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Abstract
In this paper we introduce the notion of tangent space ToG of a (not necessary smooth)
subgroup G of the diffeomorphism group Di f f ∞(M) of a compact manifold M . We
prove that ToG is a Lie subalgebra of the Lie algebra of smooth vector fields on M . The
construction can be generalized to subgroups of any (finite- or infinite-dimensional)
Lie groups. The tangent Lie algebra ToG introduced this way is a generalization of the
classical Lie algebra in the smooth cases. As a working example we discuss in detail
the tangent structure of the holonomy group and fibered holonomy group of Finsler
manifolds.

Keywords Diffeomorphism group · Infinite-dimensional Lie group · Holonomy
group · Finsler geometry

Mathematics Subject Classification 22E65 · 17B66 · 53C29 · 53B40

1 Introduction

Important geometric objects, structures, or properties can often be investigated through
algebraic structures. In many interesting cases, these algebraic structures are groups,
where the group operations are smooth maps. Such groups became indispensable
tools for modern geometry, analysis, and theoretical physics. Lie groups and diffeo-
morphism groups are the most important examples for such structures.

Considering a Lie group GL , it is well known that most of the important information
about it is captured in its tangent object, the Lie algebra gL . Naturally, if G is a Lie sub-
group ofGL , then its Lie algebra g is a Lie subalgebra of gL . The Lie subalgebra g ⊂ gL
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can be used to obtain information or eventually to determine the subgroup G. In many
relevant geometric situations, however, this framework is not general enough because
of two factor: Firstly, GL is not a (finite-dimensional) Lie group but the (infinite-
dimensional) diffeomorphism group Di f f ∞(M) of some manifold M . Secondly, the
subgroup G is not necessarily a Lie subgroup of Di f f ∞(M). Nevertheless, natural
questions arise: can we introduce a tangential property and tangent objects to the sub-
group G in this situation? Does the set of tangent elements possess a special algebraic
stricture? Can this algebraic structure be used to get information about the subgroup
and thus about geometric properties? In this paper we answer these questions.

We introduce the notion of tangent vector fields to a subgroup G of the diffeomor-
phism groupDi f f ∞(M), where M is a compact manifold. Denoting by ToG the set of
tangent vector fields toG at the identity, we prove that ToG is a Lie subalgebra of the Lie
algebra of smooth vector fields onM (Theorem 3.4). It follows that subalgebras of ToG
inherit the tangential properties, and therefore the elements of a subalgebra generated
by vector fields tangent to the subgroup G are tangent to G (Corollary 3.6). This prop-
erty can be particularly interesting when the Lie bracket of two tangent vector fields
to G generates a new direction: the tangential property will be satisfied in this new
direction as well. Aswe show in Theorem 3.10, the group generated by the exponential
image of ToG is a subgroup of the closure ofG inDi f f ∞(M)which can give important
information about the group G itself, especially in the infinite-dimensional cases.

We note that a similar tangential property was already introduced in [10, Definition
2], but we also remark that the concept had two major defects: the tangent property
introduced in [10] is not preserved under the bracket operation, and therefore in that
approach it is not true that tangent vector fields to a subgroup G generate a tangent Lie
algebra to G. Secondly, [10] was not able to guaranty the existence of the tangent Lie
algebra ToG associated to G. We note that with our approach we are able to overcome
both deficiencies.

The main reason to investigate the tangent structure of a subgroup G of the diffeo-
morphism group is that it can provide valuable information about the group G itself.
This method can be very effective when G is, for example, a symmetry group, the
holonomy group, etc. We note that in many cases the determination of ToG or its
subalgebras can be highly nontrivial, especially in the infinite-dimensional cases. As
working examples, we consider the holonomy group and the fibered holonomy group
of Finsler manifolds. The holonomy group is the transformation group generated by
parallel translations with respect to the canonical connection along closed curves. For
Riemannian manifolds it has been extensively studied and now the complete classifi-
cation is known [1–3,6]. In particular, it is well known that the holonomy group of a
simply connected Riemannianmanifold is a closed Lie subgroup of the special orthog-
onal group SO(n). Despite the analogues in the construction, Finslerian holonomy
groups can be much more complex and up to now, we do not know much about them:
For special spaces the holonomy can be a finite-dimensional Lie group (see [7,17]), but
recent results show that there are Finsler manifolds with infinite-dimensional holon-
omy group [12–14]. These latter results show the difficulties: one cannot use the
well-understood principal bundle machinery in the investigation because the structure
group should be infinite dimensional. In [9] Michor proposed a general setting for
the study of infinite-dimensional holonomy groups and holonomy algebras which was
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Tangent Lie Algebra of a Diffeomorphism 109

the motivation for Z. Muzsnay and P.T. Nagy to start investigating the tangent objects
to a subgroup of the diffeomorphism group [10]. In this paper we are able to step
forward: using the results of Sect. 3, we are able to introduce the notion of holon-
omy algebra and fibered holonomy algebra for Finslerian manifolds. By improving
the results of [10] we also prove that the curvature and the infinitesimal holonomy
algebras (resp. their restrictions) are Lie subalgebras of the fibered holonomy algebras
(resp. the holonomy algebra). We are confident that in the future, the tools described
above can be used successfully in the investigation of geometric structures in general
and in the holonomy theory in particular.

