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Abstract

We present a simple formula that provides an upper bound for the expected

runtime of the gambler’s ruin process on an arbitrary finite graph and arbitrary

initial wealth of the players. The estimation is proportionate to the harmonic

mean of the expected runtimes of the two-player games played by the edges

of the graph. We show that the same proof techniques can also be applied to

provide asymptotic estimates to the higher moments of the absorption time of

similar absorbing Markov chains, namely the discordant oblivious, push and

pull protocols on cycle graphs.
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1. Introduction

Games on large graphs model several different complex socio-economic con-

cepts. Out of these related areas including stock market simulation and income

distribution [1], population statistics and human mobility[2] or communication

in peer-to-peer networks [3], the present paper focuses on two applications.
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One is the gambler’s ruin problem, a classical stochastic process with many

variants in the literature [4, 5, 6, 7, 8]. In its simplest form, also known as the

drunkard’s walk: two players play a series of fair games betting 1 unit of their

money until one of them goes bankrupt. It is well-known that this leads to a

fair game with winning probabilities of each player proportionate to their initial

wealth, and the expected runtime is the product of the two initial wealths. This

can be generalized to arbitrary finite graphs in a number of ways. In [8], there

is one winner in each round and the losers contribute an equal amount to pay

the winner of the round. In [7], the game is played until all but one players

lose their money. It was conjectured in [7] that given the special initial case

with all vertices having an equal amount of money ν, and where the graph is

complete with m edges, the runtime is proportionate to mν2. This was verified

in a number of special cases, including the original version of the problem [4].

For further examples, see also the monopolist game [9, 8, 4].

In the current paper, we study a natural variant of the gambler’s ruin prob-

lem on arbitrary graphs. Given a graph together with an assigned positive

integer wealth to each vertex, a series of fair games is played by randomly se-

lected edges in each round with a 1 unit bet at stake, until the first bankruptcy

occurs. According to the first main result of the paper (Theorem 3.4), the ex-

pected runtime of this process is at most the harmonic mean of the runtimes

of the same game played by the separate edges of the graph multiplied by the

number of edges. In particular, if the graph has m edges and all vertices have

the same initial wealth ν, the theorem provides the upper bound mν2 for the

runtime of the above variant of the game.

The other related area under consideration is the spreading of rumor or in-

fectious diseases [10], or more generally speaking, mathematical modeling of

voting [11, 12, 13, 14, 15, 16]. The so-called linear voting model was introduced

in [17] as a common generalization of many well-studied voting protocols. Three

of the most common special cases of asynchronous linear voting are the oblivi-

ous, push, and pull protocols. In order to avoid a vast amount of idle rounds,

the discordant versions were introduced in [18]. In a given round, an edge is
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discordant if the endpoints have different opinions, and a vertex is discordant if

it lies on a discordant edge, that is, if it has a discordant neighbor.

• Discordant oblivious protocol: in each round a discordant edge uv is cho-

sen uniformly at random, and then either u adopts the opinion of v or the

other way around, with equal probability.

• Discordant push protocol: in each round a discordant vertex u is chosen

uniformly at random, and that vertex forces a randomly chosen discordant

neighbor to adopt the opinion of u.

• Discordant pull protocol: in each round a discordant vertex u is chosen

uniformly at random, and that vertex is forced by a randomly chosen

discordant neighbor v to adopt the opinion of v.

We note that the original linear variants are obtained from the above definitions

by omitting the word discordant everywhere; see [17] for further details. In our

model, there are only two possible opinions; the results could be generalized

to a voting process with a given finite number of options to choose from. For

simplicity, we refer to vertices with opinion 1 as red, and those with opinion 0

as blue.

All the above voting protocols are absorbing Markov chains. The absorbing

states, representing the goal of the particular voting process, are the consensus

states, that is, states where all participants have the same opinion. If the graph

is a cycle, such a process can be viewed as a certain gambler’s ruin problem

on a (different) cycle graph. Namely, by replacing runs, i.e., maximal sets of

consecutive vertices of the same color, by a vertex, and giving it the length of

the corresponding run as initial wealth, the voting process is a series of games

(always fair in case of the discordant oblivious protocol, not necessarily fair in

the other two cases when a singleton run is involved) where 1 unit wealth is

exchanged by neighbors, until one vertex has all the money. In this case, when

a vertex goes broke, it is deleted, its two neighbors are identified, and their

wealths are merged. This approach already provides a polynomial bound in
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terms of the number of vertices on the expected runtime of all three discordant

linear voting protocols for cycle graphs. A more refined argument in [18] lead

to a quadratic bound. It was further improved by the author of the present

paper to asymptotically sharp formulas in [19, Theorem 5]. Namely, all three

protocols on the n-cycle has an expected runtime E(T ) = β%+O(rn), where β

and % are the number of blue and red vertices, respectively, and r is the number

of blue runs in the initial state. Note that in all non-consensus states, the

number of blue and red runs coincide, and by definition, we put r = 0 in both

consensus states. It was also shown in [19, Theorem 5] that E(T ) is at most

n2/4 +O(n3/2), an upper estimate that is independent of all parameters of the

initial state. Furthermore, these games are nearly fair, provided a tame initial

state, namely the probability of reaching the blue consensus is β/n + O(r/n);

see [19, Theorem 7].

