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On the multiplication groups of three-dimensional
topological loops

Ágota Figula∗

Abstract. We clarify the structure of nilpotent Lie groups which are multipli-
cation groups of 3-dimensional simply connected topological loops and prove that
non-solvable Lie groups acting minimally on 3-dimensional manifolds cannot be
the multiplication group of 3-dimensional topological loops. Among the nilpo-
tent Lie groups for all filiform groups Fn+2 and Fm+2 with n,m > 1, the direct
product Fn+2 × R and the direct product Fn+2 ×Z Fm+2 with amalgamated
center Z occur as the multiplication group of 3-dimensional topological loops.
To obtain this result we classify all 3-dimensional simply connected topological
loops having a 4-dimensional nilpotent Lie group as the group topologically gen-
erated by the left translations.
Mathematics Subject Classification 2000: 57S20, 57M60, 20N05, 22F30, 22E25.
Key Words and Phrases: multiplication group of loops, topological transforma-
tion group, filiform Lie group.

1. Introduction

The multiplication group Mult(L) and the inner mapping group Inn(L) of a
loop L introduced in [1], [3], are important tools for research in loop theory
since they reflect strongly the structure of L . In particular, there is a strict
correspondence between the normal subloops of L and certain normal subgroups
of Mult(L). Hence, it is an interesting question which groups can be represented
as multiplication groups of loops ([14], [15], [21]). A purely group theoretical
characterization of multiplication groups is given in [14].

The mainly studied topological loops L are those which are realized as
sharply transitive sections in Lie groups G such that the left translations of L
generate G (cf. [13], [6], [7]). For most of these loops the group Mult(L) generated
by all left and right translations has infinite dimension. In [5] it is shown that the
condition for Mult(L) to be a Lie group is a strong restriction. Namely, for 2-
dimensional topological loops L the group Mult(L) is a Lie group if and only
if it is an elementary filiform Lie group of dimension ≥ 4. In this paper we
show that for 3-dimensional loops for which the group Mult(L) is nilpotent the
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situation changes radically. Namely, there is no topological loop L having the
4-dimensional filiform Lie group as the group Mult(L) (cf. Proposition 4.3), but
there is a plethora of loops L for which Mult(L) is a nilpotent but not filiform Lie
group (cf. Propositions 5.1, 6.1). In contrast to this a simple proof shows that non-
solvable Lie groups acting minimally on 3-dimensional manifolds cannot occur as
the multiplication group of 3-dimensional topological loops (cf. Theorem 3.1). A
3-dimensional connected simply connected topological loop L such that Mult(L)
is a Lie group is homeomorphic either to the 3-sphere S3 or to the affine space R3 .
We prove if L is quasi-simple and homeomorphic to S3 , then the group Mult(L)
is either isomorphic to the semidirect product Spin3(R) o SO3(R) or it is one of
the following quasi-simple Lie groups: SO5(R, 1), SU3(C, 1), SL4(R), SL2(C),
Sp4(R), the universal covering of SL3(R). If a quasi-simple connected topological
loop L is homeomorphic to R3 , then one of the following holds: If Mult(L) is
quasi-simple, then it is the group PSL2(C). If Mult(L) is semi-simple, then

it is the semidirect product ˜PSL2(R) o PSL2(R), where the universal covering
˜PSL2(R) of PSL2(R) is homeomorphic to R3 . If Mult(L) is not semi-simple,

then it is the semidirect product R3 o S , where S is isomorphic either to the
group Spin3(R) or to SL3(R) respectively to PSL2(R) (cf. Proposition 3.2). In
Propositions 3.7 and 3.8 we clarify the structure of the nilpotent Lie groups which
are multiplication groups of 3-dimensional simply connected topological loops.

As applications of Proposition 3.7 first we determine all 3-dimensional sim-
ply connected topological loops L having a 4-dimensional nilpotent Lie group as
the group topologically generated by their left translations. The loop multiplica-
tions in these cases are uniquely determined by a continuous real function of one or
two variables. The multiplication groups of these loops are Lie groups precisely if
the continuous function in the loop multiplication is derived from exponential poly-
nomials. If L has 2-dimensional centre, then the groups R×Fn+2 , n ≥ 2, where
Fn+2 is the n + 2-dimensional elementary filiform Lie group, are multiplication
groups of L (cf. Proposition 5.1). Moreover, among the at most 5-dimensional
nilpotent Lie groups only the group R×F4 occurs as the multiplication group of 3-
dimensional topological loops with 2-dimensional centre. Also the direct products
of two elementary filiform Lie groups with amalgamated centers are multiplication
groups of L . These loops L have 1-dimensional centre Z(L) such that L/Z(L)
is the abelian group R2 (cf. Proposition 6.1).

2. Preliminaries

A binary system (L, ·) is called a loop if there exists an element e ∈ L such that
x = e · x = x · e holds for all x ∈ L and the equations a · y = b and x · a = b
for given a, b ∈ L have precisely one solution which we denote by y = a\b and
x = b/a .
The left and right translations λa = y 7→ a · y : L→ L and ρa : y 7→ y · a : L→ L ,
a ∈ L , are permutations of L .
The permutation group Mult(L) = 〈λa, ρa; a ∈ L〉 is called the multiplication
group of L . The stabilizer of the identity element e ∈ L in Mult(L) is denoted
by Inn(L), and Inn(L) is called the inner mapping group of L .
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Let K be a group, S ≤ K , and let A and B be two left transversals to S
in K (i.e. two systems of representatives for the left cosets of the subgroup S in
K ). We say that A and B are S -connected if a−1b−1ab ∈ S for every a ∈ A and
b ∈ B . By CK(S) we denote the core of S in K (the largest normal subgroup of K
contained in S ). If L is a loop, then Λ(L) = {λa; a ∈ L} and R(L) = {ρa; a ∈ L}
are Inn(L)-connected transversals in the group Mult(L) and the core of Inn(L)
in Mult(L) is trivial. The connection between multiplication groups of loops and
transversals is given in [14] by Theorem 4.1. This theorem yields the following

Lemma 2.1. Let L be a loop and Λ(L) be the set of left translations of L.
Let K be a group containing Λ(L) and S be a subgroup of G with CK(S) = 1
such that Λ(L) is a left transversal to S in K . The group K is isomorphic to the
multiplication group Mult(L) of L if and only if there is a left transversal T to
S in K such that Λ(L) and T are S -connected and K = 〈Λ(L), T 〉. In this case
S is isomorphic to the inner mapping group Inn(L) of L.

The kernel of a homomorphism α : (L, ·)→ (L′, ∗) of a loop L into a loop L′ is a
normal subloop N of L , i.e. a subloop of L such that

x ·N = N · x, (x ·N) · y = x · (N · y), x · (y ·N) = (x · y) ·N.

The centre Z(L) of a loop L consists of all elements z which satisfy the
equations zx · y = z · xy, x · yz = xy · z, xz · y = x · zy, zx = xz for all x, y ∈ L .
If we put Z0 = e , Z1 = Z(L) and Zi/Zi−1 = Z(L/Zi−1), then we obtain a series
of normal subloops of L . If Zn−1 is a proper subloop of L but Zn = L , then L
is centrally nilpotent of class n . In [3] it was proved that the nilpotency of the
multiplication group Mult(L) of L implies that L is centrally nilpotent.

Lemma 2.2. Let L be a loop with multiplication group Mult(L) and identity
element e.
(i) Let α be a homomorphism of the loop L onto the loop α(L) with kernel N .
Then N is a normal subloop of L and α induces a homomorphism of the group
Mult(L) onto the group Mult(α(L)).
Let M(N) be the set {m ∈ Mult(L); xN = m(x)N for all x ∈ L}. Then M(N)
is a normal subgroup of Mult(L) containing the multiplication group Mult(N) of
the loop N and the multiplication group of the factor loop L/N is isomorphic to
Mult(L)/M(N).
(ii) For every normal subgroup N of Mult(L) the orbit N (e) is a normal subloop
of L. Moreover, N ≤M(N (e)).

Proof. The assertion of (i) is proved by A. Albert in [1] (Theorems 3, 4 and
5, pp. 513-515). The assertion (ii) is proved by Bruck in [4], p. 62.

A loop L is called topological if L is a topological space and the binary operations
(x, y) 7→ x · y , (x, y) 7→ x\y, (x, y) 7→ y/x : L × L → L are continuous. Every
connected topological loop L having a Lie group as the group topologically gener-
ated by the left translations is obtained on a homogeneous space G/H , where G
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is a connected Lie group, H is a closed subgroup containing no non-trivial normal
subgroup of G and σ : G/H → G is a continuous sharply transitive section with
σ(H) = 1 ∈ G such that the subset σ(G/H) generates G . The multiplication of
L on the manifold G/H is defined by xH ∗ yH = σ(xH)yH and the group G
is the group topologically generated by the left translations of L . Moreover, the
subgroup H is the stabilizer of the identity element e ∈ L in the group G .

A quasi-simple connected Lie group is a connected Lie group G such that
any normal subgroup of G is discrete and central in G . A semi-simple connected
Lie group G has the form G = G1 · G2 · · ·Gr , where Gi are normal quasi-simple
connected Lie subgroups such that Gi ∩ Gj is a discrete central subgroup of G .
A connected loop L is quasi-simple if any normal subloop of L is discrete in L .
According to [11], p. 216, all discrete normal subloops of a connected loop are
central.

The elementary filiform Lie group Fn+2 is the simply connected Lie group
of dimension n + 2 ≥ 3 whose Lie algebra is elementary filiform, i.e. it has a
basis {e1, · · · , en+2} such that [e1, ei] = ei+1 for 2 ≤ i ≤ n + 1 and all other
Lie brackets are zero. A 2-dimensional simply connected loop LF is called an
elementary filiform loop if its multiplication group is an elementary filiform group
Fn+2 , n ≥ 2.
A foliation is a decomposition of a manifold as a union of disjoint submanifolds of
smaller dimension.

3. On the multiplication group of 3-dimensional topological loops

Let L be a topological loop on a connected 3-dimensional manifold such that the
group Mult(L) topologically generated by all left and right translations of L is a
Lie group. The loop L itself is a 3-dimensional homogeneous space with respect
to the transformation group Mult(L). Since there does not exist a multiplication
with identity on the sphere S2 a simply connected 3-dimensional topological loop
L having a Lie group as its multiplication group is homeomorphic to R3 or to S3

(see [9], p. 210).

A transitive action of a connected Lie group G on a manifold M is called
minimal, if it is locally effective and if G does not contain subgroups acting tran-
sitively on M . The minimal actions of non-solvable Lie groups on 3-dimensional
manifolds are given in [9], Table 1, p. 201.

Theorem 3.1. There does not exist 3-dimensional proper connected topological
loop L such that its multiplication group Mult(L) is a non-solvable Lie group
acting minimally on the manifold L.

Proof. We may assume that L is simply connected and hence it is homeo-
morphic to R3 or to S3 . As dim(Mult(L)) ≥ 4 it follows from [9], p. 201, that
L is homeomorphic to R3 and the radical R of the group Mult(L) has positive
dimension. As Mult(L) acts effectively and minimal transitively on the manifold
L the orbit R(e) has dimension 1 or 2. Since R(e) is a normal subloop of L
(cf. Lemma 2.2) the factor loop F = L/R(e) is a connected loop of dimension
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1 or 2. The multiplication group Mult(F) of F is a factor group Mult(L)/M ,
where M 6= Mult(L) is a connected normal subgroup of Mult(L) containing R
(cf. Lemma 2.2). Hence Mult(F) is a semi-simple Lie group. Since every at most
2-dimensional connected loop having a Lie group as its multiplication group is
either a connected Lie group or an elementary filiform loop (cf. Lemma 18.18 in
[13], p. 248, and Theorem 1 in [5]) we obtain a contradiction to the fact that the
multiplication groups of these loops are solvable.