2 Preliminaries

In this chapter we introduce the basic notions and concepts of Finsler geometry which
are necessary to understand in Sects. 4.1 and 4.2 the nontrivial application of the theory
discussing the tangent structure of a subgroup of the diffeomorphism group. These
notions are not necessary to understand Sect. 3, and therefore the reader, who is not
particularly interested in these applications, can jump directly to the next chapter.

In this paper, M denotes a C∞-smooth n-dimensional manifold,X∞(M) is the Lie
algebra of C∞ vector fields, and Di f f ∞(M) is the group of C∞ diffeomorphisms
of M . We will denote by T M the tangent manifold and by ̂T M = T M \ {0} the slit
tangent manifold. Local coordinate charts (U , xi ) onM induce local coordinate charts
(π−1(U ), (xi , yi )) on T M , where π : T M → M is the canonical projection. The
vertical distribution VT M ⊂ T T M on T M is given by VT M = Ker π∗.

2.1 Finsler Manifold

A Finsler manifold is a pair (M,F), where the norm F : T M → R+ is a positively
1-homogeneous continuous function, which is smooth on T̂ M and the symmetric
bilinear form

gx,y : (u, v) �→ gi j (x, y)u
iv j = 1

2

∂2F2
x (y + su + tv)

∂s ∂t

∣

∣

∣

t=s=0

is positive definite at every y ∈ T̂x M . The indicatrix Ix M at x ∈ M is a hypersurface
of TxM defined by

Ix M={ y ∈ TxM : F(y)=1 } . (1)

Geodesics of (M,F) are determined by a system of second-order ordinary differential
equations ẍ i + 2Gi (x, ẋ) = 0, i = 1, . . . , n in a local coordinate system (xi , yi ) of
T M , where Gi (x, y) are determined by the formula

4Gi = gil
(

2
∂g jl

∂xk
− ∂g jk

∂xl

)

y j yk .
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2.2 Parallel Translation

A vector field X(t) = Xi (t) ∂
∂xi

along a curve c : [0, 1] → M is called parallel if
DċX(t) = 0 where the covariant derivative is defined as

DċX(t) =
(

dXi (t)

dt
+ Gi

j (ct , X(t)) ċt
j
)

∂

∂xi
, (2)

with Gi
j = ∂Gi

∂ y j . Clearly, for any X0 ∈ Tc(0)M there is a unique parallel vector field
X(t) along the curve c such that X0 = X(0). Moreover, if X(t) is a parallel vector
field along c, then λX(t) is also parallel along c for any λ ≥ 0. Then the homogeneous
(nonlinear) parallel translation along a curve c(t)

P t
c : Tc0M → Tct M (3)

is defined by the positive homogeneous map P t
c : X0 �→ Xt given by the value

Xt = X(t) of the parallel vector field with initial value X(0) = X0. We remark that
(3) preserves the Finslerian norm, and therefore it can be considered as a map between
the indicatrices

P t
c : Ic0M → Ict M . (4)

Moreover, since the parallel translation is a homogeneous map, (3) and (4) determine
each other.

2.3 Holonomy

The holonomy group Holp(M) of a Finsler manifold (M, F) at a point p ∈ M is the
group generated by parallel translations along piece-wise differentiable closed curves
starting at p. Considering the parallel translation (4) on the indicatrix, a holonomy
element is a diffeomorphism Pc : Ip → Ip, and therefore the holonomy group
Holp(M) ⊂ Di f f ∞(Ip) is a subgroup of the diffeomorphism group of the indica-
trix Ip.

In the particular case, when (M,F) is a simply connected Riemann manifold,
the holonomy group is a closed Lie subgroup of the special orthogonal group SO(n).
Finslerian holonomy groups can, however, bemuchmore complex: in [12–14] one can
find examples of Finsler manifolds with infinite-dimensional holonomy groups. Until
now it is not known if the Finsler holonomy groups are (finite- or infinite-dimensional)
Lie groups or not.

2.4 Horizontal Lift and Curvature

The parallel translation on a Finslermanifold can also be introduced by considering the
associated Ehresmann connection (cf. [18]): the horizontal distribution is determined
by the horizontal lift TxM → T(x,y)T M defined in the local basis as
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(

∂

∂xi

)h

= ∂

∂xi
− Gk

i (x, y)
∂

∂ yk
, (5)

where y ∈ TxM . Since the horizontal distribution is complementary to the vertical
distribution, we have the decomposition TyT M = Hy ⊕ Vy with canonical projec-
tors h : T T M → H and v : T T M → V . The image H ⊂ T T M is the horizontal
distribution of the manifold. The horizontal lift of a curve c : [0, 1] → M with initial
condition X0 ∈ Tc0M is a curve ch : [0, 1] → T M such that π ◦ ch = c, dc

h

dt = ( dcdt )
h

and ch(0) = X0. Then the parallel translation can be geometrically obtained as
P t
c(X0) = ch(t). We remark that the horizontal lift ϕh

t of the flow ϕt of a vector
field X ∈X∞(M) is the flow of the horizontal lift of the vector field Xh ∈X∞(T M).
Therefore the parallel translation along the integral curves of X can be calculated in
terms of the horizontal lift of the flow:

P t
ϕ = ϕh

t . (6)

The horizontal distribution HT M is, in general, non-integrable. The obstruction to
its integrability is given by the curvature tensor R = 1

2 [h, h] which is the Nijenhuis
torsion of the horizontal projector [4].