Although some parts of the proof of the positive results require elaborate

combinatorial and probabilistic arguments, the core is an elementary linear al-

gebraic lemma; see Lemma 2.1, or [19, Lemma 1]. This paper demonstrates

how the same technique can be used to provide asymptotic estimates to the

higher moments of the runtime of each of the above three discordant linear pro-

tocols on cycle graphs; see Theorem 4.5. Roughly speaking, the moments are

asymptotically the same as those of the simplest gambler’s ruin problem, the

drunkard walk. The same core idea is used in the proof of the first main result

Theorem 3.4 on the expected runtime of the gambler’s ruin problem, showing

that the elementary lemma is quite robust with potential applications in proving

general results.

2. General tools

We give a brief summary of the basic notation and techniques, using the

same setup as [19]. The transient states of an absorbing Markov chain with

transition matrix P is denoted by Tran. The set of penultimate states Pen ⊆

Tran consists of those states t ∈ Tran such that the transition probability from
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t to an absorbing state is positive. As usual, Q is the upper left minor of the

canonical form of P =

Q R

0 I

, see [20]. So Q is the restriction of P to

the transient states. Then N = (I − Q)−1 denotes the fundamental matrix of

the Markov chain. In this paper, vectors are column vectors of length |Tran |,

usually denoted by u, v, ε ∈ RTran. We denote by c0 ∈ RTran the vector all

of whose entries equal to 1; this is a special case of the definition ck ∈ RTran

introduced in Section 4. The entry corresponding to the coordinate t in the

vector u is denoted by u[t]. If we sum up the entries u[t] while randomly walking

on the coordinates starting from t0 ∈ Tran, then the expected value of this sum

before the walk is absorbed is (Nu)[t0]. In particular, the expected times to

absorption from each transient state as initial state are the coordinates of the

vector Nc0; see [20] for further details.

In general, it is hard to compute the fundamental matrix, or even to properly

estimate its entries, especially if the transition matrix is not concrete but rather

defined by using numbers or other objects (e.g., graphs) as parameters. To

sidestep this major technical difficulty, the following elementary lemma was

introduced in [19]: the idea is that the productQx is easy to compute or estimate

without computing the fundamental matrix. The entry x[t] is a “guesstimate”

of the expected value of the sum of the entries of u during a random walk with

initial state t before reaching an absorbing state. In the special case u = c0,

the vector x is the guesstimate for the time to absorption starting from each

transient state.

Lemma 2.1. [[19, Lemma 1]] Let u, x, ε ∈ RTran be vectors such that Qx =

x − u + ε. Then Nu = x + Nε. In particular, if Qx ≤ x − u, then Nu ≤ x

(coordinate-wise).

As a slight abuse of the big-O notation, we allow expressions of the form

u = v +O(f(n)), where u, v are vectors with entries depending on n and f is a

function. It means that in each coordinate i, we have u[i] = v[i] +O(f(n)). In

other words, we extend the notation to vectors and omit c0 from the expression
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u = v +O(f(n)c0).

3. Gambler’s ruin

Lemma 3.1. For any T ∈]0,+∞[ the function ]0,min(T, 1)[→ R

z 7→
(
(1− z)−2 − 1

)(
T +

z2

1− z

)−1
is strictly monotone increasing.

Proof. The function is z 7→
(
z2 − 2z

) (
z3 − (T + 1)z2 + 2Tz − T

)−1
, hence its

derivative is

(2z − 2)(z3 − (T + 1)z2 + 2Tz − T )− (z2 − 2z)(3z2 − (2T + 2)z + 2T )

(z3 − (T + 1)z2 + 2Tz − T )
2 =

−z4 + 4z3 − 2z2 − 2Tz + 2T

(z3 − (T + 1)z2 + 2Tz − T )
2 .

We need to show that the numerator is positive on ]0,min(T, 1)[. We can

write the numerator in the form z3(2−z)+(2−2z)(T −z2). The first summand

is positive, thus we only need to argue that the second summand is non-negative.