A transitive action of a Lie group G on a manifold M is called primitive, if on
M there is no G-invariant foliation with connected fibres of positive dimension
smaller than dim M .

Proposition 3.2. Let L be a 3-dimensional quasi-simple connected simply
connected topological loop such that the multiplication group Mult(L) of L is a
Lie group.
(a) If L is homeomorphic to S3 , then the group Mult(L) is either isomorphic
to the semidirect product Spin3(R) o SO3(R) or it is one of the following quasi-
simple Lie groups: SO5(R, 1), SU3(C, 1), SL4(R), SL2(C), Sp4(R), the universal
covering of SL3(R).
(b) If L is homeomorphic to R3 , then one of the following holds:
(i) If Mult(L) is quasi-simple, then it is the group PSL2(C).
(ii) If Mult(L) is semi-simple, then it is isomorphic to the semidirect product
˜PSL2(R) o PSL2(R).

(iii) If Mult(L) is not semi-simple, then it is the semidirect product R3oS , where
S is isomorphic either to Spin3(R) or to SL3(R) respectively to PSL2(R) and
acts irreducibly on R3 .

Proof. Let L be a 3-dimensional quasi-simple connected topological loop
such that the group Mult(L) is a Lie group. Then the Lie group Mult(L) acts
primitively on L and by Lemma 2.2 (ii) for every non-trivial connected normal
subgroup N of Mult(L) the orbit N (e) is a normal subloop of L . For N (e) = {e}
the inner mapping group Inn(L) contains the normal subgroup N of Mult(L)
which is a contradiction. Therefore N (e) is the whole loop L . Hence every
non-trivial connected normal subgroup N of Mult(L) operates transitively on
L . Every solvable Lie group has a one- or two-dimensional connected normal
subgroup K . Since K cannot act transitively on L the Lie group Mult(L) cannot
be solvable.

We may assume that L is simply connected, since otherwise we would
consider the universal covering of L . Then the loop L is homeomorphic to R3 or
to S3 . First we consider the case that Mult(L) is quasi-simple. The connected
quasi-simple Lie groups acting effectively and transitively on the sphere S3 are
given by Table 2.3 in [16], p. 400. Using the notations of [20] these groups are the
following: SO5(R, 1), SU3(C, 1), SL4(R), SL2(C), Sp4(R), the universal covering
of SL3(R). If L is homeomorphic to R3 , then every maximal compact subgroup
K of the quasi-simple group Mult(L) is contained in the inner mapping group
Inn(L) of L . As Mult(L) acts primitively and effectively on L the group Inn(L)
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is a maximal subgroup of Mult(L). Since every maximal compact subgroup of
Mult(L) is maximal in Mult(L) (cf. Theorem 94.34 in [19]) the group Inn(L) is
isomorphic to K and has codimension 3. Since the core of Inn(L) in Mult(L) is
trivial the classification of quasi-simple Lie groups given in [20] yields that Mult(L)
is the group PSL2(C).

If the group Mult(L) is semi-simple, then it has the form Mult(L) =
G1 · G2 · · ·Gr , where Gi are normal quasi-simple connected Lie subgroups such
that Gi ∩ Gj is a discrete central subgroup of Mult(L). Hence every Gi acts
transitively on L . If there is a proper normal subgroup S of Mult(L) such that
the stabilizer of e ∈ L in the group S is a non-trivial connected subgroup Se of
S and there is a subgroup Gj such that S ∩ Gj is a discrete central subgroup of
Mult(L), then for all g ∈ Gj and α ∈ Se we have g(e) = g(α(e)) = α(g(e)). Since
Gj acts transitively on L the group Se fixes every element of the loop L . Hence
the action of the group Mult(L) on L is not effective. From this contradiction it
follows that r = 2 and the subgroups G1 and G2 act sharply transitively on L .
Hence G1 and G2 have dimension 3. As L is simply connected G1 as well as G2

are homeomorphic to R3 or to S3 . It follows that G1 is isomorphic to ˜PSL2(R)
or to Spin3(R) and the group Mult(L) is the semidirect product G1 oGe , where
the stabilizer Ge of e ∈ L in Mult(L) is a 3-dimensional automorphism group
acting faithfully on G1 .

Now we assume that the radical R of the non-solvable group Mult(L) is
a non-trivial connected normal subgroup of Mult(L). As the group Inn(L) is a
maximal subgroup of Mult(L), the orbit R(e) is the whole loop L and dimR = 3.
Since the commutator subgroup R′ of R is normal in the group Mult(L) it must
be trivial. Otherwise we would have a contradiction to the maximality of Inn(L)
in Mult(L). As L is homeomorphic to R3 the abelian 3-dimensional radical R
is isomorphic to the group R3 and Mult(L) = R3 o S , where S is a semi-simple
group of automorphisms of R3 . Therefore S is isomorphic either to Spin3(R) or
to SL3(R) respectively to PSL2(R).

Lemma 3.3. Let L be a 3-dimensional proper connected topological loop having
a solvable Lie group as the multiplication group Mult(L) of L. If L is simply
connected, then it is homeomorphic to R3 .

Proof. By Theorem 3.2 in [9], p. 208, the sphere S3 is not a solvmanifold.
Hence L cannot be homeomorphic to S3 and the assertion follows.

Now we deal with the case that the multiplication group Mult(L) of the loop L
is nilpotent.

Lemma 3.4. Let L be a 3-dimensional proper connected simply connected
topological loop such that its multiplication group Mult(L) is a nilpotent Lie group.
Then the loop L is centrally nilpotent. Moreover, L is an extension of a 2-
dimensional centrally nilpotent loop M by the group R and also an extension of
the group R by a 2-dimensional centrally nilpotent loop M .
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Proof. By Lemma 3.3 the loop L is homeomorphic to R3 and by Proposition
3.2 it has a proper connected normal subloop. Hence the multiplication group
Mult(L) acts imprimitively on L . One can distinguish three classes of Lie groups
G acting transitively but imprimitively on R3 (cf. [12], pp. 141-178):
I. In R3 there is a G-invariant foliation P with 2-dimensional connected fibres D ,
but there is no G-invariant foliation of D with 1-dimensional connected fibres.
II. In R3 there is a G-invariant foliation P with 1-dimensional connected fibres
C , but there is no foliation with 2-dimensional fibres D which are unions of fibres
C .
III. In R3 there is a G-invariant foliation P with 1-dimensional connected fibres
C and there is a foliation with 2-dimensional fibres D which are unions of fibres
C .
For the groups G belonging to the classes I and II there is a 2-dimensional manifold
D such that G acts on D primitively. According to [8], Table 1, p. 341, there is
no nilpotent Lie group with this property. Since every subgroup and factor group
of a nilpotent Lie group is nilpotent, a nilpotent Lie group Mult(L) is only in
the class III. Hence the loop L has a 2-dimensional connected normal subloop M
containing a 1-dimensional connected normal subloop N of L . Since the group
Mult(L) is nilpotent the loop L is centrally nilpotent (cf. [3]). Hence every
subloop and every factor loop of L is centrally nilpotent. As L is homeomorphic
to R3 the multiplication group of the connected centrally nilpotent loop N is a
Lie group isomorphic to the group R . The factor loop L/N is a 2-dimensional
connected centrally nilpotent loop. As L is a fibering of R3 over L/N with
fibers homeomorphic to R it follows that L/N is homeomorphic to R2 . Every
2-dimensional connected centrally nilpotent loop which is homeomorphic to R2

and having a Lie group as its multiplication group is isomorphic either to the Lie
group R2 or to an elementary filiform loop (cf. [5], Theorem 1).

Lemma 3.5. Let L be a 3-dimensional proper connected simply connected
topological loop such that its multiplication group Mult(L) is a nilpotent Lie group.
The centre Z of the group Mult(L) as well as the centre of the loop L is isomorphic
to the group Rn with 1 ≤ n ≤ 2.

Proof. By Lemma 3.3 the loop L is homeomorphic to R3 . According to [17], p.
25, the centre Z of the group Mult(L) is isomorphic to the centre Z(L) of the loop
L . As the group Mult(L) is nilpotent one has dimZ ≥ 1 (cf. [10], Proposition 4
(c), p. 619) and dimZ = dimZ(L). As dimL = 3 we obtain dimZ ≤ 3. For the
orbit Z(e) one has dimZ = dimZ(e), otherwise there is a proper central subgroup
of Mult(L) which leaves the element e ∈ L fixed which is a contradiction. If
dimZ = 3, then for the orbit Z(e) one has Z(e) = L . Hence Z operates sharply
transitively on L and we have Mult(L) = Z o Inn(L). Since we can identify the
elements of L with the elements of Z the group Gl topologically generated by the
left translations of L contains Z as a subgroup. But Theorem 17.11 in [13], p.
231, gives a contradiction and the assertion follows.

Lemma 3.6. Let L be a 3-dimensional proper connected simply connected
topological loop such that its multiplication group Mult(L) is a nilpotent Lie group.
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Let Z(L) be the centre of the loop L.
(a) Every 1-dimensional normal subloop N of L is a central subgroup of L.
(b) If dim Z(L) = 1 and the factor loop L/Z(L) is isomorphic to the group R2 or
if dim Z(L) = 2, then the inner mapping group Inn(L) of the loop L is abelian.

Proof. By Lemma 3.3 the loop L is homeomorphic to R3 . As Mult(L) is
nilpotent the proper loop L is centrally nilpotent of class 2 or 3. Let N be a
1-dimensional connected normal subloop of L . Since the group Mult(N) of N
is a Lie subgroup of Mult(L), the loop N is isomorphic to a 1-dimensional Lie
group (cf. [13], Proposition 18.18). As N is minimal it is contained in the centre
of L (see [3], Theorem 4 C and Corollary to theorem 4 C, p. 267) and the first
assertion is proved.
In the cases of assertion (b) the loop is centrally nilpotent of class 2. Hence L
has an upper central series e = Z0 < Z1 = Z(L) < Z2 = L , where Zi/Zi−1 is the
centre of L/Zi−1 for i = 1, 2 with dimZ(L) = 1 in the first case and dimZ(L) = 2
in the second case. By Theorem 8 A in [3], pp. 280-281, there exists an ascending
series 1 = R0 < R1 = R2 = Inn(L) of subgroups of the inner mapping group
Inn(L) such that R1/R0

∼= Inn(L) is an abelian group. This gives the assertion
in (b).

Proposition 3.7. Let L be a 3-dimennsional proper connected simply con-
nected topological loop such that its multiplication group Mult(L) is a nilpotent
Lie group. We assume that L has a 2-dimensional centre Z(L). Then Mult(L)
is a semidirect product of the abelian group M ∼= Rm , m ≥ 3, by a group Q ∼= R
such that M = Z × Inn(L), where R2 = Z ∼= Z(L) is the centre of Mult(L).

Proof. By Lemma 3.3 the loop L is homeomorphic to R3 . The centre Z(L)
is a 2-dimensional normal subgroup of L isomorphic to R2 (cf. Lemma 3.5). The
factor loop L/Z(L) is a 1-dimensional connected loop such that its multiplication
group is a factor group of Mult(L). Hence L/Z(L) is the group R (cf. Theorem
18.18 in [13]). By Lemma 2.2 there exists a normal subgroup M of Mult(L) such
that Mult(L)/M is isomorphic to the group Mult(L/Z(L)) ∼= R . The normal
subgroup M leaves every orbit of Z(L) homeomorphic to R2 in the manifold
L invariant and contains the multiplication group of Z(L). The multiplication
group of Z(L) consists of the translations by elements of Z(L). Hence it is
isomorphic to Z(L) and also to the centre Z of the group Mult(L) (cf. Lemma
3.5). The group Mult(L)/M operates sharply transitively on the orbits of Z(L)
in L . Hence the inner mapping group Inn(L) is a subgroup of M . According
to Lemma 3.6 the group Inn(L) is abelian of codimension 3 in Mult(L). Hence
one has M = Z o Inn(L). Therefore, M induces on every orbit Z(L)(x), x ∈ L ,
the sharply transitive group R2 . As Inn(L) fixes every element of Z(L) (cf.
[3], IV.1) it is a normal subgroup of M such that Z ∩ Inn(L) = {1} . Hence
M = Z × Inn(L), where Z = R2 is the centre of Mult(L).

