
The complexity of counting quantifiers on equality

languagesI

Barnaby Martina, András Pongráczb,∗, Micha l Wronac,∗∗

aSchool of Engineering & Computing Sciences, Durham University, Durham, UK.
bDebreceni Egyetem TTK, Algebra és Számelmélet Tanszék, 4010 Debrecen, Pf. 18,

Hungary.
cTheoretical Computer Science Department, Faculty of Mathematics and Computer

Science, Jagiellonian University, Kraków, Poland.

Abstract

An equality language is a relational structure with infinite domain whose
relations are first-order definable in equality. We classify the extensions of the
quantified constraint satisfaction problem over equality languages in which
the native existential and universal quantifiers are augmented by some subset
of counting quantifiers. In doing this, we find ourselves in various worlds in
which dichotomies or trichotomies subsist.

Keywords: Quantified Constraints, Counting Quantifiers, Constraint
Satisfaction, Equality Language, Computational Complexity

1. Introduction

The constraint satisfaction problem CSP, much studied in artificial intel-
ligence, is known to admit several equivalent formulations, two of the best
known of which are the query evaluation of primitive positive (pp) sentences
– those involving only existential quantification and conjunction – and the
homomorphism problem (see, e.g., [1]). The CSP is NP-complete in general,
and a great deal of effort has been expended in classifying the complexity of
CSP(Γ) across fixed, finite constraint languages Γ. Notably it is conjectured
[2, 3] that for all such finite Γ, the problem CSP(Γ) is in P or NP-complete.

IAn extended abstract of this paper appeared at Computability in Europe (CiE) 2016.
∗Supported by the Hungarian Scientific Research Fund (OTKA) grant no. K109185.
∗∗Partially supported by NCN grant number 2014/14/A/ST6/00138.

Preprint submitted to Elsevier December 10, 2016

While this has not been settled in general, a number of partial results are
known – e.g. over structures of size at most three [4, 5] and over smooth
digraphs [6, 7].

A popular generalisation of the CSP involves considering the query eval-
uation problem for positive Horn logic – involving only the two quantifiers,
∃ and ∀, together with conjunction. The resulting quantified constraint sat-
isfaction problems QCSP(Γ) allow for a broader class, used in artificial in-
telligence to capture non-monotonic reasoning [8], whose complexities rise to
Pspace-completeness.

Once upon a time, Bodirsky and Kára gave a systematic classification for
CSP(Γ), where Γ consists of relations first-order (fo) definable in equality,
over some countably infinite domain [9]. These so-called equality languages
Γ display dichotomy between those for which CSP(Γ) is in P and those for
which it is NP-complete. As explained in [10], equality languages form a base
case in the pursuit of grander classifications across first-order definitions over
more complicated structures. Pursuing this line of investigation, Bodirsky
and Chen gave a trichotomy for QCSP(Γ), where Γ is an equality language
– each problem being either in P, NP-complete or co-NP-hard [11]. In the
conference version of that paper, the trichotomy was claimed to be across
P, NP-complete or Pspace-complete [12], but the proof in the tricky case of
x = y → y = z was flawed, and so in the journal version this became the
weaker co-NP-hard (and in Pspace). The trichotomy is thus imperfect, as
most of the co-NP-hard cases are known to be Pspace-complete. Indeed,
x = y → y = z would be the only open case, if it were Pspace-complete [13].

Working Hypothesis. QCSP(x = y → y = z) is Pspace-complete.

Thus the assumption of the working hypothesis would restore the trichotomy
to the P, NP-complete or Pspace-complete as stated in [12].

In this paper, we consider the generalisation of the QCSP with counting
quantifiers, as pioneered in the recent paper [14]. In [14], the domains of Γ
were of finite size n, so the extant quantifiers ∃≥1 = ∃ and ∃≥n = ∀ were
augmented with quantifiers of the form ∃≥j, which allow one to assert the
existence of at least j elements such that the ensuing property holds. In
the world of infinite domains, it makes sense to permit not only quantifi-
cation above the finite with ∃≥j, but also quantification below the co-finite
with ∀>j, whose intended meaning is that the property holds for all but (at
most) j elements of the domain. Thus, ∀ = ∀>0. Counting quantifiers of the
form ∃≥j have been extensively studied in finite model theory (see [15, 16]),

2

where the focus is on supplementing the descriptive power of various logics.
Quantifiers of the form ∀>j appear rare in computer science but these quan-
tifiers together with ∃≥j are termed hemilogical when they appear in [17]. Of
broader interest is the majority quantifier ∃≥n/2 (on a structure of domain
size n), which sits broadly midway between ∃ and ∀. Majority quantifiers are
studied across diverse fields of logic and have various practical applications,
e.g. in cognitive appraisal and voting theory [18, 19]. They have also been
studied in computational complexity since at least [20] (see also [15]).

We study extensions of QCSP(Γ) in which the input sentence to be evalu-
ated on Γ remains positive conjunctive in its quantifier-free part, but is quan-
tified by various counting quantifiers. For X ⊆ {∃≥1,∃≥2, . . . ,∀>0,∀>1, . . .},
X ⊇ {∃≥1,∀>0}, the X-CSP(Γ) takes as input a sentence given by a conjunc-
tion of atoms quantified by quantifiers appearing in X. It then asks whether
this sentence is true on Γ.

Equality languages admit quantifier elimination of ∀ and ∃, that is any
relation first-order definable in equality is already quantifier-free definable,
say as a CNF. An equality language Γ is

• trivial if all its relations may be given as a conjunction of equalities,

• specially negative if the class of relations over Γ, closed under definabil-
ity in the positive conjunctive logic with quantifiers among {∃,∀,∀>1},
does not contain the formula x 6= y ∨ y 6= z,

• negative if all its relations may be given as a conjunction of equalities
and disjunctions of disequalities, and

• positive if all its relations may be given as a conjunction of disjunctions
of equalities.

Similarly, we might use these adjectives on the relations within the equality
language. We observe the containments of trivial languages within specially
negative languages within negative languages. Further, it is proved in [11]
(Proposition 7.3) that the positive languages that are not trivial are precisely
the positive languages that are not negative.

Our main results are a complete panoply of classifications forX ⊇ {∃≥1, ∀>0},
that is the augmentation of ∃ and ∀ with the more exotic counting quantifiers.
It will be seen that the quantifiers ∃≥2,∃≥3, . . . more or less behave as one
another and similarly with ∀>2, ∀>3, However, ∀>1 is special and thus our

3

task of classifications for X amounts to choosing subsets of {∃≥2,∀>1,∀>2}
with which to augment {∃≥1,∀>0}. A priori there are then eight possibili-
ties, but twice we will see ∀>1 being “subsumed” by ∀>2. Thus we will give
six distinct classification theorems : three dichotomies and three trichotomies
(one of which is that of [11]). In Figure 1, these classification theorems are
linked to their canonical subsets of {∃≥2,∀>1,∀>2}.

