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Preface 

The objective of this book is to familiarize the reader with the basic tools 
of over-determined partial differential equations, namely the Spencer ver­
sion of the Cartan-Kahler theorem, via the study of an old problem of 
differential geometry almost open until now, the characterization of sec­
ond order ordinary equations, also called sprays, coming from a variational 
problem. Note that this problem is not the same as the characterization 
of Euler-Lagrange operators, which is now well understood thanks to the 
variational bicomplex. Using the terminology of I.M. Anderson, we will 
study the variational integrating factors problem: since for any non sin­
gular matrix a% the differential operators Pa and ajjPa define the same 
differential equation, we ask if for a quasi-linear differential operator Pa 

there exists a non-singular matrix a^ and a Lagrangian E such that 

_dLdE^_dE_ 
a0a~dtdx0 Ox0' 

The solution to this problem requires the study of the integrability of a 
partial differential system called the Euler-Lagrange system. 

The most significant contribution to this problem is a famous paper of 
J. Douglas where, using the Riquier's theory, the variational differential 
equation on 2-dimensional manifolds are classified. The generalization of 
its results in the higher dimensional case is a very hard problem because 
the Euler-Lagrange system is still extremely over-determined. 

Using techniques from the Spencer theory of over-determined systems 
such as prolongation, Spencer cohomology, involutivity, 2-acyclicity, and 
the natural framework of the tangent bundle such as algebraic differen-

V 



VI Preface 

tial characterization of connections and derivations by Frolicher-Nijenhuis 
brackets, we can present the obstructions which appear in the 2-dimensional 
cases in an intrinsic and natural way. When the dimension of the manifold is 
n, we apply this technique to the study of a special class of sprays, which we 
call isotropic. Roughly speaking, a variational isotropic spray corresponds 
to the geodesic flow of a Finsler resp. Riemann manifold with a constant 
sectional curvature in the homogeneous resp. quadratic case. However it 
is more general because we will also consider the case of non-homogeneous 
second order equations. The main theorems provide complete working il­
lustration of the techniques employed, such as prolongation, computation 
of torsion, involutivity, Spencer cohomology, 2-acyclicity etc. 

We briefly describe the contents of each chapter. 
Chapter I offers an elementary introduction to the formal integrability 

theory of partial differential systems. No proofs are given, but all the 
notions are illustrated with simple examples, so that the formalism of the 
theory, which usually disheartens the reader, can be easily absorbed. 

Chapter II and Chapter III are devoted to the presentation of the con­
nection theory based on the Frolicher-Nijenhuis graded Lie algebra. It 
provides an adapted formalism for our problem, which allows us to present 
all the differential relations and obstructions easily and intrinsically. 

In Chapter IV we study variational sprays. We establish the necessary 
relations which they satisfy and introduce a natural graded Lie algebra 
associated to the spray which plays an important role in our study. 

The application of formal integrability theory of partial differential 
equations to the the inverse problem begins in Chapter V. We study the 
problem in the general case, i.e. without any restriction on the dimension 
or on the curvature. We give the first obstructions so that a spray is vari­
ational. This chapter provides useful examples for the reader interested in 
the application of the technique. The complete classification of the varia­
tional sprays seems to be impossible in the general situation, because a lot 
of obstructions, determined by the elements of the graded Lie algebra in­
troduced in Chapter IV, appear. However, it is instructive to see how they 
arise and this Chapter offers quite a clear idea of the methods employed. 
In order to obtain complete results we restrict ourselves to particular cases. 
That is what we do in the following Chapters. 

In Chapter VI we treat the 2-dimensional case. Of course, this chap­
ter, like the original paper of J. Douglas, is quite complicated, because 
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many cases and sub-cases have to be considered and many obstructions 
arise. Nevertheless, it is the very chapter that the theory of the over-
determined system is fully applied and all the possible situations appear: 
involutivity, 2-acyclicity, non-zero higher order cohomology groups, restric­
tion of the system etc. As we will see, from this study a particular class of 
sprays emerges naturally which we call typical, because it also contains the 
quadratic and homogeneous second order equations, which are the more fre­
quent in differential geometry. Although they require a special treatment, 
the necessary computations are easier. 

In the last Chapter we return to the n-dimensional case, but we limit 
ourselves to the study of isotropic sprays. When the non-holonomy is weak, 
we obtain the necessary and sufficient conditions for the spray to be vari-
ational. Some of the results of this Chapter was published in Annales de 
I'Institut Fourier recently. 

ACKNOWLEDGMENTS - We would like to express our gratitude to Ian 
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Chapter 1 

An Introduction to Formal 
Integrability Theory of Partial 

Differential Systems 

In this chapter we give an elementary introduction to the Spencer-Gold-
schmidt version of the Cartan-Kahler Theorem. Our goal is to study the 
variational problem related to the integrability of the Euler-Lagrange differ­
ential operator. Since it is a second order linear partial differential operator, 
in this chapter we look at the theory of integrability of linear differential 
operators. In section 1.7 the non linear case is mentioned. 

1.1 Introduction 

The fundamental theorem about partial differential equations (PDE) is the 
well known Cauchy-Kowaleska Theorem: 

Theorem 1.1 - (CAUCHY-KOWALESKA) Consider the system 

where i = l,. . . ,n - 1, /x = 1, ...,m, x = (xi , . . . ,xn) , z = (zi,...,zm) and 
the functions ^"(x,z, -g~) are analytic on a neighborhood o/(0, i4",i4f). 
Given analytic functions / ' ' (a;1 , . . .1 in"1) on a neighborhood of 0 such 
that 

there exists a unique analytic solution z — F(xl,...,xn) of the system 

l 



2 Formal Theory of Partial Differential Systems 

(1.1) on a neighborhood of 0 G Kn such that: 

z " ( i 1 , . . . i n - 1 , 0 ) = / ' , ( i 1
> . . . , x n - 1 ) . 

Note that the system of PDE in the Cauchy-Kowaleska Theorem has two 
particularities: 

(1) The number m of (first order) equations is equal to the number of 
unknown functions z*. 

(2) One of the independent functions, xn, plays a particular role. 

The idea of the proof is as follows: 
1. One begins to look at the formal integrability, i.e. one looks for formal 

power series in a neighborhood of 0 € Rn, which satisfy the system and 
the initial condition. Taking into account the particular form of the system 
(the partial derivatives Jjj£- are expressed in terms of the other components 
of the 1-jet of z^) it is not difficult to prove that formal solutions exist. 

2. By the technique of the "majorant series" one proves that the formal 
series converge. 

The Cartan-Kahler Theorem generalizes the Cauchy-Kowaleska Theo­
rem, in the sense that the number of equations is not necessarily equal to 
the number of unknown functions, and that none of the variables play a 
particular role. 

As we have said, the particular form of the Cauchy-Kowaleska system 
implies that formal solutions always exist. This is not the case for a general 
system: obstructions can arise and be explicitly computed. However, if 
formal integrability of an analytic system is ensured, the formal solutions 
converge, as in the Cauchy-Kowaleska case. 

The situation is similar to the one for systems of linear algebraic equa­
tions and the analogy is not only formal. If a linear system is in the Cramer 
form (i.e. the number of equations is the same as the number of unknown 
variables and the matrix is regular) then a solution exists and it is unique. 
For a general system, obstructions appear: they can be obtained by com­
puting the "characteristic determinants" (which amounts to giving all the 
linear relations between the equations). When these compatibility condi­
tions are satisfied, the system can be put in the Cramer form with some 
free parameters. Then a parametrized family of solutions can be obtained, 
and the number of the parameters depends on the rank of the system. For 
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the systems of PDE the situation is similar. The obstructions arising from 
the Spencer cohomology correspond to the fact that the characteristic de­
terminants have to vanish and the number of parameters (which in this 
case are arbitrary functions) can be explicitly computed. 

Let us consider the system of partial differential equations 

F " ( x V " , ^ , . . . , < . . . a J = 0 (1.2) 

where v = l...p and 

dz^ 8kz^ 
a dxa' " ■ • ' 0 " - ' a * dx\...dxa

k 

Definition 1.1 The system 1.2 is locally integrable in a neighborhood 
of x0, if for any real numbers A^, A%, ...., A£ ak € K verifying 

F"(xo,A",...,A^ak) = 0, (1.3) 

there exists a neighborhood U of xo and a solution z^(x) denned on U such 
that 

' * " ( ! „ ) = A", 
za \Xo) = Aa, 

< 

• Zai...ak\Xo) = ^ a i . . . a t -

The set of the {A",A^, ,A^ a J satisfying (1.3) is called a kth-order 
formal solution (or initial data at xo). The set of all the fcth order formal 
solutions at xo is noted Rk,Xo ■ 

In other words, the PDE (1.2) is (locally) integrable in a neighborhood of 
x0 if 

for every Fo G Rk,x0 there exists a neighborhood U of xo 
and f € C°°(U, W) verifying the differential equation (1.2), 
such that (jkf)xo = F0. 

To study the integrability Taylor series can be used. At first one looks 
for a formal solution z = (zl,...,zm) i.e. a formal series satisfying the 
equation 

a 
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(where a is a multi-index and Aa = (Daz)(x0)). Putting z into the equa­
tion, we can compute Aa by solving algebraic systems. Then we can look 
at the convergence of the formal solution. 

E x a m p l e 1.1 Let us consider the equation 

dx2 dy2 

With obvious notations it can be written: 

211 +222 = 0. 

The coefficients of the formal series verifying the equation must satisfy: 

An +A22 = 0. 

Taking for example : An = 1,^22 = —1 and choosing Ai = Ai = A12 = 0, we 
have a 2^-order solution: (0,0,1,0, - 1 ) . 

If we want to compute the other coefficients of the formal expansion, we need 
to derive the equation and study the the first prolongation of the system: 

i z i i + 2 2 2 = 0 
2111 + 2122 = 0 
2211 + 2222 = 0. 

The numbers Ai, Aij,Aijk must satisfy the system: 

( An + A22 = 0 
Am + A122 = 0 
Am + A222 = 0 . 

If we take the Ai and Atj as above, we can build a 3rd-order solution which 
extends the 2nd order solution already found. For example: 

Ax = 0 , A2 = 0, An = 1, A12 = 0, A22 = - 1 

and 

A m = 0, A112 = 0, A122 = 0, A222 = 0. 

When we carry out this operation a second time, we obtain a system of five 
equations. If this system is consistent then we find the 2nd order solutions which 
are lifted to 4(/l-order solutions, etc... 
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Formal integrability at x0 means that any kth order formal solution at 
xo can be lifted into an infinite order solution. 

As is shown by the above example, in order to prove that the fcth order 
solutions can be lifted in infinite order solutions (i.e. there exists a formal 
solution), we need to study the consistency of an algebraic system contain­
ing an infinite number of unknowns and equations. Roughly speaking the 
Cartan-Kahler Theorem says that if the system is "involutive" and "regu­
lar" (these notions will be introduced in the next sections) one only needs 
to study the first prolongation: 

Consider the kth order system 

F"(X,ZK , < . . . a J = 0, u = l,...,p 

which is supposed to be "regular". If the system is "in­
volutive", and every kth-order solution can be lifted in 
a (k + l)"1 order solution, then the system is formally 
integrable. 

1.2 Notat ions and definitions 

Let M be an n-dimensional manifold. We shall denote by (xa) local coor­
dinates on M. Where there is no possibility of confusion TM and T*M 
will be noted as T and T*. Moreover A T * and S"T' will designate the 
vector bundles of the skew-symmetric and symmetric forms. 

Let £ be a fibred bundle over the manifold M with the projection 7r. 
One denotes by SecE the sheaf of the sections of E over M. Two sections 
of E determine the same A:th order jet if in one, and hence in every, local 
coordinate system their Taylor series coincide up to order k. The class 
determined by the section s G SecE at the point x0 6 M is denoted by 
j*(s)x0! a n a ^ t n e s e t °f ^ A;-jets is denoted by Jk(E). With the projection 
7rjfe,0 defined by irk,o(jk(s)x0) = xo, Jk{E) is a fibred manifold over M 
which is called the bundle of fc-jets of sections of E. If I > k, one defines 
the projection niyk as follows: ni,k(ji(a)x0) = Jk(s)Xo, and Ji{E) is also a 
fibred manifold over Jk(E), in the case where E is a vector bundle over M. 
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Let (U,a;1,...,a;") be a local coordinate system on M such that E is 
trivializable over 7r-1(C/), and let (x1 , . . . ,a;n ,z1 , . . . ,zm) be local coordinates 
on -K~1(U). A standard local coordinate system {x\z^,z%) of J*(E) on 
nk * (^) *s defined for a section s of E by 

*M(i*(*)*o)=*"(«(*o)), 
zZ(jk(s)X0)=Daz»(s(x))(x0), 

where i = 1, ...,n, j = 1, ...,m, and a = (a\, ...,an) are multi-indices satis­
fying 1 < ai + ... + an < k. 

To simplify the notation we denote 7r*_i for Ttk,k-i'-

JkE =—>• Jk-\E 

(ra z>* z^ 1 (T" Z>* Z>* 1 

It is easy to see that :* 

K e r ^ - i ~SkT*®E. 

Then we have the exact sequence: 

0 ► SkT*®E —'—* •/*£ - ^ - > J^xf? ► 0, 

where e is denned at x € M in the following way: if f \ , . . . , fk G C°°(M) are 
functions vanishing in xo and s 6 Sec(E), then: 

e(d/i © ... © dfk ® s) IO = j f c(/i • • • fks)X0, 

where © denotes the symmetric product. 

Definition 1.2 Let E and F be two vector bundles over the same man­
ifold M. A partial differential operator (PDO) is a map 

P : Sec(E) —> Sec(F). 

'Using local coordinates: if £ e K e r ^ . ! , then £ = (x",0, .. . . ,0, *£,...OJr) and the ^ . . . m 
are identified with the components of a multi-linear symmetric map T x ... x T —> E. 
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P is a Oth order operator if P(fs) = fP(s) for every / 6 C°°{M) and 
s 6 Sec(E). The order is A: if the map 

Sec{E) ► Sec(F) 

s —» P(fs) -fP(s) 

is a k — 1 order operator for any / 6 C°°(M). 

It is easy to see that the order of P is k if and only if P(s) can be expressed 
in terms of the k-jet of s; then P can be identified with a map 

Po(P) : JkE —> F. 

P is called a linear if Po(P) is a morphism of vector bundles on M. 

Example 1.2 Exterior derivative. 
The operator d : Se^T"") —> Sec(\2T") can be identified with the mor­
phism: 

po(d): J,T' ► A2T* 

(xa,LJa,LJatb) - ) • ( X ° , W Q , 6 - W 6 , 0 ) . 

Example 1.3 Linear connection. 
Let V be a linear connection on a vector bundle F —> M characterized by 
the differential operator: 

V :Sec{F) ► Sec(T' ® F) 

s '—> Vs 
where 

Vs:5ec(TM) ► «Sec(P) 

Then V can be identified with the morphism: 

Po(V) : JxF ► T * ® P 

(xa,z»,z£) —► ( x a , ^ + r ^ ( x ) 2 " ) . 

Definition 1.3 A partial differential equation Rk of order A: on E is a 
fibred sub-manifold of Jk{E) —4 M. A solution of Rk is a section s oi E 
such that J'J. (s) is a section of Rk ■ 
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As we explained in the Introduction we need to derive the system to 
find the integrability conditions. This is the notion of prolongation. 