3 Tangent Lie Algebra of a Subgroup of the Diffeomorphism Group

In this paragraph we investigate the tangential property and tangential structure of
subgroups of the diffeomorphism group. Let G be a subgroup of Di f f ∞(M) where
M is a compact differentiable manifold. We do not suppose any special property on
G; in particular, we do not suppose that G is a Lie subgroup ofDi f f ∞(M). Questions
that we consider: can we introduce a tangential property and tangent object to the
subgroup G? Does the set of tangent elements possess a special algebraic structure?
Can this algebraic structure be used to get information about the subgroup? In this
paragraph, we answer all these questions.

A smooth curve c : I → M on the manifold M has a (k−1)st-order singularity
at t = 0, if its derivatives vanish up to order k−1, (k ≥ 0). It is well known that
if a curve c has a (k−1)st-order singularity at 0 ∈ R then its kth-order derivative
c(k)(0) = X p is a tangent vector at p = c(0). In that case, the curve c is called a
kth-order integral curve of the vector X p ∈ TpM . Extending this concept to vector
fields, we can introduce the following:

Definition 3.1 AC∞−smooth curve in thediffeomorphismgroupϕ : I→Di f f ∞(M),

t → ϕt is called an integral curve of the vector field X ∈ X∞(M) if

(1) ϕ0 = idM ,
(2) there exists k ∈ N such that for any point p ∈ M the curve t → ϕt (p) is a

kth-order integral curve of X(p) ∈ TpM .

This k ∈ N is called the order of the integral curve ϕt of the vector field X .
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112 B. Hubicska, Z. Muzsnay

In particular, the flow ϕX
t of X ∈ X∞(M) is a 1st-order integral curve of X . Moreover,

if k > 1 and t → ϕt is a kth−order integral curve of the vector field X , then we have

ϕ0 = idM ,
∂ϕt

∂t

∣

∣

∣

t=0
= 0, . . .

∂k−1ϕt

∂tk−1

∣

∣

∣

t=0
= 0,

∂kϕt

∂tk

∣

∣

∣

t=0
= X . (7)

Let G ⊂ Di f f ∞(M) be an arbitrary subgroup of the diffeomorphism group
Di f f ∞(M). Using the terminology of Definition 3.1 we introduce the following:

Definition 3.2 A vector field X ∈ X∞(M) is called tangent to a subgroup G ⊂
Di f f ∞(M) of the diffeomorphism group if there exists an integral curve of X in
G. The set of tangent vector fields of G is denoted by ToG.

Remark 3.3 We have X ∈ ToG if and only if there exists aC∞−smooth curve ϕ : I →
Di ff ∞(M) such that

(1) ϕt ∈ G,
(2) ϕ0 = idM ,
(3) there exists k ∈ N such that Eq. (7) is satisfied.

One can observe that in Definition 3.2 we do not suppose that G is a Lie subgroup
of Di f f ∞(M). Indeed, we use the differential structure of the later to formulate the
smoothness condition on the curve in G. Nevertheless, we have the following:

Theorem 3.4 If G is a subgroup of Di f f ∞(M), then ToG is a Lie subalgebra of
X∞(M).

Proof To prove the theorem, we have to show that

X ,Y ∈ ToG ⇒ [X ,Y ] ∈ ToG, (8a)

X ,Y ∈ ToG ⇒ X + Y ∈ ToG, (8b)

λ ∈ R, X ∈ ToG ⇒ λX ∈ ToG. (8c)

Indeed, let X ,Y ∈ ToG, that is X ,Y ∈ X∞(M) tangent to G. According to Defini-
tion 3.1, there exist k, l ∈ N such that ϕt , ψt ∈ G are integral curves of X and Y ,
respectively. Let us suppose that ϕt is a kth−order integral curve of X and ψt is an
lth-order integral curve of Y (k, l ≥ 1). Then

ϕ0 = idM ,

{

∂ iϕt

∂t i

∣

∣

∣

t=0
= 0

}

1≤i<k

∂kϕt

∂tk

∣

∣

∣

t=0
= X , (9)

and

ψ0 = idM ,

{

∂ jψt

∂t j

∣

∣

∣

t=0
= 0

}

1≤ j<l

∂ lϕt

∂t l

∣

∣

∣

t=0
= Y . (10)
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• Proof of (8a). The computation is similar to that of [8]: Considering the group
theoretical commutator