Proposition 3.8. Let L be a 3-dimensional proper connected simply connected
topological loop such that its multiplication group Mult(L) is a nilpotent Lie group.
We assume that L has a 1-dimensional centre Z(L).
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a) If the factor loop L/Z(L) is isomorphic to the abelian group R2 , then Mult(L)
is a semidirect product of the abelian group P ∼= Rm , m ≥ 2, by a group Q ∼= R2

such that P = Z × Inn(L), where R = Z ∼= Z(L) is the centre of Mult(L).
b) If the factor loop L/Z(L) is isomorphic to a 2-dimensional elementary filiform
loop LF , then there is a normal subgroup S of the group Mult(L) containing
the centre Z of Mult(L) such that the factor group Mult(L)/S is an elementary
filiform Lie group Fn+2 with n ≥ 2.

Proof. By Lemma 3.3 the loop L is homeomorphic to R3 . The centre Z(L)
is a 1-dimensional connected normal subgroup of L isomorphic to R (cf. Lemma
3.5). The factor loop L/Z(L) is a 2-dimensional connected loop such that its
multiplication group is a factor group of Mult(L) (cf. Lemma 2.2). Hence
Mult(L/Z(L)) is nilpotent and therefore L/Z(L) is isomorphic either to the group
R2 or to an elementary filiform loop LF (cf. p. 4).
In the second case Mult(L/Z(L)) is isomorphic to an at least 4-dimensional
elementary filiform Lie group Fn+2 , n ≥ 2 (cf. Theorem 1 in [5]). Moreover, there
exists a normal subgroup S of Mult(L) such that Mult(L)/S is isomorphic to the
group Mult(L/Z(L)) and the group S contains the Lie group Mult(Z(L)) ∼= R
(cf. Lemma 2.2). The multiplication group of Z(L) consists of the translations by
elements of Z(L). Hence it is isomorphic to Z(L) and also to the centre Z of the
group Mult(L) (cf. Lemma 3.5) and the assertion b) is proved.

In the first case Mult(L/Z(L)) is isomorphic to R2 . By Lemma 2.2 there
exists a normal subgroup P of Mult(L) such that Mult(L)/P is isomorphic to
the group R2 , the group P contains the Lie group Mult(Z(L)) ∼= R and P leaves
every orbit of Z(L) which is homeomorphic to R in the manifold L invariant. As
Mult(L)/P ∼= R2 the factor group Mult(L)/P operates sharply transitively on
the orbits of Z(L) in L . The nilpotent group P induces on the orbit Z(L)(e) the
sharply transitive group R . Therefore P induces on every orbit Z(L)(x), x ∈ L ,
the sharply transitive group R . The stabilizer P1 of e ∈ L in P fixes every point
of the orbit Z(L)(e) = P (e). Hence P1 is a normal subgroup of P . Since the
factor group P/P1

∼= R the commutator subgroup P ′ of P is contained in P1 and
P ′ is normal in Mult(L). The group P ′ is trivial, otherwise the group Mult(L)
would contain the normal subgroup 1 6= P ′ which has fixed points and Mult(L)
does not act effectively on L . Hence P is abelian. Since dim Mult(L) ≥ 4 the
group P is isomorphic to Rn , n ≥ 2. The inner mapping group Inn(L) has
codimension 3 and hence Inn(L) is the group P1 . The group consisting of the
translations by elements of Z(L) is isomorphic to Z(L) and to the centre Z of
Mult(L). Then P = Z × Inn(L) and the assertion a) is proved.

4. Three-dimensional loops having the four-dimensional filiform
group as their left translation group

Let h : R2 → R be a continuous function and denote by T(a1,a2)h(x, y) = h(x +
a1, y+a2) the translation by (a1, a2) ∈ R2 . An exponential polynomial on R2 is a
finite linear combination of terms xq1yq2 exp(λ1x+λ2y), where qi are nonnegative
integers and λi ∈ C , i = 1, 2. The following proposition follows from [2], Theorem,
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p. 747, and Section 4, p. 751.

Proposition 4.1. The real vector space W generated by a real continuous
function h : R2 → R and by the translations T(a1,a2)h(x, y), (a1, a2) ∈ R2 , has
finite dimension if and only if it is the span of a set of functions

xq1yq2(k1e
λ1x + c1e

a1x sin(b1x) + d1e
a1x cos(b1x))·

(k2e
λ2y + c2e

a2y sin(b2y) + d2e
a2y cos(b2y)), (1)

where qi are nonnegative integers, λi, ai, bi, ci, di, ki ∈ R, i = 1, 2.

Every 4-dimensional simply connected nilpotent Lie group is isomorphic either
to the 4-dimensional filiform Lie group F4 or to the direct product of the 3-
dimensional simply connected non-abelian nilpotent Lie group F3 with the group
R . In this section we classify the 3-dimensional connected simply connected topo-
logical loops having the 4-dimensional filiform Lie group F4 as the group topolog-
ically generated by their left translations. The multiplication of the loops in this
class depends on a continuous real function of one or two variables. The multi-
plication groups of these loops are Lie groups precisely if the continuous function
occuring in the loop multiplication derives from exponential polynomials. More-
over, we prove that the multiplication groups of 3-dimensional simply connected
topological loops in this class always contain F4 as a proper subgroup.

Lemma 4.2. Let f : (x, y, z) 7→ f(x, y, z) : R3 → R be a continuous function.
For every x0, y0, u ∈ R the function g : z 7→ z ± uf(x0, y0, z) : R→ R is bijective
if and only if f does not depend on the variable z .

Proof. If f is independent of the variable z , then the function g(z) is bijective.
Conversely, if g(z) is bijective, then for ψ1 < ψ2 ∈ R one has g(ψ1) 6= g(ψ2). We
consider

g(ψ2)− g(ψ1) = ψ2 − ψ1 ± u[f(x0, y0, ψ2)− f(x0, y0, ψ1)]

as a linear function of u ∈ R . If f(x0, y0, ψ2) 6= f(x0, y0, ψ1), then there exists a
u ∈ R such that g(ψ2) − g(ψ1) = 0 and g(z) is not bijective. Hence if g(z) is
bijective, then the function f(x, y, z) = f(x, y) does not depend on z .

Proposition 4.3. Let G be the 4-dimensional filiform Lie group F4 and choose
for G the representation on R4 by the multiplication

g(x1, x2, x3, x4)g(y1, y2, y3, y4) =

g(x1 + y1, x2 + y2, x3 + y3 − x2y1, x4 + y4 − y1x3 +
1

2
x2y

2
1).

Let H be a subgroup of G which is isomorphic to R and which is not normal in G,
then using automorphisms of G we may choose H in one of the following forms:

H1 = {g(0, 0, v, 0); v ∈ R}, H2 = {g(v, 0, 0, 0); v ∈ R}.
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a) Every continuous sharply transitive section σ : G/H1 → G with the prop-
erties that σ(G/H1) generates G and σ(H1) = 1 is determined by the map
σf : g(x, y, 0, z)H1 7→ g(x, y, f(x, y), z), where f : R2 → R is a continuous func-
tion with f(0, 0) = 0. The multiplication of the loop Lf corresponding to σf can
be written as

(x1, y1, z1) ∗ (x2, y2, z2) =

(x1 + x2, y1 + y2, z1 + z2 − x2f(x1, y1) +
1

2
x22y1). (2)

The multiplication group Mult(Lf ) of the loop Lf is a Lie group precisely if f(x, y)
is a finite linear combination of functions given by (1). Moreover, if f(x, y) = f(y)

has the form f(y) =
n∑
i=1

biy
i , bi ∈ R, then the group Mult(Lf ) is isomorphic to

the direct product F4 ×Z Fn+2 of the elementary filiform Lie groups F4 and Fn+2

with amalgamated centre Z , n ≥ 1.
b) Each continuous sharply transitive section σ : G/H2 → G such that σ(G/H2)
generates G and σ(H2) = 1 is determined by the map

σh : g(0, x, y, z)H2 7→ g(h(x), x, y − xh(x), z − yh(x) +
1

2
xh(x)2),

where h : R → R is a non-linear continuous function with h(0) = 0. The
multiplication of the loop Lh corresponding to σh can be written as

(x1, y1, z1) ∗ (x2, y2, z2) =

(x1 + x2, y1 + y2 + x2h(x1), z1 + z2 + y2h(x1) +
1

2
x2h(x1)

2). (3)

The multiplication group Mult(Lv) of the loop Lv is a Lie group if and only if the
function h(x) is a finite linear combination of functions

xq(c1e
λx + c2e

ax sin(bx) + c3e
ax cos(bx)),

where q is a nonnegative integer, λ, a, b, c1, c2, c3 ∈ R.
c) The group G cannot be the multiplication group of a topological loop homeo-
morphic to R3 .

Proof. The Lie algebra g of G is given by the basis {e1, e2, e3, e4} with
[e1, e2] = e3 , [e1, e3] = e4 . We can represent the elements of G as the matrices

g(x1, x2, x3, x4) =


1 x3 x2 x4
0 1 0 −x1
0 −x1 1

x21
2

0 0 0 1


with xi ∈ R, i = 1, 2, 3, 4. Hence the multiplication of the group G can be
represented on R4 as given in the assertion. The subgroup exp te4 , t ∈ R , is the
centre of G , the subgroup exp(te3 + se4), t, s ∈ R , is the commutator subgroup
of G . Hence the automorphism group of g consists of linear mappings

ϕ(e1) = a1e1 + a2e2 + a3e3 + a4e4, ϕ(e2) = b1e1 + b2e2 + b3e3 + b4e4,
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ϕ(e3) = (a1b2 − a2b1)e3 + (a1b3 − a3b1)e4, ϕ(e4) = a1(a1b2 − a2b1)e4,

with a1b2 − a2b1 6= 0, a1 6= 0, a2, a3, a4, b2, b3, b4 ∈ R .
Let H be a subgroup of G which is isomorphic to R and which is not normal in G .
Then H is a subgroup exp t(αe1+βe2+γe3+δe4) with t ∈ R and α2+β2+γ2 = 1.
Then a suitable automorphism of G corresponding to an automorphism ϕ of g
maps H onto one of the following subgroups

H1 = exp te3, H2 = exp te1.

First we assume that H = H1 = {g(0, 0, k, 0); k ∈ R} . Since all elements of G
have a unique decomposition as g(x, y, 0, z)g(0, 0, k, 0), any continuous function
f : R3 → R; (x, y, z) 7→ f(x, y, z) determines a continuous section σ : G/H → G
given by

g(x, y, 0, z)H 7→ g(x, y, 0, z)g(0, 0, f(x, y, z), 0) = g(x, y, f(x, y, z), z).

The section σ is sharply transitive if and only if for every triples (x1, y1, z1),
(x2, y2, z2) ∈ R3 there exists precisely one triple (x, y, z) ∈ R3 such that

g(x, y, f(x, y, z), z)g(x1, y1, 0, z1) = g(x2, y2, 0, z2)g(0, 0, t, 0)

for a suitable t ∈ R . This gives the equations

x = x2 − x1, y = y2 − y1, t = f(x2 − x1, y2 − y1, z)− (y2 − y1)x1,

0 = z + z1 − z2 +
1

2
(y2 − y1)x21 − x1f(x2 − x1, y2 − y1, z).