Definition 1.4 - Let P : SecE -> SecF be a Jfcth order PDO. The map 

p,(P):Jk+lE > J,F 

jk+i{s) <—>■ ji(Ps) 

is called the Ith-order prolongation of P. 

It is easy to see that the Ith prolongation of a kth order operator depends 
only on the (A; + /)-jet of s £ SecE. 

Definition 1.5 A A:th order jet (jts)x € Jk(E) is called fcth order solu­
tion of P in x, if P{s)x = 0. More generally (jk+is)x € Jk+i(E) is called 
(k + l)th order solution of P in x, if pi(P)(s)x = 0, / > 0. Let us set: 

Rk+iAP) = { Uk+is)x € Jk+i{E)x | s € Sec(E) and p,(P){s)x = 0 }. 

Rk+i,x is called the space of (k + l)th order solutions of the operator P 
at x. 

Prom now on we will suppose that the differential operator P is such 
that Rk(P) is regular, that is Rk(P) is a fibred sub-manifold of JkE —> M. 
It can be proved that it is the case if po(P) has a locally constant rank (cf. 
[BCG3] p. 396). If the PDO is written locally in the form 

F"(xa,z»,zZ, , < , . . . , a J = 0 , v = l,...,p 

this amounts to the mapping F having locally constant rank. 

Definition 1.6 The partial differential equation corresponding to a fcth 
order partial differential operator P is the fibred manifold Rk{P)- A so­
lution of the operator P on an open set U C M is a section s 6 Sec(E) 
denned on U, such that Ps = 0, or equivalently: 

Po(P)Ukf)x=0, Vx£U. 

Let 

^fc+z-i : Rk+i —► Rk+i-i 
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be the restriction of the projection Kk+i-i '■ Jk+iE -> Jk+i-iE to Rk+i-
The surjectivity of the 7fjt+/-i for every I > 1 means that every kih-oidei 
solution can be lifted to a oo-order solution. Now we can formulate the 
following definition: 

Definition 1.7 A PDO is called formally integrable at x0 if 

(1) Rk+i is a vector bundle for all I > 0; 
(2) 7Tt+/_ilIO : Rk+i,Xo ->• Rk+l-i,x0

 for e v e r y i > 1 is onto. 

In the analytical context, formal integrability implies the existence of solu­
tions for all the initial data: 

Theorem 1.2 (cf. [BCG3], p.397) - Let P be a regular analytical 
PDO. Suppose that P is formally integrable at XQ. Then for every 
Fo € Rk,x0> there exists an analytical section s of E defined on a neigh­
borhood U of XQ, such that Pf = 0, and (jkf)(xo) = Fo-

The convergence of the power series was first established by Ehrenpreis, 
Guillemin and Sternberg in 1965 [EGS] and later by Sweeney [Swe] proving 
the so-called Poincare J-estimate formulated by Spencer [Spe]. In 1972, 
Malgrange gave direct proof of the theorem with the method of "majorants" 
[Ma]. 

1.3 Involutivity 

The notion of involutivity has been introduced by E. Cartan in his theory 
of exterior differential systems [Ca]. It can be explained as follows. Let us 
consider the system 

( df 

' df 
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If we add to this system the obstruction arising from the first prolongation 
(§7 = f^) , then it is easy to see that the system 

dP _ dQ=Q 

dy dx 

is locally integrable. In other words, all the obstructions are contained 
in the first prolongation. Cartan stated that for a general PDO all the 
obstructions are contained in the system obtained after a finite number 
of prolongations. This theorem was later proved by Kuranishi [Ku] and 
Quillen [Qui]. 

In the Cartan theory, the involutivity is checked by the so-called Car-
tan test. It consists of computing the dimensions of a flag related to the 
prolongation of the system. This amounts to producing a certain basis of 
the tangent space, called a quasi-regular basis, satisfying some conditions. 
In 1963 Serre expressed the involutivity in terms of cohomological algebra 
[Se]. At present the involutivity is too strong a condition : the obstruc­
tions to the formal integrability belong to some cohomological groups of 
a complex called the "Spencer complex" (the involutivity is equivalent to 
the vanishing of all the cohomological groups of the Spencer complex). Fi­
nally Quillen proved that the cohomology of the Spencer complex vanishes 
from a certain order (i.e. there exists a prolongation of the system which 
is involutive). 

NOTA - From now on, the PDO will be considered as linear (the non­
linear case will be considered at the end of this chapter). 

Let P : Sec E —> SecF be a linear differential operator and po(P) ■ 
JfcE —> F the corresponding morphism on the jet bundle. 

Definition 1.8 The map ak{P) : SkT' ®E —> F denned by ak(P) = 
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Po(P) o e is called the symbol of P: 

SkT' ® E - f—* J*£ - ^ - 4 - i £ 

Po(P) 

Where there is no possibility of confusion, we will simply denote it by ak ■ 
This amounts to restricting the PDO to its maximal order part. 

The Zth prolongation ok+i (P) of the symbol is defined by the following 
diagram: 

Sk+'T" ® E 
Ok + l 

' ' T * S'T 

S'T" ® SkT* ® E 

It is easy to see that ak+i is naturally identified with the symbol of the Zth 
order prolongation of P. In particular 

is defined by 

<rk+1 : Sk+1T' ®E^T'®F 

for X £ T a n d t e Sk+1T'. 

Let P be a fcth order linear differential operator. We put 

gk+i(P) :=Kera k + l (P) , / > 0. 

Example 1.4 Let us consider the exterior derivative : 

d:Sec(T*) —>Sec(\2T') 

or, in terms of jets: po(d) : J\T" —► A2T*. We have the diagram: 

0 T'®T' £ 
' ( * , * „ i ) 

<T,(d) 

( i 

(x ,0 , 

' 

71* *o 
/tab) 

P O W 

A 2 T' 
. *„ , , - » 6 a ) 

-*o 
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The symbol is the map 

<7i(d):T*®r* ► A2T* 

A i—► <7iA 

defined by 

[ai(d)A](X,Y) = A(X,Y) - A(Y,X), 

X,Y eT. Taking into account that (ixC2)(B) = oi(ixB), the prolongation of 
the symbol is the map 

<r2(d) : S2T' ® T* >T' ® A2T* 

B <—> 0-2B 

given by 

[o-2(d)B](X, Y, Z) = B(X, Y, Z) - B(X, Z, Y). 

E x a m p l e 1.5 Let us consider the covaiiant derivative 

po(V) : J iF ► T'®F 

{x\z\z£) —► ( x ° , ^ + r ^ ( x K ) . 

The symbol is the map 

a 1 (V) : T* ® F >T' ® F 

Aa i > A.Q. 

Then a,(V)(A)(J: ,0 = A(X,£) i.e. ai(V) = idT-®F. Now 

<T2(V) : S2T' ® F —► T* ® T - ® F 

is defined by <72(V)(fl)(X, Y,f) = B(X,y,£)-

Definition 1.9 Let {ei,...,en} be an ordered basis of TXM. We can 
write, for j = 1, ...,n — 1, 

ff*(P)*,e,...ei = {A e 3fc(̂ )x I i e i 4 = •••• = ieiA = 0}. 
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A basis is called " quasi-regular" if: 

n - l 
dimgk+i(P)x = dimgk(P)x + ^2dimgk(P)x,ei...ej. 

j=i 

A symbol is called involutive at x if there exists a quasi-regular basis at 
x € M. + 

REMARKS 

(1) For any basis we have 

n - l 
dim(3*+i)x < dim(5i)x + ^d im(0 t ) x , e i . . . e i . (1.4) 

i= i 

(2) The characters defined by B. Cartan are related to the dimensions 
of the (gk)x,ei...ej by 

«i = d i m ^ - d i m ( ^ ) e i 

s2 = dim(g t) e i -dim(5fc)e i ea 

Sj - dim(st)e1...e>_1 -dim(ojt)e i . . .e j 

With these notations the condition for a quasi-regular basis can be 
written: 

dimpt+i = si 4- 2s2 + 1- nsn-

This is the so-called Cartan test. 
(3) The following property holds: 

Let P be a formally integrable involutive PDO, {e*} a quasi-reguiar 
basis and Sj the Cartan characters. Let £ be the largest integer such 
that S( 7̂  0. Then the general solution depends on S( arbitrary 
functions of £ variables . 

t There is a slight problem of language here. In the works of Cartan, and more generally in 
the theory of exterior differential systems, "involutivity" means more than the existence 
of a quasi-regular basis and it amounts to "integrability" (cf. [BCG3], p.107, 140). Here 
we are following the terminology of Goldschmidt (cf. [BCG3], p. 409). 
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E x a m p l e 1.6 Let us consider the exterior derivative. Using the computation 
of the Example 1.4 one finds 

gi(d) = {AeT'®T'\ A(X,Y) = A(Y,X)} = S2T' 

and therefore 

. . 7 i ( n + l ) drmgi(d) = - ^ — ' - . 

Taking into account the expression of (72(d) one has 

g2(d) = {Be S2T' <g> T* I B(X, Y, Z) = B{X, Z, Y)} = S3T* 

thus 

,. . . . n(n + l)(n + 2) dim02(d) = — ^ -■ o 

Let us consider an arbitrary basis {ei,..., en} of TM. We have: 

(ffi)«i = { A € S 2 r * | t „ A = 0} ^R 2 [x 2 , ... , x n ] , 

(Pi)«i«a = {A€S2T" \ieiA = ie2A = 0} ~R 2 [x 3 , . . . , x„] , 

(9>)«,...«n-i = M € 52T* I i«, A = ... = : t „ . , = 0} ~ R2[*„], 

and therefore 

dim (p,)., = 2 i t i l i 
dim (*,) . , . , = C - ' f - 2 ? 

dim(3i)ei...«.„_, = ^ . 

Now 

f > + l)A = f > a + y > = »(" + 1 ) ( 2 " + 1) + n(n + l) = n(n + l)(n + 2) 
* = 1 * = 1 k=l 

then the basis is quasi-regular and the partial differential operator d is involutive. 

REMARK - In general, the quasi-regular basis arises naturally and de­
pends on the geometrical objects given in the problem. For example, if a 
Riemannian metric is given, it is natural to look at the orthonormal basis; if 
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an endomorphism occurs in the problem, it is natural to look at the Jordan 
basis, etc. In the case of the exterior derivative there is no particular basis 
so we have chosen one arbitrarily (in other words: either all the bases are 
quasi-regular, or none of them are). 

In practice, in order to prove involutivity, one starts from a "natural 
basis" and, taking into account the inequality 1.4 which says that for a 
quasi-regular basis the dimensions of the (ffjfe)ei...e> are minimal, one tries 
to minimize these dimensions by changing the basis. We will give a simple 
example here; more complicated ones will appear in the study of the inverse 
problem of the calculus of variations. 

Example 1.7 Let h be a (1-1) tensor field on M such that h2 = h, and 
consider the PDO 

dh :C°°(M) ->A'(W) 

defined by 

dhf(X) := df(hX) 

for X 6 X(M) or, in terms of jets, 

po(dh): JiR ► T' 

(x,z,za) i—► (x,hpza). 

Thus ai(dh) : T' —► T" is defined by 

[ai(dk)u]{X)=u(hX), 

while the first prolongation of the symbol <r2(d/,) : S2T" —► T" <g> T* by 

(cr2B)(X,Y) = B(X,hY). 

Therefore 

9i(dh) = { u>eT' | w|im/.= 0} 

and 

g2(dh) = {Bz S2T" | B(X,hY) = 0 VX,F e T}. 
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Then dimpi = n — r, where r = rank/i. Since TXM = Ker/i ® Im/i, we can take 
a basis B = {ei, ...,eT,ei, . . . , e„- r } with the a 6 Im/i and ea 6 Ker/i (this is a 
"natural basis"). We have: 

B 6 < = > f £(ei ,e j ) = 0 , i , j = l,.. . ,r, 
\ B(eQ ,ei) = 0 , a = l , . . . , n - r , z = l, . . . ,r . 

Then B is determined by the ( n - r ) ( n - r + ' ) components B{ea,ep) and we get 

_ ( " - * • ) ( " - r + 1) 
dim#2 = 5 • 

On the other hand we have 

(Si)*i = {w |w |imfc= 0, w(ei) = 0}= g\ 

since ei £ Im/i. In the same way 

(fli)«i «,• = P i . f o r 3 = 1. •••>'" 

and 

dim(pi)ei,...,e> = n - r , for j = 1, ...,r. 

Now 

dim(gi)e, e r , e , = dim{w € T* | wimh = 0, w(ei) = 0 } = n - r - l 

and more generally 

dim(pi)e,,...,er,ei,...,£„ = n - r - a. 

So we have 

r n — r 

dimpi +5^dim(gi) e i , . . . , , . i + ^ dim(gi)e, e r , t l , . . . , t„ = 
j = l Q = l 

/ , \ / \ (n — r)(n — r — I) (n - r)(n + r + 1) .. 
= (r + l ) ( n - r ) + i ^ ^ = ^ ^ i > dimp2 

which shows that the basis B is not quasi-regular. The reason is that the di­
mensions of the (</i)ei,...,e,- do not decrease sufficiently quickly (at present do not 
decrease at all...). 
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Let us consider now the basis B' = {e i , . . ,£n-r ,e i , . . . , e r } . We have 

dun(si) t l = n - r - l , 

17 

dim(ffi)Cl,...,eo =n-r-a, 

dim(pi )£ i ,e„_r ,ei, . . . ,e,- o, 

and an easy computation shows that B' is quasi-regular 

1.4 F i r s t c o m p a t i b i l i t y c o n d i t i o n s for a P D O 

In this section we will explain how to find integrabihty conditions or how 
to check the surjectivity of Wt. Obstructions to the integrabihty, also called 
torsion, arise at this stage. 

Let P : Sec(E) —► Sec{F) be a fcth order linear P D O . We have the 
following diagram: 

Rk+l 

Sk+1T' <g> EajL!±+ Tm®F >■ K 
k 

VI 

->- Jk+\E 1 J j F 
A 

Rk 

i 

JkE 
Po(P) 

■ * F 

- *0 

(1.5) 

where K denotes the cokernel of the morphism Uk+\: K := and 
Imcr;fc+i 

V is an arbi trary linear connection on F. A classical result in homological 
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algebra gives the following 

Proposi t ion 1.1 There exists a morphism <p : Rk —> K such that 
the sequence 

Rk+i ► Rk ► K 

is exact. ' In particular, the morphism. Wk is onto if and only if tp = 0. 

Let us construct the map <p. Consider z € Rk, take z\ £ Jk+iE such 
that itkZ\ = z and compute p\{P)z\. We have 

7r0pi(P)zi = p0(P)nkzi = p0(P)z = 0. 

Since the sequence T* ® F -* J\ F —¥ F is exact, this proves that pi (P)z\ € 
Ime. Consequently there exists A £ T* <g> F such that e>l = pi(P)2i (A is 
uniquely determined because e is injective). 

