⊂ Holx(M) ⇒ exp
(
F
(
S1

))
⊂ Holx(M) ⇒

〈
exp

(
F
(
S1

))〉
⊂ Holx(M),

and from the last relation, using Lemma 4.1, we can obtain that

Diff∞
+
(
S

1) ⊂ Holx(M). (13)

Comparing (12) and (13) we get the assertion. �
Using this proposition we can prove our main result:

Theorem 5.2. Let (M, F) be a simply connected projectively flat Finsler manifold of constant curvature 
λ �= 0. Assume that there exists a point x0 ∈ M such that on Tx0M the induced Minkowski norm is a
Euclidean norm, that is F(x0, y) = ‖y‖, and the projective factor at x0 satisfies P(x0, y) = c · ‖y‖ with 
c ∈ R, c �= 0. Then the closed holonomy group Holx0(M) at x0 is isomorphic to Diff∞

+ (S1).

Proof. Since (M, F) is a locally projectively flat Finsler manifold of non-zero constant curvature, we can use 
an (x1, x2) local coordinate system centered at x0 ∈ M , corresponding to the canonical coordinates of the 
Euclidean space which is projectively related to (M, F). Let (y1, y2) be the induced coordinate system in 
the tangent plane TxM . In the sequel we identify the tangent plane Tx0M with R2 by using the coordinate 
system (y1, y2). We will use the Euclidean norm ‖(y1, y2)‖ =

√
(y1)2 + (y2)2 of R2 and the corresponding 

polar coordinate system (er, t), too.
Let us consider the curvature vector field ξ at x0 = 0 defined by

ξ = R

(
∂

∂x1
,

∂

∂x2

)∣∣∣∣
x=0

= λ
(
δi2g1m(0, y)ym − δi1g2m(0, y)ym

) ∂

∂xi

Since (M, F) is of constant flag curvature, the horizontal Berwald covariant derivative ∇WR of the tensor 
field R vanishes. Therefore the covariant derivative of ξ can be written in the form

∇W ξ = R

(
∇k

(
∂

∂x1 ∧ ∂

∂x2

))
W k.

Since

∇k

(
∂

∂x1 ∧ ∂

∂x2

)
=

(
G1

k1 + G2
k2
) ∂

∂x1 ∧ ∂

∂x2

we obtain ∇W ξ = (G1
k1 + G2

k2)W kξ. Using (4) we can express Gm
km = 3 ∂P

∂yk = 3c yk

‖y‖ and hence

∇kξ = 3 ∂P

∂yk
ξ = 3c yk

‖y‖ξ,

where we use the notation ∇k = ∇ ∂ . Moreover we have

∂xk
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∇j

(
∂P
∂yk

)
= ∂2P

∂xj∂yk
−Gm

j

∂2P
∂ym∂yk

= ∂2P
∂xj∂yk

− P ∂2P
∂yk∂yj

,

and hence

∇j(∇kξ) = 3
{

∂2P
∂xj∂yk

− P ∂2P
∂yk∂yj

+ 3 ∂P
∂yk

∂P
∂yj

}
ξ.

According to Lemma 8.2.1, Eq. (8.25) in [4], p. 155, we obtain

∂2P
∂xj∂yk

= ∂P
∂yj

∂P
∂yk

+ P ∂2P
∂yj∂yk

− λ

2
∂2F2

∂yj∂yk
.

Using the assumptions on F and on the projective factor P we can get at x0

∇j(∇kξ) = 3
(

4c2 ∂F
∂yj

∂F
∂yk

− λ

2
∂2F2

∂yj∂yk

)
ξ

and hence

∇j(∇kξ) = 3
(

4c2 y
jyk

‖y‖2 − λδjk
)
ξ,

where δjk ∈ {0, 1} such that δjk = 1 if and only if j = k.
Let us introduce polar coordinates y1 = r cos t, y2 = r sin t in the tangent space Tx0M . We can express the 

curvature vector field, its first and second covariant derivatives along the indicatrix curve {(cos t, sin t); 0 ≤
t < 2π} as follows:

ξ = λ
d

dt
, ∇1ξ = 3cλ cos t d

dt
, ∇2ξ = −3cλ sin t

d

dt
, ∇1(∇2ξ) = 12c2λ sin 2t d

dt
,

∇1(∇1ξ) = λ
(
12c2 cos2 t− λ

) d

dt
, ∇2(∇2ξ) = λ

(
12c2 sin2 t− λ

) d

dt
.

Since cλ �= 0, the vector fields

d

dt
, cos t d

dt
, sin t

d

dt
, cos t sin t

d

dt
, cos2 t d

dt
, sin2 t

d

dt

are contained in the infinitesimal holonomy algebra hol∗x0
(M). It follows that the generator system

{
d

dt
, cos t d

dt
, sin t

d

dt
, cos 2t d

dt
, sin 2t d

dt

}

of the Fourier algebra F(S1) (cf. Eq. (9)) is contained in the infinitesimal holonomy algebra hol∗x0
(M). Hence 

the assertion follows from Proposition 5.1. �
We remark, that the standard Funk plane and the Bryant–Shen 2-spheres are connected, projectively flat 

Finsler manifolds of nonzero constant curvature. Moreover, in each of them, there exists a point x0 ∈ M and 
an adapted local coordinate system centered at x0 with the following properties: the Finsler norm F(x0, y)
and the projective factor P(x0, y) at x0 are given by F(x0, y) = ‖y‖ and by P(x0, y) = c · ‖y‖ with some 
constant c ∈ R, c �= 0, where ‖y‖ is a Euclidean norm in the tangent space at x0. Using Theorem 5.2 we 
can obtain

Theorem 5.3. The closed holonomy groups of the standard Funk plane and of the Bryant–Shen 2-spheres are 
maximal, that is diffeomorphic to the orientation preserving diffeomorphism group of S1.
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5.1. Open problems

In contrast to the Riemannian case, there are only few results about the holonomy of Finsler spaces. Even 
for the most commonly investigated Finsler metrics (like (α, β) metrics, m-root metrics etc.) the holonomy 
group is not known. It would be very useful to have explicitly computed examples. The curvature algebra 
could be used to find estimates on the dimension of the holonomy group [13].

The new phenomenon with respect to the Riemann holonomy is that the Finsler holonomy can be infinite 
dimensional [14,13]. There are also examples however, where the Finsler holonomy group is finite dimensional 
(e.g. Berwald manifolds). It would be extremely interesting to characterize Finsler structures with finite, 
respectively infinite dimensional holonomy group. Even partial results would be interesting.

In Finsler geometry, any information about the geometric properties of Landsberg manifolds are very 
important. It is well known that the holonomy group of Landsberg manifolds is contained in the isometry 
group of the indicatrix and hence it is a compact group [10]. Can we get more information about these 
holonomy groups? Is there a Landsberg manifold whose holonomy group is not the holonomy group of any 
Riemannian manifold?
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