Theorem 1 ([11]). If X = {∃≥1,∀>0}, then X-CSP(Γ) displays trichotomy
on the class of equality languages Γ:

• if all relations of Γ are negative then X-CSP(Γ) is in L.

• if all relations of Γ are positive but some relation is not trivial, then
X-CSP(Γ) is NP-complete.

• otherwise X-CSP(Γ) is co-NP-hard.

Theorem 2. If {∃≥1,∀>0} ⊆ X ⊆ {∃≥1,∀>0,∀>1,∀>2, . . .} and contains
some ∀>j for j ≥ 2, then X-CSP(Γ) displays trichotomy on the class of
equality languages Γ:

• if all relations of Γ are trivial, then X-CSP(Γ) is in L.

• if all relations of Γ are positive, but some relation is not trivial, then
X-CSP(Γ) is NP-complete.

• otherwise X-CSP(Γ) is Pspace-complete.

Theorem 3. If X = {∃≥1,∀>0,∀>1}, then X-CSP(Γ) displays trichotomy
on the class of equality languages Γ:

• if Γ is specially negative, then X-CSP(Γ) is in P.

• if all relations of Γ are positive, but some relation is not trivial, then
X-CSP(Γ) is NP-complete.

• otherwise X-CSP(Γ) is Pspace-complete.

Theorem 4. If {∃≥1,∀>0} ⊆ X ⊆ {∀>0,∃≥1,∃≥2, . . .} and contains some
∃≥j for j ≥ 2 then X-CSP(Γ) displays dichotomy on the class of equality
languages Γ:

4

Theorem Subsets

1 ∅
2 {∀>2}, {∀>1,∀>2}
3 {∀>1}
4 {∃≥2}
5 {∀>2, ∃≥2}, {∀>1,∀>2, ∃≥2}
6 {∀>1,∃≥2}

Figure 1: Classification theorems linked to canonical subsets of {∃≥2,∀>1,∀>2}

• if all relations of Γ are negative, then X-CSP(Γ) is in L.

• otherwise X-CSP(Γ) is co-NP-hard.

Theorem 5. If {∃≥1, ∀>0} ⊆ X ⊆ {∀>0, ∀>1,∀>2, . . . ,∃≥1,∃≥2, . . .} and con-
tains some ∃≥i and ∀>j for i, j ≥ 2 then X-CSP(Γ) displays dichotomy on
the class of equality languages Γ:

• if all relations of Γ are trivial, then X-CSP(Γ) is in L.

• otherwise X-CSP(Γ) is Pspace-complete.

Theorem 6. If {∃≥1,∀>0} ⊆ X ⊆ {∀>0,∀>1,∃≥1,∃≥2, . . .} and contains ∀>1

and some ∃≥i for i ≥ 2 then X-CSP(Γ) displays dichotomy on the class of
equality languages Γ:

• if Γ is specially negative, then X-CSP(Γ) is in P.

• otherwise X-CSP(Γ) is Pspace-complete.

Four of our five new worlds are somewhat more conducive to analysis
than that of [11], in that in them we have no gap across co-NP-hardness
and Pspace-completeness. For the remaining world of Theorem 4, we are
able to demonstrate that improving co-NP- to Pspace-hardness is likely to
be as difficult as in Theorem 1. Indeed, from this it follows that our working
hypothesis promotes co-NP-hardness to Pspace-hardness for Theorem 4 as
well as Theorem 1.

Some of our results are not especially complicated and stem from simple
manipulations rather than deep technical nous. Against this we set the nice

5

aesthetic of our results and the way in which they complement [11] and [21].
For example, the specially negative languages, play an important role in
our classifications, but where do they sit in the context of [21]? Do they
even form a class of relations closed under pp-definitions (a so-called co-
clone)? We note that equality languages have been also studied for the
abduction problem [22], in the context of which one finds trichotomy among
ΣP

2 -complete, NP-complete and problems decidable in P.
The paper is organised as follows. After the preliminaries, we address in

Section 3 basic upper and lower bounds that play a role in our classification.
In Section 4 we describe the crucial specially negative languages. Finally, we
ponder the difficulty of improving, in Theorem 4, co-NP- to Pspace-hardness.
We do the latter by showing that QCSP(x = y ∨ u = v, 6=) becomes no more
complex when one augments with ∃≥k.

2. Preliminaries

Let [j] := {1, . . . , j}. For i ∈ N, i ≥ 1, let ∃≥ix quantify that there
exist at least i elements satisfying some property. For i ∈ N, i ≥ 0, let
∀>ix quantify that for all but at most i elements does some property hold
(in the conference version of this paper the latter was ∀≥i but it seems ∀>i is
pedagogically better). Thus ∃ is ∃≥1 and ∀ is ∀>0. In this paper we consider
languages with first-order (fo) definitions in equality, that is structures which
admit all permutations as automorphisms (for a discussion of this equivalence
see [9]). Such an equality language may be considered a structure of the form
(N;R1, . . .) where each Ri is a CNF formula whose atoms are equalities or
disequalities (owing to quantifier elimination of ∀ and ∃ this is equivalent to
our saying fo-definable in equality). We typically drop the “N” in referring to
an equality language, indeed any infinite set could equivalently take its place.
Note that we tend to conflate constraint languages and relational structures,
preferring to deal concretely with the latter.

Primitive positive (pp) logic is the restriction of fo-logic to the symbols
{∃,∧,=} and positive Horn (pH) likewise to the symbols {∀,∃,∧,=}. That
is positive Horn logic is primitive positive logic with the universal quantifier
restored. Without loss of generality we may assume formulas of these logics
are in prenex normal form. For X ⊆ {∀>0,∀>1, . . . ,∃≥1,∃≥2, . . .}, let X-pp
denote the logic of prenex sentences whose symbols are among X ∪ {∧,=}.
We will use small letters such as φ to refer to sentences whose quantifier-free
part will be denoted Φ. Let Γ be a set of relations on a domain, i.e. a

6

structure, and let L be a logic. Then the evaluation problem for L on Γ
has as input a sentence φ ∈ L and asks whether Γ |= φ? The evaluation
problem for primitive positive (resp., positive Horn) logic on Γ is better
known as CSP(Γ) (resp., QCSP(Γ)). The evaluation problem for X-pp on
Γ will henceforth be known as X-CSP(Γ). In this paper we consider only
X ⊇ {∃≥1,∀>0}, i.e. extensions of the QCSP.

Let Γ be an equality language, and let 〈Γ〉pp be the set of relations pp-
definable over Γ. Such a set is termed a co-clone. We may abuse notation and
write 〈R〉pp when properly we mean 〈{R}〉pp. A great project was launched
in [21] to identify sets of the form 〈Γ〉pp, charting their inclusion relations in a
lattice. The lattice is mostly identified through a dually-isomorphic algebraic
lattice of local clones, but here we will only be interested in the co-clones. In
line with [21] and [11], we will consider the co-clone 〈∅〉pp = 〈=〉pp to be at
the top of the lattice, with the co-clone of all equality-definable relations at
the bottom.