Let us put tp(z) = TA. We must prove that <p(z) does not depend on 
the choice of z\. Let z[ also be an element of Rk+i such that nkz[ — z. Of 
course we find that nk(z[ - z\) = 0, so z[ — z\ € Ime. Let A' be an element 
of T* ® F such that e,4' = pi(P)2[. We must check that TA = TA', i.e. 
A — A' G Kerr = ImCT*+i. We have 

e(A - A') = Pl(P)z[ - Pl(P)Zl = Pl(P)(z[ - Zl), 

hence 

e(A - A') € pi(P)e(5 f c+1T* ® E) = £ ( ^ + i ( 5 f c + 1 r * ® £)) = e(Ima fc+i) 

But e is onto, so A — A' G Im Ofc+i. This proves that ip is well-defined. 

Now let us check that 

<p = 0 <=*■ Wk is onto. 

We just need to prove that Ker<£ = Iimf*. We have y>(z) = TA, with 4̂ 
such that eA = pi(P)zi and zi such that WkZ\ = z. Now 

r,4 = 0 <̂ => 4 e ImtTfc+i <=> 3 5 6 Sk+1T* ® E such that j4 = CTfc+iB. 

Let us consider eB; we have 

Pi(P)eB = ea fc+1B = eA = Pl(P)z1 

'This morphism is represented in the diagram by dashed arrows. 
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and so 

Pi(P){zi - eB) = 0 that is zx - eB e Rk+i■ 

Define 2 := z\ — eB. We have 

7ffc(z) = z-ixkeB - z 

which proves that 

f(z) = 0 •£=> 3 2 G Rk+i such that Wk(z) = z, 

i.e. Kei<p = Im7f*. □ 

Thus the surjectivity of Wk can be checked by showing that ip = 0. We 
will now explain how this can be carried out. 

First notice that if V is a connection on the vector bundle F, we have 
<Tt(V) = Id (cf. Example 1.5), more precisely po(V) oe = Idrg/F- So po(V) 
is a splitting of e : T* <g> F —> J\F and therefore it can be used in the 
diagram to get <p. To construct <p, start from s* € Rk, consider a section 
s € Sec(E) such that s* = jk(s)x i.e- such that P(s)x = 0; lift it to 
jk+i(s)x and compute pi{P)jk+i(s)x - j1(P(s))x. By mapping p0(V) we 
obtain po(V)ji(F(s))i which amounts to (VP(s))x in terms of sections. So 
we obtain the following statement: 

Consider Sk € Rk and s € Sec(E) such that Sk = (jks)x 

(i.e. such that P{s)x = 0). We have : 

cp(sk) = {TVP(S))X 

where V is an arbitrary linear connection on the vector 
bundle F —> M. Moreover Wk is onto if and only if: 

P(s)x=0 = > ( T V P ( S ) ) X = 0 . 

Example 1.8 Let us consider the exterior derivative 

d:Sec(T") —►<Sec(A2T*) 
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We have the following diagram: 

S*T'®T~ — S - * T*®A 2T* —!—► T'®h2T' > o 

R2 ► J2T' - 2 1 ^ J , A 2 T ' 

T 0 

Imo-2 

I- I-
'2T' - 2 1 ^ J,A2 

|Fl 1" i 
* , ► JXT- -^U A2T' 

Let us show that 7T1 is onto. At first let us compute K := Coker<r2. 

dim K = dim(T' ® A2T*) - rank a2 = " ^ ~~ *' - (dim S2T" ® T* - dim Ker <T2) 

n(n + l)(n + 2) 2 n(n - l)(n - 2) 
= 6 U = 6 ' 

hence K ~ A3T*. To compute the first compatibility conditions we need a 
morphism r , such that the following sequence is exact: 

S2T'®T' "2 ) T*®A 2 T* —T—> A3T* > 0. (1-6) 

Let consider the map: r : T" <g> A2T* —> A3T* defined by 

T(C)(X, Y, Z) := C(X, y, Z) + C(Y, Z, X) + C{Z, X, Y). (1.7) 

It is easy to check that the sequence (1.6) is exact. In fact, we have that r o a2 

is zero, so Im<T2 C Kerr. On the other hand, if il e A3T"", we can take C — j f i 
and get T(C) = Q, so r is onto. 

Now we can compute the first compatibility condition of the operator d. Let us 
consider a linear connection V on M. We also denote by V its action on A2T*. 
It is well-known that d can be obtained from a linear connection V with the help 
of the antisymmetrization. More precisely, for every 2-form Q we have: 

dSl(X,Y,Z)= Yl [(™)(X,Y,Z) + Q(T(X,Y),Z)], 
cycl(XYZ) 

where T is the torsion of V. Let u> € Sec(T') now be a 1-form, so that (jiui)x e 
JiT" is a first order solution of the operator d. This means that dw vanishes at 
the point x. We obtain that 

y(w)» = (TV(dw))» = (d2"h = 0 
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and therefore tp = 0. Therefore every first order solution of the operator d can 
be lifted in a second order solution. 

R e m a r k . Note tha t r maps T* ® K on the Cokernel of crfc+1. Then T 
is jus t the map which gives the linear relations relating the equations of 
the first prolongation. 

E x a m p l e 1.9 Let us consider the exterior derivative and take the dimension 
of the manifold as 3. The equations of the symbol are (with obvious notations): 

( Ai2-A2i = 0 , 
A23 - A32 = 0, 
An - A13 = 0, 

and then the equations of the first prolongation are: 

C112 
C212 
C312 
C123 
C223 
C323 
C131 
C231 
C331 

Bn2 — Bi2i= 0, 
B212 — #221 = 0, 
■B312 — ^ 3 2 1 = 0, 
B\23 — B\32= 0, 
■B223 — B232= 0 , 
B323 — B332= 0 , 

B131 — Bu3= 0 , 

#231 — ^ 2 1 3 = 0, 
S331 — B313 = 0. 

This is a system of 9 equations with 12 variables, the B^k- One has 02 ■ S2T' <%> 
T' -> T' <g> A2T' and dim (T - ® A2T") = 9, dim (S2T" <8 T*) = 12. It is easy to 
check that these equations are related by one and only one linear relation: 

C123 + C231 + C312 = 0, 

which is just the above relation defining r in (1.7). Thus the rank of the system 
(that is the rank of 02) is 8, or equivalently: dim K — 1 . 

This example enables us to understand how K and r can be found : 

One writes the system which defines Im Ok+i ■ Then: 

- T is defined by the relations between the equations of the 
system; 

- dim K is the number of these relations. 
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E x a m p l e 1.10 Let us consider a manifold M endowed with a linear connec­
tion V. We want to study the first lift of the first order formal solutions of the 
operator V defined by 

V : X(M) ► Sec (T* ® T) 
(1.8) 

X .—► V X 

where 

VX : X(M) ► X(M) 

Y ►—>■ VYX. 

We have the following diagram: 

S2T*ig>T g 2 ( V )> T'®(T'®T) ► Cokera2(V) >0 

i- i-
R2 ► J2T P l ( V )> J i ( r * ® T ) 

Ri ► JiT P o ( V ) ) (T 'g iT) 

As we have already seen (cf. Example 1.5) the symbol o\ is the identity map of 
T* ® T and the first prolongation is the identity map of S2T' <g> T. It follows 
that: 

</i(V) = 0 and 02(V) = O. 

On the other hand, 

dimCokerCT2(V) = dim(T"® T*®T)- rankg2 = n3 - " ( " + ^ = " ( " ~ ^ , 

therefore Cokercr2(V) is isomorphic to A2T* ® T. Let us consider the morphism 
T :T' <8)T' <8>T —► A2T* <g> T denned by 

r(c)(x,y) = c(x,y)-C7(y,x). 

For every B 6 S2T* ® T, we have 

r o a2(B){X, Y) = a2(B)(X, Y) - a2{B){Y, X) = B(X, Y) - B(Y, X) = 0. 
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Now r is clearly onto, so the sequence 

S2T" ® T °2 ) T* <g> (T* ® T) — — » A2T" ® T ► 0 

is exact. With the help of the morphism r, one can compute the first compatibil­
ity condition corresponding to the operator (1.8). Let X G X.(M) be a vector field 
which determines at xo a first order solution of our operator, i.e. j \ (X) € J\ (T) 
satisfies the equation (VA%0 = 0, and let us compute <p(j\X)I0 = T(V(VX)) 
If T denotes the torsion tensor of V, then at io one has 

r(vvx)(y,z) = (WJO(Y,Z) - (vvx)(z,y) = vY{vx)(Z) - vz(vx)(Y) 
= VYVZX - VvYzX - VZVYX + VVZYX = R{Y,Z)X + VT(Y,Z)X 

= R(Y, Z)X 

because (Vrryz )^) = 0 . 
Of course, the compatibility condition ip = 0 is not satisfied in the 

generic case. But in the case where the curvature of the connection V van­
ishes, the compatibility condition is identically satisfied. In this situation 
every first order solution can be lifted in a second order solution: Wi is 
onto. 

1.5 T h e Cartan-Kahler t h e o r e m 

The Theorem 1.2 shows that the formal integrability guarantees the exis­
tence of analytical solutions for a regular analytical PDO. The notion of 
involutivity, which we shall study in the next section, allows us to check 
the formal integrability in quite a simple way : if the PDO is "involutive" 
then the surjectivity of 7f* implies the formal integrability (no need to 
check that all the maps Wk+i are onto). 

T h e o r e m 1.3 - ( C A R T A N - K A H L E R ) Let P be a linear partial differen­
tial operator. Suppose that gk+i{P) is a vector bundle on Rk i.e. P is 
is regular. If 

a) 7r* : Rk+i —► Rk is onto, 
b) the symbol is involutive, 

then P is formally mtegrable. 
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Example 1.11 Let consider the example of the exterior derivative. The 
Example 1.4 shows that the symbol of the operator d is involutive and the 
Example 1.8 shows that 7fi : R2 —> R\ is onto. Using the above Theorem we 
find that the operator d : Sec(T*) —> Sec(A2T*) is formally integrable. 

Therefore, in the analytic case§, we have the following property: for 
every XQ £ M and w0 € T*0M there exists a neighborhood U of x0 and 
LJ £ Sec(TmU) such that 

duj = 0 and wXo = wo-

Example 1.12 Let us consider the differential operator defined in the 
Example 1.5: 

V : £ (M) —► Sec(7" ® T) 
X 1 > VX 

As we remarked in the g\ (V) = 0 and g2 (V) = 0 (see page 19). So all the 
bases are quasi-regular and therefore the PDO is involutive. On the other 
hand, as we showed in the Example 1.8 in the case where the curvature 
of the connection V vanishes, the compatibility condition is identically 
satisfied and therefore every first order solution can be lifted in a second 
order solution: TX\ is onto. Therefore we proved that if the curvature of V 
vanishes, then the operator V is formally integrable. 

In the analytical case this means that if the curvature of the connection 
vanishes, then every X0 € TXo can be lifted into a parallel vector field on a 
neighborhood of l o - ' 

1.6 Spencer cohomology 

It can be shown that the condition of the existence of a quasi-regular basis 
can be replaced by a weaker condition. The obstructions to the higher 
order successive lift of the kth order solution are contained in some of the 
cohomological groups of a certain complex called Spencer complex. 

§It can be checked much more easily in the differentiable case using the Probenius The­
orem. Our proof is then nothing more than an example which clarifies the method. 

'This result can be shown more easily in the differentiable case by using the Probenius 
Theorem. 
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Let 

6:Sk+1T' —> SkT' ®T* 

be the natural injection. 6 can be lifted to a morphism of vector bundles: 

Sk+1T* ® A->'T* > SkT* ® AJ+1T* 

noted again <5, and denned by J(y> <8> CJ) = (6<p)/\u. More precisely, <$ is 
defined by the following diagram: 

S*+1T* ® A'T* •» SkT' ® A>'+1r* 

SkT' ® T* ® A T * 

It is not difficult to show that S2 = 0 and that the sequence 

0 -> 5*T* A S*-1!" ® T* A ► 5*-nj* g, A n T . _> 0 (X 9 ) 

is exact. (By definition S'T* = 0 for / < 0). 

Let P now be a fcth order partial differential equation. We have the follow­
ing commutative diagram: 

Sk+l+1T'®E®A>T* °h+'+l®id) Sl+1®F®^T* 

1 ' 1« 
Sk+lT* ® E ® W+1T' ak+'®td) S'®F®Ai+1T' 

Prom the commutativity of the diagram, we can deduce that 8 can be 
restricted to gk+i+i '•= Ker at+i+i C Sk+l+l ® E. So we have a map 

S : gk+l+1 ® \*T' —► gk+, ® Aj+1T', 

and therefore for every / > k we obtain the complex 

0^gi-^y gi-i ® T' A #_ 2 ® A2T* ->• ► #_„ ® AB7" ->• 0 (1.10) 

with the convention that gm — SmT' ®E'\im<k. This complex is called 
the Spencer complex. 
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Definition 1.10 The cohomology group of the Spencer complex at gm ® 
A T * is noted Wm: 

Ker (gm ® A'T* A gm^ ® A ^ T ' ) 

Im (gm+l ® A ' - l T* - % 5 m ® A T ) 

Theo rem 1.4 - (J . -P. SERRB) (cf. [BCG3] page 410). The following 
properties are equivalent: 

(1) The symbol is involutive (that is: there exists a quasi-regular ba­
sis). 

(2) All the groups of the Spencer cohomology vanish. 

Definition 1.11 The symbol is called "r-acyclic" if Hm = 0 for every 
m> k and 0 < j < r. 

It is easy to see that the symbol is always 1—acyclic, i.e. H^ = 0 and 
H^ = 0 for m > A;. 

Goldschmidt proved that the 2-acyclicity is a sufficient condition to lift the 
(k + l ) th order solutions in an infinite order solution. So one has the 

Theo rem 1.5 - (H. GOLDSCHMIDT) (cf. [BCG3] page 410). Let P be 
a kth order regular linear partial differential operator. If 

a) Wk : Rk+i —► Rk is onto, 
b) the symbol is 2-acyclic, 

then P is formally integrable. 

Taking into account that the symbol is always 1-acyclic, we can replace 
the study of the involutivity by the study of the cohomology in the fourth 
terms of the Spencer complexes: 

0 —► gl+2 —> 0i+i ® T* —► g, ® A2T* —> g,^ ® A3T* —> • • • 

for every I > k. 

In practice, only a finite number of these cohomology groups do not 
vanish. In fact we have the 
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Theorem 1.6 - (D.G. QUILLBN) (cf. [BCG3], page 409) If the di­
mension of the fibres of E is uniformly bounded on M by the same 
constant, then there exists an integer ko such that 

H3
m=0 Vm > k0 and Vj > 0. 

In our case the condition of the above theorem will be satisfied because 
we will suppose that £ is a vector bundle and so its rank is constant. 
Notice however that there is no method allowing us to compute the order 
of this prolongation. Prom this we have the following version of the Cartan-
Kuranishi "finiteness Theorem": 

Theorem 1.7 Let P be a kth order regular linear PDO. If there exists 
an integer ko > k such that: 

1) 9k+\, 9k+2, - , 9k0 are vector bundles over Rk, 

2) Wi : Ri+i ->• Ri, is onto, for all k < I < k0, 

then P is formally integrable. 