Since 2− 2z ≥ 0, it suffices to show that T − z2 ≥ 0. If T ≥ 1, then T ≥ z ≥ z2

for all z ∈]0, 1[, and if T < 1, then T ≥ z ≥ z2 for all z ∈]0, T [.

Theorem 3.2. For m ∈ N, k ∈ N ∪ {0} and z1, . . . , zm ∈]0, 1], we have

(z1+· · ·+zm+k)−1−(m+k)−1·
m∑
i=1

(
z2i

1− zi
+ z1 + · · ·+ zm + k

)−1
≥ (m+k)−2.

The theorem is proved by an inductive argument. The next lemma not only

covers the initial step of the induction, but also the important special case of

Theorem 3.2 where all the zi are equal.

Lemma 3.3. For m ∈ N, k ∈ N ∪ {0} and z ∈]0, 1], we have

(mz + k)−1 − (m+ k)−1m ·
(

z2

1− z
+mz + k

)−1
≥ (m+ k)−2.
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Proof. We multiply both sides by (m+ k)2(mz+ k)((1−m)z2 + (m− k)z+ k),

a positive expression, and rearrange the inequality to obtain the equivalent

assertion

(1− z)(m3 +m2(n− 1)(2 + z) +m(n− 1)(n+ (2n− 1)z) + (n3 − n2)z)+

+ 2mnz2 + (m2 −m)z + n(n− 1)z3 ≥ 0,

which is clearly true since m2 ≥ m,n ≥ 1, z ≥ 0, 1− z ≥ 0.

Proof of Theorem 3.2. We prove by induction on m. Note that the initial case

m = 1 coincides with the special case of Lemma 3.3 when m = 1. Let m ≥ 2

and assume that the assertion holds for m − 1. It is enough to show that the

minimum of the function f(z1, . . . , zm) = (z1 + · · · + zm + k)−1 − (m + k)−1 ·
m∑
i=1

(
z2i

1−zi + z1 + · · ·+ zm + k
)−1

is at least (m+k)−2 if we restrict the domain

to the set of all (z1, . . . , zm) ∈]0, 1]m with a fixed sum S > 0. The advantage of

considering this constrained optimization problem is that the restricted domain

is compact, thus the minimum exists. If the minimum is on the boundary of

the domain, then some zi, which we may assume is zm by symmetry, is 0 or 1.

If zm = 0, then the induction hypothesis for m′ = m − 1, k′ = k and the

tuple (z1, . . . , zm−1) yields

(z1+· · ·+zm−1+k)−1−(m+k−1)−1·
m−1∑
i=1

(
z2i

1− zi
+ z1 + · · ·+ zm−1 + k

)−1
≥

≥ (m+ k − 1)−2 ≥ (m+ k − 1)−1(m+ k)−1.

We multiply both ends of the chain of inequalities by (m+k−1)(m+k)−1 =

1− (m+ k)−1 to obtain

(z1 + · · ·+ zm−1 + k)−1 − (m+ k)−1 · (z1 + · · ·+ zm−1 + k)−1−

− (m+ k)−1 ·
m−1∑
i=1

(
z2i

1− zi
+ z1 + · · ·+ zm−1 + k

)−1
≥ (m+ k)−2,
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which is exactly the inequality to prove if zm = 0.

If zm = 1, then the induction hypothesis for m′ = m− 1, k′ = k+ 1 and the

tuple (z1, . . . , zm−1) yields

(z1+· · ·+zm−1+k+1)−1−(m+k)−1·
m−1∑
i=1

(
z2i

1− zi
+ z1 + · · ·+ zm−1 + k + 1

)−1
≥

≥ (m+ k)−2,

which is exactly the inequality to prove if zm = 1.

If the minimum is not on the boundary of the domain but at an inner point,

then it must be a stationary point of the Lagrange function L(z1, . . . , zn, λ) =

f(z1, . . . , zn)− λ(z1 + · · ·+ zm − S).