In a problem X-CSP(Γ) it is desirable that Γ involves only a finite number
of relations lest there arise the question as to how they are encoded. Yet we
will enjoy referring to co-clones that contain an infinite number of relations.
We resolve this by considering all references to Γ as a language inside X-
CSP(Γ) to be restricting of Γ to the relationally finite.1

We now recall some basic results from [11, 21]. We typically write 6=
to indicate the binary relation of disequality (in terms of our notation this
abbreviates x 6= y). Let 〈Γ〉pH be the set of relations pH-definable over Γ
(indeed, let 〈Γ〉X-pp be the set of relations X-pp-definable over Γ). We will
borrow the following result from [23].

Lemma 1 (Lemma 5.2 in [23]). (x = y ∨ u = v) ∈ 〈Γ〉pp iff 〈Γ〉pp is
closed under definitions in existential positive first-order logic.

Lemma 2.

(1.) The three co-clones 〈x = y ∨ u = v〉pp, 〈x = y ∨ y = z〉pp and 〈x =
y ∨ y = z ∨ x = z〉pp coincide. That is, x = y ∨ u = v is in all three.

(2.) x 6= y ∨ u 6= v ∈ 〈x = y → y = z, 6=〉pp.

1Another typical solution is to give definition to complexity of relationally-infinite Γ
along the lines of “easy”, if it is easy for all finite subsets, and “hard”, if it is hard for
some finite subset.

7

(3.) (x1 = y ∧ . . . ∧ xm = y)→ y = z ∈ 〈x = y → y = z〉pp.

(4.) 〈{x = y ∨ u = v, 6=}〉pp contains all equality-definable relations.

(5.) 〈x = y ∨ u = v〉pp contains all positive relations.

(6.) If Γ is not positive then 6=∈ 〈Γ〉pp.

(7.) If Γ is positive but not negative then x = y ∨ u = v ∈ 〈Γ〉pH.

Proof. Notes. 1.) See Lemma 5.3.2 of [10]. The point is that x = y∨u = v
and x = y∨y = z and x = y∨y = z∨x = z have precisely the same (so-called)
polymorphisms, i.e. all essentially unary operations. 2.) This appeared in
an early unpublished version of [11] (intermediate between conference and
journal), the proof of which we reproduce. Define a 6= b ∨ c 6= d as

∃b′, d′, t a = b→ b = b′∧b = b′ → b′ = t∧c = d→ d = d′∧d = d′ → d′ = t∧b′ 6= d′.

3.) Follows from [21]; for an explicit construction use:

∃p1, . . . , pm
(∧

i∈[m] xi = y → y = pi

)
∧
(∧

i∈[m−2] pi = pi+1 → pi+1 = pi+2

)
∧pm−1 = pm → pm = z.

4.) This is a consequence of Lemma 1 since the existential positive closure
of {x = y ∨ u = v, 6=} is plainly equal to the full closure of {x = y ∨ u = v}
under (quantifier-free) logic.

5.) See Theorem 8 Part 1 in [21]. It is also a consequence of Lemma 1
since the existental positive closure of {x = y∨u = v} includes all definitions
in positive (quantifier-free) logic.

6.) See Proposition 7.3 in [11]. 7.) See proof of Theorem 7.1 in [11].
The point is that x = y ∨ y = z will be pH-definable, implying the same for
x = y ∨ u = v, as in Part 1 above.

Note that Part 7 does not hold for pp-definability. While x = y ∨ y = z is a
relational basis (under pp-definitions) for the positive languages, there is an
infinite chain of positive languages up to pp-closure [21]. 〈x = y∨y = z〉pp is
at the bottom, being the most expressive, and the trivial 〈=〉pp is at the top.
In between, is an infinite chain without top element. However, this chain
collapses for pH-definability, leaving only the two co-clones up to pH-closure
(〈=〉pp and 〈x = y ∨ y = z〉pp).

8

We contrast Part 1 of Lemma 2 with the knowledge that x = y → u = v
is in neither 〈x = y → y = z〉pp [21] nor 〈x = y → y = z〉pH.

Owing to the disparity between the conference and journal versions of
[11], we give the following as a specific proposition. Its proof can be derived
from [11] by the assiduous reader.

Proposition 1. Both QCSP(x = y ∨ u = v, 6=) and QCSP(w = z1 ∨ w =
z2 ∨ w = z3, 6=) are Pspace-complete.

Proof. QCSPs over equality languages are always in Pspace (see, e.g., [11],
or look forward to Lemma 4). Let K3 be the irreflexive 3-clique (trian-
gle graph). We reduce from QCSP(K3), a.k.a. Quantified-3-Colouring,
known to be Pspace-complete from [24]. Initially we will prove that QCSP(w =
z1 ∨ w = z2 ∨ w = z3, 6=) is Pspace-hard. For an input ψ to Quantified-3-
Colouring we build an instance φ of QCSP(w = z1 ∨ w = z2 ∨ w = z3, 6=)
as follows. φ begins quantified outermost with ∃c1, c2, c3, with c1 6= c2 ∧ c1 6=
c3∧c2 6= c3 in its quantifier-free part (representing the three distinct colours).
Now the quantifiers progress inwards in φ exactly as they did in ψ; and each
atom E(x, y) in ψ, becomes x 6= y in φ. Further, for each existential variable
x of ψ we add the conjunct (x = c1 ∨ x = c2 ∨ x = c3) (we do not need
to do anything special for universal variables). This reduction, working by
local replacement, can plainly be done in logarithmic space. Its correctness is
straightforward, and the result for QCSP(w = x∨w = y∨w = z, 6=) follows.

To obtain the result for QCSP(x = y∨u = v, 6=) it is sufficient to observe
that w = z1 ∨ w = z2 ∨ w = z3 is in 〈{x = y ∨ u = v, 6=}〉pp, as guaranteed
by Lemma 2 Part 4, and witnessed by the pp-definition

∃c1, c2, c3 (w = c1∨w = z1)∧(w = c2∨w = z2)∧(w = c3∨w = z3)∧(c1 6= c2∨c2 6= c3).

To see that this works, note that z1 6= z2 ∨ z2 6= z3 is equivalent to z1 6=
z2 ∨ z2 6= z3 ∨ z1 6= z3, and note that it is itself technically a shorthand for
∃z′1, z′3 z′1 6= z1 ∧ z′3 6= z3 ∧ (z′1 = z2 ∨ z2 = z′3).

It seems that QCSP(x = y → u = v) is also Pspace-complete [13], but this
is harder work. The backbone of a proof appeared in an early unpublished
version of [11]. The first author has verified this proof but reproducing it
here is beyond our scope.

9

3. Upper and lower bounds

3.1. Upper bounds

The following lemma is trivial but we state it because we will wish to
appeal to it in the future.

Lemma 3 (Substitution of equalities). Let X := {∀>0,∀>1,∃≥1, ∃≥2, . . .}
and let Φ be an instance of some X-CSP containing an equality x = y in
which y appears later in the quantifier order of Φ than x. Then Φ is false if
y is quantified by anything other than ∃≥1. Otherwise, Φ is equivalent to Φ′

obtained by substituting all instances of y by x and removing the quantifier
∃≥1y.