* * * 

In short, in order to show the formal integrabihty of a Unear differential 
operator P : Sec E —> Sec F we have to 

(1) check the regularity hypothesis, i.e. that gk+i is a vector bundle; 
(2) show that there exists a quasi-regular basis or shows the 2-acyclicity; 
(3) find the compatibility conditions. It requires: 

(a) "a good interpretation" of the obstruction space K = (T* ® 
F)/Im<7 t+i; 

(b) the definition of a morphism T : T* ® F —> K such that the 
sequence 

Sk+lT'®T* <7t+' )T*®F—T—^K —>0 

is exact; 
(c) to compute the morphism ip : Rk -> K defined by <p = r (VP) 

where V is an arbitrary Unear connection on F. If one finds that 
f = 0 then the operator P is formally integrable. 

If in the step (c) one finds that <p ^ 0, then one obtains a compatibility 
condition for the operator. 
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1.7 The nonlinear case 

Let us now consider the case of a nonlinear fcth order PDO 

P:Sec(E) —> Sec(F) 

where E and F are two vector bundles on M. The set 

Rk,x = {(jks)x | s e Sec(E) and P(s)x = o} 

is called the set of kth order solutions at x. 

Let s € Sec(E) be a section of E and let P's : Sec{E) —► Sec(F) be 
the linearized of P along s, defined by 

P » = jtP(s + tu)\t=0. 

It is a linear fc-order PDO: po(P^) : JkE —> F. 

It is easy to see that the symbol at x of the operator P's does not depend 
on s, but only on £ = j^s); , , € iJjk.j. It is noted as cr^k,x and is called 
the symbol of P at £. 

Definition 1.12 - A (non-linear) PDO is called involutive if for any 
fcth order solution £ the symbol of the corresponding linearised operator is 
involutive (i.e. for any £ € Rk,x there exists a quasi regular basis of Tx). 

By using the following Theorem, the study of the formal integrability 
of a non linear PDO is reduced to the study of a linear one: 

Theo rem 1.8 - (H. GOLDSCHMIDT) Let P be a kth order PDO. If the 
linearised P'g is formally integrable for any kth order solution s, then 
P is formally integrable. 



Chapter 2 

Frolicher-Nijenhuis Theory of 
Derivations 

In 1956 A. Frolicher and A. Nijenhuis developed an elegant theory per­
mitting the classification of the derivations of the exterior algebra of the 
differential forms on a manifold ([FN]). The main result of this theory was 
the discovery of a natural structure of Lie-graded algebra on the module of 
the vector-valued differential forms, generalizing the Lie-algebra structure 
denned by the bracket on the vector fields. 

Further papers of Frolicher and Nijenhuis deal with some applications 
of their theory, in particular with the Dolbeault cohomology in complex 
manifolds. Later J. Klein, in his papers devoted to the intrinsic presen­
tation of Lagrangian mechanics (cf. [Kl]) demonstrated the relevance of 
applying this theory to the vector-valued differential forms in the tangent 
bundle. In [Gr] the Frolicher-Nijenhuis theory is used to give an algebraic 
presentation of the theory of connections and Finsler geometry, which we 
will explain in the next chapter, because it plays a central role in our 
treatment of the inverse problem of the calculus of variations. 

However, in spite of the interest this structure offers due to the fact that 
it arises naturally in the differential calculus on manifolds, the Frolicher-
Nijenhuis bracket is not well-known, except for some particular cases (like 
the so-called Nijenhuis torsion which appears as an obstruction for the in-
tegrability of almost complex structures, or in the theory of the completely 
integrable systems, cf. for example [MM]). In this chapter we shall give 
a simple presentation of this theory and we shall note the most important 
formulas in the Appendix. 
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2.1 Derivations of the exterior algebra 

In this chapter we note by A(M) = © AP(M) the graded algebra of 
PEN 

the exterior differential forms: AP(M) = Sec(Ap(TM)). We also write 
$(M) = © tyl(M) for the graded algebra of the vector-valued exterior 
forms : *f>l(M) = <Sec(A'(M) ® TM). In other words, an element L € 
$ ' (M) is a skew-symmetric C°°(M)-multi-linear map 

L : X(M) x ... x X(M) —> X(M) 
> v ' 

J times 

where X(M) is the C°° (M)-module of the vector fields on M. 

Definition 2.1 A derivation of degree r of A(M) is a map D : A(M) -> 
A(M) such that: 

1) DJt = 0, fceiR, 
2) DAP(M)C Ap+r(M), 
3) D(<p + ip)= D<p + D4>, 

4) £>(7TAW) = £»7TAu;-l-(-l)p''7rA£>a;, TT G A P ( M ) . 

It is easy to prove that the derivations of A(M) are local operators. The 
proof of the following proposition is a straightforward verification: 

Propos i t ion 2.1 The commutator of two derivations Di and £>2 de­
fined by 

[DltD2] = Di o D2 - ( - l ) r " r ' Z ) 2 o Di (2.1) 

is a derivation of degree rj + r 2 , r\ and r2 being the degrees of D\ and 
Di. 

For example, the exterior differential d is a derivation of degree 1, and for 
X € X(M) the inner product ix, the Lie derivative Cx are derivations 
of degrees —1,0 respectively. Cx is the commutator of ix and d : Cx = 
ixd + dix = [ix,d]. 

We can also verify the following properties which show that the set of 
the derivations is a graded Lie algebra: 
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Proposition 2.2 

1) [DuD2] = (-iy^+1[D2,D1], 
2) (-l) r i r3[D1 ,[D2)£»3]]+(-ir r i[Z)2,[£'3>D1]]+(-ir r2[D3,[Z?i,Z?2]]=0. 

The Frolicher-Nijenhuis Theory is founded on the following property: 

Propos i t ion 2.3 The derivations of A(M) are determined by their 
action on A°(M) = C°°(M) and A*(M) alone. 

Proof. The derivations are local operators, so we can prove the Proposition 
in a local coordinate system (U, xa). On the other hand the derivations are 
additive, therefore it is sufficient to show the Proposition for a p-form which 
has the local form u = fdxu/\...Adx'" € AP(U). Applying D, we find 

p 

Du = (D/)AdxilA...Adx'* + 2 ( - l ) r ( f e _ 1 ) fdxllA...ADdxikA...Adxip 

which proves that D is known as soon as its action is known on A°(M) and 
A :(M). 

□ 
A straightforward application of the properties in the definition 2.1 shows 
that the above formula does not depend on local coordinates. This allows 
us to define D globally by its action on A°(M) and A1 (M). We can deduce 
the following 

Corollary 2.1 Every map D : A°(M) © Al(M) —> A(M) satisfying 
the properties in the definition 2.1 can be extended in a unique way to 
a derivation of A{M). 

Taking into account that AP(M) = {0} i fp<—1, we have 

Corollary 2.2 All the derivations of a degree less or equal to -2 are 
trivial. 

2.2 Derivations of type i„ and d , 

Definition 2.2 - A derivation is of type i, if it is trivial on the functions 
(i.e. on A°(M)). 
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For example the inner product ix is an i.-derivation. Note that the deriva­
tions of type i, are determined by their action on A1(M). 

Let us give the basic example of i*-derivation: 

Definition 2.3 To any L E $ '(M) there is an associated derivation of 
type i, of degree 1 — 1, noted IL and denned by 

a) ixu = w(X) if X G 9(M)° = X(M), 
b) iLLj(X1,...,Xi)=u(L(Xi,...,X,)) i f L 6 * ' ( A f ) , J > 1 , 

where wG A !(M) andX1,...,Xi 6 3E(M). *. 

Extending I'L to A(Af) the following formula can be proved 

iLu(Xi,...,Xp+i-i) = (2.2) 

= n, YY ^L £(s)^mx,{1)...xsii)),xa(i+1),...,xs{l+p_i)) 

for w € AP(M) and L e * ' (M) (6p +(_i denotes the (p + I - l)!-order 
symmetric group and e(s) the signature of s). For example if L G $ 1 (M) , 
then one obtains that 

p 

iLw(X l l . . . ,X p) = ^o ; (X 1 , . . . ,LX i , . . . ,X p ) (2.3) 
»=i 

In particular, for the identity endomorphism I and u> G AP(M) one finds: 

ijtj = pa>. 

As the following theorem shows, ii is the only example of im derivation: 

T h e o r e m 2.1 Let D be an i,-derivation of a degree l — l > — 1. Then 
there exists a unique L G 9l(M) such that 

D = iL. 

Proof. Since an ^.-derivation is determined by its action on Al(M), it is 
sufficient to construct L G \P'(M) such that the equality Dw = ino holds 

*In [FN] the i.-derivation U noted also A : iiui = UAX. It is also called "exterior-inner 
product" of u by L. 
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for any LJ G A*(M). Let us notice that the elements L of $ ' (M) can be 
identified with the C°°(M)-multilinear maps 

L : X(M) x ... x X(M) xA*(M) —► C°°(M) 
l —times 

which are skew-symmetric in the first I arguments by the following identifi­
cation : 

L(X1,...,X[,cj) =u{L(X1,...,Xi). 

Now if we define L by 

L(Xl,...,Xhw) = (Dw)(Xl,...,Xl), 

then L verifies the required conditions and we can define (via the above 
isomorphism) L G \t '(M) such that Dw = ILU. L is unique because if L is 
another vector valued Z-form such that Du> = i^u>, then one has {i^—i^uj = 
0 for any u G \l(M), that is 

u({L-L)(X1,...,X,))=0, 

for any wG Al(M) and Xly...,X, G X(M). So L = L. U 

Definition 2.4 A derivation is of type d, if it commutes (in the sense of 
(2.1)) with the exterior derivative d. 

The exterior differential d and the Lie derivative Cx are d, type derivations. 

Remark . - The d.-derivations are determined by their action on A°(M) = 
C°°(M). Indeed, let (U, xa) be a local coordinate system and u = YX=i o.idx% 

G ^(U). If D is a ^.-derivation of degree r, then: 

p P 

(DLJ) = D(jTaidxi>\= ^2(DalAdxi + m Ddx') 
t=i i=i 

p 
= ^2{DaiAdxi + (-l)rai dDx{). 

t = i 

This proves that Du is determined by the action of D on A°(M). 
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Proposition 2.4 - Let L € \£'(M) be a vectorial l-form. If we con­
sider 

dL~[iL,d] (2.4) 

then di, is a d,-derivation of degree I. 

Indeed, 

[iL,d\d= {iLd - {-ly-'di^d = -(-ly-'dhd. 

Besides 

d[iL,d] = d{iLd-{-\)l-1diL) =diLd 

leads to [d, dL) = 0 . □ 

Example 2.1 

(1) If X G *°(M) = X{M), one finds 

dx =ixd + dix = Cx (2.5) 

where Cx denotes the Lie-derivative with respect to X. 

(2) If LG *1(M), then 

dL = ihd - diL. (2.6) 

In particular, if L is the identity endomorphism / of X(M), then we have 

diui = iidw - diui = (p + \)dui — d(pui) = dui 

for every u> 6 AP(M), hence di = d. 

The following Theorem states that all the dm-derivations are of this type. 

Theorem 2.2 Let D be a d.-derivation of degree I. Then there exists 
a unique L G $ ' (M) such that 

D = dL 

In particular, if L is the identity endomorphism / of X(M), then we have 

for every u> 6 AP(M), hence di = d. 
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Proof. It is sufficient to construct L G $ ' (M) so that, for any functions 
/ , one has Df = dLf. For any given Xu...,Xi 6 X(M) and / G C°°(M), 
let us define L by 

It is easily shown that L(X\,..., Xt) is a derivation of C°°(M), i.e. a vector 
field on M, and that the map 

L:{Xu...,Xl)*-*L(Xu...,Xl) 

is C°°(M)-multilinear and skew-symmetric. Then L e * ' (M) . Moreover, 

(D/)(X1 , . . . ,X /) = L ( X 1 , . . . , ^ ) - / = d / ( L ( X 1 , . . . , X ( ) ) = u d / ( ^ i , - , ^ ) , 

which yields Df = iidf = d^,/. The uniqueness of L can be proved as in 
the Theorem 2.2 □ 

Theorem 2.3 Every derivation of A(M) can be decomposed uniquely 
into the sum of one i,-type and one d,-type derivation. 

Proof. Let D be a derivation of A(M). The action of D on A°(M) 
defines a d. -derivation d/c: 

0 / = dKf. 

Moreover (D — da) acts trivially on A°(M) and so is an i*-derivation. 
Therefore there exists L € \P(M) such that 

D-dK=iL onA ' (M) . 

Now 

(»L + d * ) / = <**/ = £>/ for any / € A°(M), 
(IL + d/c)w = (£> - dyf) w + d/c^ = DLJ for any w € X1(M). 

Then by Corollary 2.1, D = iL + d/c. 

We shall frequently use the following 

Proposi t ion 2.5 Let us consider w 6 AP(M) such that UJX — 0 (x E. 
M), and Le tf^Af). Then 

(dLw)j; = ( r V w ) i , 
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where V is an arbitrary linear connection on M andr : T*M®hvT*M -
AP+lT'M is defined by 

p+i 
( rn)(X 1 , . . . ,X p + 1 ) = ^ ( - l ) i + 1 n ( L X i , X 1 , . . . , X i ) . . . . X p + 1 ) , 

t = i 

where A symbolizes the term which does not appear in the correspond­
ing expression. 

Proof. Since ux = 0, the following formula holds: 

P+I 
(da;)x(X1 , . . . ,Xp+1) = ^ ( - l ) i + 1 X i ( a ; I ( X 1 , . . . , X i , . . . I X p + 1 ) ) . 

«=i 

Let us compute the terms of d^u = iidw — diiu. We have 

p+i 
(iLdu)x(X1,...Xp+i) = ^2(dtj)x(X1,..., LXi,..., Xp+i) 

»=i 
P+I 

= £ ( - i r + 1 L X i (W(A-If ...,**,.... X p + 1 ) ) + 
t = i 

p+i 

+ ^(-i)'+1^.((^)I(x l l...,x i )...,xp+1)) 

Since ( IL^)X = 0 because ux = 0, we have 

P+I 

i=l 

Thus 

P+I 
(dLu>)x(Xu...,Xp+1) = £ ( - l ) ' + 1 L X t • ( w (X 1 ; . . . ,X i 7 . . . ,X p + 1 ) ) . 
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On the other hand 
p+i 

(TVu>)x{X1,...,X^1)=^{-l)i+1(Vu>)x(LXi,Xll...,Xi,....Xp+1) 
i= l 
P+l 

= ^2(-l)l+1(VLXi^)x(Xl...Xi...Xp+1) 
1 = 1 

p+i 
= ^2(-l)i+1LXi(u;(X1...Xi...Xp+1)), 

i= i 

because OJX = 0. Thereby {diu))x = (TVCJ)X. □ 

2.3 Graded Lie algebra structure on the module of vector-
valued forms 

The most important application of the theory developed in the previous 
sections is to define a bracket on the module of the vector-valued differential 
forms which arises naturally in differential geometry. A particular case of 
this bracket is the well-known Nijenhuis torsion. It appears for example 
on a manifold endowed with an almost complex structure and its vanishing 
characterizes the integrability of the structure. 

The exterior inner product on the graded module of the vector valued 
differential forms \t(M) can also be introduced by the same formula as 
(2.2): 

Definition 2.5 If K € tf *(M) (k > 1) and L G * ' (M) , then its exterior 
inner product K~RL € \P*+ '_1(M) is given by 

(tf/vL) (*,,..., **+,_,) = 

~ (k - 1 W ' - e(s) K{L(Xs(i),---,Xs(i-)),Xs(t+1),...,Xs(l+k-i)), 

and for X £ X(M) one defines: XAM = 0. 