These are equivalent to the condition that for every x0 = x2 − x1 , y0 = y2 − y1
and x1 ∈ R the function g : z 7→ z−x1f(x0, y0, z) : R→ R is a bijective mapping.
This is the case precisely if the function f(x, y, z) = f(x, y) does not depend on
z (cf. Lemma 4.2). Hence every continuous function f(x, y) with f(0, 0) = 0
determines a loop multiplication.
We represent the loop Lf in the coordinate system (x, y, z) 7→ g(x, y, 0, z)H . The
multiplication (x1, y1, z1) ∗ (x2, y2, z2) is determined if we apply g(x1, y1, 0, z1)H =
g(x1, y1, f(x1, y1), z1) to the left coset g(x2, y2, 0, z2)H and find in the image coset
the element of G which is in the set {g(x, y, 0, z)H;x, y, z ∈ R} . A direct
calculation gives the multiplication (2) in the assertion.
This loop is proper precisely if the set σ(G/H) = {g(x, y, f(x, y), z); x, y, z ∈ R}
generates the whole group G . The set σ(G/H) contains the subset

F = {g(x, y, f(x, y), 0); x, y ∈ R}

and the centre Z = {g(0, 0, 0, z); z ∈ R} of G . The set σ(G/H) generates G
if and only if the projection of the group 〈F 〉 generated by the set F onto the
set S = {g(k, l,m, 0); k, l,m ∈ R} has dimension 3. The set F contains the
subsets F1 = {g(x, 0, f(x, 0), 0); x ∈ R} and F2 = {g(0, y, f(0, y), 0); y ∈ R} .
Therefore σ(G/H) generates G if the projection of the group 〈F1〉 generated by
the set F1 onto the set S has dimension 2. This is the case if the group 〈F1〉
is not a 1-parameter subgroup. But F1 is a 1-parameter subgroup if and only
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if f(x, 0) = λx, λ ∈ R . In this case the set σ(G/H) generates G if there exists
an element h ∈ F2 such that the projection of the set hF1h

−1 onto the set S
is different from F1 . Since for every h = g(0, y, f(0, y), 0) with y 6= 0 we have
pr(g(0, y, f(0, y), 0)g(x, 0, λx, 0)g(0,−y,−f(0, y), 0)) = g(x, 0, λx−xy, 0) /∈ F1 the
set σ(G/H) generates G for arbitrary continuous function f(x, y) with f(0, 0) =
0.

The right translation ρ(a,b,c) of the loop Lf is the map

ρ(a,b,c) : (x, y, z) 7→ (x, y, z) ∗ (a, b, c) = (x+ a, y + b, z + c− af(x, y) +
1

2
a2y).

Its inverse map ρ−1(a,b,c) is given by

ρ−1(a,b,c) : (x, y, z) 7→ (x− a, y − b, z − c+ af(x− a, y − b)− 1

2
a2(y − b)).

Since ρ(0,d1,e1)ρ(0,d2,e2) = ρ(0,d1+d2,e1+e2) and

ρ(a,b,c)ρ(0,d,e)ρ
−1
(a,b,c) = ρ(0,d,e+a(f(x−a,y−b)−f(x−a,y−b+d))+ 1

2
a2d)

the group Gρ topologically generated by the right translations of Lf has a normal
subgroup Nρ = {ρ(0,d,e); d, e ∈ R} ∼= R2 . Because of ρ(a,b,c) = ρ(0,b,c)ρ(a,0,0) one
has Gρ = NρΣ, where Σ is the group generated by the set {ρ(a,0,0); a ∈ R} . The
group Gρ and hence the multiplication group Mult(Lf ) is a finite dimensional Lie
group precisely if the group Σ has finite dimension. As ρ(a2,0,0)ρ(a1,0,0) is the map
(x, y, z) 7→ (x+ a1 + a2, y, z − a1f(x, y)− a2f(x+ a1, y) + 1

2
(a21 + a22)y) the group

Σ is a subgroup of the transformation group Γ consisting of the maps

γ(t1,t2,αi,βi) : (x, y, z) 7→ (x+ t1, y, z +
∑

αif(x+ βi, y) +
1

2
t2y),

where t1, t2, αi, βi ∈ R . By Proposition 4.1 the group Γ and hence the group Σ
is a finite dimensional Lie group precisely if the function f(x, y) is a finite linear
combination of functions given by (1).
The group Gρ contains the 1-parameter subgroups S1 = {ρ(0,t,0) : (x, y, z) 7→
(x, y + t, z); t ∈ R} and S2 = {ρ(0,0,t) : (x, y, z) 7→ (x, y, z + t); t ∈ R} . Moreover,
if f(x, y) = f(y), then Gρ contains also the 1-parameter subgroups

Sa3 = {ρt(a,0,0) : (x, y, z) 7→ (x+ ta, y, z − taf(y) +
1

2
ta2y); t ∈ R}

for all a ∈ R . The tangent vectors of the 1-parameter subgroups Si , i = 1, 2, 3, at
1 ∈ Gρ are X1 = ∂

∂y
, X2 = ∂

∂z
, Xa

3 = ∂
∂x
−f(y) ∂

∂z
+ 1

2
ay ∂

∂z
for all a ∈ R\{0} . Hence

the Lie algebra gρ of the group Gρ is given by gρ = 〈 ∂
∂y
, ∂
∂z
, y ∂

∂z
, ∂
∂x
− f(y) ∂

∂z
〉 .

Already in the case that the function f(x, y) does not depend on the variable x
the group Gρ is different from the group F4 and hence for any function f(x, y)
the multiplication group Mult(Lf ) of the loop Lf cannot be isomorphic to F4 .

If f(x, y) = f(y) =
n∑
j=1

bny
j , bn ∈ R , then the tangent space of the manifold R =

{ρx;x ∈ Lf} at the identity of Gρ generates the Lie algebra gρ = { ∂
∂y
, ∂
∂z
, ∂
∂x
, y ∂

∂z
}
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if f(y) = 0 and gρ = { ∂
∂y
, ∂
∂z
, ∂
∂x
− bnyn ∂

∂z
, yn−1 ∂

∂z
, · · · , y ∂

∂z
} if bn 6= 0. As the Lie

algebra g of the group G = F4 topologically generated by all left translations of
the loop Lf is given by g = 〈 ∂

∂x
, x ∂

∂z
, ∂
∂z
, x2 ∂

∂z
〉 the set of the basis elements of the

Lie algebra of Mult(Lf ) is { ∂
∂x
, x2 ∂

∂z
, x ∂

∂z
, ∂
∂y
, yn ∂

∂z
, yn−1 ∂

∂z
, · · · , y ∂

∂z
, ∂
∂z
} , n ≥ 1.

Therefore the multiplication group Mult(Lf ) is the direct product F4×Z Fn+2 of
the elementary filiform Lie groups F4 and Fn+2 , n ≥ 1, with amalgamated centre
Z . Hence the assertion a) is proved.

Now we consider the case that H = H2 = {g(v, 0, 0, 0); v ∈ R} . Since all ele-
ments of G have a unique decomposition as g(0, x, y, z)g(v, 0, 0, 0), any continu-
ous function h : R3 → R; (x, y, z) 7→ h(x, y, z) determines a continuous section
σ : G/H → G given by

σ : g(0, x, y, z)H 7→ g(0, x, y, z)g(h(x, y, z), 0, 0, 0) =

g(h(x, y, z), x, y − xh(x, y, z), z − yh(x, y, z) +
1

2
xh(x, y, z)2).

The section σ is sharply transitive if and only if for every triples (x1, y1, z1),
(x2, y2, z2) ∈ R3 there exists precisely one triple (x, y, z) ∈ R3 such that

g(h(x, y, z), x, y − xh(x, y, z), z − yh(x, y, z) +
1

2
xh(x, y, z)2)g(0, x1, y1, z1) =

g(0, x2, y2, z2)g(t, 0, 0, 0)

for a suitable t ∈ R . This gives the equations x = x2 − x1 , t = h(x2 − x1, y, z),

y + x1h(x2 − x1, y, z) = y2 − y1, (4)

z + y1h(x2 − x1, y, z) +
1

2
x1h(x2 − x1, y, z)2 = z2 − z1. (5)

For x1 = 0 equation (4) yields that y = y2 − y1 and equation (5) reduces to

z = z2 − z1 − y1h(x2, y2 − y1, z).

This equation has a unique solution for z if and only if for every x0 = x2 ,
y0 = y2 − y1 and y1 ∈ R the function f : z 7→ z + y1h(x0, y0, z) : R → R
is a bijective mapping. By Lemma 4.2 this is the case precisely if the function
h(x, y, z) = h(x, y) does not depend on z . Using this, equations (4) and (5) give

y = y2 − y1 − x1h(x2 − x1, y), (6)

z = z2 − z1 − y1h(x2 − x1, y)− 1

2
x1h(x2 − x1, y)2. (7)

Equation (6) has a unique solution for y precisely if for every x0 = x2 − x1 and
x1 ∈ R the function f : y 7→ y + x1h(x0, y) : R→ R is a bijective mapping. This
is the case if and only if the function h(x, y) = h(x) does not depend on y (cf.
Lemma 4.2). But then z = z2 − z1 − y1h(x2 − x1)− 1

2
x1h(x2 − x1)2 is the unique

solution of (7). Hence each continuous function h(x) with h(0) = 0 determines a
loop multiplication.
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The multiplication of the loop Lh can be expressed in the coordinate system
(x, y, z) 7→ g(0, x, y, z)H if we apply σh(g(0, x1, y1, z1)H) =

= g(h(x1), x1, y1 − x1h(x1), z1 − y1h(x1) +
1

2
x1h(x1)

2)

to the left coset g(0, x2, y2, z2)H and find in the image coset the element of G
which lies in the set {g(0, x, y, z)H; x, y, z ∈ R} . A direct computation yields the
multiplication (3) in the assertion. This loop is proper precisely if the set

σ(G/H) = {g(h(x), x, y − xh(x), z − yh(x) +
1

2
xh(x)2);x, y, z ∈ R}

generates the whole group G . The set σ(G/H) contains the commutator subgroup
G′ = {g(0, 0, y, z); y, z ∈ R} of G and the subset

F = {g(h(x), x,−xh(x),
1

2
xh(x)2); x ∈ R}.

As g(h(x1), x1,−x1h(x1),
1
2
x1h(x1)

2)g(h(x2), x2,−x2h(x2),
1
2
x2h(x2)

2) =

g(h(x1) + h(x2), x1 + x2,−x1h(x1)− (x2 + x1)h(x2),

1

2
(x1 + x2)h(x2)

2 +
1

2
x1h(x1)

2 + x1h(x1)h(x2)),

the group G′ and the subgroup 〈F 〉 topologically generated by the set F generate
G precisely if the mapping assigning to the second component of any element of
〈F 〉 its first component is not a homomorphism. This occurs if and only if the
function h is non-linear.

The right translation ρ(a,b,c) of the loop Lh is the map

(x, y, z) 7→ (x, y, z) ∗ (a, b, c) = (x+ a, y + b+ ah(x), z + c+ bh(x) +
1

2
ah(x)2).

Its inverse map ρ−1(a,b,c) is given by

(x, y, z) 7→ (x− a, y − b− ah(x− a), z − c− bh(x− a)− 1

2
ah(x− a)2).

As ρ(0,d2,e2)ρ(0,d1,e1) = ρ(0,d1+d2,e1+e2) and ρ−1(a,b,c)ρ(0,d,e)ρ(a,b,c) = ρ(0,d,e+d(h(x+a)−h(x)))
the group Gρ topologically generated by all right translations of Lh contains an
abelian normal subgroup Nρ = {ρ(0,d,e); d, e ∈ R} . Because of ρ(a,b,c) = ρ(0,b,c)ρ(a,0,0)
one has Gρ = NρΣ, where Σ is the group generated by the set {ρ(a,0,0); a ∈ R} .
The group Gρ and hence the multiplication group Mult(Lh) is a finite dimensional
Lie group precisely if the group Σ has finite dimension. Since ρ(a2,0,0)ρ(a1,0,0) is the
map (x, y, z) 7→ (x+a1 +a2, y+a1h(x)+a2h(x+a1), z+ 1

2
a1h(x)2 + 1

2
a2h(x+a1)

2)
the group Σ is a subgroup of the transformation group Γ consisting of the maps

γt,αi,βi : (x, y, z) 7→ (x+ t, y +
∑

αih(x+ βi), z +
1

2

∑
αih(x+ βi)

2),
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where t, αi, βi ∈ R . It follows from Theorem in [2], p. 747, that the group Γ and
hence Σ is a finite dimensional Lie group precisely if the function h(x) has the
form as in the assertion b). Hence the assertion b) is proved.