Lemma 4. For any X ⊆ {∀>0,∀>1, . . . ,∃≥1,∃≥2, . . .}, X-CSP(Γ) is in Pspace.

Proof. Let φ be an input sentence of X-pp containing n variables. It
is clear that on an equality language we may substitute quantifiers ∃≥m,
m > n (resp., ∀>m, m > n), by ∃≥n (resp., ∀>n), without affecting the truth
of the sentence. Now we may evaluate by a simple branch and backtrack
algorithm. The key point is that when the algorithm is about to branch
on a variable, then it only needs to consider the valuations of the previous
variables, together with at most one new value that is different. This is
because equality languages have all permutations as automorphisms.

Note that Lemma 4 follows also from the result that the first-order theory
of equality is Pspace-complete [25], though one needs to encode ∀>i and ∃≥i
carefully to avoid exponential blow-up.

The following lemma relates to {∃≥1,∀>i : i ≥ 0} on positive languages.

Lemma 5. Let X := {∃≥1,∀>i : i ≥ 0} and Γ be a positive equality language.
Then X-CSP(Γ) is in NP.

Proof. Let n be the number of variables in the input X-pp sentence φ. We
may substitute quantifiers ∀>m, m > n, by ∀>n, without affecting the truth of
the sentence. In the following Qx is intended to signify a sequence of variables
quantified by elements of the set X. We now eliminate quantification on y of
the form Qx ∀>iy Qz Φ(x, y, z) by replacing it with Qx ∃y1, . . . , yi∀y Qz y =
y1 ∨ . . . ∨ y = yi ∨ Φ(x, y, z). It is known that positive sentences may be
evaluated on equality languages in NP from [26], and the result follows.

10

3.2. Lower bounds

The following proposition relates to {∀>i,∀>0,∃≥1}, for i ≥ 2, on non-
positive languages.

Proposition 2. Let X := {∀>i,∀>0,∃≥1}, for any i ≥ 2 and Γ a non-
positive equality language. Then X-CSP(Γ) is Pspace-complete.

Proof. Since Γ is non-positive, 6=∈ 〈Γ〉pp by Lemma 2 Part 6.
Let i ≥ 2 be fixed. Note that ∀>iz z 6= z1 ∧ . . . ∧ z 6= zi+1 defines∨

λ 6=µ∈[i] zλ = zµ. Consequently, from Lemma 2, Parts 1 and 4, ∀>i and ∃
define all equality relations on 6=, and Pspace-hardness follows from Propo-
sition 1.

The following propositions relate to {∀>1,∀>0,∃≥1} on non-positive lan-
guages.

Proposition 3. {∀>1,∀>0,∃≥1}-CSP(x 6= y ∨ u 6= v) is Pspace-complete.

Proof. Clearly we can (pp-)define 6=. Further, we can define, now permit-
ting also ∀>1, (x = y ∨ u = v) as

∀>1p ∀>1q (x 6= p ∧ p 6= y) ∨ (u 6= q ∧ q 6= v),

which expands to make:

∀>1p ∀>1q (x 6= p∨u 6= q)∧(x 6= p∨q 6= v)∧(p 6= y∨u 6= q)∧(p 6= y∨q 6= v).

The result now follows from the Pspace-hardness of QCSP({x = y∨u = v, 6=
}) as per Proposition 1.

Proposition 4. (x 6= y∨u 6= v) is definable from (x 6= y∨y 6= z) using ∀>1.

Proof. We will give a definition of (x = y ∨ y 6= z), whereupon we may
appeal to Lemma 2 Part 2. Firstly, we define x 6= y ∨ u 6= v ∨ x = y = u = v
by

∀>1p (p = x→ x 6= y) ∧ (u = v → v 6= p).

Now (x = y ∨ y 6= z) is equivalent to ∀>1p (x 6= p ∧ p 6= y) ∨ y 6= z which
is clearly ∀>1p (x 6= p ∨ y 6= z) ∧ (p 6= y ∨ y 6= z), but also is equivalent to
∀>1p (x 6= p ∨ y 6= z ∨ x = p = y = z) ∧ (p 6= y ∨ y 6= z), as x = p = y = z
violates the second clause.

11

Proposition 5. {∀>1,∀>0,∃≥1}-CSP(x 6= y ∨ y 6= z) is Pspace-complete.

Proof. Follows directly from the previous two propositions.

Proposition 6. Let i ≥ 2 and Γ be a positive non-trivial equality language.
Then 6= is definable from Γ using ∃≥i.

Proof. First, see that (x = y ∨ u = v) ∈ 〈Γ〉pH from Lemma 2 Part 7
(recalling positive non-trivial is positive non-negative). Now we note that,
for each j ≥ 2, (u = v1 ∨ . . . ∨ u = vj) is in 〈x = y ∨ y = z〉pp, via:

∃p1, . . . , pj−2 (u = v1 ∨ u = p1) ∧ (p1 = v2 ∨ p1 = p2) ∧ . . .
∧(pj−3 = vj−2 ∨ pj−3 = pj−2) ∧ (pj−2 = vj−1 ∨ pj−2 = vj).

Finally, we let i = j and say ∃≥ju (u = v1 ∨ . . .∨ u = vj) which is equivalent
to
∧
λ6=µ∈[j] vλ 6= vµ. We now obtain v1 6= v2 by existentially quantifying

v3, . . . , vk.

4. Isolating the specially negative languages

We call a CNF Φ reduced if it is not logically equivalent to itself with
either a clause or a literal in a clause removed. A CNF depends on one of its
variables v if its truth value can not be given as a propositional function of
(the equality type of) only its other variables. For example, the single-clause
CNF (x 6= y ∨ y 6= z ∨ x 6= z) is not reduced since it is equivalent to each of
the reduced CNFs (x 6= y ∨ y 6= z), (x 6= y ∨ x 6= z) and (y 6= z ∨ x 6= z).
This reminds us that reduced CNFs need not appear uniquely in (unreduced)
CNFs. Meanwhile, x 6= y ∧ (y = z ∨ y 6= z) depends on x and y, but not on
z.

Suppose R is a negative relation which might be given by various reduced
CNFs, at least one of which, Φ, is negative. Then Φ may enforce some
equalities on its variables, which it plainly does syntactically. Sometimes
in this section we will wish to assume that Φ has these equalities factored
out by substitution, thus we could assume negative CNFs do not have any
positive clauses. The point is that this is an innocuous assumption. Having
said that, the process does remove variables and so cannot be used strictly
within a quantifier elimination procedure. Now, suppose R is also given by
another reduced CNF Φ′ which is not negative (we will later prove this is not
possible). Then we could similarly factor out the implied equalities of Φ′, but
these might not be obvious unless we have negative Φ where the equalities
are syntactically explicit and not semantically implied.

12

4.1. Non-positive cases involving ∀>1.

Definition 1. A negative, reduced CNF Φ without equalities is flat if it con-
sists of clauses with no variable occurring twice in them. Φ is rich if every
variable of Φ occurs in a singleton clause of Φ.