In particular we have 

LAX = L(X) for L e Vl(M), X 6 X(M) 
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and 

LKK = L°K for L,Ke 9l(M). 

The following Proposition can be proved by a simple computation: 

Proposition 2.6 The commutator of two t* (resp. d*) -derivations 
is also an i. (resp. dm) -derivation. 

With the above notations, the bracket of two i. type derivations can be 
given by the following formula (cf. [FN], (5.6)): 

[iL,ii<] = *KAL-(-I)('-«><*-»>LAK- (2-7) 

Using the Propositions 2.2 and 2.6 one can introduce the following: 

Definition 2.6 For K 6 ¥*(M) and L e ¥(M), the bracket [L,K] is 
the vector valued (l+k)-form denned by the relation 

[dK,dL] =d[KtL]. 

We have the following 

Proposi t ion 2.7 

a) If X,Y € 3£(M), then [X,Y] is the usual bracket on the vector fields; 
b)[L,K] = (~l)'k+l[K,L}; 
c) [id, L] = 0; 
d) {-\)ln{L,[K,N\\+{-^)kl[K,[N,L)}+{-\)nk[N,{L,K)}=Q; 

where I, k, n are the degrees of L, K, N respectively. 

Proof, a) can immediately be verified by checking the effect of its action 
on the functions. In fact, 

[X,Y] ■ f = d[x>Y]f = [dx,dY]f = [Cx,CY]f = X(Yf) - Y{Xf). 

The properties 6), c) and d) follow from the analogous identities for the 
derivations. □ 

The following formula expresses the bracket of an i»-derivation and a d,-
derivation : 

[iL,dK] = d/cXL + {-l)ki[L,K] (2-8) 
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(For the proof, cf. [FN], (5.9)). 

Finally, the following formula (cf. [FN], (5,22)) allows us to compute 
the bracket of two vector forms recursively: 

[L, K]AY = [LXY, K] - {-l)kV-VLx[Y, K] + 

+ (-l)lk+l{[KAY,L)-(-lfk-^KA[Y,L}) 

For example, for L 6 <Hl(M), K = X € X(M) and Y 6 X{M): 

[L, X\KY = [L7Y, X] - LA[Y, X] - [XAY, L) + XA[Y, L], 

therefore 

[X, L]Y = [X, LY] - L[X, Y] (2.9) 

so [X, L] is the Lie derivative CxL of L with respect to X. 

For L, K e *l(M) and X £ X(M), one has 

[L, K]AX = [LX, K] - L[X, K] + [KX, L] - K[X, L)\ 

since 

[L,K](X,Y) = {[L,K]AX)AY, 

one arrives at: 

[L,K](X,Y)= [LX,KY} + [KX,LY} + LK[X,Y} + KL[X,Y} 
- L[KX, Y] - K[LX, Y] - L[X, KY] - K[X, LY]. 

In particular, for K = L, we get the so-called Nijenhuis torsion: 

l-[L, L\(X, Y) = [LX, LY] + L2[X, Y] - L[LX, Y] - L[X, LY] (2.11) 

Local expression 

Let (U,xa) be a local system of coordinates, L € ^l(M), and X 6 X(M), 
where the local expressions are L = L^dx" (g> -^ and X = Xa-^. Let us 
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compute the components of the tensor [L, X}. One has 

M(sr)-Hsr)^ 
LS^.JT-^ 

'dx°' dxi 

M 
(dX~< d \ 
\ dxx dxi) 

dxi 
dx-< 

dxx' 5XT 

dx* dxi 
,dX2 

dxx 

LI dXi d 
dxx dxi 

x-ydl^_d_ 
dxx dxa 

dx^ aj_ _ (ndx°_ _ aax^_ „m\ j _ 
dxx 7 dxa V dxi ^i dxx dxi) dxa' 

Therefore 

[L,X] = ( L ? ^ - « ¥ ? - * • > * £ dxi dxx dxi 
dxx <g> dxa (2.12) 

In the same way one can prove that the local expression of the Nijenhuis 
torsion of a vectorial 1-form L is 

1 [L,L}=[L» 
djA-T»dJA+rxdK 

adx» 0dxf "dx? LX^)dxa®d*0®ex-x 



Chapter 3 

Differential Algebraic Formalism of 
Connections 

3.1 The tensor algebra of the tangent vector bundle 

In this chapter we will explain the differential algebraic formalism of con­
nection theory introduced by J. Grifone in [Gr] which will be specially 
adapted to the inverse problem of variational calculus. 

Semi-basic forms 

Let -K : TM —► M be the tangent bundle and 7rTM : TTM —> TM the 
second tangent bundle. We have the following diagram: 

TTM ——> TM 

TM —?—> M 

and the exact sequence 

0 —> TM x TM -U TTM - A TM x TM —> 0 (3.1) 
M M 

where i(v,w) := 4r(v + tw) is the natural injection and j := (7rTM,7r). 
ai t=o 

Using an adapted coordinate system (x a , ! / a) on TM, where ( i a ) are the 
coordinates on M and ya are the components of a vector of TM on the 
basis (g^r), we have 

i((xa,yaUxa,Za)) = (xa,ya,0,Za) 

41 
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and 

j(x°,ya,X°,Ya) = {(xa,ya),(xa,Xa)). 

If TVTM := Ker7r. is the vertical bundle, then 

TVTM = Im i = Ker j . 

NOTE. From now on we will work on the manifold TM. Where there is 
no possibility of confusion, TTM, T'TM and TVTM will be noted as T, 
T* and Tv respectively. 

For any z € TM, there is a natural isomorphism 

-1 2 

i{z,v) 

i,:Tw(x)M ► I ? 

We use the formula : 

fi fi 
Locally, if X = X a (x , j / ) — - is a vertical field, then £,ZX = Xa(x,z)—-. 

oya axa 

Definition 3.1 A p-form u) € ®PT* is semi-basic if u(X\,...,Xp) = 0 
when one of the vectors Xi is vertical. A vector valued Z-form L € <8>lT*®T 
is semi-basic if it takes its values in the vertical bundle and L(X\,...,X{) = 0 
when one of the vectors X, is vertical. 

The set of the skew-symmetric (resp: symmetric) semi-basic scalar 
forms will be noted APT* (resp: SPT*) (for p = 1, these sets will be noted 
T;). 
In an adapted coordinate system the semi-basic scalar and vector forms can 
be expressed as: 

w = Uil....ip(x,y)dx11 <8>... ®dxtp 

l-r n\ W-r*1 (9i (9i fin-'' 19) 

dy. 
L = Lj- ■ (x,y)dxu ® ... ®dx1' ® ^—. 

1 i • • •. I OV'' 

For any z € TM, there is a natural isomorphism 

C:(APT:)Z-^\"T;{Z), 
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defined in the following way: if u e APT„*2 and ui,...,up € T ^ j , then 
(£'zu)){ui, ...,up) := UJ(UI,...,UP), where C/j 6 Tz are such that irMi = «i-
£z is well-defined because the difference of two vectors which project on the 
same vector is a vertical vector. 

In the same way, for any z 6 TM, there is a natural isomorphism 

defined by £ ' := £ <8> &. Later on, £, f and £" will be noted f. If L e 
$ '(M) is a vectorial /-form and its expression in a local coordinate system 
is L = L'gx ^(£,7/)dxt3iA...Adx13' <S> ^ r , then we have: 

&L = Lgli...iA(a:)z)dz*A...AdxA ® ^ . 

VerficaZ endomorphism 

Definition 3.2 The tensor J € T* <g> T defined by 

J := i o j 

is called werrtcaZ endomorphism. 

The following properties can immediately be verified: 

Proposi t ion 3.1 

1) J2=0. 
2) KerJ = ImJ = Tv. 

Locally J = dxa ® -^, or in other words 

Ji£;)=w« and J(^h°- w 
Using these formulae, it is easy to check that the Nijenhuis torsion of J 
vanishes 

[J, J] = 0. (3.3) 
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Canonical field and homogeneity 

Definition 3.3 The canonical vertical field of TM (also called Liouville 
field) is the vector field C = i o 6 on TM, where 6 : TM -> TM x M TM 
is the diagonal map defined by 5(z) = (z, z). 

Locally: 

Remark . C is the infinitesimal transformation associated with the 
group of the homotheties with a positive ratio. 
Indeed, if we consider ipi : TM —> TM, the one-parameter group of in­
finitesimal transformations defined by <pt(y = {xa,ya)) = (xa,etya) we 
obtain: 

ft(ftv)\t=o= ( * V y * , 0 , e y > ) | ( = o = (xa,ya,0,y°) = CV. 

The relation 

[C,J] = -J (3.5) 

can easily be checked in a coordinate system, taking into account (3.2) and 
(3.4). 

A function / € C°°(TM \ {0}) is (positively) homogeneous of degree 
r if 

/(Aw) = Xrf(v) 

for any A > 0. In this case we will say that / is h(r). It is well known that 
this property is equivalent to the Euler identity, which in a local coordinate 
system can be written: 

y->^L(x'>yi)=rf(xi,yi), 

or using the canonical field 

Ccf = rf. 
Remark. Consider / : TM ->• K such that / |TMX{0} is C°° and h(r). 

If / is C on the 0-section then it is a polynomial of the degree r on the 
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fibers. Indeed, let x G M be an arbitrary point. Notice that if / is h(0) 
then it is constant on the straight lines starting from the origin of TXM\ so 
if it is C° in the origin, then it is constant on TXM (i.e. / is basic). Now 
suppose that / is h(l) and C1; the partial derivatives J^r are h(0) and C° 
and thus constant on the fibers. Hence, by the Euler identity, / is linear 
on the fibers. A recursion argument easily yields the general property. 

Definition 3.4 A tensor t on TM \ {0} is homogeneous of the degree r 
(t is h(r)) if 

Cc t = rt. 

Notice that if L e ^!l(TM \ {0}) is a skew-symmetric vector-valued /-form, 

this condition can be written: [C, L] = rL. In local coordinates, let us 

consider for example, L 6 91(TM): 

which means that the matrix of the endomorphism L in the basis {-^ , -^ } 
is 

Thus L is h(r) if and only if the functions L^ and Lr& are h(r), L& are 
h(r - 1), and lPa are h(r + 1). 

3.2 Sprays and connections 

The notion of sprays has been introduced in [APS] to give an intrinsic 
presentation of ordinary second order differential equations. 

Definition 3.5 A spray on M is a vector field on the tangent bundle 
S e X(TM) such that: 

JS = C. 
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5 is a spray if and only if, in a natural local coordinate system of TM, 
there are functions fa, such that 

S = **£?+r<*,v)± 0.6) 
The spray S is called homogeneous if [C, 5] = S and if it is C°° on TM \ 
{0} and C1 on the zero section. In this case the functions fa(x,y) are 
homogeneous of degree 2 in the variables ya. If, in addition, 5 is C2 on the 
zero section then the fa(x, y) are quadratic in the ya. In that case, we will 
say that the spray is quadratic*. 

Definition 3.6 The vertical vector field 

S* = [C,S}-S 

which measures the non homogeneity of S is called the deflection of S. 

All sprays are associated to a second order system of ordinary differential 
equations, and reciprocally: a spray can be associated to any second order 
system of ordinary differential equations in the following way : 

Definition 3.7 Let 5 be a spray. A path of 5 is a parametrized curve 
7 : / —> M such that 7' is an integral curve of 5, that is: 

In a local coordinate system, if {xa(t)) is a path on M, and the spray 
5 has the local form (3.6), then Sy = ( i a , ^ , i f , / a W t ) , | ) ) and 
7" = (xa, ^-, ^-, ^ r ) . So the paths of S are solution to the second 
order differential system 

dx\ 
dt2 " " ( : % ) ■ < " > 

a = 1,..., n. Reciprocally, if a system (3.7) is given, one defines 5 in a local 
coordinates system by S = ya-^ + fa(x,y)-^ and one verifies that the 
definition does not depend on the coordinates system. 

Definition 3.8 Let L be a semi-basic (scalar or vector) /-form. The 
potential of L is the semibasic (/ - l)-form L° defined by 

L° = isL (3.8) 

*In [APS] the term "spray" is reserved to the quadratic sprays. 



Sprays and connections 47 

where 5 is an arbitrary spray. 

L° is well defined: it does not depend on the choice of S. In fact let 5 ' be 
another spray. Since J(S - S') = C - C = 0, we see that 5 - S' is vertical. 
So is-s'L = 0 and isL = is'L. 

Locally if L = ±L0
ai ai{x,y)dxai <g>... ®dx°" ® ^ , we have 

L ° = 7 r r i j T ^ 7 a , . . a , _ 1 ^ a i A . . . A d a ; ' - 1 . 

Connections 

In this section we will recall the differential algebraic presentation of the 
connections theory introduced in [Gr], which we shall constantly use later 
on. 

Definition 3.9 A connection on M is a tensor field of type (1-1) T on 
TM ( i.e. T € ^(TM)) such that 

i) J r = J, 
ii) TJ=-J. 

The connection is called homogeneous if [C, T] = 0, it is C°° on TM \ {0} 
and C° on the 0 section. In addition, if T is C1 on the 0 section, then it is 
called linear. 

Proposi t ion 3.2 If T is a connection, then T2 — I and the eigenvector 
space corresponding to the eigenvalue — 1 is the vertical space. Then, 
at any z £ TM, we have the splitting 

TZTM = HZ®TZ
J, 

where Hz is the eigenspace corresponding to +1. Hz is called horizontal 
space. 

Proof. Prom i) we have J(T - I) = 0 then Im (r - / ) C Ker J = Tv. 
From ii) we have (r - I)J = 0, then Tv = ImJ C Ker(r + / ) . Then 
Im(r - I) C Ker(r + /) that is 

(r + /)(r-/) = o, 
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so T2 = I. On the other hand, Tv c Ker(r + I) by ii). Reciprocally, if 
TX = -X, one has JTX = - JX, that is JX = -JX and then JX = 0. 
So X is vertical and Ker ( r + 7) C V. Finally: Tv = Ker ( r + / ) . □ 

Expression of T in iocaJ coordinates: 

The matrix of the vertical endomorphism J in the natural basis { gfs-, ^r} 
is 

~(*2 o) 
The condition :,) and ttj of the definition of the connection implies that the 
matrix of T is 

% 0 
-2rg(x,y) - ^ ) ' 

where r £ are functions called coefficients of the connection. If the con­
nection is homogeneous (resp. linear) the coefficients T^(x,y) are h(l) 
(resp. linear in y). In the linear case, one states: 

r0(x,y)=y^(x). 

Definition 3.10 The semi-basic tensor H = \[C, F], which measures the 
non homogeneity of the connection will be called the tension. 

We denote 

h = \(i + D, 

the horizontal and vertical projectors 

Locally we have: 

f Jh = J, 
\ Jv = 0, 

v := \V-T), 

They verify : 

hJ 
vJ 

= 0, 
= J. 

