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Abstract

In this short survey we discuss the question which Lie groups can
occur as the multiplication groups Mult(L) of connected topological
loops L and we describe the correspondences between the structure of
the group Mult(L) and the structure of the loop L.

2010 Mathematics Subject Classification: 57S20, 22E25, 20N05, 57M60

Key words and phrases: multiplication group of loops, topological transformation group,

solvable Lie groups, filiform Lie groups

1. Introduction

A loop (L, ·) is a quasigroup with identity element e ∈ L. The left
translations λa : y 7→ a · y and the right translations ρa : y 7→ y · a, a ∈ L,
are bijections of L. To obtain closer relations between a loop and a group
one has to investigate the groups which are generated by the translations
of a loop L. The group generated by all left and right translations of L is
called the multiplication group Mult(L) of L (cf. [1], [2]). The subgroup
G of Mult(L) generated by all left translations of L is the group of left
translations of L. The group Mult(L) reflects well the normal structure of
the corresponding loop L, since for any normal subloop of L there is a normal
subgroup in Mult(L) and for every normal subgroup N of Mult(L) the orbit
N(e) is a normal subloop of L. Hence, it is an interesting question which
groups can be represented as multiplication groups of loops. The criterion
for the decision whether a group is the multiplication group of a loop L is
given in [16]. This criterion has been successfully applied in particular in
the case of Lie groups.

In [15] topological and differentiable loops L having a Lie group as the
group G of left translations of L are studied. There the topological loops L
are treated as continuous sharply transitive sections σ : G/H → G, where
H is the stabilizer of e ∈ L in G. Publications, in which classes of connected
topological loops L have been classified (cf. [15], [5]) show that there are only
few Lie groups which are not groups of left translations of a topological loop.
If L is a topological loop having a Lie group as the group of left translations,
then the group Mult(L) is prevalently a differentiable transformation group
of infinite dimension. The condition for Mult(L) to be a Lie group is a
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strong restriction. Namely, every 1-dimensional topological loop having a
Lie group as its multiplication group is already a group ([15], Theorem 18.18,
p. 248). For 2-dimensional topological loops L the group Mult(L) is a Lie
group precisely if it is an elementary filiform Lie group of dimension ≥ 4
([4], Theorem 1, p. 420). In contrast to this many 3-dimensional connected
topological loops have nilpotent but not filiform as well as solvable but not
nilpotent multiplication group. The aim of this talk is to present the most
important recent results in this direction.

2. Preliminaries

A binary system (L, ·) is called a loop if there exists an element e ∈ L such
that x = e·x = x·e holds for all x ∈ L and the equations a·y = b and x·a = b
have precisely one solution, which we denote by y = a\b and x = b/a. A
loop L is proper if it is not a group.

The left and right translations λa : y 7→ a · y : L × L → L and ρa :
y 7→ y · a : L × L → L, a ∈ L, are bijections of L. The permutation
group Mult(L) generated by all left and right translations of the loop L is
called the multiplication group of L and the stabilizer of e ∈ L in the group
Mult(L) is called the inner mapping group Inn(L) of L.

An important problem is to be analyzed under which circumstances a
group is the multiplication group of a loop. The answer to this question
was given in [16], Theorem 4.1, which says that the multiplication group of
a loop can be characterized in purely group theoretic terms by using the
notion of connected transversals. Let K be a group, let S ≤ K, and let
A and B be two left transversals to S in K. We say that A and B are
S-connected if a−1b−1ab ∈ S for every a ∈ A and b ∈ B. The core CoK(S)
of S in K is the largest normal subgroup of K contained in S.

Theorem 1. A group K is isomorphic to the multiplication group of a loop
if and only if there exists a subgroup S with CoK(S) = 1 and S-connected
transversals A and B satisfying K = 〈A,B〉.

In this theorem the subgroup S is the inner mapping group of L and A
and B are the sets of left and right translations of L, respectively.

The kernel of a homomorphism α : (L, ·) → (L′, ∗) of a loop L into a loop
L′ is a normal subloop N of L. The centre Z(L) of a loop L consists of all
elements z which satisfy the equations zx ·y = z ·xy, x ·yz = xy ·z, xz ·y =
x · zy, zx = xz for all x, y ∈ L. If we put Z0 = e, Z1 = Z(L) and
Zi/Zi−1 = Z(L/Zi−1), then we obtain a series of normal subloops of L. If
Zn−1 is a proper subloop of L but Zn = L, then L is centrally nilpotent of
class n. In [2] it was proved that if Mult(L) is a nilpotent group of class
n, then L is centrally nilpotent of class at most n. The next assertion gives
the connections between the normal subgroup structure of Mult(L) and the
normal subloop structure of L.
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Lemma 2. Let L be a loop with multiplication group Mult(L) and identity
element e.
(i) Let α be a homomorphism of the loop L onto the loop α(L) with kernel
N . Then N is a normal subloop of L and α induces a homomorphism of
the group Mult(L) onto the group Mult(α(L)).