[ϕt , ψs] := ϕ−1
t ◦ ψ−1

s ◦ ϕt ◦ ψs, (11)

we get a two-parameter family of diffeomorphisms such that if one of the parameters
s or t is zero then (11) is the identity transformation. From (9) and (10) we also know
that the first, potentially nonzero derivative is the (k + l)th-order mixed derivative:

∂(k+l) [ϕt , ψs]

∂tk∂sl

∣

∣

∣

(0,0)
(p) = ∂ l

∂sl

∣

∣

∣

s=0

⎛

⎝

∂k
(

ϕ−1
s ◦ ψ−1

t ◦ ϕs ◦ ψt (p)
)

∂tk

∣

∣

∣

t=0

⎞

⎠

= ∂ l

∂sl

∣

∣

∣

s=0

(

d
(

ϕ−1
s

)

ϕs (p)
◦ ∂kψ−1

t

∂tk

∣

∣

∣

t=0
(ψs(p))

)

,

(12)

where d
(

ϕ−1
s

)

ϕs (p)
denotes the tangent map (or Jacobi operator) of ϕ−1

s at the point

ϕs(p). Since d
(

ϕ−1
s=0

)

ϕs (p)
= id, the above formula can be written in the form

d

(

∂ lϕ−1
s

∂sl

∣

∣

∣

s=0

)

p

∂kψ−1
t (p)

∂tk

∣

∣

∣

t=0
+ d

(

∂kψ−1
t

∂tk

∣

∣

∣

t=0

)

p

∂ lϕs(p)

∂sl

∣

∣

∣

s=0
. (13)

From ϕt ◦ ϕ−1
t = id we get

0 = ∂k

∂tk

∣

∣

∣

t=0

(

ϕt ◦ ϕ−1
t

)

= X + ∂k(ϕ−1
t )

∂tk

∣

∣

∣

t=0

which yields

∂k(ϕ−1
t )

∂tk
∣

∣

t=0 = −X . (14)

Therefore we get that (13) can be written as

d

(

∂ lϕs

∂sl

∣

∣

∣

s=0

)

p

∂kψt (p)

∂tk

∣

∣

∣

t=0
− d

(

∂kψt

∂tk

∣

∣

∣

t=0

)

p

∂ lϕs(p)

∂sl

∣

∣

∣

s=0
, (15)

which is the Lie bracket of the vector fields X and Y , that is

∂k+l [ϕt , ψs]

∂tk∂sl

∣

∣

∣

(0,0)
= [Y , X ] . (16)

From (16) we get that t → [ϕt , ψt ] is a (k + l)th-order integral curve of [X ,Y ] in G.
Therefore [X ,Y ] ∈ ToG which proves (8a).
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• Proof of (8b).
For any c1, c2,m1,m2 ∈ R, φt = ϕc1tm1 ◦ ψc2tm2 is a smooth curve in G with

φ0 = ϕ0 ◦ ψ0 = idM . Moreover, if r = denotes the least common multiple of k and l
and

m1 = r/k, m2 = r/l, c1 = (

mk
1(r − k)!)−1/r

, c2 = (

ml
2(r − l)!)−1/r

,

one gets

∂rφt

∂tr

∣

∣

∣

t=0
= ∂r

∂tr

∣

∣

∣

t=0

(

ϕc1tm1 ◦ ψc2tm2

) = X + Y , (17)

showing that ψt is an r th-order integral curve of X + Y in G, and therefore X + Y is
tangent to G.
• Proof of (8c).

It is clear that in the case when λ ≥ 0, one can reparametrize the integral curve of
X , and using that the lower order terms are zero, we get

∂kϕk√
λt

∂tk

∣

∣

∣

t=0
= λX . (18)

In the case when λ < 0 one can use (14) and we get

∂k

∂tk

∣

∣

∣

t=0

(

ϕ−1
k√|λ|t

)

= −|λ|X = λX . (19)

From (21) and (22) we get that λX is tangent to G, that is λX ∈ ToG, and from 11b)
and 11c) we get that any linear combinations of X and Y are in ToG. ��

Motivated by the results of Theorem 3.4 we propose the following:

Definition 3.5 T0G is called the tangent Lie algebra of the subgroup G ⊂ Di f f ∞(M).

As a direct consequence of Theorem 3.4 we get the following:

Corollary 3.6 Let G be a subgroup of Di f f ∞(M) and S be a subset of X∞(M) such
that the elements of S are tangent to G. Then the Lie subalgebra 〈S 〉Lie of X∞(M)

generated by the elements of S is also tangent to G, that is

S ⊂ ToG ⇒ 〈

S
〉

Lie ⊂ ToG.

Remark 3.7 Slightly different tangent properties of vector fields to a subgroup G of the
diffeomorphism group were already introduced in [10]. We will refer to the property
[10, Definition 2.] as the weak tangent property and to [10, Definition 4.] as the strong
tangent property. Our language is justified by the following proposition which is
clarifying the relationship between the tangent property introduced in Definition 3.1
and the tangent properties introduced in [10]:
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Tangent Lie Algebra of a Diffeomorphism 115

Proposition 3.8 Let G be a subgroup of Di f f ∞(M) and X ∈ X∞(M). Using the
terminology of Remark 3.7:

(i) if X is strongly tangent to G, then X ∈ ToG.
(ii) if X ∈ ToG, then it is weakly tangent to G.