I \dya) 
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Definition 3.11 Let TV and M be two manifolds, w € £(TV) and £z : 
T" -> T„(2)M the natural injection. The covariant derivative of z with 
respect to w is defined by: 

DW(X)Z = £z(x)(voz.ow). (3.9) 

We have the following diagram: 

TTM —^-" TVTM 

In particular, for TV = TVf and i»,zE -£(M), we have 

^2 = W ° ( l ^ + r " ( : E ' z ( x ) ) ^ - (3'10) 
If TV = [a,b] is an interval of M, w = ft and z : [a,b] -»• TM, z(t) = 
(x(t), y(t)) is a vector field along a curve 7 : [a, b] —> M (i.e. 7 = 7r o z), 
we arrive at : 

Definition 3.12 A vector field z £ TM along a curve 7 is called parallel 
if Dj_z = 0 , that is u(z') = 0. A geodesic is a curve j : [a,b] -¥ M such 
that1" 

£> „ 7' = 0. 

In others word, 7 is a geodesic if and only if 

v o 7" = 0. 
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Canonical decomposition of a connection 

In this paragraph we explain the relations between sprays and connections. 

Definition 3.13 Let T be a connection, h the corresponding horizontal 
projector. The spray S associated to the connection is defined by 

S = hS, 

where S is an arbitrary spray. 

Indeed, 5 is a spray because JS = JhS — JS — C. On the other 
hand S does not depend on the choice of S, because if S' is another spray 
J(S-S') = C-C = 0; then S - S' is vertical so h(S - S') - 0. 

Locally: 

where the T^x,])) are the coefficients of the connection. 

It is easy to verify the following 

Proposition 3.3 The paths of the spray associated to the connection 
T are the geodesies ofT. 

Indeed, for any curve 7 on M, one has : «/7» = C7< . Then, for any 
spray S, S — 7" is vertical, so hSy = hj", i.e. S7< = h-y" = 7" — vy". 
The property follows from this equality. □ 

Reciprocally, a connection can be associated to any spray in the follow­
ing way: 

Proposi t ion 3.4 (cf. [Gr]). Let S be a spray on M. Then T := [J,S] 
is a connection. The spray associated to [J,S] is S + ^S*, where S* is 
the deflection of S. If S is homogeneous [resp. quadratic], then [J,S] 
is homogeneous [resp. linear]. 

Proof. Using the equation (3.3) we have 

° = \[J> J K 5 ' X ) = IC>JX] ~ J [ C ' X ] ~ JlS'JX) = IC> J\X ~ JiS> JXl 
and taking into account (3.5) we find 

J[JX,S] = JX. (3.12) 
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Now 

J[J, S]X = J[JX, S] - J2[X, S] = JX, 

and 

[J,S}JX = [J2X,S] - J[JX,S] = -JX, 

which proves that [J, S] is a connection. The other properties can be easily 
verified. □ 

Locally, if S = 2/agfs- +/"(£> 2/) af^i then the coefficients of the connection 
associated are: 

r a _ 1 0 / ° 

Note that as the spray of the connection [J, S] is not S (except in the 
case where S is homogeneous), then in general the geodesies of [J, S] are 
not the paths of S. To avoid this difficulty let us introduce the notion of 
torsion. 

Definition 3.14 The weak torsion is the vector-valued semi-basic 2-
form denned by t := \[J,T]. The strong torsion is the vector-valued 
semi-basic 1-form T := t° — H, where H is the tension of the connection. 

As we will see, if the strong torsion vanishes, then the weak torsion is zero, 
but the converse is not generally true. 
Locally 

dyP 0) dy> nx) = x'(^-ri)» 
Then for a linear connection: 

_a 
' dy 

_ Q Y<3/pA _ pA - O 

t(x,Y) = x°Y0(rx
a0-rx

8a)—, 

rm = ̂ ( r i r r ^ ) ^ , 
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so: 

&t(Z, W) = £ZT(W) = Dzw - Dwz - [z, w) 

where Z,W e TTM and z = n»Z, w — n,W. Therefore in the linear case, 
t and T coincide with the classical torsion up the natural identification of 
the tensor algebra of TM with the tensor algebra of the vertical bundle. 

An easy computation enables us to check that the strong torsion "counter­
balances" the spray, in the sense that its potential makes up the deflection 
of S, that is: 

T° + S' = 0. (3.13) 

The following Theorem shows that a connection is determined by its sprays 
and its strong torsion: 

Theorem 3.1 - ('Canonical decomposition) ([GrJ (1.55)) - Let S be 
a spray and T a semi-basic vector valued 1-form counterbalancing S. 
Then there exists one and only one connection T whose spray is S and 
whose strong torsion is T. T is given by 

T = [J,S} + T. 

PROOF. Consider S and T as in the Theorem and put T := [J, S] + T. 
It is easy to verify that F is a connection whose spray is 5 and the strong 
torsion is T. Reciprocally, let us consider a connection T whose spray is S. 
We have to prove that: 

r = [j,s] + i([j,r]A5-[c,r]) 

Taking into account that the spray associated to T is | ( 7 + T)5, where S 
is an arbitrary spray, for any connection T and for any spray S we have 

2r = [j, s + rs] + [j, T]A5 - [c, r\. 
Now, we have: 

[j, T]A5 = [c, s] - j[s, r] + [rs, J] - r[s, J). 

But we also have: 

-J[S, T] = J[T, S] = J[I - 2v, S) = -2v = 2T-I 
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and thus 

-r[S,J] = T[J,S] = T{I-2v) = T + 2v = r + I + [J,S] 

where v is the vertical projector of the connection [J, S]. We immediately 
find the Theorem. □ 

Notice that if T = 0, then T = [J, S], and [J, T] = [J, [J, S]] = \ [[J, J],S] = 
0. Therefore t = 0 and so H = 0. Reciprocally if H and £ vanish, then 
T = 0. So T = 0 if and only if t = 0, and the connection is homogeneous. 

The almost complex structure associated to a connection 

Definition 3.15 Let T be a connection on M, h the corresponding hor­
izontal projector. The almost complex structure associated to T is the 
unique vector valued 1-form F on TM such that: 

FJ = h and Fh = -J. 

F is well defined. Indeed, let V be a vertical field and Y, Y' 6 TTM 
two vector fields such that JY = JY' = V. Since J(Y -Y')=0,Y- Y' is 
vertical, then h(Y -Y')=0 and thus FV = hY = hY'. In the same way 
one proves that the action of F on horizontal vectors is well defined. On 
the other hand, F is unique because it is determined on the horizontal and 
vertical vectors. Obviously we have F2 = —I. 

It is easy to prove the following properties (for example by computing 
the two members on the horizontal and vertical vectors): 

F = h[S,h]-J, (3.14) 
JF = v. (3.15) 

Berwald connection 

A linear connection on TM is associated to any connection T. This lin­
ear connection, given by the covariant derivative D, called the Berwald 
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connection, can be characterized by the following system of axioms: 

DF = 0, 
DhXJY = [h,JY}X, 
DjXJY = [J,JY}X. 

Indeed if D exists it is unique because one has: 

DXJY = DhXJY + DjFXJY = [h, JY\X + [J, JY]FX 

and 

DxhY = DXFJY = FDXJY = F([h,JY]X + [J,JY]FX). 

Then: 

DxY = DxhY + DxJFY 

= F([h, JY]X + [J, JY)FX) + [h, JFY]X + [J, JFY]FX 

so we find 

DXY = F([h,JY]X + [J,JY]FX) + [h,vY]X + [J,vY]FX. 
Reciprocally it is easy to verify that this formula defines a connection on 
TM. D 

An easy computation shows that 

DJ = 0, (3.16) 
DT = 0. (3.17) 

In a local coordinates system the Berwald connection is determined by 

d dx0 dy0 dxx \dx" 0 dyx x Q " ' 
d dTl d 

dxa 

D d dyt ~ dyP dyx' 
dxa 

d dVx
0 d 

d dx? dy° dyx' 
dya 

dy° 

dyf>) dyx' 

D 
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3.3 Curvature and Douglas tensor 

The notions of this section will often be used in the following chapters. 

Curvature 

Definition 3.16 The curvature of the connection T is the vector-valued 
2-form R denned by 

R = -\[h,h], 

where h is the horizontal projection denned by I\ 

Remark. Taking into account that h[vX,vY] = 0, because the vertical 
distribution is integrable, an easy computation gives 

R{X,Y) = -v[hX,hY], (3.18) 

which proves that R is semi-basic and that: R = 0 if and only if the 
horizontal distribution is integrable. 

Locally one has 

K~[dx° dx0+l<3dy^ Vady») ® ®dy*-

Thus for a linear connection we have 

£UR(Z, W) = DzDwu - DwDzu - D[ZyW]u 

where Z,W 6 TUTM, and z = n.Z, w = nmW, and D is the covariant 
derivative associated to T. 

The following properties are the Bianchi identities for a nonlinear connec­
tion: 

[J,R] = [h,t], (3.19) 
[h,R] = 0. (3.20) 

They can easily be proved by using the Jacobi identity. 
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The almost complex structure and the curvature are related to each 
other by the following property: 

^h'[F,F) = Ft + R (3.21) 

Indeed, h*[F,F](X,Y) = [F,F](hX,hY) and 

W[F, F](X, Y) = [JX, JY] - [hX, hY] + F[JX, hY] + F[hX, JY]. 

On the other hand we have 

Ft(X, Y) = F[JX, hY) + F[hX, JY] - h[hX, hY] + [JX, JY] (3.22) 

and therefore 

W[F,F](X, Y) = Ft(X, Y) - [hX, hY] + h[hX,hY] 

= Ft(X, Y) - v[hX, hY] = Ft(X, Y) + R(X, Y). 

From this property one deduces 

Corollary 3.1 The almost-complex structure associated with a connec­
tion is integrable if and only if the connection is "weakly flat", i.e. 
t = 0 and R = 0. 

Indeed, [F, F] = 0 implies t = 0 and R = 0 because Ft(X, Y) is hor­
izontal and R(X, Y) is vertical. The converse follows from the fact that 
[F, F] = 0 is equivalent to h* [F, F] = 0. By a simple computation one can 
prove that 

[F,F](hX,JY)=Foh'[F,F](X,Y), 
[F,F](JX,JY) = -h'[F,F](X,Y). 

D 
We also have the following identities: 

[J,F] =fRF -Ft-R (3.23) 
[h,F] = -RAF- t (3.24) 

which can be proved by a straightforward verification. The following Propo­
sition can easily be checked with the help of the above formulae. 
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Proposition 3.5 The following properties are equivalent: 

1) [F,F] = 0, 
2) [J,F} = 0, 
3) [h,F} = 0, 
4) R = 0, t = 0. 

Indeed from (3.23) we have J[J,F] - -t. Therefore [J,F] = 0 im­
plies t — 0 and then R = 0. The converse is trivial. Moreover we get 
[h, F](hX, JY) = -R(X, Y). Therefore [h, F] = 0 implies R = 0 and then 
r- = 0. 

Douglas tensor 

In his classical work on the inverse problem of the calculus of variations 
([Dou]) J. Douglas introduced a tensor which plays an essential role in the 
theory *. His coordinate-free presentation is the following (cf. [Kl]): 

Definition 3.17 The Douglas tensor is the (1-1) tensor A on TM de­
fined by 

A:=v[h,S\, 

where h and v are the horizontal and vertical projectors of the connection 
r = [j,s). 
It is easy to see that A is semi-basic and 

A = [h,S] + F + J, (3.25) 

where F is the almost complex structure associated to T. A is related to 
the curvature by the formula 

R=\[J,A\. (3.26) 

We can prove this by the following : 

[J, A] = [J, [h, S}} + [J, F] = [h, [J, S}} - R 
= -[h, T]-R = -2[h, h}-R = 3R. 

*This tensor is called Jacobi endomorphism in [Sa], [CSMBP]. 
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Typical and atypical sprays 

In this paragraph we give some definitions and describe properties related 
to the Douglas tensor. 

Proposition 3.6 Let V be the distribution spanned by the spray S 
and the canonical vertical vector field C. Then V is an integrable 
distribution if and only if there exists a function y. such that vS = uC. 
In particular, if S is homogeneous, then T> is integrable. 

Indeed, TS = [J, S}S = [C, S], so 

vS=\{I-r)S=±(S-[C,S\). 

Consequently if vS = pC, then [C, S] = S - 2/xC, so V is integrable. 
Conversely, if V is an integrable distribution, then there exist functions a, 
b such that [C, S] = aS + bC. Therefore we have J[C, S] = C = aC. Hence 
o = l . Since S - 2vS = aS + bC, we find that vS = - | C . 

0 
Definition 3.18 Let L be a semi-basic vector-valued 1 form on TM. We 
use 

L = LF + FL, 

where F is the almost complex structure associated with the connection 
[J,S). 

Locally, if L = L^(x,y) dxa ® ■£&, i.e. in the matrix form 

' -US)-
then we have: 

Li 0 \ 
L^Tl - T^Ll Li ) 

It follows that the eigenvalues of L are the eigenvalues of the matrix (L^) 
with double multiplicity, and L is diagonalizable if and only if the matrix 
(L^) is diagonalizable. More precisely, we have 

Proposition 3.7 The following properties are equivalent: 

L = 
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1) LX = XX, 
2) LFX = XFX, 
3) LX = XJX and LFX = XvX, 

i.e. lfX = Xa^ + Xa^,then 
LiXa = XX0 and L ^ Y " + X T " ) = X{XP + XT%). 

Corollary 3.2 If F is a connection and h denotes the horizontal pro­
jection associated to F, then if X is an eigenvector of L with eigenvalue 
X and hX ^ 0, then hX and JX are also eigenvectors of L with eigen­
value X. 

In order to present all computations in a coordinate free way, we will 
present it in terms of local bases, chosen in relation to the natural geomet­
rical structures which come with the given system. We introduce the 

Definition 3.19 Let L be a semi-basic vector-valued 1-form on TM and 
T a connection on TM. The basis B := {/iti*>i}i=i,2 of TX{TM) is called 
an adapted basis of L if B is a Jordan basis of L such that the vectors hi 
are horizontal, and v, = Jh{. 

In the next chapters we will study the cases where the spray S is or is 
not an eigenvector of the Douglas tensor. We will consider the following 

Definition 3.20 The spray S is called typical, if it is an eigenvector of 
the tensor A. 

The terminology is justified by the fact that the class of typical sprays 
contains the quadratic and the homogeneous sprays, and also the spray of 
the geodesies of linear connections. More generally we have the 

Proposi t ion 3.8 / / the distribution T> spanned by S and C is integ­
rate, then S is typical. In particular the homogeneous (quadratic) 
sprays are typical. 

Indeed, if V is integrable, then by the above proposition there exists a 
function /x such that vS = \xC. Therefore 

AS = v[h, S]S = v[hS, S] = -v[vS, S] = -v[fxC, S] 
= CsnC - vTS = CsliC + vS= (Csn + fi)C. 
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Since FC = hS, one finds that A(hS) = A (hS) where A := CsH + n, so hS 
is a horizontal eigenvector of A. Therefore vS = 0, and the spray is typical. 

If vS 7̂  0 we can see, using the Proposition 3.5, that C = J(hS) is a 
vertical eigenvector of A corresponding to the eigenvalue A. Then vS = /x C 
is also an eigenvector of A corresponding to the eigenvalue A. Therefore 
5 = hS + vS is an eigenvector of A, i.e. S is typical. 