If the group G is also the group topologically generated by all left and right
translations of a topological loop Lh defined in case b), then the inner mapping
group of Lh is the subgroup Inn(Lh) = H2 = {g(v, 0, 0, 0); v ∈ R} . Since the loop
Lh satisfies the conditions of Proposition 3.8 a) the group G = Mult(Lh) = PoQ ,
such that P = Z × Inn(Lh) is a 2-dimensional abelian normal subgroup of G
containing the centre Z of G . The only abelian normal subgroup with the desired
properties is P = {g(0, 0, x3, x4);x3, x4 ∈ R} . But H2 is not contained in P . This
contradiction shows that G is not the multiplication group of a loop Lh . Hence
the assertion c) is proved.

5. 3-dimensional topological loops with 2-dimensional centre

Let L be a proper connected simply connected topological loop which has a 2-
dimensional centre. By Proposition 3.7 the multiplication group Mult(L) has a
2-dimensional centre ∼= R2 and Mult(L) contains an abelian normal subgroup
M of codimension 1. If dim Mult(L) ≤ 5, then according to the classification of
nilpotent Lie algebras in [10], pp. 650-652, the group Mult(L) is isomorphic either
to the direct products F3×R or to F4×R , where Fn+2 is the elementary filiform
Lie group of dimension n + 2, or it is the unique 5-dimensional indecomposable
simply connected nilpotent Lie group such that its 2-dimensional centre coincides
with the commutator subgroup.

First we classify all 3-dimensional simply connected topological loops L
having the group F3 ×R as the group topologically generated by the left transla-
tions of L . The multiplication of the loops in this class depends on a continuous
real function v(x, z) of two variables. The multiplication group of the loops Lv is a
Lie group precisely if the function v(x, z) derives from an exponential polynomial.
The function v(x, z) = v(x) is a polynomial of degree n if and only if the multipli-
cation group of Lv is isomorphic to the group Fn+2×R , n > 1. Moreover, we give
examples for 3-dimensional topological loops L such that the group topologically
generated by all left translations is isomorphic to the group Fm+2×R with m > 1
and coincides with the multiplication group of L .

Proposition 5.1. (i) Every 3-dimensional proper connected simply connected
topological loop L having the group F3×R as the group topologically generated by
the left translations of L is given by the multiplication

(x1, y1, z1) ∗ (x2, y2, z2) = (x1 + x2, y1 + y2 − x2v(x1, z1), z1 + z2), (8)

where v : R2 → R is a continuous function with v(0, 0) = 0 such that the
function v does not fulfill the identities v(x, 0) = cx and v(0, z) = dz , c, d ∈
R, simultaneously. The multiplication group Mult(Lv) of the loop Lv is a Lie
group precisely if v(x, z) is a finite linear combination of functions given by (1).
Moreover, the group Mult(Lv) is isomorphic to Fn+2 ×R with n ≥ 2 if and only
if the continuous function v : R2 → R depends only on the variable x and v(x) is
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a polynomial of degree n.
(ii) Let L be a connected simply connected topological loop L = (R3, ∗) with the
multiplication

(x1, y1, z1) ∗ (x2, y2, z2) =

(x1 + x2, y1 + y2 − x2v1(x1, z1) + · · ·+ (−1)n

n!
xn2vn(x1, z1), z1 + z2), (9)

where vi : R2 → R, i = 1, 2, · · · , n, are continuous functions with vi(0, 0) = 0 such
that the function vn does not fulfill the identities vn(x, 0) = cx and vn(0, z) = dz ,
c, d ∈ R, simultaneously. Then the group G topologically generated by the left
translations of Lv1,··· ,vn is isomorphic to the group Fn+2 × R, n ≥ 1. For n > 1
the group G coincides with the multiplication group Mult(Lv1,··· ,vn) of Lv1,··· ,vn if
and only if all functions vi , i = 1, 2, · · · , n, depend only on the variable x and
there are continuous functions si : R→ R with si(0) = 0, i = 1, · · · , n, such that
for all x, k ∈ R the equation

−x(s1(k) + v1(k)) +
x2

2!
(s2(k) + v2(k)) + · · ·+ (−1)n

xn

n!
(sn(k) + vn(k))

= −kv1(x) +
k2

2!
v2(x) + · · ·+ (−1)n

kn

n!
vn(x) (10)

holds.
(iii) Every loop Lv1,··· ,vn defined by (9) such that the multiplication group of Lv1,··· ,vn
coincides with the group topologically generated by the left translations of Lv1,··· ,vn
is the direct product of the group R and a topological loop (M, ◦) given by the
multiplication

(x1, y1) ◦ (x2, y2) = (x1 + x2, y1 + y2 − x2v1(x1) + · · ·+ (−1)n

n!
xn2vn(x1)).

The loop M has the elementary filiform Lie group Fn+2 , n ≥ 2, as the multipli-
cation group (cf. Theorem 2, [5], p. 420).

Proof. We can represent the elements of the Lie group G as the matrices

g(c, a1, a2, · · · , an−1, an, b, d) =

1 a1 a2 . . . an−1 an b d
0 1 0 0 . . . 0 −c 0

0 −c 1 0 . . . 0 c2

2! 0

0 c2

2! −c 1 . . . 0 − c3

3! 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 (−1)n−1

(n−1)! c
n−1 (−1)n−2

(n−2)! c
n−2 . . . (−1)

(n−(n−1))!c
1 1 (−1)n

n! cn 0

0 0 0 . . . 0 0 1 0
0 0 0 . . . 0 0 0 1


, (11)

with ai, b, c, d ∈ R, i = 1, 2, · · · , n .
First we treat the group G = F3 × R . The Lie algebra g of G is given by the
basis {e1, e2, e3, e4} with [e1, e2] = e3 and [e4, ei] = 0, (i = 1, 2, 3). The subgroup
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exp te3 , t ∈ R , is the commutator subgroup of G , the subgroup exp(te3 + se4),
t, s ∈ R , is the centre of G . Hence each automorphism ϕ of g has the form

ϕ(e1) = a1e1 + a2e2 + a3e3 + a4e4, ϕ(e2) = b1e1 + b2e2 + b3e3 + b4e4,

ϕ(e3) = (a1b2 − a2b1)e3, ϕ(e4) = c1e3 + c2e4,

with a1b2 − a2b1 6= 0, c2 6= 0, a3, a4, b3, b4, c1 ∈ R .
Let H be a subgroup of G which is isomorphic to R and which is not normal
in G . Then H has the form H = exp t(αe1 + βe2 + γe3 + δe4), t ∈ R , with
α2 + β2 = 1. We can change H by an automorphism of G such that H has the
form H = exp te2 = {g(0, v, 0, 0); v ∈ R} . Since all elements of G have a unique
decomposition g(x, 0, y, z)g(0, v, 0, 0) the continuous function v(x, y, z) determines
a continuous section σ : G/H → G defined by g(x, 0, y, z)H 7→ g(x, v(x, y, z), y, z),
where H = {g(0, t, 0, 0); t ∈ R} . The set σ(G/H) acts sharply transitively on
the factor space G/H precisely if for all triples (x1, y1, z1), (x2, y2, z2) ∈ R3 the
equation

g(x, v(x, y, z), y, z)g(x1, 0, y1, z1) = g(x2, 0, y2, z2)g(0, t, 0, 0) (12)

has a unique solution (x, y, z) ∈ R3 , where g(0, t, 0, 0) is a suitable element of H .
From (12) we obtain the equations x = x2 − x1 , z = z2 − z1 , t = v(x, y, z),
0 = y + y1 − y2 − x1v(x, y, z). Hence equation (12) has a unique solution if
and only if for every x0 = x2 − x1 , z0 = z2 − z1 and x1 ∈ R the function
f : y 7→ y − x1v(x0, y, z0) : R → R is a bijective mapping. This happens pre-
cisely if the function v(x, y, z) does not depend on the variable y (cf. Lemma 4.2).
Therefore every continuous function v(x, z) with v(0, 0) = 0 determines a loop
multiplication.
The multiplication (x1, y1, z1) ∗ (x2, y2, z2) of the loop L in the coordinate sys-
tem (x, y, z) 7→ g(x, 0, y, z)H is determined if we apply σ(g(x1, 0, y1, z1)H) =
g(x1, v(x1, z1), y1, z1) to the left coset g(x2, 0, y2, z2)H and find in the image coset
the element of G which lies in the set {g(x, 0, y, z)H; x, y, z ∈ R} . A direct
computation gives the multiplication (8) in the assertion (i).

This loop is proper precisely if σ(G/H) = {g(x, v(x, z), y, z); x, y, z ∈ R} gener-
ates the group G . The set σ(G/H) contains the subset F = {g(x, v(x, 0), 0, 0); x ∈
R} and the subgroup K = {g(0, v(0, z), y, z); y, z ∈ R} of G . The group 〈F 〉
topologically generated by the set F and the group K generate G if the mapping
assigning to the first component of any element of 〈F 〉 its second component is
not a homomorphism (Lemma 8 in [5], p. 426). This occurs if and only if the
function v(x, 0) is non-linear. Now we assume that v(x, 0) = cx , c ∈ R . Then
the set σ(G/H) does not generate G if and only if the function v(0, z) is linear.
Hence the set σ(G/H) generates G if the function v(x, z) does not satisfy the
identities v(x, 0) = cx and v(0, z) = dz , c, d ∈ R , simultaneously.

The right translation ρ(a,b,c) of the loop Lv is the map

ρ(a,b,c) : (x, y, z) 7→ (x, y, z) ∗ (a, b, c) = (x+ a, y + b− av(x, z), z + c).

Its inverse map ρ−1(a,b,c) is given by

ρ−1(a,b,c) : (x, y, z) 7→ (x− a, y − b+ av(x− a, z − c), z − c).
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Since ρ(0,d1,e1)ρ(0,d2,e2) = ρ(0,d1+d2,e1+e2) and

ρ(a,b,c)ρ(0,d,e)ρ
−1
(a,b,c) = ρ(0,d+a(v(x−a,z−c)−v(x−a,z−c+e)),e)

the group Gρ generated by the right translations of Lv has a normal subgroup
Nρ = {ρ(0,d,e); d, e ∈ R} isomorphic to R2 . As ρ(a,b,c) = ρ(0,b,c)ρ(a,0,0) one has
Gρ = NρΣ, where Σ is the group generated by the set {ρ(a,0,0); a ∈ R} . The Lie
group Gρ and hence the multiplication group Mult(Lv) has finite dimension if
and only if the group Σ is a finite dimensional Lie group. Since ρ(a2,0,0)ρ(a1,0,0) :
(x, y, z) 7→ (x + a1 + a2, y − a1v(x, z) − a2v(x + a1, z), z) the group Σ is the
transformation group consisting of the maps

γ(t,αi,βi) : (x, y, z) 7→ (x+ t, y +
∑

αiv(x+ βi, z), z),

where t, αi, βi ∈ R . By Proposition 4.1 the group Σ is a finite dimensional Lie
group precisely if the function v(x, z) is a finite linear combination of functions
given by (1).