We will assume that CNFs do not possess dummy variables that do not
appear explicitly. Thus, we may consider a CNF to be rich if it is rich once
we have discounted such dummy variables.

Example 1. The formula (x 6= y ∨ u 6= v) ∧ x 6= z ∧ (x 6= u ∨ y 6= v) is flat
and the formula (x 6= y ∨ u 6= v) ∧ x 6= u ∧ y 6= v is rich.

Theorem 7. We have the following dichotomy for non-positive equality lan-
guages Γ.

1. Either 〈Γ〉{∃,∀,∀>1}-pp contains the relation x 6= y ∨ y 6= z, and then we
find {∃, ∀, ∀>1}-CSP(Γ) is Pspace-hard,

2. or 〈Γ〉{∃,∃≥2,...,∀,∀>1}-pp contains only relations whose reduced CNFs are
negative, flat and rich; and {∃,∃≥2, . . . ,∀,∀>1}-CSP(Γ) is in P.

The proof of this theorem will come at the end of this section. Note the
discrepancy of the co-clones in the two parts with ∃≥j (j > 1) appearing in
the latter but not the former.

Definition 2. Let Φ be a CNF with variables in V . Let P1 ∪ · · · ∪ Pk be
a partition of V . We say that “we weaken Φ around the given partition by
keeping P1, . . . , Pj” (j ≤ k) if we produce a formula from Φ by the follow-
ing definition. First we take the conjunction Ψ of all disequalities that are
transversal to the partition, i.e., x 6= y with x and y not in the same set of
the partition, and produce Φ∧Ψ. Then for all i > j we identify the variables
in Pi by a new variable wi. Then we existentially quantify over these new
variables.

Note that if Φ pp-defines 6=, then this procedure yields a pp-definition of
Φ ∧Ψ from Φ.

Example 2. We give the following example for weakening Φ := (x 6= y∨u 6=
v ∨ s 6= t)∧ (u 6= s∨ v 6= t) around the partition P1 = {x, y, u, v}, P2 = {s, t}
by keeping P1 (i.e. j = 1). Then Φ ∧Ψ is

(x 6= y ∨ u 6= v ∨ s 6= t) ∧ (u 6= s ∨ v 6= t)∧
x 6= s ∧ x 6= t ∧ y 6= s ∧ y 6= t ∧ u 6= s ∧ u 6= t ∧ v 6= s ∧ v 6= t,

13

which is logically equivalent to

(x 6= y∨u 6= v∨s 6= t)∧x 6= s∧x 6= t∧y 6= s∧y 6= t∧u 6= s∧u 6= t∧v 6= s∧v 6= t,

which after identification and quantification collapses to x 6= y ∨ u 6= v (cf.
Lemma 9).

Lemma 6. Let Φ be a reduced negative CNF that has a non-flat clause.
Then Φ pp-defines x 6= y ∨ y 6= z.

Proof. First we recall that Φ pp-defines 6=. We can partition the free
variables V of Ψ into P1 ∪ · · · ∪ Pk, for each negative clause C, so that the
equivalence relation with classes P1, . . . , Pk is the symmetric transitive closure
of the graph with edges (x, y) ∈ V 2 such that x 6= y is a literal in C. Then the
clause C expresses that there are two equivalent variables (i.e., in the same
set of the partition) whose values are not equal. Let Φ ≡ C1∧· · ·∧Cr. Let C1

be a non-flat clause. We weaken Φ around the partition corresponding to C1

by keeping an at least 3-element set in the partition (which exists because the
clause is not flat). So let Ψ be the conjunction of all disequalities x 6= y such
that x and y are in different sets of the partition corresponding to C1. Then
Φ∧Ψ is logically equivalent to C1∧Ψ. Indeed, as Φ is reduced, there cannot be
two clauses in Φ such that the partition corresponding to one is finer than the
other, so for all Ci with i 6= 1 there is some disequality in Ψ that is stronger
than Ci. Let P be a set in the partition corresponding to C1 with at least
3 elements. For all other sets S in the partition identify the variables in S
with a single variable (using different variables for different sets). Quantify
existentially over these new variables in the formula Φ ∧ Ψ. We obtain a
formula Φ′ that is logically equivalent to x1 6= x2 ∨ x2 6= x3 · · · ∨ xp−1 6= xp
where p = |P | ≥ 3.

By applying the identifications x = x1, y = x2, z = x3 = · · · = xp we
obtain the formula x 6= y ∨ y 6= z.

Lemma 7. From S(x, y, u, v) := (x 6= y ∨ u 6= v) ∧ y 6= u ∧ x 6= u we may
define with ∀>1 and ∃ the relation p 6= q ∨ q 6= r.

Proof. Consider ∀>1v S(x, y, u, v) ∧ S(x′, y′, u′, v) which simplifies to

y 6= u ∧ u 6= x ∧ y′ 6= u′ ∧ u′ 6= x′ ∧ (u = u′ ∨ x 6= y ∨ x′ 6= y′).

14

Now add outermost ∃x′, y′ together with the atom x′ = y′ to obtain the
relation x 6= u ∧ y 6= u ∧ (u = u′ ∨ x 6= y). Finally, we add outermost ∃u
to obtain (u′ 6= x ∧ u′ 6= y) ∨ x 6= y which is logically equivalent to, e.g.,
(x 6= y ∨ u′ 6= x).

Lemma 8. Let Φ be a flat negative CNF with exactly four variables. Assume
that Φ depends on each of its variables, and that Φ is not rich. Then x 6=
y ∨ y 6= z has an {∃,∀,∀>1}-pp definition in Φ.

Proof. With a case-by-case analysis we can show that the formula Φ pp-
defines (x 6= y ∨ u 6= v) ∧ y 6= u ∧ x 6= u, and thus we are done by Lemma 7.

We may assume that x 6= y ∨ u 6= v is a clause of Φ, and v is not in
a singleton clause. We have the following possibilities, up to exchanging
variables.

1. (x 6= y ∨ u 6= v)
2. (x 6= y ∨ u 6= v) ∧ y 6= u
3. (x 6= y ∨ u 6= v) ∧ y 6= u ∧ x 6= u
4. (x 6= y ∨ u 6= v) ∧ (x 6= u ∨ y 6= v)
5. (x 6= y ∨ u 6= v) ∧ (x 6= u ∨ y 6= v) ∧ y 6= u
6. (x 6= y ∨ u 6= v) ∧ (x 6= u ∨ y 6= v) ∧ (x 6= v ∨ y 6= u)

Note that 6= is pp-definable from Φ. Thus Φ∧y 6= u∧x 6= u is pp-definable
from Φ, and it is logically equivalent to (x 6= y ∨ u 6= v) ∧ y 6= u ∧ x 6= u.

Lemma 9. Assume that 〈Γ〉{∃,∀,∀>1}-pp contains a negative CNF Φ that is
not rich. Then 〈Γ〉{∃,∀,∀>1}-pp contains the formula x 6= y ∨ y 6= z.