3.4 The Lagrangian 

Definition 3.21 A Lagrangian is a map E : TM —> E smooth on TM \ 
{0} and C1 on the 0-section. E is called regular if the 2-form fi# := ddjE 
has maximal rank. 

If CcE = 2E and E is C2 on the 0-section, then E is quadratic and it 
defines a (pseudo)-Riemannian metric on M by 

g{v,v)=2E(v), 

v £ TM. If CcE = 2E and E is C1 on the null-section, then E defines a 
Finsler structure. 

Note that from the equation [J, J] = 0 we find that ijddj = dj = 
d[j,j] = 0j so for every Lagrangian £ we have 

i j f tE = 0. (3.27) 

Proposition 3.9 A regular Lagrangian E allows us to define a (pseudo)-
Riemannian metric on the vertical bundles, by putting 

gE{JX, JY) = SlE(JX, Y). (3.28) 

Indeed, gE{JX, JY) is well-defined because if Y' is another vector on 
TM such that JY = JY', so Y - Y' is vertical, then flE{ JX, Y-Y') = 0 
(because ijft = 0) and therefore QE(JX,Y) = QE{JX,Y'). On the other 
hand, gE(JX,JY) = QE(JX,Y) = -QE(X,JY) = gE(JY,JX), because 
ijnE = 0. 

Moreover gE is not degenerated because if gE(JX, JY) = 0 for any JY, 
then QE(JX, Y) = 0 for any Y, which is impossible, because ClE is not 
degenerated. 



The Lagrangian 61 

The local expression of the 2-form fig is 

QE = I ( - ^ f L _ -££-) dxaAdxV - J ^ dxaA dy0, (3.29) 
2\dxady0 dx$dya) dyady0 

and the Lagrangian E is regular if and only if 

d6t (flU?) * °" 
Using 

d d / a a \ 
<dya' dyP, 

we obtain 

d2E 
9aP = dyady13' 

Proposition 3.10 [Go] - Let E : TM —> JR be a regular Lagrangian. 
The vector field S on TM defined by 

isQE = d{E - CCE) (3.30) 

is a spray and the paths of S are the solutions to the Euler-Lagrange 
equations: 

d dE dE n —■— 77— = 0 , a = l . . . n . dtdxa dxa 

Indeed, if 5 is defined by this expression, one has 

ijs^E = isij^E - ijis^E = -isij^E = ij(£cE - E) = dj(CcE - E) 
= djCcE - djE = CcdjE = icddjE - ic^E 

and then JS = C because CIE is not degenerated. Locally, if fa are the 
components of S (see 3.6), we have: 

ls^E~ya\dx°dx0 dx0dx")dx ^^dy^dy^^ V°' dydyP1 

On the other hand we have 

dE , d2E \ , „ , d2E ™-^dE={i&-*i^)*a-*a^*>r, 
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then is&E = d(E - CcE) if and only if 

_ dE d2E 
dxp y dxQdy<3' 

where fp = gapfa. Now the paths of 5 are the solutions of the differential 
system 

d?xa 

fa(x,x)=0, dt2 

which, taking the above relations into account, can be written as 

d2E ..„ . d2E .Q 8E 
dxadi0 diadiP dxP 

which are the Euler-Lagrange equations 

d dE dE n 
-—— = 0, a = l , . . . , n . dtdxa dxa 

a 

The connection T = [J, S] is called the natural connection associated 
to E. In particular, if E is the quadratic form associated to a Riemannian 
metric, we can obtain the Levi-Civita connection. If E defines a Finsler 
structure, T = [J, S] is the canonical connection denned by [Gr]. 

Definition 3.22 Let E be a Lagrangian; a vector v G TM has a null 
length, if QE{C, S)V = 0, where 5 is an arbitrary spray. 

This condition does not depend on the choice of S. In fact, in standard 
local coordinates (x,y) of TM, a vector v G TM, with local expression 
v = (xa, z®) has null length if and only if gap(x, z)zaz13 = 0, where gag = 

d2E 
dydyf 

L e m m a 3.1 If E is a regular Lagrangian, the interior of the set of 
the null length vectors is empty. 

Indeed icnE = dj{CcE - E), hence QE(C,S) = CC(CCE - E). If 
QE(C, S) vanishes on a open set U, then CcE — E should be homogeneous 
of degree 0 on U and therefore, since it is C° on the zero section, it should 
be constant on the fibers of TM. Therefore dj(CcE — E) = 0, that is 
ic^E = 0, which is excluded because fig has maximal rank. 

0 
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Definition 3.23 A spray S is called variational if there exists a smooth 
regular Lagrangian E which satisfies (3.30), the Euler-Lagrange equation. 

Taking into account the local property of a Lagrangian associated to a 
variational spray given by the Lemma 3.1 we propose the following 

Definition 3.24 A spray S is called locally variational in a neighbor­
hood of x G TM if there exists an open neighborhood of x and a smooth 
regular Lagrangian E on U such that the interior of the set of the null length 
vectors is empty, and which satisfies (3.30), the Euler-Lagrange equation. 

The aim of the following chapters is the local characterization of the 
second order ordinary differential equations which come from a variational 
principle, i.e. the local characterization of variational sprays. 

Let us now introduce the following 

Definition 3.25 Let £ be a Lagrangian and 5 a spray on the manifold 
M, then the Euler-Lagrange form associated with E and S is 

u)E := is^E + dCcE - dE. (3.31) 

It is easy to see that U>E is semi-basic, and the local expression in the 
standard coordinate system on TM is 

n 

U>E = Y1 
« = 1 

Therefore along a curve 7 — (x(t)) associated with S we have 

. ^fddE dE\ t 

t=i x ' 

where d/dt denotes the derivation along 7. So, in order to find the solution 
to the inverse problem for a given second order differential system, we have 
to look for a regular Lagrangian such that w^ = 0. Of course, for this 
purpose we must study the local integrability of the second order partial 
differential operator 

Pi : C°°(TM) —> SecT; 

called the Euler-Lagrange operator denned by 

s(—\-— 
Kdyi) dx{ 

dxx 

Pi := isddj + dCc - d. (3.32) 
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Remark . To solve the inverse problem of the calculus of variations we 
will look for a regular Lagrangian associated with the spray. Supposing 
that the manifold M and the operator Pi are analytical, we now only need 
to prove that 

(1) the Euler-Lagrange operator (3.32), possibly enlarged with some com­
patibility conditions, is formally integrable, and 

(2) there exists a second order regular formal solution. 

To show 1) we use the theory of formal integrability of partial differential 
systems whose basic notions are given in Chapter 1, while the proof of 2) 
remains a simple linear algebraic computation in the space of the initial 
conditions. 

3.5 Sectional curva ture associated wi th a convex Lagrangian 

Sectional curvature 

Let E be a regular Lagrangian, fig = ddjE, and g the associated metric 
defined by the equation (3.28) on the vertical bundle. If the Lagrangian 
E is convex, then the matrix ( &

 9
a g $ J is positive definite, and g is a 

Riemannian metric. In this section we suppose that E is convex. 

Lemma 3.2 Let L G $ (TM) be an arbitrary (1-1) semi-basic tensor 
on TM. We define the function kL : TV\{\C} —► R by: 

r (JX)= 2g(L°, JX)g(JX, C) - g(LX, JX)g(C, C) 
L( ' g(C,C)[g(JX,JX)g(C,C)-g(C,JX)*) ' 

Since JX ^ AC, the denominator is not zero, according to the Cauchy-
Schwartz inequality. If the equations IL^E = 0 and g(L°,C) = 0 hold, 
then 

kL{JX) = kL(aJX + bC) 

for any a,b € C°°{TM), a ^ 0. 
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This is borne out by 

2a2g(L°, JX)g(JX, C) + 2abg(L°, JX)g(C, C) 
kUaJX+bC) = 

kL(JX). 

a2g(C, C)[g(JX, JX)g{C, C) - g(JX, C)»] 
[a2g(LX, JX) + abg(L°, JX) + abg{LX, C)]g(C, C) 

a2g(C, C)[g(JX, JX)g(C, C) - g(JX, C)' 

GEOMETRICAL INTERPRETATION 

Let i : TM x TM -> Tv be the natural isomorphism and JX2l e T" . 
M 

Since i_ 1(JArz i) = (21,22) and i - 1 (C 2 l ) = (zi,2i), JX and C are indepen­
dent at z\ E TM if and only if the vectors z\ and 22 are independent. Let 
VJX be the plan spanned by {21,22}. Since i~l (a JX+bC) — {21,022+621} 
we obtain: 

r JX — raJX+bC ■ 

Thus the Lemma expresses the property that k^ depends only on the point 
zi G TM and on a 2-plan tangent to 7r(2i) containing z\. 

Remark . Let L be a semi-basic vector-valued 1-form, such that {^UE = 
0, and put L := L- ^c'x:) J- T h e n {TnE = 0 and g(Z°, C) = 0. Therefore 
we can offer the following 

Definition 3.26 Let E be a Lagrangian and L a semi-basic vector-valued 
1-form such that IL^E = 0. The sectional function associated with E and 
L is the function denned by 

kL := kT. 

In particular we will call the sectional curvature of E, denoted by fc^ or 
more simply by k, the sectional function associated to the Douglas tensor A. 

As we have seen, the sectional curvature depends only on a point 2 € 
TM and on a 2-plan tangent to TT(Z) and containing 2. A simple computa-
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tion shows that 
2g(L°,C) 

kL{JX)--^cy 
2g(L°, JX)g(C, JX) - g(LX, JX)g(C, C)) - g(JX, JX)g(L°, C) 

g(C,C)[g{JX,JX)g{C,C)-g{JX,CY) 

Example 3.1 The sectional curvature of Finsler manifolds. 
Let E € C°°(TM \ {0} be a homogeneous regular Lagrangian of degree 2 
(i.e. E defines a Finsler structure on the manifold M) and R = — |[/i,/i] 
the curvature of the canonical connection associated to E (cf. Paragraph 
3.3). We have 

R° = -hh, h]° = -[hS, h] + [h[S, h] = [h, S] - [h, vS] - h[h, S] 

= v[h,S]-[h,vS) = A-[h,vS]. 

Moreover, from the homogeneity of E we have [C,S] = S and therefore 
vS = i ( 7 - [J, S}S) = i ( 5 - [C, S]) = 0. Then: 

KJX)= ^ x ^ 
g(C,JX)i-g(C,C)g(JX,JX)-

So we find the sectional curvature usually introduced for a Finsler structure 
(cf. [Ru], page 117). 

Example 3.2 Sectional curvature of Riemann manifolds. 
In this case the Lagrangian E is quadratic. Let ( , ) be the scalar product 
on the manifold M defined by {v, v) := E(v) and let 11 be the curvature 
tensor of the Levi-Civita connection associated to the scalar product: 

TZ(u,v)w = DuDvw - DvDuw - D[U:V]W. 

If JX = i(u,v), we have 

g(C,C) = (u,u), g(C,JX) = (u,v), and g(JX, JX) = (v,v). 

On the other hand g(R°X, JX) = (Jl(u,v)u,v), and so 

(Tl(u,v)u,v) 
k(u,v) 

(u,v)2 - (u,u)(v,v)' 
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Therefore k is the usual sectional curvature of the Riemannian space. 

Isotropy 

Dennition 3.27 We will say that the Lagrangian has isotropic curva­
ture at z G TM, z ^ 0, if the sectional curvature at z does not depend on 
the 2-plan containing the vector z. 

Example 3.3 The case A = XJ. 
We find: 

k( IX) = 2X + ~ A g ( J X ' J X M C ' C ) + 2X9(°> J X ) 2 ~ WJX' JX)9(C, C) K ' g(C,C)+
 9(C,C)[g(JX,JX)g(C,C)-g(C,JXy] 

and therefore 

kXJ = 0. 

Example 3.4 The case A = fiic^E ® C. 
We have: 

-figjJX, C)2g(C, C) + 2M(C, C)g(C, JX)2 - M{JX, JX)g{C, C)2 

g(C, C)[g(JX, JX)g(C, C) - g(C, JX)2] 

and therefore: 

^ ■ c n E ® c - li-

Remark. Since fc/, is a C°°-Unear function on L, we have 

Note that in this case k does not depend on the 2-plan. 

Definition 3.28 A spray S is called flat, if the associated Douglas tensor 
has the form A = XJ for some function A G C°°(TM). 
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Remark . The Example 3.3 shows us that if a flat spray is variational, 
then every associated Lagrangian has vanishing sectional curvature. For a 
2-dimensional manifold, they correspond to the Case I in Douglas' termi­
nology [Dou]. 

Proposi t ion 3.11 A Lagrangian has an isotropic sectional curvature 
k if and only if the Douglas tensor A has the form 

A = XJ + a®C + 0®A° 

where: 

g(A°,C) X=w^y~ g{: ,c)' 
/ , 2g(A°,C)\ . _ 1 . n 

a=\k~ g{C,Cy) 1CQE + gJC^)lA° "*' 

Indeed, the sectional curvature is isotropic if and only if for every vertical 
vector JX 6 T" the quadratic form 

q(JX) : = {kg(C,C) - 2g(A°,C))[g(JX, JX)g(C,C) - g(JX,C)2} 
+ g(AX, JX)g(C, C) - 2g(A°, JX)g(C, JX) + g( JX, JX)g(A°, C) 

vanishes identically. By polarizing the quadratic form q, this condition can 
be expressed by the following equation: 

0={kg(C,C) -2g(A°,C))[g(JX, JY)g(C,C) - g(JX,C)g(JY,C)} 

+ \ {g(AX, JY) + g(AY, JX))g(C, C) - g(A°, JX)g{C, JY) 

- g(A°, JY)g(C, JX) + g(JX, JY)g(A°, C). 

Taking into account that gs(AX, JY) = gs{AY, JX) which follows from 
the equation IA^E = 0 (see paragraph 4.2), we can easily obtain the ex­
pression of A. 

Remark . Note that if the Douglas tensor of a variational spray has the 
form 

(*) A = \J + a®C + /3®A°, 
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with some function A and semi-basic 1-forms a, 0, then the associated 
Lagrangian has not necessarily isotropic curvature. 

Indeed, the equation IA^E = 0 gives a A ic^E + P A IA'^E = 0. If A0 and 
C are independent, then by Cartan's lemma we find a = aic^E + W ^ O E 
and 0 = bic^E + diA»^E-

On the other hand, taking the potential of (*) we get A0 = XC + a°C + 
f3°A°. Therefore 0° = 1 and Q° = -A. Since C and A0 are independent, 
the conditions of Proposition (3.11) hold if and only if d = 0 (we can 
take b = .(QC\, 0 = qicc)^c^E an<^ k = a + j / ' c ^ y for the sectional 
curvature). 

Nevertheless, if the vectors C and 4̂° = ^4(S) are proportional (i.e. the 
Douglas tensor has the form A = A J + a <S> C where a is semi-basic 1-form), 
then the Lagrangian associated to the spray has an isotropic curvature. 
Indeed, if E is the Lagrangian associated to the spray 5, IA^B — 0, then 
Q A ic^E = 0, and therefore a = fiic^E- Thereby the conditions of the 
above Proposition hold, and the sectional curvature is isotropic (it is equal 
to fj. as we have already computed). 