Proof (i) If X ∈ X∞(M) is a strongly tangent vector field to the subgroup G ⊂
Di f f ∞(M), there exists a k-parameter commutator like family of diffeomorphisms
φt1...tk ∈ G which is C∞-smooth in Di f f ∞(M), φt1,...,tk = idM whenever one of its
parameters is zero and

X = ∂kφt1...tk

∂t1. . . ∂tk

∣

∣

∣

(0...0)
.

Consequently, if we consider the map t → ϕt where ϕt = φt,...,t , we get a 1-parameter
family of diffeomorphisms which satisfies the conditions of Definition 3.2. Therefore,
the vector field X is tangent to G.

To prove (ii), let us suppose that ϕt is a kth-order integral curve of X . Then we have
(9) and one can write ϕt (p) as

ϕt (p) = p + 1
k! t

k(X(p) + ω(p, t),
)

(20)

where limt→0 ω(p, t) = 0. The reparametrization t → ψt := ϕk! k√t gives a C1-
differentiable 1-parameter family of diffeomorphism in Di f f ∞(M) such that ψ0 =
idM and

∂ψt

∂t

∣

∣

∣

t=0
(p) = ∂ϕk! k√t

∂t

∣

∣

∣

t=0
(p) = X(p),

which proves (ii). ��
Remark 3.9 One may wonder why to introduce a new tangent property when there
are already two, the weak and the strong tangent property (using the terminology of
Remark 3.7) introduced in the literature. As an answer we point out that the concept in
[10] has a major defect: the weak tangent property is not preserved under the bracket
operation, and therefore it is not true in general that weakly tangent vector fields to a
subgroup G generate a weakly tangent Lie algebra to G. To overcome this difficulty,
the authors introduced the strongly tangent property but the strongly tangent property
was not preserved under the linear combination. It follows that [10] and the succeeding
papers using these techniques were not able to guaranty the existence of the tangent
Lie algebra ToG associated to G. With our approach we are able to overcome this major
deficiency.

The main feature of ToG is that one can obtain information about the group G.
Indeed, one has the following:

Theorem 3.10 Let G be a subgroup of Di f f ∞(M) and G its topological closure with
respect to the C∞ topology. Then the group generated by the exponential image of
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116 B. Hubicska, Z. Muzsnay

the tangent Lie algebra ToG with respect to the exponential map exp : X∞(M) →
Di f f ∞(M) is a subgroup of G.

Proof From the proof of Proposition 3.8 we know that for any element X ∈ ToG there
exists aC1-differentiable 1-parameter family {ψt } ⊂ G of diffeomorphisms ofM such
that ψ0 = idM and X = ∂ψt

∂t

∣

∣

t=0. Then, using the argument of [15, Corollary 5.4,
p. 84] on ψt we get that

ψn ( t
n

) = ψ
( t
n

) ◦ · · · ◦ ψ
( t
n

)

in G, as a sequence ofDi f f ∞(M), converges uniformly in all derivatives to exp(t X).
It follows that

{ exp(t X) | t ∈ R } ⊂ G,

for any X ∈ ToG. Therefore, one has exp (ToG) ⊂ G and if we denote by
〈

exp(ToG)
〉

the group generated by the exponential image of ToG we get

〈

exp(ToG)
〉 ⊂ G,

which proves Theorem 3.10. ��
We note that, assuming the manifold M is compact, we could avoid technical
difficulties. Indeed, in this case, the diffeomorphism groupDi f f ∞(M) is an (infinite-
dimensional) manifold and the exponential image of the flow of vector fields exists
everywhere on M . For a more general and deeper discussion of the subject see [19].

The concept worked out in Definition 3.2 and Theorem 3.4 can be adapted not only
for subgroups of the diffeomorphism group but for any subgroup of any (finite- or
infinite-dimensional) Lie group:

Definition 3.11 Let GL be a Lie group, e ∈ GL is the identity element of GL , and
gL := Te GL the Lie algebra of GL . If G ⊂ GL is a subgroup of GL , then X ∈ gL is
called tangent to G if there exists a C∞−smooth curve ϕ : I → GL such that

(1) ϕt ∈ G,
(2) ϕ0 = e,
(3) there exists k ∈ N such that t → ϕt is a kth-order integral curve of X .

The set of tangent vector of G is denoted by ToG.

Then, adapting the proof of Theorems 3.4 and 3.10 we can get the following:

Theorem 3.12 If G is a subgroup of a Lie group GL , then ToG is a Lie subalgebra of
gL . The group

〈

exp(ToG)
〉

generated by the exponential image of ToG with respect to
the exponential map exp : gL → GL is a subgroup of the topological closure G of G
in GL .