Now we prove that the function v(x, z) = v(x) is a polynomial of degree n precisely
if the multiplication group Mult(Lv) of the loop Lv is the direct product Fn+2×R
with n ≥ 2. Let K be the group of matrices (11) with n ≥ 1 and let S be
the subgroup {g(0, t1, t2, · · · , tn, 0, 0); ti ∈ R, i = 1, 2, · · · , n} . Then the group
K is isomorphic to Fn+2 × R , n ≥ 1. The set Λv = {λ(x,y,z); (x, y, z) ∈ Lv}
of all left translations of the loop Lv defined by (8) in the group K is Λv =
{g(x, v(x, z), 0, · · · , 0, y, z); x, y, z ∈ R} . An arbitrary transversal T of the group
S in the group K has the form

T = {g(k, h1(k, l,m), · · · , hn(k, l,m), l,m); k, l,m ∈ R},

where hj : R3 → R , j = 1, · · · , n, are continuous functions with hj(0, 0, 0) = 0.
According to Lemma 2.1, the group K is isomorphic to the multiplication group
Mult(Lv) of the loop Lv precisely if the set {a−1b−1ab; a ∈ T, b ∈ Λv} is contained
in S and the set {Λv, T} generates the group K . The products a−1b−1ab with
a ∈ T and b ∈ Λv are elements of S if and only if the equation

kv(x, z) = (13)

(−1)n+1x
n

n!
hn(k, l,m) + (−1)n

xn−1

(n− 1)!
hn−1(k, l,m) + · · ·+ (−1)2xh1(k, l,m)

holds for all x, z, k, l,m ∈ R . Since the right hand side of (13) does not depend on
the variable z and the left hand side does not depend on the variables l and m
we have v(x, z) = v(x) and hi(k, l,m) = hi(k) for all 1 ≤ i ≤ n . Hence for any
k 6= 0 identity (13) reduces to

v(x) = (−1)n+1x
n

n!

hn(k)

k
+ (−1)n

xn−1

(n− 1)!

hn−1(k)

k
+ · · ·+ (−1)2x

h1(k)

k
.

If n = 1 for any x 6= 0, k 6= 0 we obtain v(x)
x

= h1(k)
k

= c = const(6= 0), and since
v(0) = 0 this implies v(x) = cx . In this case the real function v is linear, therefore
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Λv does not generate K and the group K = F3 ×R cannot be the multiplication
group of the loop Lv .

Now let n ≥ 2. Since the polynomials x, x2, · · · , xn are linearly indepen-
dent, the function v : R → R depends only on the variable x and the functions
hi : R → R are independent of x , the last equation is satisfied if and only if
hi(k) = aik with ai ∈ R for all 1 ≤ i ≤ n . By Lemma 8 in [5], p. 426, the set
{Λv, T} generates the group K if and only if an is different from 0, since then the
Lie algebra of the non-commutative group generated by the set {Λv, T} contains
elements of the shape e2 + s with s ∈ 〈e3, e4, · · · , en+2〉 . Hence the function v(x)
is a polynomial of degree n and the assertion (i) is proved.

Now we deal with the assertion (ii). Let G be the group Fn+2 × R , n ≥ 1, and
let σ : G/H → G be the continuous section

g(x, 0, · · · , 0, y, z)H 7→ g(x, v1(x, z), v2(x, z), · · · , vn(x, z), y, z), (14)

where H = {g(0, t1, t2, · · · , tn, 0, 0); ti ∈ R, i = 1, · · · , n} and vi : R2 → R are
continuous functions with vi(0, 0) = 0 for all i = 1, · · · , n . The set σ(G/H)
acts sharply transitively on the factor space G/H because of for all (x1, y1, z1),
(x2, y2, z2) ∈ R3 the equation

g(x, v1(x, z), v2(x, z), · · · , vn(x, z), y, z)g(x1, 0, · · · , 0, y1, z1) =

g(x2, 0, · · · , 0, y2, z2)g(0, t1, t2, · · · , tn, 0, 0)

has a unique solution x = x2 − x1 , z = z2 − z1 , y = y2 − y1 + x1v1(x, z) +

· · · + (−1)n+1

n!
xn1vn(x, z) with the real numbers ti =

n∑
k=i

(−1)k−i
xk−i
1

(k−i)!vk(x, z) for all

i = 1, 2, · · · , n . Hence the section σ given by (14) determines a 3-dimensional
topological loop L . A direct calculation yields that the multiplication of the loop
L in the coordinate system (x, y, z) 7→ g(x, 0, · · · , 0, y, z)H is given by (9) in the
assertion (ii).
The group topologically generated by the left translations of the loop L is isomor-
phic to G = Fn+2 × R if and only if the set

σ(G/H) = {g(x, v1(x, z), v2(x, z), · · · , vn(x, z), y, z); x, y, z ∈ R}

generates the whole group G . The set σ(G/H) contains the subset

F = {g(x, v1(x, 0), v2(x, 0), · · · , vn(x, 0), 0, 0); x ∈ R}

and the subgroup K = {g(0, v1(0, z), v2(0, z), · · · , vn(0, z), y, z); y, z ∈ R} of G .
The group 〈F 〉 topologically generated by the set F and the group K generate G
if 〈F 〉 is a non-commutative subgroup of codimension 2 in G . Using Lemma 8 in
[5], p. 426, this is the case precisely if the mapping assigning to the first component
of any element of 〈F 〉 its (n + 1)-th component is not a homomorphism. This
occurs if and only if the function vn(x, 0) is non-linear. Now we assume that
vn(x, 0) = cx , c ∈ R . Then the set σ(G/H) does not generate G if and only if
the function vn(0, z) is linear. Hence the set σ(G/H) generates G if the function
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vn(x, z) does not satisfy the identities vn(x, 0) = cx and vn(0, z) = dz , c, d ∈ R ,
simultaneously.

Now let n > 1. By Proposition 18.16 in [13], p. 246, the Lie group
G = Fn+2 × R is the group topologically generated by all translations of the
loop L given by the multiplication (9) if and only if for every y ∈ L the map
f(y) : x 7→ yλxλ

−1
y : L→ L is an element of H = {g(0, t1, · · · , tn, 0, 0); ti ∈ R, i =

1, · · · , n} . This is equivalent to the condition that the mapping

g(x, 0, · · · , 0, y, z)H 7→ [g(k, v1(k,m), v2(k,m), · · · , vn(k,m), l,m)]−1·

[g(x, v1(x, z), v2(x, z), · · · , vn(x, z), y, z)]g(k, 0, · · · , 0, l,m)H

has the form

g(x, 0, · · · , 0, y, z)H 7→

g(0, s1(k, l,m), · · · , sn(k, l,m), 0, 0)g(x, 0, · · · , 0, y, z)H

with suitable functions si(k, l,m), 1 ≤ i ≤ n . This gives the equation

g(x, v1(x, z), · · · , vn(x, z), y, z)g(k, t1, · · · , tn, l,m) =

g(k, v1(k,m), · · · , vn(k,m), l,m)g(0, s1(k, l,m), · · · , sn(k, l,m), 0, 0)·

g(x, 0, · · · , 0, y, z) (15)

for a suitable element g(0, t1, · · · , tn, 0, 0) ∈ H . Equation (15) yields

ti =
n∑
j=i

(−1)j−i
1

(j − i)!
[xj−i(sj(k, l,m) + vj(k,m))− kj−ivj(x, z)]

for all i = 1, 2, · · · , n and

−x(s1(k, l,m) + v1(k,m)) + · · ·+ (−1)n

n!
xn(sn(k, l,m) + vn(k,m)) =

−kv1(x, z) +
k2

2!
v2(x, z) + · · ·+ (−1)n

n!
knvn(x, z). (16)

Since the right hand side of equation (16) does not depend on the variables l and m
and the left hand side does not depend on the variable z we obtain vi(x, z) = vi(x),
si(k, l,m) = si(k) for all i = 1, · · · , n . Hence equation (16) is satisfied if and only
if there are continuous functions si : R → R , i = 1, · · · , n , depending on the
variable k such that for all x, k ∈ R equation (10) holds. Putting k = 0 into
(10) we have −xs1(0) + x2

2!
s2(0) + · · · + (−1)n x

n

n!
sn(0) = 0. As the polynomials

x, x2, · · · , xn are linearly independent this equation yields that si(0) = 0 for all
1 ≤ i ≤ n . This proves the assertion (ii).

The assertion (iii) follows from the fact that if the multiplication group as well
as the group topologically generated by the left translations of a loop Lv1,··· ,vn is
isomorphic to the group Fn+2×R , n ≥ 2, then the functions vi(x, z), i = 1, · · · , n
depend only on the variable x (see assertion (ii)).
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If we choose for all 1 ≤ i ≤ n the functions si(k) = 0, then equation (10) in
Proposition 5.1 is symmetric in the variables x and k . Hence multiplication (9)
with vi(x, z) = vi(x) = aix

i , ai ∈ R , an 6= 0, gives examples for 3-dimensional
topological loops L such that the group topologically generated by all left trans-
lations is isomorphic to the group Fn+2 × R with n > 1 and coincides with the
multiplication group of L .

Now we deal with the 5-dimensional indecomposable simply connected nilpotent
Lie group G such that its 2-dimensional centre coincides with the commutator
subgroup. This group is the group topologically generated by the left translations
of 3-dimensional topological loops. We classify these loops L in the case that
the stabilizer H of the identity e ∈ L is a 2-dimensional abelian subgroup of G .
But the group G cannot be the multiplication group of 3-dimensional connected
topological loops.

Proposition 5.2. Let G be the 5-dimensional indecomposable simply connected
nilpotent Lie group such that its 2-dimensional centre coincides with its commuta-
tor subgroup. Up to automorphisms of G each 2-dimensional abelian subgroup H
of G which does not contain any non-trivial normal subgroup of G has the form
H = {g(0, k, 0, l, 0); k, l ∈ R}. Every 3-dimensional connected simply connected
topological loop L having G as the group topologically generated by the left trans-
lations of L and H as the stabilizer of e ∈ L in G is given by the multiplication

(x1, y1, z1) ∗ (x2, y2, z2) =

(x1 + x2, y1 + y2 − x2v1(x1, y1, z1), z1 + z2 − x2v2(x1, y1, z1)), (17)

where vi : R3 → R, i = 1, 2, are continuous functions with vi(0, 0, 0) = 0 such
that for all x1, x2, y1, y2, z1, z2 ∈ R the equations

0 = y + y1 − y2 −
1

2
(x2 + x1)v1(x2 − x1, y, z) (18)

0 = z + z1 − z2 − x1v2(x2 − x1, y, z) (19)

have a unique solution (y, z) ∈ R2 and none of the functions vi(x, y, z) satisfies
the identities vi(x, 0, 0) = ax and vi(0, y, z) = by+ cz , a, b, c ∈ R, simultaneously.

Proof. According to [10], p. 651, the Lie algebra g of G is given by the basis
{e1, e2, e3, e4, e5} with [e1, e2] = e3 , [e1, e4] = e5 . Using the Campbell-Hausdorff
series (cf. [18]) the Lie group G can be represented on R5 by the multiplication

g(x1, x2, x3, x4, x5)g(y1, y2, y3, y4, y5) = (20)

g(x1 + y1, x2 + y2, x3 + y3 +
1

2
(x1y2 − x2y1), x4 + y4, x5 + y5 +

1

2
(x1y4 − x4y1)).

The subgroup {exp(te3 + ue5); t, u ∈ R} = {g(0, 0, x3, 0, x5);x3, x5 ∈ R} is the
centre Z(G) and also the commutator subgroup of G . Let H be a 2-dimensional
abelian subgroup of G which does not contain any non-trivial normal subgroup of
G . Then the Lie algebra h of H is given by

h = 〈e2 + c1e3 + d1e5, e4 + c2e3 + d2e5〉, ci, di ∈ R, i = 1, 2.