Proof. We may assume that Φ is flat, as otherwise we are done by Lemma 6.
Let x be a free variable of Φ that does not occur in a singleton clause. As
x is a free variable, it must be in some clause of Φ; let C be the shortest
one. By assumption, C has length at least two. Let y, u, v be free variables
of Φ such that C is of the form x 6= y ∨ u 6= v ∨ · · · . Consider the partition
corresponding to C, and unify the two 2-element sets {x, y}, {u, v} to obtain a
coarser partition E with a single 4-element subset P = {x, y, u, v}. Recalling
that Φ pp-defines 6=, let us weaken Φ around E by keeping P . After reducing
the result, we obtain a formula Ψ with free variables {x, y, u, v}. Again, this
must be flat, or we are done by Lemma 6. If Ψ is rich, then x is in a
singleton clause of Ψ. This singleton clause must have come from a clause of
Φ that was shorter than C, a contradiction. Hence, Ψ {∃,∀,∀>1}-pp defines
x 6= y ∨ y 6= z by Lemma 8.

15

Note that the {∃,∀,∀>1}-pp definitions of Lemmas 8 and 9 did not need ∀.

4.2. Quantifier elimination and reduction for negative, flat and rich CNF
formulas

We wish to argue that in a certain case we can effect quantifier elimination
for negative, flat and rich CNF formulas in polynomial time. Eliminating
a ∀>1 quantifier over negative, flat and rich formulas can throw up Horn
CNFs, so our first task will be to argue that we can compute a reduced form
from a Horn CNF Φ in polynomial time. Our task is to determine, whether
there are any redundant clauses (and if so remove them) and then whether
there are any redundant literals in the remaining clauses (which also must
be removed). To test for redundant clauses C it is sufficient to test whether
(Φ \ {C}) implies C, i.e. whether (Φ \ {C}) ∧ ¬C is a contradiction. But
this is itself the complement of a Horn CSP, itself uniformly tractable by
unit propagation (see [9])! Similarly, to determine if a literal ` is required
in a clause C, we may consider whether (Φ \ {C}) ∧ ` ∧ ¬(C \ {`}) is a
contradiction. Thus, given a Horn CNF Φ we can compute in polynomial
time a reduced CNF (itself Horn) Φ′ that is equivalent to Φ.

Consider each ∀>1xi Φ(x1, . . . , xk), for i ≤ k, where Φ is a negative, flat
and rich CNF, without any equalities, where the singletons involving xi are
precisely xi 6= x′λ1 , . . . , xi 6= x′λt . We can effect quantifier elimination in
the following fashion. We consider separately non-singleton and singleton
clauses. Substitute each non-singleton clause involving xi, itself of the form,
(xi 6= x′µ1 ∨ xµ2 6= x′µ2 ∨ . . . ∨ xµs 6= x′µs), where no variable is repeated, by
(x′µ1 = x′λ1 = · · · = x′λt ∨xµ2 6= x′µ2 ∨ . . .∨xµs 6= x′µs). Note that we will allow
conjuncts of equalities as single relations in our clauses, to avoid having to
break the clauses up. If we view this as a notational shorthand then we do
not break the condition of Horn-ness. If xi appeared in multiple singleton
clauses (i.e. t > 1), then we need to add the equality xλ1 = · · · = xλt to the
system. If xi appeared in a single singleton clause then we can now simply
remove it. Call the new CNF finally obtained Φ̃. Plainly, Φ̃ is logically
equivalent to ∀>1xi Φ and Φ̃ is Horn. We now apply our effective procedure
to establish whether Φ̃ is reduced and if not reduce it.

The question now naturally arises as to whether Φ̃ is negative. We argue
by the following lemma that it is enough to see whether our reduced CNF
form has a non-singleton clause with an equality in it.

16

Lemma 10. Let Φ be a reduced CNF representing a relation R in which
there is a non-singleton clause that contains an equality. It is not possible
that R is negative (i.e. has another reduced CNF that is negative).

Proof. In line with the discussion at the start of this section, we assume
that all clauses of Φ′, itself derived from Φ, are negative (eliminating equali-
ties by substitution if necessary).

Φ has a clause C of the form

(x1 = x′1 ∨ . . . ∨ xk = x′k ∨ y1 6= y′1 ∨ . . . ∨ y` 6= y′`).

Using the disequalities of C as an edge relation on (all) the variables {x1, x′1, . . . ,
xk, x

′
k, y1, y

′
1, . . . , y`, y

′
`} we obtain a graph G. Suppose that there is a path

from some xi to x′i in G, then plainly C is a tautology and Φ′ was not a
reduced CNF.2

Now, Φ has a satisfying assignment with x1 = x′1, x2 6= x′2, . . . , xk 6= x′k
and y1 = y′1, . . . , y` = y′`. Since all clauses of Φ′ are negative, we can deduce
that adhering to the equalities x1 = x′1, y1 = y′1, . . . , y` = y′`, but for other
than these equivalence classes setting everything distinct, satisfies Φ′ (and
maintains x2 6= x′2, . . . , xk 6= x′k by the discussion in the previous paragraph).
But, since Φ′ is negative, our assignment remains satisfying if we now force
the variables x1 (plus those in its connected component in G) and x′1 (plus
those in its connected component in G) to have distinct values, and keep
that these values are distinct from any we used elsewhere. Crucially, this
valuation now invalidates C and this is a contradiction.

We will now consider the quantifier elimination of ∃, ∃≥2, . . . etc. (note
that quantification by ∀ on a negative, flat and rich formula will always leave
it false). On negative formulas, with equalities removed by substitution, ∃≥2,
. . . etc. have the same power as ∃ and allow us to remove any clause in which
the corresponding variable appears. This leaves the formula negative and we
again have an effective method for reduction.

We now continue in this vein eliminating quantifiers and reducing CNFs.
If we at any point produce a CNF whose reduced form is not negative, flat
and rich then we know that Γ {∃,∀,∀>1}-pp defines x 6= y ∨ y 6= z. We are
now in a position to address Theorem 7.

2Here we may as well make the assumption that the empty conjunction > is a negative
formula since then we do not have to worry if C is the only clause of Φ′.

17

Proof (of Theorem 7). If Γ is not negative, then it follows from [12]
that Γ pp-defines either x = y ∨ y = z or x = y → y = z. Thus it follows
from Parts 4 and 1 or 2, respectively, of Lemma 2, that x 6= y ∨ y 6= z is
pp-definable (in the former case 6= is also needed). We are now in the first
case of the theorem by Proposition 5.

Now, assume that Γ is negative and 〈Γ〉{∃,∀,∀>1}-pp contains a formula
that is not flat or not rich. Then Γ falls into the first case of the theorem by
Lemmas 6 and 9 and Proposition 5.

Finally assume that 〈Γ〉{∃,∃≥2,...,∀,∀>1}-pp consists only of negative, flat, rich
formulas (recall that on the negative languages ∃ and ∃≥j are equipotent).
The quantifier-elimination scheme we have explained above runs in polyno-
mial time and always removes a clause from the CNF and thus terminates
in a linear number of steps.