It is clear that in the case when G is a Lie subgroup of GL , then ToG = g is just the
usual Lie subalgebra of gL associated to the Lie subgroup G. Therefore Definition 3.11
generalizes the classical notion of the Lie subalgebra associated to a Lie subgroup.
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4 An Application: Holonomy Algebra

The notion of the holonomy groupwas already introduced in Sect. 2.3. It is well known
that in the particular case when (M,F) is a Riemann manifold, the holonomy group
is a compact Lie subgroup of the orthogonal group O(n) and its Lie algebra is a Lie
subalgebra of o(n). It is also clear that the holonomy group of a linear connection
is a subgroup of the linear group GL(n) and its Lie algebra is a Lie subalgebra of
gl(n). However, the situation for a Finsler manifold or in a more general context
the holonomy of a homogeneous connection can be much more complex. Examples
show that in some cases the holonomy group cannot be a finite-dimensional Lie group
[11–13]. Until now it is not known if the Finsler holonomy groups are (finite- or
infinite-dimensional) Lie groups or not. Nevertheless, the theory developed in Sect. 3
allows us to consider its tangent Lie algebra, the holonomy algebra.

4.1 The Fibered Holonomy Algebra and Its Lie Subalgebras

Let (M,F) be a compact Finsler manifold. The notion of fibered holonomy group
Hol f (M) appeared in [10]: It is the group generated by fiber preserving diffeomor-
phisms	 of the indicatrix bundle (IM, π, M), such that for any p ∈ M the restriction
	p = 	|Ip is an element of the holonomy group Holp(M). It is obvious that

Hol f (M) ⊂ Di f f ∞(IM), (21)

whereHol f (M) is a subgroup of the diffeomorphism group of the indicatrix bundle.
Until now it is not known whether or notHol f (M) is a Lie subgroup ofDi f f ∞(IM).
The set of tangent vector fields to the group Hol f (M) denoted as

hol f (M) := T0
(

Hol f (M)
)

. (22)

Definition 4.1 hol f (M) is called the fibered holonomy algebra of the Finsler manifold
(M,F).

From Theorem 3.4 one can obtain the following:

Theorem 4.2 The fibered holonomy algebra hol f (M) is a Lie subalgebra of the Lie
algebra of smooth vector fields X∞(IM).

In the sequelwewill investigate the twomost important Lie subalgebras of hol f (M)

which can be introducedwith the help of the curvature tensor (see Sect. 2.3) of a Finsler
manifold: the curvature algebra and the infinitesimal holonomy algebra.

Definition 4.3 A vector field ξ ∈ X∞(IM) is called a curvature vector field if there
exist vector fields X ,Y ∈ X∞(M) such that ξ = R(Xh,Y h). The Lie subalgebra R
of vector fields generated by curvature vector fields is called the curvature algebra.
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It is easy to see that from the definition of the curvature tensor that a curvature
vector field can be calculated as

ξ = R(Xh,Y h) = [

Xh,Y h] − [

X ,Y
]h

, (23)

and from the definitionwe have alsoR ⊂ X∞(IM).Moreover, we have the following:

Proposition 4.4 (1) The elements of the curvature algebra are tangent to the group
Hol f (M).

(2) The curvature algebra R is a Lie subalgebra of hol f (M).

To prove the first part of the proposition, we have to show that the curvature vector
fields are tangent to the fibered holonomy groupHol f (M), that is they are elements of
hol f (M). Let ξ ∈ X∞(IM) be a curvature vector field and X ,Y ∈ X∞(M) such that
ξ = R(Xh,Y h). We denote by ϕ and ψ the integral curves of X and Y , respectively.
Define

αt,s :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕs, 0 ≤ s ≤ t,
ψs−tϕt , t ≤ s ≤ 2t,
ϕ2t−sψtϕt , 2t ≤ s ≤ 3t,
ψ3t−sϕ−tψtϕt , 3t ≤ s ≤ 4t,

and

βt,s := ψ−sϕ−sψsϕs, 0 ≤ s ≤ t .

Then, for every p ∈ M and fixed t the map αt (p) : s → αt,s(p) and βt (p) : s →
βt,s(p) are parametrized curves: αt (p) : s → αt,s(p) is a (not necessarily closed)
parallelogram and βt (p) joins the endpoints of αt (p). Indeed, for every p ∈ M and
fixed t the endpoint of αt (p) coincides with the endpoint of βt (p) and consequently
the curve αt (p) ∗ β−1

t (p) defined as going along the curve αt (p) then continuing
along β−1

t (p) (which is the curve βt (p) with opposed orientation) is a closed curve
that starts and ends at p ∈ M . Let us consider

ht,p := P
αt (p)∗β−1

t (p) = Pαt (p) ◦ P−1
βt (p)

, (24)

the parallel translation along αt (p) ∗ β−1
t (p). We have the following:

Lemma 4.5 For any p ∈ M

(1) ht,p ∈ Holp(M),
(2) t → ht,p is a second-order integral curve of the vector field ξp := ξ

∣

∣Ip

(

ξp ∈
X∞(

Ip
) )

.