As usual, the vanishing of the partial derivative ∂
∂λL(z1, . . . , zn, λ) is equiv-

alent to the constraint z1 + · · · + zm = S. Let T := S + k. Then the partial

derivative ∂
∂zj

L(z1, . . . , zn, λ) equals to

− (z1 + · · ·+ zm + k)−2 + (m+ k)−1 ·
(∑
i 6=j

(
z2i

1− zi
+ z1 + · · ·+ zm + k

)−2
+

+

(
z2j

1− zj
+ z1 + · · ·+ zm + k

)−2
·

(
2zj − z2j
(1− zj)2

+ 1

))
− λ =

−T−2+(m+k)−1 ·
(∑
i 6=j

(
z2i

1− zi
+ T

)−2
+

(
z2j

1− zj
+ T

)−2
· 1

(1− zj)2

)
−λ =

− λ− T−2 + (m+ k)−1 ·
m∑
i=1

(
z2i

1− zi
+ T

)−2
+

(m+ k)−1 ·

(
z2j

1− zj
+ T

)−2(
1

(1− zj)2
− 1

)
= 0,

thus
(
(1− zj)−2 − 1

) (
T +

z2j
1−zj

)−2
= (m+k)(λ+T−2)−

m∑
i=1

(
z2i

1−zi + T
)−2

is independent of j. By Lemma 3.1, all the zj are equal to the same value z.

Hence, the minimum is (mz + k)−1 − (m + k)−1m ·
(
z2

1−z +mz + k
)−1

, which

is at least (m+ k)−2 by Lemma 3.3.
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The following theorem is the first main result of the paper, providing an

upper bound to the expected runtime of the gambler’s ruin game on an arbitrary

graph.

Theorem 3.4. Let (V,E) be a graph with |E| = m ∈ N and let ν : V → N be a

function representing the initial wealth of the vertices. In each round of a game,

an edge is selected uniformly at random, and by a fair choice 1 unit wealth is

transferred from an endpoint to the other. The process halts when a vertex has

0 wealth. Then the expected runtime is at most

m2∑
uv∈E

(ν(u)ν(v))−1

.

Proof. Given a state by the function µ : V → N, let the guesstimate of the

expected runtime from this state be m2 ·
( ∑
uv∈E

(µ(u)µ(v))−1
)−1

. Note that the

guesstimate is 0 for absorbing states. We show that this guesstimate satisfies the

inequality that the difference of its value at the given state and the average value

in all states we can reach in one step is at least 1. It is going to be convenient

in the calculation that the formula returns 0 in the absorbing states of the

Markov process: thus we can simply subtract from m2 ·
( ∑
uv∈E

(µ(u)µ(v))−1
)−1

the average of the expressions we obtain by adding 1 and −1 to the endpoints

of an edge in all the 2m possible ways.

Let us focus on a pair of such modified expressions corresponding to a given

edge uv ∈ E. By introducing the notation µ(u) = a, µ(v) = b,
∑

uw∈E
µ(w)−1 =

c−1,
∑

vw∈E
µ(w)−1 = d−1, and

∑
st∈E,{s,t}∩{u,v}=∅

(µ(s)µ(t))−1) = K, we have

a, b ≥ 1, c, d,K > 0, and the sum of the two modified expressions is

m2 ·
(
K +

1

(a+ 1)(b− 1)
+

1

c(a+ 1)
+

1

d(b− 1)

)−1
+ (1)

m2 ·
(
K +

1

(a− 1)(b+ 1)
+

1

c(a− 1)
+

1

d(b+ 1)

)−1
. (2)

The crucial estimation in the proof is to show that this sum is at most

9



2m2 ·
(
K +

1

ab− 1
+

1

ca
+

1

db

)−1
. (3)

First note that if a = b = 1, then (1) = (2) = (3) = 0. If a = 1 and b ≥ 2,

then the claim simplifies to(
K +

1

2(b− 1)
+

1

2c
+

1

d(b− 1)

)−1
≤ 2

(
K +

1

b− 1
+

1

c
+

1

db

)−1
,

or equivalently,

2K +
2

2(b− 1)
+

2

2c
+

2

d(b− 1)
≥ K +

1

b− 1
+

1

c
+

1

db
,

which is trivial as 2K > K, 2
2(b−1) = 1

b−1 ,
2
2c = 1

c and 2
d(b−1) >

1
db . The case

a ≥ 2 and b = 1 is analogous, thus we may assume that a, b ≥ 2. In particular,

P =
1

(a+ 1)(b− 1)
+

1

c(a+ 1)
+

1

d(b− 1)

Q =
1

(a− 1)(b+ 1)
+

1

c(a− 1)
+

1

d(b+ 1)

R =
1

ab− 1
+

1

ca
+

1

db

are all positive real numbers, and the estimation we need to show (after simpli-

fication by m2) is 1
K+P + 1

K+Q ≤
2

K+R . By multiplying the inequality with all

three denominators, we obtain the equivalent inequality

2K2 + (P +Q+ 2R)K + (P +Q)R ≤ 2K2 + 2(P +Q)K + 2PQ.