By way of example for Theorem 7, we note that 〈{(u 6= v ∨ x 6= y) ∧ u 6=
y ∧ v 6= x}〉{∃,∀,∀>1}-pp contains only negative, flat and rich formulas.

5. Proofs of the main theorems

Since we appeal to it several times in the forthcoming proofs, we reproduce
the following nugget from [11]. Note that NP-membership here comes from
[26]

Theorem 8 (Theorem 7.1 in [11]). Let Γ be a positive equality language
that is not negative. Then QCSP(Γ) is NP-complete.

We now give the proofs of the main theorems, reproducing the statements
of those theorems for the reader’s convenience.

Theorem 2. If {∃≥1,∀>0} ⊆ X ⊆ {∃≥1,∀>0,∀>1, . . .} and contains some
∀>j for j ≥ 2, then X-CSP(Γ) displays trichotomy on the class of equality
languages Γ: If all relations of Γ are trivial, then X-CSP(Γ) is in L; if all
relations of Γ are positive, but some relation is not trivial, then X-CSP(Γ)
is NP-complete; and otherwise X-CSP(Γ) is Pspace-complete.

Proof. If Γ is trivial, then X-CSP(Γ) is in L due to Lemma 3 and [27]. For
positive languages, NP membership follows from Lemma 5. NP-hardness for
the non-trivial positive languages follows from Theorem 8. Pspace-hardness
for non-positive languages follows from Proposition 2.

18

Theorem 3. If X = {∃≥1, ∀>0,∀>1}, then X-CSP(Γ) displays trichotomy on
the class of equality languages Γ: If Γ is specially negative, then X-CSP(Γ)
is in P; if all relations of Γ are positive, but some relation is not trivial, then
X-CSP(Γ) is NP-complete; and otherwise X-CSP(Γ) is Pspace-complete.

Proof. For specially negative languages, P membership follows from Theo-
rem 7. For positive languages, NP membership follows from Lemma 5. NP-
hardness for the the non-trivial positive languages follows from Theorem 8.
Pspace-hardness for the remaining languages follows from Theorem 7.

Theorem 4. If {∃≥1,∀>0} ⊆ X ⊆ {∀>0,∃≥1,∃≥2, . . .} and contains some
∃≥j for j ≥ 2 then X-CSP(Γ) displays dichotomy on the class of equality
languages Γ: If all relations of Γ are negative, then X-CSP(Γ) is in L; and
otherwise X-CSP(Γ) is co-NP-hard.

Proof. For negative languages, it is easy to see that ∃≥jx holds iff ∃≥1x (for
all j), once we have eliminated equalities by substitution as in Lemma 3. This
is due to the numerous automorphisms of equality languages. The logspace
membership of negative languages follows from Theorem 6.1 in [11]. For
positive, non-negative languages, we appeal to Proposition 6 together with
Theorem 8. For non-positive and non-negative languages, we again appeal
to Theorem 5.5 in [11].

Theorem 5. If {∃≥1,∀>0} ⊆ X ⊆ {∀>0,∀>1, . . . ,∃≥1, ∃≥2, . . .} and contains
some ∃≥i and ∀>j for some i, j ≥ 2 then X-CSP(Γ) displays dichotomy on the
class of equality languages Γ: If all relations of Γ are trivial, then X-CSP(Γ)
is in L; and otherwise X-CSP(Γ) is Pspace-complete.

Proof. If Γ is trivial, then X-CSP(Γ) is in L due to Lemma 3 and [27].
Pspace-hardness follows from Proposition 2 via Proposition 6, the latter of
which permits the definition of 6=.

Theorem 6. If {∃≥1,∀>0} ⊆ X ⊆ {∀>0,∀>1,∃≥1,∃≥2, . . .} and contains ∀>1

and some ∃≥i for some i ≥ 2 then X-CSP(Γ) displays dichotomy on the class
of equality languages Γ: If Γ is specially negative, then X-CSP(Γ) is in P;
and otherwise X-CSP(Γ) is Pspace-complete.

Proof. Membership in P follows from Theorem 7. If Γ is positive non-
trivial, then 6= is definable by Proposition 6 and Pspace-hardness follows
from Proposition 1. For negative languages that are not specially negative,

19

Pspace-hardness follows from Theorem 7. Finally, for Pspace-hardness of
languages that are neither positive nor negative, we apply Lemma 2 Part 6
with Proposition 1.

6. Ennui of co-NP- to Pspace-completeness

We now ponder why it might be a challenge to improve any of our general
co-NP-hardness results to Pspace-completeness.

Proposition 7. For all 1 ≤ k ∈ N, {∃≥k,∀>0,∃≥1}-CSP(x = y → y = z)
and {∀>0,∃≥1}-CSP(x = y → y = z) (i.e. QCSP(x = y → y = z)) are
logspace equivalent.

Proof. The trivial identity reduction works in the backward direction, for
the forward direction we will give a procedure to eliminate quantifiers of the
form ∃≥k from an input φ of the form Qx Φ(x). Suppose Φ is constituted by
the atoms Φ1, . . . ,Φr, and φ contains s variables quantified by ∃≥k.

We eliminate quantification on y of the form Qx ∃≥ky Qz Φ(x, y, z) by
replacing it with

Qx ∃y1, . . . , yk∀y Qz

 ∧
i 6=j∈[k]

yi 6= yj

∧ (y = y1∨ . . .∨y = yk)→ Φ(x, y, z),

where y1, . . . , yk are new variables. In the quantifier-free part, because the
antecedent (y = y1 ∨ . . . ∨ y = yk) is attained, we may consider (y = y1 ∨
. . . ∨ y = yk) → Φ(x, y, z) to be replaced by a conjunction of atoms of the
form (y = y1 ∨ . . . ∨ y = yk) → Φi, if Φi involves y, and just Φi otherwise.
Iterating this procedure, we can eliminate all quantifiers of the form ∃≥k at
the cost of introducing ks new variables. Each atom Φi of Φ contains at most
three variables, so the iterated procedure can only cause it to be preceded by
at most three instances of “(y = y1 ∨ . . . ∨ y = yk)→”. This boundedness is
essential to the working of the reduction.

We now address the removal of these at most three antecedents at the
atomic level. That is, we show how to manipulate the atoms so that they
are only of the form x′ = y′ → y′ = z′. It will be simplest to give this as
an iterative procedure. If this procedure were to be applied a linear number
of times, it would generate an exponential size blow-up, but we will only
need to apply it three times and hence we avoid this. We need to consider

20

three cases, for the three possible variables in each Φi, being of the form
x = y → y = z.

Case 1. (x = x1 ∨ . . . ∨ x = xk) → (x = y → y = z). We will introduce
two new variables p and q, adding innermost quantification ∃p, q. Add atoms
x = x1 → x = p, . . . , x = xk → x = p. We will also need (x = p ∧ x = y)→
x = q and y = q → y = z. That the former can be (pp-)expressed follows
from Lemma 2 Part 3.