Proof Indeed, for every p ∈ M and sufficiently small t the curve αt (p) ∗ β−1
t (p) is a

closed loop starting and ending at p, and therefore the parallel transport ht,p : Ip →
Ip is a holonomy transformation at p and we get (1) of the lemma.
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To show (2) we first remark that α0(p) and β0(p) are the trivial curves (s →
α0,s(p) = β0,s(p) ≡ p), and therefore the parallel translation along them is the
identity transformation and

h0,p = idIp . (25)

On the other hand, as we have seen in Sect. 2, the parallel transport along a curve
is determined by the horizontal lift of the curve. Consequently, the parallel transport
along the integral curves of the vector fields X and Y can be expressed with the flows
of the horizontal lifts Xh and Y h . Let us consider first the parallel transport along the
curve αt (p): the parallel transport of a vector v ∈ Ip along the curve αt (p) is

Pαt (p)(v) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ϕXh

s (v), 0 ≤ s ≤ t,

ϕY h

s−tϕ
Xh

t (v), t ≤ s ≤ 2t,

ϕXh

−(s−2t)ϕ
Y h

t ϕXh

t (v), 2t ≤ s ≤ 3t,

ϕY h

−(s−3t)ϕ
Xh

−t ϕ
Y h

t ϕXh

t (v), 3t ≤ s ≤ 4t .

Therefore, Pαt (p) corresponds to the infinitesimal (not necessarily closed) parallelo-
gram having as sides the integral curves of the horizontal lifts Xh and Y h . From the
well-known properties of the Lie brackets (see for example [16, p.162]) we get that

d

dt

∣

∣

∣

t=0
Pαt (v) = 0, and

d2

dt2

∣

∣

∣

t=0
Pαt (v) = 2

[

Xh,Y h
]

v
. (26)

On the other hand, the parallel transport of a vector w ∈ Iαt (p) along β−1
t (p) can be

calculated with the help of its horizontal lift P
β−1
t

(w) = P−1
βt

(w) = ((β)h(t))−1(w),

where by the definition of the horizontal lift π ◦ (β)h(t) = β(t) and (β−1)h(0) = w

are fulfilled. Since d
dt

∣

∣

t=0βt (p) = 0, and d2

dt2

∣

∣

t=0βt (p)(v) = 2 [X ,Y ]p , we obtain

d

dt

∣

∣

∣

t=0
P−1

βt
= 0 and

d2

dt2

∣

∣

∣

t=0
P−1

βt
(v) = −(

2 [X ,Y ]h
)

v
; (27)

thus, from the two equations of (26) and the two equations of (27) we get

d

dt

∣

∣

∣

t=0
ht (v) = 0 and

d2

dt2

∣

∣

∣

t=0
ht (v) = 2

(

[

Xh,Y h]−[

X ,Y
]h

)

v
= 2ξp, (28)

where we also used (23). To summarize, we get from (25) and (28):

h0,p = id
∣

∣Ip
,

d

dt

∣

∣

∣

t=0
ht,p = 0,

1

2

d2

dt2

∣

∣

∣

t=0
ht,p = ξp, (29)

whichmeans that the reparametrizedmap t → ht/
√
2,p is a second-order integral curve

of the curvature vector field ξp ∈ X∞(

Ip
)

and proves point (2) of the lemma. ��
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Proof of Proposition 4.4 Let us consider the map ht : IM → IM on the indicatrix
bundle, where ht

∣

∣Ip
:= ht,p. From Lemma 4.5 we get (by dropping the variable

p ∈ M) that

(1) ht ∈ Hol f (M),
(2) t → ht is a second-order integral curve of the vector field ξ ∈ X∞(I),

which shows that the curvature vector field ξ is tangent toHol f (M) and proves the first
part of the proposition. Applying Corollary 3.6, we get that the Lie algebra generated
by the curvature vector field is tangent to Hol f (M) which proves the second part of
the proposition. ��

Weremark that (1)of Proposition 4.4 is an improvement of Proposition 3. andCorol-
lary 2. of [10]. Indeed, the tangent property proved in [10] is weaker:C1 instead ofC∞
smoothness. Moreover, [10] uses a very strong topological restriction on the manifold
M supposing it is diffeomorphic to the n-dimensional euclidean space. In Proposition
(4.4) we presented a natural geometric construction without any constraints on the
topology of the manifold M .

Definition 4.6 The infinitesimal holonomy algebra hol∗(M) of a Finsler manifold
(M,F) is the smallest Lie algebra on the indicatrix bundlewhich satisfies the following
properties:

1) Every curvature vector field ξ is an element of hol∗(M),
2) if ξ, η ∈ hol∗(M), then [ξ, η] ∈ hol∗(M),
3) if ξ ∈ hol∗(M) and X ∈ X∞(M), then the horizontal Berwald covariant derivative

∇Xξ is also an element of hol∗(M).

We have the following:

Proposition 4.7 (1) The elements of the infinitesimal holonomy algebra hol∗(M) are
tangent toHol f (M).