Let M(N) be the set {m ∈Mult(L); xN = m(x)N for all x ∈ L}. Then
M(N) is a normal subgroup of Mult(L) containing the multiplication group
Mult(N) of the loop N and the multiplication group of the factor loop L/N
is isomorphic to Mult(L)/M(N).
(ii) For every normal subgroup N of Mult(L) the orbit N (e) is a normal
subloop of L. Moreover, N ≤M(N (e)).

The proof of Lemma 2 can be found in [1], Theorems 3, 4 and 5 and in [3],
IV.1, Lemma 1.3.

A loop L is called topological if L is a topological space and the binary
operations (x, y) 7→ x · y, (x, y) 7→ x\y, (x, y) 7→ y/x : L × L → L are
continuous. Let G be a connected Lie group, H be a subgroup of G. A
continuous section σ : G/H → G is called continuous sharply transitive
section, if the set σ(G/H) operates sharply transitively on G/H, which
means that to any xH and yH there exists precisely one z ∈ σ(G/H) with
zxH = yH. Every connected topological loop L having a Lie group G as
the group of left translations of L is obtained on a homogeneous space G/H,
where H is a closed subgroup of G with CoG(H) = 1 and σ : G/H → G
is a continuous sharply transitive section such that σ(H) = 1 ∈ G and
the subset σ(G/H) generates G. The multiplication of L on the manifold
G/H is defined by xH ∗ yH = σ(xH)yH. Moreover, the subgroup H is
the stabilizer of the identity element e ∈ L in the group G. The following
assertion is proved in [9], IX.1.

Remark 3. For any connected topological loop there exists universal covering
which is simply connected.

A quasi-simple connected Lie group is a connected Lie group G such
that any normal subgroup of G is discrete and central in G. A semi-simple
connected Lie group G has the form G = G1 ·G2 · · ·Gr, where Gi are normal
quasi-simple connected Lie subgroups such that Gi∩Gj is a discrete central
subgroup of G. A connected loop L is quasi-simple if any normal subloop
of L is discrete in L. According to [9], p. 216, all discrete normal subloops
of a connected loop are central.
The elementary filiform Lie group Fn is the simply connected Lie group of
dimension n ≥ 3 such that its Lie algebra has a basis {e1, · · · , en} with
[e1, ei] = ei+1 for 2 ≤ i ≤ n − 1. A 2-dimensional simply connected loop
LF is called an elementary filiform loop if its multiplication group is an
elementary filiform group Fn, n ≥ 4 ([6]).

Homogeneous spaces of solvable Lie groups are called solvmanifolds.
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Multiplication groups of topological loops of dimension ≤ 3

If L is a connected topological loop having a Lie group as its multiplication
group Mult(L), then Mult(L) acts transitively and effectively as a topolog-
ical transformation group on L. All transitive transformation groups on a
manifold of dimension ≤ 2 have been classified by Lie (cf. [10]) and Mostow
in [11], §10, pp. 625-635.

Every topological loop L which is realized on a connected 1-manifold is
homeomorphic either to the real line or to the circle S1. If the group G
topologically generated by the left translations of L is locally compact, then
G is a finite covering of the group PSL2(R) if L is a circle and G is the
universal covering of PSL2(R) if L is a line. Every covering of PSL2(R)
occurs for a suitable L (cf. [15], Propositions 18.1, 18.2, p. 235). But in [15],
Theorem 18.18, p. 248, it is proved that there does not exist 1-dimensional
proper topological loop L such that the multiplication group of L is locally
compact.

If L has dimension 2, then among the 3-dimensional solvable Lie groups
there are only two groups which are not groups of left translations of L.
These are the connected component of the group of motions or the connected
component of the group of homotheties of the Euclidean plane (cf. [5]). In
contrast to this there is only one type of Lie groups which are multiplication
groups of L. These are the elementary filiform Lie groups as Theorem 1 in
[4], p. 420, shows:

Theorem 4. Let L be a proper connected simply connected 2-dimensional
topological loop. The multiplication group Mult(L) of L is a Lie group if
and only if Mult(L) is an elementary filiform Lie group Fn with n ≥ 4.
Moreover, the group G of left translations of L is an elementary filiform Lie
group Fm, where 3 ≤ m ≤ n, and the inner mapping group Inn(L) of L is
abelian.

The proof of Theorem 4 is based on the classification of Mostow (cf. [11],
§10). The loop L of Theorem 4 is a central extension of the group R by the
group R (cf. Theorem 28.1 in [15], p. 338). Hence it is a centrally nilpotent
loop of class 2 and can be represented in R2. If L is not simply connected
but satisfies all other conditions of Theorem 4, then L is homeomorphic to
the cylinder R × R/Z. In this case the multiplication group Mult(L) of L
is a Lie group of dimension n ≥ 4 with elementary filiform Lie algebra such
that the centre of Mult(L) is isomorphic to the group SO2(R) (cf. Theorem
4 and Theorem 28.1 in [15], p. 338).