Hence, by comparing the coefficients of the powers of K, it is enough to

show that R ≤ P+Q
2 and R ≤ 2PQ

P+Q . As the harmonic mean is at most the

arithmetic mean, we have 2PQ
P+Q ≤

P+Q
2 , thus it suffices to show that R ≤ 2PQ

P+Q ,

i.e., (P + Q)R ≤ 2PQ. We can cancel c2d2(a2 − 1)(b2 − 1) from the common

denominator, and then multiplying both sides by the denominator obtained

yields the equivalent inequality that

2a3bcd+4a2b2cd+2ab3cd+2ab2c2d+2a2bcd2−2a2cd−4abcd−2b2cd−2ac2d−2bcd2
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is non-negative. Pulling out the common factor 2cd leads to the quartic poly-

nomial

a3b+ 2a2b2 + ab3 + ab2c+ a2bd− a2 − 2ab− b2 − ac− bd

that can be written as (ab − 1)(a + b)2 + (b2 − 1)ac + (a2 − 1)bd, hence it is

non-negative. This concludes the argument showing that (1) + (2) ≤ (3).

By listing the edges and denoting the value µ(u)µ(v) corresponding to the

i-th edge uv ∈ E by yi, the inequality we showed provides the following lower

estimation to the difference of the expression m2 ·
( ∑
uv∈E

(µ(u)µ(v))−1
)−1

and

the average of this expression on the 2m states at distance one:

m2·
((

y−11 + · · ·+ y−1m
)−1−

− 1

m
·

(
m∑
i=1

y−11 + · · ·+ y−1i−1 + (yi − 1)−1 + y−1i+1 + · · ·+ y−1m

))
=

m2·
((

y−11 + · · ·+ y−1m
)−1−

− 1

m
·

(
m∑
i=1

y−11 + · · ·+ y−1i−1 +
y−1i

1− y−1i
+ y−1i+1 + · · ·+ y−1m

))
.

Putting y−1i = zi, we have zi ∈]0, 1], and then

m2·
(

(z1 + · · ·+ zm)
−1−m−1·

(
m∑
i=1

z1 + · · ·+ zi−1 +
zi

1− zi
+ zi+1 + · · ·+ zm

))
=

m2·
(

(z1 + · · ·+ zm)
−1 −m−1 ·

(
m∑
i=1

z2i
1− zi

+ z1 + · · ·+ zm

))
≥ 1

according to Theorem 3.2 with the substitution k = 0.

Corollary 3.5. Under the assumptions of Theorem 3.4, if all vertices have the

same initial wealth ν, then the expected runtime is at most mν2.

If the graph consists of one single edge, then the game reduces to the classical

gambler’s ruin problem, a.k.a. the drunkard’s walk with two players u and v. It

is well-known that the expected runtime of that process is ν(u)ν(v), hence the

formula in Theorem 3.4 is sharp in that special case.
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The harmonic mean is in general much smaller than the geometric mean,

which is smaller than the arithmetic mean. This is well-reflected in the fact

that if one element in an m-tuple z1 is fixed and the others z2, . . . , zm tend

to infinity, then the geometric and arithmetic means tend to infinity, while the

harmonic mean tends to mz1. Thus if every agent in a network has infinite

wealth except for two agents u, v that are linked by an edge, the gambler’s

ruin game still has a finite expected runtime at most m2ν(u)ν(v) according to

Theorem 3.4, something we could not conclude from estimations involving the

geometric or arithmetic mean (which would in return be easier to verify).

4. Moments

It is well-known that there exists a degree k polynomial f with leading

coefficient k! such that the vector of k-th moments of the absorption time of

an absorbing Markov chain with fundamental matrix N is of the form fk(N)c0.

This polynomial can be computed by finding the k-th derivative of the moment

generating function. For example, f1(N) = N, f2(N) = 2N2 − N, f3(N) =

6N3 − 6N2 +N and f4(N) = 24N4 − 36N3 + 14N2 −N . For the method and

the precise computation of these polynomials, cf. [21, Theorem 3.2]; see also

[22]. Thus our strategy is to provide estimations for k!Nkc0, as it is going to

turn out that the smaller degree terms of fk(N) are negligible.

For all k ≥ 0 let ck ∈ RTran be the vector whose entry at a state with param-

eters (β, %) is (β%)k. Let x0 := c1, and for all k ≥ 1 let xk = 1
(k+1)(2k+1)ck+1 +

kn2

4k+2xk−1. Note that the xk can be computed recursively from this definition.

Example 4.1.