Figula 23

The automorphism α of the Lie algebra g given by α(e1) = e1 , α(e3) = e3 ,
α(e5) = e5 , α(e2) = e2 − c1e3 − d1e5 , α(e4) = e4 − c2e3 − d2e5 allows us
to assume that the group H has the form H = {exp(a2e2 + a4e4); a2, a4 ∈
R} = {g(0, k, 0, l, 0); k, l ∈ R} . Since every element of G has a unique decom-
position g(x, 0, y, 0, z)g(0, k, 0, l, 0) the continuous functions vi(x, y, z), i = 1, 2,
determine a continuous section σ : G/H → G , g(x, 0, y, 0, z)H 7→

g(x, v1(x, y, z), y +
1

2
xv1(x, y, z), v2(x, y, z), z +

1

2
xv2(x, y, z)). (21)

The set σ(G/H) acts sharply transitively on the factor space G/H precisely if for
every x1, y1, z1, x2, y2, z2 ∈ R there exists a unique triple (x, y, z) ∈ R3 such that

g(x, v1(x, y, z), y +
1

2
xv1(x, y, z), v2(x, y, z), z +

1

2
xv2(x, y, z))g(x1, 0, y1, 0, z1)

= g(x2, t1, y2 +
1

2
x2t1, t2, z2 +

1

2
x2t2) (22)

for suitable t1, t2 ∈ R . Equation (22) yields that x = x2 − x1 , t1 = v1(x, y, z),
t2 = v2(x, y, z) and equations (18) and (19) in the assertion must have a unique
solution (y, z) ∈ R2 . A direct calculation shows that in the coordinate system
(x, y, z) 7→ g(x, 0, y, 0, z)H the multiplication of the loop Lv1,v2 corresponding to
the continuous functions vi(x, y, z), i = 1, 2, can be expressed as (17) in the
assertion.

The loop L is proper if and only if the image set σ(G/H) of the section σ
given by (21) generates the group G . The set σ(G/H) contains the subset

F = {g(x, v1(x, 0, 0),
1

2
xv1(x, 0, 0), v2(x, 0, 0),

1

2
xv2(x, 0, 0)); x ∈ R}

and the abelian normal group K = {g(0, v1(0, y, z), y, v2(0, y, z), z); y, z ∈ R} of
G . The group 〈F 〉 topologically generated by the set F and the group K generate
G if vi(x, 0, 0) 6= aix , for i = 1, 2, a1, a2 ∈ R . If there is i ∈ {1, 2} such that the
function vi(x, 0, 0) = ax , a ∈ R , then σ(G/H) does not generate G if and only if
vi(0, y, z) = by + cz , b, c ∈ R and the assertion follows.

Proposition 5.3. There is no 3-dimensional proper connected topological loop
L having the 5-dimensional Lie group G defined by the multiplication (20) in
Proposition 5.2 as its multiplication group.

Proof. If there exits a loop L with the desired properties, then there is also a
simply connected loop with such properties. By Lemma 3.3 we may assume that
L is homeomorphic to R3 . If the group G(l) topologically generated by all left
translations of L coincides with the multiplication group Mult(L) of L and both
groups are isomorphic to the group G of the assertion, then the inner mapping
group Inn(L) of L coincides with the group H = {g(0, k, 0, l, 0); k, l ∈ R} of
Proposition 5.2. Moreover, the multiplication of the loop L is given by (17). The
set Λv1,v2 = {λ(x,y,z); (x, y, z) ∈ L} of all left translations of the loop L in the
group G has the form

{g(x, v1(x, y, z), y +
1

2
xv1(x, y, z), v2(x, y, z), z +

1

2
xv2(x, y, z));x, y, z ∈ R}.
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An arbitrary transversal T of the group Inn(L) in G has the form

T = {g(m,h1(m,n, u), n, h2(m,n, u), u);m,n, u ∈ R},

where hi : R3 → R , i = 1, 2, are continuous functions with hi(0, 0, 0) =
0. By Lemma 2.1 the group G is isomorphic to Mult(L) precisely if the set
{a−1b−1ab; a ∈ Λv1,v2 , b ∈ T} is contained in Inn(L) and the set {Λv1,v2 , T}
generates the group G . The products a−1b−1ab with a ∈ Λv1,v2 and b ∈ T are
elements of Inn(L) if and only if the equations

mv1(x, y, z) = xh1(m,n, u), mv2(x, y, z) = xh2(m,n, u)

are satisfied for all m,n, u, x, y, z ∈ R . Since the right-hand side of both equations
are independent of y and z and the left-hand side does not depend on n and u
we obtain vi(x, y, z) = vi(x), hi(m,n, u) = hi(m) and hence mvi(x) = xhi(m) for
all i = 1, 2. This yields for any m 6= 0, x 6= 0 that

v1(x)

x
=
h1(m)

m
= c1,

v2(x)

x
=
h2(m)

m
= c2,

where c1, c2 ∈ R\{0} . Since v1(0) = v2(0) = 0 = h1(m) = h2(m) this implies
vi(x) = cix , hi(m) = cim , i = 1, 2. But then the set {Λv1,v2 , T} does not generate
the group G . Hence there is no topological loop L homeomorphic to R3 such that
the multiplication group Mult(L) of L as well as the group G(l) topologically
generated by all left translations of L coincide with the group G .

Now we assume that there is a topological loop L homeomorphic to R3 such that
the group G(l) topologically generated by the left translations of L has dimension
4 and the multiplication group Mult(L) of L is isomorphic to the group G .
As the group G has a 2-dimensional centre, according to Lemma 3.6 (b) the
inner mapping group Inn(L) of L is a 2-dimensional abelian subgroup of G . By
Proposition 5.2 we may assume that the 2-dimensional abelian subgroup Inn(L)
of G has the form Inn(L) = {g(0, k, 0, l, 0); k, l ∈ R} . Since G(l) < G and there
is no subgroup of G isomorphic to the filiform Lie group F4 the group G(l) must
be the direct product F3 ×R . Each loop L homeomorphic to R3 and having the
group F3 × R as the group generated by the left translations are isomorphic to a
loop Lv given in Proposition 5.1 (i). We prove that none of these loops Lv has
the group G as its multiplication group Mult(Lv). We may assume that the set
Λv = {λ(x,y,z); (x, y, z) ∈ Lv} of all left translations of Lv in the group G has the
form

Λv = {g(x, v(x, z), y +
1

2
xv(x, z), 0, z);x, y, z ∈ R}.

An arbitrary transversal T of the group Inn(L) in G has the form

T = {g(m,h1(m,n, u), n, h2(m,n, u), u);m,n, u ∈ R},

where hi : R3 → R , i = 1, 2, are continuous functions with hi(0, 0, 0) = 0.
By Lemma 2.1 the group G is isomorphic to Mult(Lv) precisely if the set
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{a−1b−1ab; a ∈ Λv, b ∈ T} is contained in Inn(L) and the set {Λv, T} gener-
ates the group G . The products a−1b−1ab with a ∈ Λv and b ∈ T are elements of
Inn(L) if and only if the equations

mv(x, z) = xh1(m,n, u), xh2(m,n, u) = 0

are satisfied for all m,n, u, x, z ∈ R . The last equation gives h2(m,n, u) = 0. But
then the set {Λv, T} does not generate the group G . This contradiction gives the
assertion.

6. 3-dimensional topological loops with 1-dimensional centre

In this section we show that the 3-dimensional connected simply connected topo-
logical loops Lv(x,z) with multiplication (8) given in Proposition 5.1 (i) have the
direct product Fn+2 ×Z Fm+2 of the elementary filiform Lie groups Fn+2 and
Fm+2 with amalgamated centre Z as the multiplication group if and only if the
continuous function v(x, z) occuring in (8) is a polynomial in two variables the
degree of which as polynomial in x , respectively in y is n , respectively m , where
(n,m) 6= (1, 1). For these loops the group topologically generated by the left trans-
lations is isomorphic to F3 × R . Here we give for any m > 1, n > 1 examples of
3-dimensional topological loops L for which the group topologically generated by
the left translations is isomorphic to the group Fn+2 ×Z Fm+2 and coincides with
the multiplication group of L .

Proposition 6.1. (i) Let Lv be a connected simply connected topological loop
Lv = (R3, ∗) defined by the multiplication (8) in Proposition 5.1. The mul-
tiplication group Mult(Lv) of the loop Lv is isomorphic to the direct product
Fn+2 ×Z Fm+2 of the elementary filiform Lie groups Fn+2 and Fm+2 with amal-
gamated centre Z precisely if the function v(x, z) has the form v(x, z) = anx

n +
· · ·+ a1x+ bmz

m + · · ·+ b1z , where (n,m) ∈ N2\{(1, 1)}, ai, bj ∈ R, i = 1, · · · , n,
j = 1, · · · ,m, an 6= 0, bm 6= 0.
(ii) Let L be a connected simply connected topological loop L = (R3, ∗) with the
multiplication

(x1, y1, z1) ∗ (x2, y2, z2) =

(x1 + x2, y1 + y2, z1 + z2 − x2v1(x1, y1) +
x22
2!

v2(x1, y1) + · · ·+ (−1)n

n!
xn2vn(x1, y1)−

−y2u1(x1, y1) +
y22
2!
u2(x1, y1) + · · ·+ (−1)m

m!
ym2 um(x1, y1)), (23)

where vi : R2 → R, uj : R2 → R, i = 1, 2, · · · , n, j = 1, 2, · · · ,m, are
continuous functions with vi(0, 0) = 0, uj(0, 0) = 0 such that the functions
vn as well as um do not fulfill the identities vn(x, 0) = a1x, vn(0, y) = a2y ,
um(x, 0) = a3x, um(0, y) = a4y , ai ∈ R, i = 1, 2, 3, 4, simultaneously. Then the
group G topologically generated by the left translations of L is isomorphic to the
group Fn+2 ×Z Fm+2 with n,m ≥ 1.

For n > 1 and m > 1 the group G coincides with the group Mult(L)
topologically generated by all left and right translations of L if and only if there
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are continuous functions si : R2 → R, fj : R2 → R with si(0, 0) = 0 and
fj(0, 0) = 0, i = 1, · · · , n, j = 1, · · · ,m, such that for all x, y, p, q ∈ R one has

−x(s1(p, q) + v1(p, q)) + · · ·+ (−1)n
xn

n!
(sn(p, q) + vn(p, q))−

−y(f1(p, q) + u1(p, q)) + · · ·+ (−1)m
ym

m!
(fm(p, q) + um(p, q)) =

= −pv1(x, y) +
p2

2!
v2(x, y) + · · ·+ (−1)n

pn

n!
vn(x, y)−

−qu1(x, y) +
q2

2!
u2(x, y) + · · ·+ (−1)m

qm

m!
um(x, y). (24)

Proof. We can represent the elements of the Lie group Fn+2×ZFm+2 as follows:

g(c, a1, a2, · · · , an, b, d1, d2, · · · , dm, k1 + k2) = (25)

1 a1 a2 . . . an−1 an k1
0 1 0 0 . . . 0 −c
0 −c 1 0 . . . 0 c2

2!

0 c2

2! −c 1 . . . 0 − c3

3!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 (−1)n−1

(n−1)! c
n−1 (−1)n−2

(n−2)! c
n−2 . . . (−1)

(n−(n−1))!c
1 1 (−1)n

n! cn

0 0 0 . . . 0 0 1


,



1 d1 d2 . . . dm−1 dm k2
0 1 0 0 . . . 0 −b
0 −b 1 0 . . . 0 b2

2!

0 b2

2! −b 1 . . . 0 − b3

3!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 (−1)m−1

(m−1)! b
m−1 (−1)m−2

(m−2)! b
m−2 . . . (−1)

(m−(m−1))!b
1 1 (−1)m

m! bm

0 0 0 . . . 0 0 1


, k1 + k2,

with ai, b, c, dj, k1, k2 ∈ R, i = 1, 2, · · · , n , j = 1, 2, · · · ,m .
Let K be the group Fn+2 ×Z Fm+2 , n,m ≥ 1 and S be the subgroup

S = {g(0, t1, · · · , tn, 0, k1, · · · , km, 0); ti, kj ∈ R, i = 1, 2, · · · , n, j = 1, · · · ,m}.