(2) The infinitesimal holonomy algebra hol∗(M) is a Lie subalgebra of hol f (M).

Proof From Proposition 4.4 we know that the curvature vector fields are tangent to
the fibered holonomy group. Moreover, from [10, Proposition 4] and from (i) of
Remark 3.8 we get that the horizontal Berwald covariant derivative of tangent vec-
tor fields to Hol f (M) are also tangent to Hol f (M) which proves the first part of
the proposition. As a consequence, the infinitesimal holonomy algebra is generated
by tangent vector fields and, according to Corollary 3.6, it is tangent to Hol f (M)

proving the second part of the proposition. ��
We remark that the first part of Proposition 4.7 is an improvement of [10, Theorem

2], because in Proposition 4.7 the strong topology condition on the manifold M is
dropped.

4.2 Holonomy Algebra and Its Lie Subalgebras

Let (M, F) be an n−dimensional Finslermanifold. At any points p ∈ M the indicatrix
defined in (1) is an (n − 1)-dimensional compact manifold in TpM . Therefore, the
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diffeomorphismgroupDi f f ∞(Ip) is an infinite-dimensional FréchetLie groupwhose
Lie algebra is X∞(

Ip
)

, the Lie algebra of smooth vector fields on Ip. As it was
introduced in Sect. 2.3, the holonomy group

Holp(M) ⊂ Di f f ∞(IpM), (30)

is a subgroup of the diffeomorphism group Di f f ∞(IpM). The set of tangent vector
fields to the group Holp(M), denoted as

hol p(M) := T0
(

Holp(M)
)

.

Definition 4.8 hol p(M) is called theholonomyalgebra of theFinslermanifold (M,F)

at p ∈ M .

From Theorem 3.4 one can obtain

Theorem 4.9 The holonomy algebra hol p(M) of a Finsler manifold (M,F) at p ∈ M
is a Lie subalgebra of X∞(

Ip
)

.

In the sequel we identify two important Lie subalgebras of the holonomy algebra
of Finsler manifolds.

Definition 4.10 A vector field ξp ∈ X∞(

Ip
)

on the indicatrix Ip ⊂ TpM is called
a curvature vector field at p ∈ M if there exist tangent vectors X p,Yp ∈ TpM such
that ξp = R(Xh

p,Y
h
p ). The Lie subalgebraRp of vector fields generated by curvature

vector fields at p ∈ M is called the curvature algebra at p.

The relationship between the curvature algebra Rp at p ∈ M and the curvature
algebra R introduced in Definition 4.3 is

Rp = {

ξp = ξ |Ip

∣

∣ ξ ∈ R
}

,

that is Rp is the restriction of R to the indicatrix Ip. We have

Proposition 4.11 The elements of the curvature algebra Rp at p ∈ M are tangent to
the groupHolp(M) and the curvature algebraRp is a Lie subalgebra of the holonomy
algebra hol p(M).

The proof is a direct consequence of the computation of Proposition (4.4). Moreover,
by localizing the infinitesimal holonomy algebra at a point we can obtain

Definition 4.12 The Lie algebra hol∗p(M) := {

ξ |Ip | ξ ∈ hol∗(M)
}

of vector fields
on the indicatrix Ip is called the infinitesimal holonomy algebra at the point p ∈ M .

From Proposition 4.7 we get

Proposition 4.13 The elements of the infinitesimal holonomy algebra hol∗p(M) are
tangent to the group Holp(M) and the infinitesimal holonomy algebra hol∗p is a Lie
subalgebra of the holonomy algebra hol p(M).
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Wenote that by the construction of the infinitesimal holonomyalgebra, the curvature
vector fields are elements of hol∗p(M), and therefore we have the sequence of the Lie
algebras

Rp(M) ⊂ hol∗p(M) ⊂ hol p(M) ⊂ X∞(

Ip
)

. (31)

We also remark that the first parts of the statement of Proposition 4.11 and 4.13 are
improvements of the results of [10] because the tangential property of the Lie algebra
is improved: we can guaranty C∞-smoothness instead of C1-smoothness.

5 Concluding Remarks

Many interesting geometric results can be obtained on the holonomy structure from
the Lie algebras (31) through the tangent property. Indeed, by using Theorem 3.10,
one can find examples where, in contrast to the Riemannian case, the holonomy group
Holp(M) is not a compact Lie group [11–13], or where the closure of the holonomy
group is the infinite-dimensional Lie group Di f f ∞+ (Ip) of the orientation preserving
diffeomorphism group of the indicatrix [5,14]. All these results were obtained by using
the tangent property of the curvature algebra Rp(M) and the infinitesimal holonomy
algebra hol∗p(M). The method developed in Sect. 3, however, allows us to introduce
in a natural and canonical way a potentially larger Lie algebra, the holonomy algebra,
which is the tangent Lie algebra of the holonomy group. This Lie algebra gives the best
linear approximation of the holonomy group. The technique can be applied in other
fields of geometry as well. We are convinced that the method, exploring the tangential
property of a group associated with a geometric structure, can be used successfully to
investigate various geometric properties.
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