• x0 = c1

• x1 = 1
6c2 + n2

6 x0 = 1
6c2 + n2

6 c1

• x2 = 1
15c3 + n2

5 x1 = 1
15c3 + n2

30 c2 + n4

30 c1

• x3 = 1
28c4 + 3n2

14 x2 = 1
28c4 + n2

70 c3 + n4

140c2 + n6

140c1
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For all k ≥ 0 let dk ∈ RTran be the vector whose entry at a state with

parameters (β, %) where spreading of the colors blue and red have probability

p and q, respectively, is (p− q)(k + 1)(β%− 1)k(β − %). As this expression has

order of magnitude O(n2k+1), we can copy the proof of [19, Lemma 4] to obtain

the following estimation.

Lemma 4.2. Let N be the fundamental matrix of the discordant oblivious, push,

or pull protocol. Then Ndk = O(rn2k+1).

Proof. By considering the same absorbing Markov chain as in the proof of [19,

Lemma 4], we have that the expression |(p− q)(k + 1)(β%− 1)k(β − %)| is zero

on non-penultimate states (those before some runs are merged). Moreover, in

penultimate states, the expression divided by the probability of absorption is at

most Cn2k+1 with some absolute constant C (depending only on k). Thus dur-

ing every phase of the process where the number of runs stagnate, the expected

increment of the expression is at most Cn2k+1, making the total sum during

the process at most Crn2k+1.

Lemma 4.3. Let N be the fundamental matrix of the discordant oblivious, push,

or pull protocol. Then Nck = xk +O(rn2k+1).

Proof. Let the vector εk be defined by the equation Qxk = xk − ck + εk. We

use induction on k to show that Nεk = O(rn2k+1), which is equivalent to

the assertion. The initial case k = 0 follows from [19, Theorem 5], as ε0 =

c0 − (I −Q)x0 = c0 − (I −Q)c1, making Nε0 = Nc0 − c1 = O(rn). We assume

that the assertion holds for k − 1 and show it for k.

The entry of Qck+1 at a state with parameters (β, %) where spreading of the

colors blue and red have probability p and q, respectively, is

13



p((β + 1)(%− 1))k+1 + q((β − 1)(%+ 1))k+1 =

p((β%− 1)− (β − %))k+1 + q((β%− 1) + (β − %))k+1 =

(β%− 1)k+1 +
(k + 1)k

2
(β%− 1)k−1(β − %)2−

− (p− q)(k + 1)(β%− 1)k(β − %) +O(n2k−1) =

(β%)k+1 − (k + 1)(β%)k +
(k + 1)k

2
(β%)k−1(β − %)2−

− (p− q)(k + 1)(β%− 1)k(β − %) +O(n2k−1).

Because (β− %)2 = (β+ %)2− 4β% = n2− 4β%, and since the last expression

in the calculation is the entry of −dk at the given state, we obtain

Qck+1 = ck+1− (k+ 1)ck +
(k + 1)kn2

2
ck−1− 2(k+ 1)kck − dk +O(n2k−1) =

ck+1 − (k + 1)(2k + 1)ck +
(k + 1)kn2

2
ck−1 + dk +O(n2k−1). Hence,

Qxk =
1

(k + 1)(2k + 1)
Qck+1 +

kn2

4k + 2
Qxk−1 =

1

(k + 1)(2k + 1)

(
ck+1 − (k + 1)(2k + 1)ck +

(k + 1)kn2

2
ck−1 − dk

)
+

+
kn2

4k + 2
(xk−1 − ck−1 + εk−1) +O(n2k−1) =

1

(k + 1)(2k + 1)
ck+1 − ck +

kn2

4k + 2
ck−1 −

1

(k + 1)(2k + 1)
dk+

+
kn2

4k + 2
xk−1 −

kn2

4k + 2
ck−1 +

kn2

4k + 2
εk−1 +O(n2k−1) =

xk − ck −
1

(k + 1)(2k + 1)
dk +

kn2

4k + 2
εk−1 +O(n2k−1).

This makes εk = − 1
(k+1)(2k+1)dk + kn2

4k+2εk−1 +O(n2k−1), and consequently,

by the induction hypothesis and Lemma 4.2 we have

Nεk = − 1

(k + 1)(2k + 1)
Ndk +

kn2

4k + 2
Nεk−1 +O(n2k+1) = O(rn2k+1).

14



Lemma 4.3 makes it possible to compute the leading terms of k!Nkc0 recur-

sively. If β% is quadratic in n, as it happens to be in the extremal case when

β = n/2 + O(1) and % = n/2 + O(1), then these terms have degree n2k. Simi-

larly, N ic0 = O(n2i), thus the rest of the polynomial fk (such that fk(N)c0 is

the k-th moment) is O(n2k−2), hence negligible.

Example 4.4.