The set Λv = {λ(x,y,z); (x, y, z) ∈ Lv} of all left translations of the loop Lv defined
by multiplication (8) in the group K has the shape

Λv = {g(x, v(x, z), 0, · · · , 0, y, 0, · · · , 0, z); x, y, z ∈ R}.

An arbitrary transversal T of the group S in the group K has the form

{g(k, h1(k, l, w), · · · , hn(k, l, w), l, f1(k, l, w), · · · , fm(k, l, w), w); k, l, w ∈ R},

where hi : R3 → R , fj : R3 → R , i = 1, · · · , n , j = 1, · · · ,m , are continuous
functions with hi(0, 0, 0) = fj(0, 0, 0) = 0. According to Lemma 2.1, the group K
is isomorphic to the multiplication group Mult(Lv) of the loop Lv precisely if the
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set {a−1b−1ab; a ∈ T, b ∈ Λv} is contained in S and the set {Λv, T} generates
the group K . The products a−1b−1ab with a ∈ T and b ∈ Λv are elements of S
if and only if the equation

kv(x, z) = (26)

(−1)n+1x
n

n!
hn(k, l, w) + (−1)n

xn−1

(n− 1)!
hn−1(k, l, w) + · · ·+ (−1)2xh1(k, l, w)+

(−1)m+1 z
m

m!
fm(k, l, w) + (−1)m

zm−1

(m− 1)!
fm−1(k, l, w) + · · ·+ (−1)2zf1(k, l, w)

holds for all x, z, k, l, w ∈ R . Since the left hand side of (26) does not depend on
the variables l and w we have hi(k, l, w) = hi(k) and fj(k, l, w) = fj(k) for all
1 ≤ i ≤ n , 1 ≤ j ≤ m . Hence for any k 6= 0 identity (26) reduces to

v(x, z) = (−1)n+1x
n

n!

hn(k)

k
+ (−1)n

xn−1

(n− 1)!

hn−1(k)

k
+ · · ·+ (−1)2x

h1(k)

k
+

(−1)m+1 z
m

m!

fm(k)

k
+ (−1)m

zm−1

(m− 1)!

fm−1(k)

k
+ · · ·+ (−1)2z

f1(k)

k
. (27)

First let n = m = 1. Then for z = 0 and for any x 6= 0 we get v(x,0)
x

=
h1(k)
k

= a = const(6= 0). Moreover, for x = 0 and for any z 6= 0 we have
v(0,z)
z

= f1(k)
k

= b = const( 6= 0). Since v(0, 0) = 0 this implies v(x, 0) = ax and
v(0, z) = bz . This is a contradiction to the fact that the function v does not
fulfill the identities v(x, 0) = ax and v(0, z) = bz , a, b ∈ R , simultaneously (cf.
Proposition 5.1 (i)).

Now let (n,m) ∈ N2 \ {(1, 1)} . Since the polynomials x, x2, · · · , xn as well
as z, z2, · · · , zm are linearly independent, the function v : R2 → R depends only
on the variables x , z and the functions hi : R→ R , fj : R→ R are independent
of x , z the equation (27) is satisfied if and only if hi(k) = aik and fj(k) = bjk
with ai, bj ∈ R for all 1 ≤ i ≤ n , 1 ≤ j ≤ m , an 6= 0, bm 6= 0. This yields
assertion (i).

Now we prove assertion (ii). Let G be the group Fn+2×ZFm+2 and σ : G/H → G
be the continuous section g(x, 0, · · · , 0, y, 0, · · · , 0, z)H 7→

g(x, v1(x, y), · · · , vn(x, y), y, u1(x, y), · · · , um(x, y), z), (28)

where H = {g(0, t1, t2, · · · , tn, 0, k1, k2, · · · , km, 0); ti, kj ∈ R} and vi : R2 → R ,
uj : R2 → R are continuous functions with vi(0, 0) = uj(0, 0) = 0 for all
i = 1, · · · , n , j = 1, · · · ,m . The set σ(G/H) acts sharply transitively on the
factor space G/H because of for all (x1, y1, z1), (x2, y2, z2) ∈ R3 the equation

g(x, v1(x, y), · · · , vn(x, y), y, u1(x, y), · · · , um(x, y), z)·

g(x1, 0, · · · , 0, y1, 0, · · · , 0, z1) =

g(x2, 0, · · · , 0, y2, 0, · · · , 0, z2)g(0, t1, t2, · · · , tn, 0, k1, k2, · · · , km, 0) (29)
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has the unique solution x = x2 − x1 , y = y2 − y1 ,

z = z2 − z1 + x1v1(x, y) + · · ·+ (−1)n+1

n!
xn1vn(x, y) +

+y1u1(x, y)− y21
2!
u2(x, y) + · · ·+ (−1)m+1

m!
ym1 um(x, y)

with the real numbers

ti =
n∑
k=i

(−1)k−i
xk−i1

(k − i)!
vk(x, y) for all i = 1, 2, · · · , n,

kj =
m∑
l=j

(−1)l−j
yl−j1

(l − j)!
ul(x, y) for all j = 1, 2, · · · ,m.

Hence the section σ defines a 3-dimensional topological loop L the multiplication
of which in the coordinate system (x, y, z) 7→ g(x, 0, · · · , 0, y, 0, · · · , 0, z)H is
determined if we apply

σ(g(x1, 0, · · · , 0, y1, 0, · · · , 0, z1)H) =

g(x1, v1(x1, y1), · · · , vn(x1, y1), y1, u1(x1, y1), · · · , um(x1, y1), z1)

to the left coset g(x2, 0, · · · , 0, y2, 0, · · · , 0, z2)H and find in the image coset the
element of G which lies in the set {g(x, 0, · · · , 0, y, 0, · · · , 0, z)H; x, y, z ∈ R} .
A direct computation yields the multiplication (23) of the assertion (ii). The
group topologically generated by the left translations of the loop L given by
(23) is isomorphic to G = Fn+2 ×Z Fm+2 if and only if the set σ(G/H) =
{g(x, v1(x, y), · · · , vn(x, y), y, u1(x, y), · · · , um(x, y), z); x, y, z ∈ R} generates the
whole group G . The set σ(G/H) contains the subset

F = {g(x, v1(x, y), · · · , vn(x, y), y, u1(x, y), · · · , um(x, y), 0); x, y ∈ R}

and the centre Z = {g(0, · · · , 0, z); z ∈ R} of G . The group 〈F 〉 topologically
generated by the set F and the group Z generate G if the projection of 〈F 〉 onto
the set {g(k, k1, · · · , kn, l, l1, · · · , lm, 0); k, l, ki, lj ∈ R, i = 1, · · · , n, j = 1, · · ·m}
has dimension n+m+ 2. The set F contains the subsets

F1 = {g(x, v1(x, 0), · · · , vn(x, 0), 0, u1(x, 0), · · · , um(x, 0), 0); x ∈ R},

F2 = {g(0, v1(0, y), · · · , vn(0, y), y, u1(0, y), · · · , um(0, y), 0); y ∈ R}.
We have F1 ∩ F2 = 0. Using Lemma 8 (cf. [5], p. 426) for the subsets F1

and F2 we obtain that the set σ(G/H) generates G precisely if the functions
vn(x, y) and um(x, y) do not satisfy the identities vn(x, 0) = a1x , vn(0, y) = a2y ,
um(x, 0) = a3x , um(0, y) = a4y simultaneously, ai ∈ R , i = 1, 2, 3, 4.

Now let n > 1 and m > 1. According to Proposition 18.16 in [13], p. 246,
the Lie group G = Fn+2×ZFm+2 coincides with the group topologically generated
by all translations of the loop L given by the multiplication (23) if and only if for
every y ∈ L the map f(y) : x 7→ yλxλ

−1
y : L→ L is an element of

H = {g(0, t1, · · · , tn, 0, k1, · · · , km, 0); ti, kj ∈ R, i = 1, · · · , n, j = 1, · · · ,m}.
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This is equivalent to the condition that for every (p, q, r), (x, y, z) ∈ R3 the element

[g(p, v1(p, q), · · · , vn(p, q), q, u1(p, q), · · · , um(p, q), r)]−1·

[g(x, v1(x, y), · · · , vn(x, y), y, u1(x, y), · · · , um(x, y), z)]·
g(p, 0, · · · , 0, q, 0, · · · , 0, r)

can be represented by an element

g(0, s1(p, q, r), · · · , sn(p, q, r), 0, f1(p, q, r), · · · , fm(p, q, r), 0)·

g(x, 0, · · · , 0, y, 0, · · · , 0, z)g(0,−t1, · · · ,−tn, 0,−k1, · · · ,−km, 0)

with suitable functions si(p, q, r), fj(p, q, r), 1 ≤ i ≤ n , 1 ≤ j ≤ m and t1 , · · · ,
tn , k1 , · · · , km ∈ R . This gives the following

g(x, v1(x, y), · · · , vn(x, y), y, u1(x, y), · · · , um(x, y), z)·

g(p, t1, · · · , tn, q, k1, · · · , km, r) =

g(p, v1(p, q), · · · , vn(p, q), q, u1(p, q), · · · , um(p, q), r)·
g(0, s1(p, q, r), · · · , sn(p, q, r), 0, f1(p, q, r), · · · , fm(p, q, r), 0)·

g(x, 0, · · · , 0, y, 0, · · · , 0, z). (30)

From (30) it follows

ti =
n∑
k=i

(−1)k−i
1

(k − i)!
[xk−i(sk(p, q, r) + vk(p, q))− pk−ivk(x, y)]

kj =
m∑
l=j

(−1)l−j
1

(l − j)!
[yl−j(fl(p, q, r) + ul(p, q))− ql−jul(x, y)]

for all i = 1, · · · , n , j = 1, · · · ,m and

−x(s1(p, q, r) + v1(p, q)) + · · ·+ (−1)n

n!
xn(sn(p, q, r) + vn(p, q))−

−y(f1(p, q, r) + u1(p, q)) + · · ·+ (−1)m

m!
ym(fm(p, q, r) + um(p, q)) =

−pv1(x, y) +
p2

2!
v2(x, y) + · · ·+ (−1)n

n!
pnvn(x, y)−

−qu1(x, y) +
q2

2!
u2(x, y) + · · ·+ (−1)m

m!
qmum(x, y). (31)

Since the right hand side of equation (31) does not depend on the variable r , so
is the left hand side and we have si(p, q, r) = si(p, q), fj(p, q, r) = fj(p, q) for
all 1 ≤ i ≤ n 1 ≤ j ≤ m . Using this, equation (31) reduces to (24). Putting
y = p = q = 0 into (24) and using the fact that the polynomials x, x2, · · · , xn
are linearly independent we get that si(0, 0) = 0 for all 1 ≤ i ≤ n . Putting
x = p = q = 0 into (24) and using the fact that the polynomials y, y2, · · · , yn are
linearly independent we get that fj(0, 0) = 0 for all 1 ≤ j ≤ m . This proves the
assertion (ii).
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It is easy to see that if we choose for all 1 ≤ i ≤ n and 1 ≤ j ≤ m the functions
si(p, q) = 0, fj(p, q) = 0, vi(x, y) = vi(x) = aix

i and uj(x, y) = uj(y) =
bjy

j , ai, bj ∈ R , an 6= 0, bm 6= 0, then equation (24) is satisfied. Hence the
multiplication (23) with vi(x, y) = vi(x) and uj(x, y) = uj(y) gives examples for
3-dimensional topological loops L for which the group topologically generated by
the left translations is isomorphic to the group Fn+2 ×Z Fm+2 and coincides with
the multiplication group of L .
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