Case 2. (y = y1 ∨ . . . ∨ y = yk) → (x = y → y = z). We will introduce
a new variable p, adding innermost quantification ∃p. Add atoms y = y1 →
y = p, . . . , y = yk → y = p. We will also need (y = p ∧ y = x) → y = z.
That this can be (pp-)expressed follows from Lemma 2 Part 3.

Case 3. (z = z1 ∨ . . . ∨ z = zk) → (x = y → y = z). We will introduce
two new variables p and q, adding innermost quantification ∃p, q. Add atoms
z = z1 → z = p, . . . , z = zk → z = p. We will now also need x = y → y = q
and x = q → q = p.

It follows from Proposition 7 and [11] that our working conjecture that QCSP
(x = y → y = z) is Pspace-complete would elevate the co-NP-hardness cases
of Theorems 1 and 4 to Pspace-hardness.

7. Final remarks

We have classified the extensions of the quantified constraint satisfaction
problem over equality languages in which the native existential and universal
quantifiers are augmented by some subset of counting quantifiers. This is the
first complexity classification for counting quantifiers over an infinite domain
and the first to consider quantifiers of the form “for all but j”. We have
additionally built upon the work of [11] and [21]. The classes of equality
languages designated positive and negative (also trivial) are not new, and
appeared in those papers. However, the class of specially negative languages,
which plays a role in our classification, is new and interesting. We are not sure
exactly where this class fits within the negative languages or even if it forms
a co-clone (is there more than one maximal specially negative language?).

Whilst Theorems 1 and 4 are complete classifications, in the sense of
[11], they are incomplete in that many of the co-NP-hard cases are known
to be Pspace-complete. It is here that the working hypothesis allows for a
fuller classification and this that gives it a raison d’être.

21

Finally, it is appropriate to comment on our working hypothesis. Most
people who have investigated the problem have begun with the strong belief
that QCSP(x = y → y = z, 6=) is Pspace-complete. However, with time
invested, this belief typically fades and one entertains also the possibility of
co-NP-membership. For this reason we resist to phrase it as a conjecture per
se.

Acknowledgements

We are grateful for many helpful corrections from reviewers for the journal
version of this article.

[1] P. G. Kolaitis, M. Y. Vardi, Finite Model Theory and Its Applications
(Texts in Theoretical Computer Science. An EATCS Series), Springer-
Verlag New York, Inc., 2005, Ch. A logical Approach to Constraint
Satisfaction.

[2] T. Feder, M. Y. Vardi, The computational structure of monotone
monadic SNP and constraint satisfaction: A study through Datalog
and group theory, SIAM Journal on Computing 28 (1999) 57–104. A
preliminary version appeared in the proceedings of STOC’93.

[3] A. A. Bulatov, P. Jeavons, A. A. Krokhin, Classifying the complexity of
constraints using finite algebras, SIAM J. Comput. 34 (3) (2005) 720–
742.

[4] T. J. Schaefer, The complexity of satisfiability problems, in: Proceedings
of STOC’78, 1978, pp. 216–226.

[5] A. Bulatov, A dichotomy theorem for constraint satisfaction problems
on a 3-element set, J. ACM 53 (1) (2006) 66–120.

[6] P. Hell, J. Nešetřil, On the complexity of H-coloring, Journal of Combi-
natorial Theory, Series B 48 (1) (1990) 92–110.

[7] L. Barto, M. Kozik, T. Niven, The CSP dichotomy holds for digraphs
with no sources and no sinks (a positive answer to a conjecture of Bang-
Jensen and Hell), SIAM Journal on Computing 38 (5) (2009) 1782–1802.
A preliminary version appeared in the proceedings of STOC’10.

22

[8] U. Egly, T. Eiter, H. Tompits, S. Woltran, Solving advanced reason-
ing tasks using quantified boolean formulas, in: Proc. 17th Nat. Conf.
on Artificial Intelligence and 12th Conf. on Innovative Applications of
Artificial Intelligence, AAAI Press/ The MIT Press, 2000, pp. 417–422.

[9] M. Bodirsky, J. Kára, The complexity of equality constraint languages,
Theory of Computing Systems 43 (2) (2008) 136–158, a preliminary
version appeared in the proceedings of CSR’06.

[10] M. Bodirsky, Complexity classification in infinite-domain constraint sat-
isfaction, mémoire d’habilitation à diriger des recherches, Université
Diderot – Paris 7. Available at arXiv:1201.0856 (2012).

[11] M. Bodirsky, H. Chen, Quantified equality constraints, SIAM J. Com-
put. 39 (8) (2010) 3682–3699.

[12] M. Bodirsky, H. Chen, Quantified equality constraints, in: Proceedings
of LICS’07, 2007, pp. 203–212.

[13] M. Bodirsky, H. Chen, Personal communication (2012).

[14] B. Martin, F. R. Madelaine, J. Stacho, Constraint satisfaction with
counting quantifiers, SIAM J. Discrete Math. 29 (2) (2015) 1065–1113.
Extended abstracts appeared at CSR 2012 and CSR 2014.

[15] H.-D. Ebbinghaus, J. Flum, Finite Model Theory, Springer, 1999, 2nd
edition.

[16] M. Otto, Bounded variable logics and counting – A study in finite mod-
els, Vol. 9, Springer-Verlag, 1997, iX+183 pages.

[17] C. S. Peirce (Ed.), Studies in Logic; by Members of the Johns Hopkins
University (1883), John Benjamins Publishing, 1983.

[18] R. Clark, M. Grossman, Number sense and quantifier interpretation,
Topoi 26 (1) (2007) 51–62.

[19] J. Szymanik, Quantifiers and Cognition: Logical and Computational
Perspectives, Studies in Linguistics and Philosophy, Springer, 2016.

[20] D. A. M. Barrington, N. Immerman, H. Straubing, On uniformity within
NC1, J. Comput. Syst. Sci. 41 (3) (1990) 274–306.

23

[21] M. Bodirsky, H. Chen, M. Pinsker, The reducts of equality up to prim-
itive positive interdefinability, J. Symb. Log. 75 (4) (2010) 1249–1292.

[22] J. Schmidt, M. Wrona, The Complexity of Abduction for Equality Con-
straint Languages, in: Computer Science Logic (CSL 2013), 2013, pp.
615–633.

[23] M. Bodirsky, M. Hils, B. Martin, On the scope of the universal-algebraic
approach to constraint satisfaction, Logical Methods in Computer Sci-
ence 8 (3) (2012).

[24] F. Börner, A. A. Bulatov, H. Chen, P. Jeavons, A. A. Krokhin, The
complexity of constraint satisfaction games and QCSP, Inf. Comput.
207 (9) (2009) 923–944.

[25] L. J. Stockmeyer, The polynomial-time hierarchy, Theoretical Computer
Science 3 (1) (1976) 1 – 22.

[26] D. Kozen, Positive first-order logic is NP-complete, IBM Journal of Re-
search and Development 25 (4) (1981) 327–332.

[27] O. Reingold, Undirected connectivity in log-space, J. ACM 55 (4) (2008)
1–24.

24