• Nc0 = x0 +O(rn) = c1 +O(rn)

• 2N2c0 = 2Nx0 +O(rn3) = 2Nc1 +O(rn3) = 2x1 +O(rn3) =

1
3c2 + n2

3 c1 +O(rn3)

• 6N3c0 = 3N( 1
3c2 + n2

3 c1) +O(rn5) = x2 + n2x1 +O(rn5) =

1
15c3 + n2

5 c2 + n4

5 c1 +O(rn5)

• 24N4c0 = 4N( 1
15c3 + n2

5 c2 + n4

5 c1) +O(rn7) =

4
15x3 + 4n2

5 x2 + 4n4

5 x1 +O(rn7) = 1
105c4 + 2n2

35 c3 + 17n4

105 c2 + 17n6

105 c1 +O(rn7)

In general, let k!Nkc0 =
k∑
i=0

ak,in
2k−2ici +O(rn2k−1), where the coefficients

ak,i can be computed recursively as illustrated in Example 4.4, and the con-

stant factor in O(rn2k−1) only depends on k. Then the k-th moment is also

fk(N)c0 =
k∑
i=0

ak,in
2k−2ici+O(rn2k−1). Note that β% ≤ n2/4 and r ≤ n implies

the upper bound fk(N)c0 ≤ C(k)n2k with a universal constant C(k) > 0. Let

mk :=
k∑
i=0

ak,i4
−i; e.g., m1 = 1

4 ,m2 = 5
48 ,m3 = 61

960 and m4 = 277
5376 according to

Example 4.4. Let Mk(β, %) denote the k-th moment of the standard drunkard

walk starting from the state (β, %), i.e., the fair gambler’s ruin problem on the

graph with two vertices and an edge, and the vertices having initial wealth β and

%. Note that this process coincides with the oblivious push protocol with a start-

ing state r = 1 and number of blue and red vertices β and %, respectively. Thus

according to Lemma 4.3, the k-th moment of the drunkard walk is the corre-

sponding entry of fk(N)c0 = k!Nkc0 +O(n2k−1) =
k∑
i=0

ak,in
2k−2ici +O(n2k−1),

that is, Mk(β, %) =
k∑
i=0

ak,in
2k−2i(β%)i + O(n2k−1). Hence, up to an error of

order of magnitude O(n2k−1), the Mk(β, %) are easy to determine recursively,
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cf. Examples 4.1 and 4.4. We are ready to summarize our results in the main

theorem of the current section.

Theorem 4.5. The k-th moment of the runtime of the discordant oblivious,

push, and pull protocols from an initial state with parameters (β, %) and r runs

is Mk(β, %) + O(rn2k−1). In particular, if r = o(n), then these k-th moments

are asymptotically equal to the k-th moment of the drunkard walk. Moreover,

the maximum of the k-th moments (ranging through all possible initial states)

is mkn
2k +O(n2k−1/2 log2 n), which is asymptotically equal to the maximal k-th

moment of the drunkard walk.

Proof. The series of equations were already obtained as a corollary of Lemma 4.3.

We prove the final assertion of the theorem by cutting the process into two parts.

The first part consists of the first 80n3/2 log2 n moves (unless the process halts

earlier). Starting from any initial state, the expected number of moves to reach

a state with r ≤ n1/2 is at most 40n2/n1/2 = 40n3/2 by [19, Proposition 3].

Thus by Markov’s inequality, the probability that after 80n3/2 moves we have

r > n1/2 is at most 1/2. The probability that this happens log2 n times is at

most (1/2)log2 n = 1/n. That is, if A is the event that in the initial state of the

second part we have r > n1/2, then P(A) ≤ 1/n.

The total time T to absorption is at most T2 + 80n3/2 log2 n, where T2 is

the number of steps in the second part. If in the initial state of the second part

we have r > n1/2, we can use the universal upper bound E(T2) ≤ C(k)n2k. If

in the initial state of the second part we have r ≤ n1/2, then the error term

O(rn2k−1) in the expression estimating fk(N)c0 is at most O(n2k−1/2). Hence,

by the law of total expectation we have
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E(T k) ≤ E((T2+80n3/2 log2 n)k) ≤ 1

n
C(k)n2k+E((T2+80n3/2 log2 n)k|A) =

k∑
i=0

E

((
k

i

)
T k−i2 (80n3/2 log2 n)i|A

)
+ C(k)n2k−1 =

E(T k2 |A) + (80kn3/2 log2 n)E(T k−12 |A)+

+

k∑
i=2

(
k

i

)
80n3i/2(log2 n)iE(T k−i2 |A) + C(k)n2k−1 =

E(T k2 |A) +O(n2k−1/2 log2 n) ≤ mkn
2k +O(n2k−1/2 log2 n),

where the last inequality follows from β% ≤ n2/4 yielding the entry of the

vector fk(N)c0 =
k∑
i=0

ak,in
2k−2ici + O(rn2k−1) at any state with r ≤ n1/2 at

most
k∑
i=0

ak,in
2k−2in2i/4i +O(n2k−1/2) =

(
k∑
i=0

ak,i4
−i
)
n2k +O(n2k−1/2).