Now let L be a 3-dimensional connected simply connected topological loop
having a Lie group as its multiplication group. As there does not exist a
multiplication with identity on the sphere S2 the loop L is homeomorphic
to R3 or to S3 (cf. [8], p. 210).
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A transitive action of a connected Lie group G on a manifold M is called
minimal, if it is locally effective and if G does not contain subgroups acting
transitively on M . The minimal actions of non-solvable Lie groups on 3-
dimensional manifolds are given in [8], Table 1, p. 201.

Theorem 5. There does not exist proper connected topological loop L of
dimension 3 such that its multiplication group Mult(L) is a non-solvable
Lie group acting minimally on the manifold L.

The proof of Theorem 5 can be found in [6], Theorem 3.1, p. 388. If L is
a 3-dimensional quasi-simple connected simply connected topological loop,
then the following non-solvable Lie groups can occur as the multiplication
group of L (cf. Proposition 3.2 in [6], p. 389):

Proposition 6. Let L be a 3-dimensional quasi-simple connected simply
connected topological loop such that the multiplication group Mult(L) of L
is a Lie group.
(a) If L is homeomorphic to S3, then the group Mult(L) is either isomorphic
to the semidirect product Spin3(R) o SO3(R) or it is one of the following
quasi-simple Lie groups: SO5(R, 1), SU3(C, 1), SL4(R), SL2(C), Sp4(R),
the universal covering of SL3(R).
(b) If L is homeomorphic to R3, then one of the following holds:
(i) If Mult(L) is quasi-simple, then it is the group PSL2(C).
(ii) If Mult(L) is semi-simple, then it is isomorphic to the semidirect product
˜PSL2(R) o PSL2(R).

(iii) If Mult(L) is not semi-simple, then it is the semidirect product R3 o
S, where S is isomorphic either to SO3(R) or to SL3(R) respectively to
PSL2(R) and acts irreducibly on R3.

As S3 is not a solvmanifold (cf. [12]) every 3-dimensional proper connected
simply connected topological loop which has a solvable Lie group as its
multiplication group is homeomorphic to R3. Till now no 3-dimensional
locally compact connected loop L has been found having a filiform group Fn

as its multiplication group Mult(L). In contrast to this there is a plethora
of loops L for which Mult(L) is a nilpotent but not filiform Lie group.

Theorem 7. Among the nilpotent Lie groups the direct products Fn×Z Fm

of the elementary filiform Lie groups Fn, Fm with amalgamated center Z
such that (n,m) ∈ N \ {(3, 3)} as well as the groups R× Fn with n ≥ 4 are
multiplication groups of 3-dimensional simply connected topological loops.

The proof of this assertion can be found in [6], Propositions 4.3 and 5.1.
Every loop L of Theorem 7 having a Lie group Fn×ZFm as the multiplication
group Mult(L) is a central extension of the group R by the group R2. Each
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loop L of Theorem 7 having a direct product Fn × R as the multiplication
group Mult(L) is a central extension of the group R2 by the group R.

In contrast to the 2-dimensional topological loops there are many 3-
dimensional loops with solvable but non-nilpotent multiplication group. In
[7] we have classified the solvable non-nilpotent Lie groups of dimension
≤ 5 which are multiplication groups for 3-dimensional simply connected
topological loops L. Using the classification of solvable Lie algebras given
in [13], [14] and the relations between the normal subloops of L and the
normal subgroups of Mult(L) (cf. Lemma 2) we have proved that each 3-
dimensional simply connected topological loop L having a solvable Lie group
of dimension ≤ 5 as the multiplication group of L is a central extension of
the group R by R2. Therefore the group Mult(L) is a semidirect product
of the abelian group M by a group Q ∼= R2 such that M = Z × Inn(L),
where R ∼= Z is a central subgroup of Mult(L) and dim Inn(L) ∈ {1, 2}.
Applying this we prove the following theorem.

Theorem 8. Let L be a connected simply connected topological proper loop
of dimension 3 such that its multiplication group is an at most 5-dimensional
solvable non-nilpotent Lie group. Then the following Lie groups are the
multiplication groups Mult(L) of L:

If Mult(L) has 1-dimensional centre, then it is either the group F3×L2,
where L2 is the non-abelian 2-dimensional simply connected Lie group, or the
direct product R×Σ, where Σ is one of the following Lie groups: Σ = L2×L2
or Σ is the 4-dimensional indecomposable solvable Lie group which has no
1-dimensional normal subgroup or Σ is the 4-dimensional solvable Lie group
which has trivial centre, 2-dimensional commutator subgroup and precisely
one 1-dimensional normal subgroup.

If Mult(L) has 2-dimensional centre, then it is the direct product of the
group R2 and a 3-dimensional Lie group having 2-dimensional commutator
subgroup.
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