The upper bound is attained when β = n/2 +O(1) and % = n/2 +O(1).

As Mk(β, %) =
k∑
i=0

ak,in
2k−2ici+O(n2k−1), the maximum of the k-th moment

of the drunkard walk is mkn
2k+O(n2k−1/2). Hence, Theorem 4.5 states that up

to an error of order of magnitude O(n2k−1/2 log2 n) the maximum of the k-th

moment of all three discordant protocols discussed coincide with that of the

drunkard walk, and the same holds for any initial state with parameters (β, %)

as long as r is not too close to n.

Corollary 4.6. The variance of the runtime of the discordant oblivious, push,

and pull protocols from an initial state with parameters (β, %) and r runs is

n2

3 β% −
2
3 (β%)2 + O(rn3). The maximum variance (when ranging through all

possible initial states) is 1
24n

4 +O(n7/2 log2 n).

Proof. According to Theorem 4.5 and Example 4.4, we have Var(T ) = E(T 2)−

E(T )2, where E(T 2) is the corresponding entry in 2N2c0 + O(rn3) = 1
3c2 +

n2

3 c1 + O(rn3) and E(T ) is in Nc0 + O(rn) = c1 + O(rn). Hence, E(T )2

is the corresponding entry in c2 + O(rn3), and consequently, Var(T ) is the

corresponding entry in n2

3 c1 −
2
3c2 +O(rn3).
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The maximum of the function n2

3 β%−
2
3 (β%)2 = 1

6 · (2β%) · (n2 − 2β%) under

the conditions that 0 ≤ β, % and β + % = n is attained at β = % = n/2,

since 2β% ≤ n2/2 where equality holds if and only if β = % = n/2. Putting

β = n/2 +O(1) and % = n/2 +O(1) we have n2

3 β%−
2
3 (β%)2 = n4/24 +O(n3).

This yields the estimate n4/24 +O(rn3) to the maximum variance by the first

assertion of the corollary. The desired upper bound n4/24 +O(n7/2 log2 n) can

be obtained from this estimation by using the same technique of cutting the

process into two parts as in the proof of Theorem 4.5.

In [19, Theorem 7], it was shown that the probability for the blue consensus

to win in the discordant push and pull protocols is β/n + O(r/n). That is,

if r = o(n), then the probability is asymptotically β/n, making these games

nearly fair. In contrast, it was also shown in [19, Theorem 10] that for n

large enough, there is always an initial state such that the estimate β/n to

the winning probability has an error at least 0.005. The proof hinges on the

fact that if the initial state has alternating blue-red runs of lengths 1 and 2,

respectively, then there exist numbers M ∈ N, 0 < a, b < 1 such that after M

steps the process reaches a state where the proportion of red vertices is below

1/3 − a with probability at least b. Then the law of total probability implies

that the estimation β/n cannot be within a certain error range for all these

states and the initial one at the same time. The same argument can be copied

to show that without the assumption r = o(1), the estimate Mk(β, %) to E(T k),

where T is the runtime of the discordant push or pull protocol, cannot always

be within a certain range of relative error.

5. An open problem

As it was mentioned in Section 3, the estimate provided in Theorem 3.4 is

sharp for the two-vertex graph with one edge. However, if the graph is a 3-cycle

with vertices u, v, w, then it is easy to see (e.g., by using Lemma 2.1) that the

exact expected runtime of the gambler’s ruin game is

3/((ν(u)ν(v))−1 + (ν(v)ν(w))−1 + (ν(w)ν(u))−1),

18



rather than 9/((ν(u)ν(v))−1+(ν(v)ν(w))−1+(ν(w)ν(u))−1), which is the upper

bound provided by Theorem 3.4. The proof of Theorem 3.2 suggests that the

supremum of the function x−Qx is obtained when all vertices has equal wealth

tending to infinity. This limit of x −Qx when the graph is an n-cycle is 3/n2,

suggesting that the upper bound provided by Theorem 3.4 might be possible to

improve for cycle graphs by a factor 3.

Question 5.1. Let T be the runtime of the gambler’s ruin game on an n-cycle.

Is it true that E(T ) ≤ n2

3·
∑

uv∈E
(ν(u)ν(v))−1 ?
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