Taking into consideration the preceding remark, we propose the follow­
ing 

Definition 3.29 A spray is isotropic if its Douglas tensor has the form 

A = A J + a ® C, (3.33) 

where A € C°°(TM) and Q is a semi-basic 1-form on TM. 

Prom the preceding remark we know that if an isotropic spray is varia-
tional, then every associated Lagrangian has isotropic curvature. Our goal 
in Chapter 7 is to examine the conditions for the existence of a Lagrangian 
(and therefore the existence of a Lagrangian with isotropic curvature) as­
sociated to a spray. 



Chapter 4 

Necessary Conditions for Variational 
Sprays 

In this chapter we define a graded Lie algebra associated to a second order 
differential equation. By using this notion in Theorem 4.1 we find a large 
system of differential equations on the Lagrangian (and algebraic conditions 
on the so-called "variational multiplier"). This gives more effective condi­
tions to the existence of a solution to the inverse problem of the calculus 
of variations (Theorems 4.3 and 4.4). 

4.1 Ident i t ies satisfied by variational sprays 

Propos i t ion 4.1 Let E be a Lagrangian, T a connection on M, h the 
associated horizontal projection, and F the associated almost-complex 
structure. The following properties are equivalent: 

a) ir^E = 0, 
b) iFSlB = 0, 
c) ilE{hX, hY)=0 V X, Y € TTM i.e. the horizontal distribu­

tion is Lagrangian. 

Indeed, 

irilE(hX,hY) = 2nE(hX,hY), 
irnE(hX, JY) = nE(hX, JY) - nE(hX, JY) = 0, 
irnE(JX, JY) = -2QE{JX, JY) = 0, 

71 
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so a) is equivalent to c). On the other hand we have 

iFQE(hX, hY) = -QE(JX, hY) - nE(hX, JY) = -ijQ(hX, KY) = 0, 
iFnE(hX, JY) = -flE(JX, JY) + QE(hX, hY) = QE{hX, hY), 
iFnE(jx, JY) = nE(hx, JY) + nE{jx, hY) = o, 

so b) is equivalent to c). 
□ 

Definition 4.1 A connection is called Lagrangian with respect to E, if 
it satisfies the above conditions. 

Proposi t ion 4.2 Let E be a Lagrangian on M, and T — [J,S] the 
connection associated to S. Then 

djoJE = ir^E- (4.1) 

In particular, if the spray S is variational and E is a Lagrangian as­
sociated to S, then T is Lagrangian with respect to E. 

Proof. The Euler-Lagrange form can be written as follows: 

LJE = isddjE + dCcE = CsdjE - dE — djCsE - i[J<S)dE 
= djCsE - 2dhE. 

Since [J, J] = 0, we have dP, = dj odj = d[j,j] = 0, so 

djujE = -2djdhE = 2dhdjE = 2{ihddjE - dihdjE) 
= 2ih$lE — 2ilE = ir£lE-

If the spray is variational and E is a Lagrangian associated with 5, we 
have U>E = 0, then ir£lE = 0, so the connection associated to the spray is 
Lagrangian. 

D 

Proposi t ion 4.3 Let S be a spray, E a Lagrangian on M. Then 

iAilE = dhwE - -CsdjuE + iF^E, (4-2) 

where A is the Douglas tensor of S. In particular if S is variational 
and E is a Lagrangian associated to S, then 

iA^E = 0. (4.3) 
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Proof. Since ijQs = 0, one has 

lA^E = i[h,S]^E + iF^E = ih^S^E ~ Csih^E + iF^E 

— ihduE ~ £s{&E + ydjLJE) + ip^E 

= ihdu>E - dwE - -^CsdjUE + IF^E = dhuE - -zCsdjUE + IF^E 

which shows (4.2). 
Moreover, if E is a Lagrangian associated to S, then LJE = 0 and the 

connection T is Lagrangian. Therefore every term on the right side of the 
equation (4.2) vanishes, so IA^E = 0. 

□ 

Definition 4.2 Let 5 be a spray on M, and L £ V(TM) semi-basic. 
Then we put 

L'~h*v[S,L], (4.4) 

where h*L(Xi,..., Xi) := L{hX\,..., hXi). The tensor V is called the semi-
basic derivation of L with respect to the spray 5. 

It is clear from the definition that V is semi-basic. 

Proposi t ion 4.4 Let S be a spray on M and L € ^(TM) semi-basic. 
We have the formula 

L' = [S, L]+FL- LAF. (4.5) 

In particular, suppose that S is variational, E being a Lagrangian as­
sociated to S. If the equation i^E — 0 holds, then the equations 

iL.{lE = 0, iL„nE = 0, iL...(lB = 0, etc. (4.6) 

hold too. 
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Proof. Prom the definition we find that 

L'(X1,...,Xl) = v[S,L}(hXl...hX,) = v[S,L(X1...X,))-YlL(X1...[S,hXi}...Xl) 

i 

= [S,L{Xi,...,X,)]-h[S,L(X1,...,X,)]-YlHXu...,[S,h]Xi,...,X,) 
i = l 

I 

-^2L(Xl,...,[S,Xi],...X,) = 
1 

= [S,L](Xi,...,X,) + FL(Xi,...,Xl)-YlL{Xu...,h[S,h]Xi,...,X,). 
i = l 

Using the identity h[S, h] = F + J and the hypothesis that L is semi-basic, 
we obtain the equation (4.5). 

On the other hand, from (4.5) one has 

IL'^E = i[S,L]&E + iFL^E ~ tF^E = i[S,L]^E + iF^L^E ~ i l^F^E 

= CslL^E ~ di,flE + ipiL^E - iLiF^E-

If S is variational and E is a Lagrangian associated to 5, then UE = 0, 
and the connection T is Lagrangian. Thus we have ipQE = 0 (Propositions 
4.1 and 4.2). Therefore if i^E = 0 holds, then ii'VlE = 0 holds too. 
Recursively one finds (4.6). 

□ 

Definition 4.3 Let h be the horizontal projector associated to the con­
nection r = [J, S], and L € *f>l(TM) be semi-basic. We propose 

dhL:=[h,L]. (4.7) 

Proposi t ion 4.5 If L is a semi-basic vector-valued form, then dhL 
is also semi-basic. Moreover, assume that S is variational and E is a 
Lagrangian associated to S. If the equation i^E = 0 holds, then the 
equation I^L^E = 0 holds too. 
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Proof. First we will show that dhL is semi-basic, that is h* (v[h, L])= [h, L\. 
Since L is semi-basic, i.e. h o L = 0 and h*(L) = L, we have 

[h,L](Xu...,X,+1) = j j ^ i X>(a)L([ftX„i,X<,2],X,a...X„(i+i)) 

+ Ji l>(*)[/i*<r l>L(X<72 . . .X<r ( (+1 ))] + ^ '£ie(o)h[UX<,i...X.l),X„ll+l)] 

+ fj _ 1 ) ! 2 ^2e(v)L(h[X<ri,X<72lX<T3,---,X(7(l+1)) 

n 

= ^( - 1 ) i + 1 { [ f t X ' ' L ( X l ' - x ' - - - x '+ i ) ] - f t [ x >> L ( X l - -^ ' ' - x '+>) ] } 

■<> 

= X^ ( - l ) i + 1 [A, i(X,,. . . X«, -..^i+i)](XO 
t = i 

+ ^{-l)i+jL(h[hXitXj] + h[Xi,hXj] - h2[Xi,Xj],XU--- Xi,... Xj,...Xl+1) 

+ 5I(- l ) < + i i (R(A- i ) X J - ) + [/iA-i>/iXi],X1,...Xi,...^J-,...A-,+,) 

= X>i) i+1M(*i---*<•••*<+!)](*<) 
1 = 1 

where A symbolizes the term which does not appear in the corresponding 
expression, and E (<T) denotes the sign of the permutation o. It is clear that 
the value of the second term is vertical, and it vanishes when one of the 
arguments is vertical. On the other hand: 

[h,L(Xu... Xi,...Xi+i)](Xi)= [h,L(hXu...hX„...hXl+1)](hX,+vXi) 

= [h2Xi,L(hXu...hXi,...hXl+i)]-h[hXi,L(hXi,...hX,,...hXl+l)] 

+ [h(vXi),L(hXi,... hXi,...hXi+i)]-h[vXhL(hXi,... hX„...hX,+l)] 
A 

= v[hXi,L(hXi,... hXi,...hXi+i)] 
where we used the fact that the vertical distribution is integrable. So we 
realize that the value of dhL is vertical, and vanishes when one of the 
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arguments is vertical. Thus dhL is semi-basic. 

Now assume that S is variational, E is a Lagrangian associated to 5, 
and L is a vector-valued semi-basic f-form. By the relation 

(-l)'*[A,i] = hdL - dLih - dL^h 

and taking into account that LKh = IL, because L is semi-basic, we have 

{-^)lidhL^B = {-l)li[h,L\ddjE - ihdLddjE - dLihddjE -ldLddjE. 

If the equation IL^E = 0 holds, then 

(-l)'id>>L^E = ihdiLddjE - dLi^(I+T)ddjE - IdiLddjE 

= —/ di^ddjE — -d^irddjE = 0. 

□ 

4.2 Graded Lie algebra associated to a second order ODE 

Definition 4.4 The graded Lie algebra (As, [, )) associated to the spray 
S is the graded Lie sub-algebra of the vector-valued forms spanned by the 
vertical endomorphism J, the Douglas tensor A, and generated by the 
action of the semi-basic derivation denned in (4.4), the derivation dh, and 
the Frolicher-Nijenhuis bracket [, ]. The graduation of As is given by 

As = ®t=1Ak
s (4.8) 

where Ak
s := As n Vk(TM). 

Remark. Note that J and A are semi-basic and that, as we showed in 
the preceding paragraph, the space of semi-basic forms is stable by semi-
basic derivation denned in (4.4), by the derivation dh, and by the Frolicher-
Nijenhuis bracket. It follows that As is a graded Lie sub-algebra of the 
vector-valued semi-basic forms. 

The importance of the graded Lie algebra associated to a spray is given 
by the following: 
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Theorem 4.1 Let S be a variational spray and E a Lagrangian as­
sociated to S. Then for every element L of As the equation 

itfE = 0 (4.9) 

holds. Therefore every element of As gives a (necessary) algebraic 

condition in ga0 = -g^§js-

Remark . The regular matrix gap = 9
9
aQ g is called a variational 

multiplier. 

To prove Theorem 4.1 we will first show that J and A satisfy the equation 
(4.9). Then we will prove that all the vector-valued forms obtained from 
J and A by a finite number of successive operations which define As, also 
satisfy the equation (4.9). 

(1) From [J, J] = 0 we can easily obtain : 

ijflE = ijddjE = d2jE = dy^E = 0, (4.10) 

so the equation (4.9) holds for J. 
(2) The Proposition 4.3 shows that the equation (4.9) also holds for L = A, 

where A is the Douglas tensor. 
(3) from Propositions 4.4, and 4.5 respectively we know that if i^E — 0 

holds for L € As then 

iv^E = 0, 
id"L^E — 0, 

hold too. 
(4) Let K € Ak

s{TM), L G A'S(TM) be semi-basic vector-valued forms, 
such that IKSIE = 0 and IL^E — 0. Since K and L are semi-basic, we 
have L7\K = 0 and hence 

( -1) ' i[K,L]nE = M L - (- l) , ( m _ 1 )dLtif - < W ) ilE 

= iK{iLd - diL) ddjE - {-\)^m-lULiKddjE - dL7:KddjE 

= iKdiLSlE - {-l)l(m~l)dLiK^E = 0. 

Therefore IJSIE = 0 and IA^E = 0 hold, and the operations which generate 
As "preserve" the equation (4.9). Consequently for every L £ As the 
equation ILSIE = 0 holds. 
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□ 
We can see that the above Theorem gives second order differential 

conditions on the Lagrangian. Indeed, if the spray is variational and E is 
a regular Lagrangian associated with S, then locally one has 

n«-K^-^)* 'A , b ' -3F5»*"A* ' - (4n) 

If L 6 Vl(TM) is semi-basic, then 

1 d2E 
iLUE=- £ £ ( a ) < . . . a , - ^ — 7 « f a - A . . . A d * " « 

' aee,+ i y y 

So if L € ^4's, then the equation i^E = 0 gives a 2nd order partial 
differential equation in E. (6 p + /_ i denotes the (p + / — l)!-order symmetric 
group and e(a) is the sign of a.) Thereby these 2nd order equations give 
the algebraic equation 

£ e ( " ) ^ . . . a , f c . I + 1 = 0 (4-12) 
aGSz + i 

The graded Lie algebra associated with the spray appears in a natural 
way on studying the integrability of the Euler-Lagrange equation. As we 
will see in the following chapters, the elements of .4s, more precisely the 
equations (4.9) and the equations (4.12) on the variational multiplier appear 
in the compatibility conditions of the Euler-Lagrange equation. 

4.3 The rank of sprays 

Using Theorem 4.1 we found a large set of tensors (the elements of As) 
which result in linear constraints on the variational multipliers. Using 
these equations we can formulate necessary conditions for the spray to be 
variational. The first one is the generalization of Douglas' VIII Theorem 
to the n-dimensional case (see also [AT], [Sa]). 
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Theorem 4.2 If at x € TM one has 

r a n k { J , A ^ ' , . . . , ^ ) , . . . } t 6 J f v > ^ f ^ I 

then S is not variational in the neighborhood of x. 

Proof. Let us suppose that S is variational with an associated regular 
Lagrangian E, and g is the bilinear symmetric 2-form (non-degenerate since 
E is regular) on Tv defined by the formula (3.28). If L 6 T* ® Tv, the 
condition IL^E = 0 gives 

g(LX, JY) = g(JX, LY), VX, Y G TXTM, 

i.e. locally 

gikL) = g ^ 

d2E 
where ov, := . ■- .. This means that L is symmetric with respect to 3 dy*dy3 
g. Since the tensors J,A,A',A",...,A( * ' are elements of As, we 
have iA(k)flB = 0. Therefore, if the spray is variational, then the tensors 
J, A, A', A",...,A( 2 ) are self-adjoint with respect to g. But the space 
of the ( 1 - 1 ) tensors which are self-adjoint with respect to a regular matrix 

n(n + 1) 
is dimensional. Consequently, if the spray is variational, then J, 

A, A', A", ... ,i4' i ' are linearly dependent. 

If dim M — 2, then As only contains the hierarchy given by the Douglas 
tensor and its semi-basic derivatives A', A", etc. However, if dimM > 
2, then we find other hierarchies in As which give, in the generic case, 
new necessary conditions for the variational multipliers. For example, the 
curvature tensor R of the connection associated to S belongs to As, because 
J, A € -4s and R = \[J,A] € As by (3.26). Therefore its semi-basic 
derivatives R', R", etc. are also elements of ,4s - more precisely elements 
of A% (see also [SCM], [GM]). 

Moreover, in As we also have the tensors [^l'*',^''] where k,I > 1 
which are generally linearly independent of the curvature's hierarchy. 
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Theorem 4.3 Let S be a spray and x 6 TM. If there exists an integer 
k < n for which 

dim^l(x) > * ( £ t J ) ' <4-13> 
then the spray is not variational in a neighborhood of x. 

Note that for k = 1 we obtain the Theorem 4.2. 

Proof. Let 5 be a spray and E a regular Lagrangian. We consider for every 
k = 1, ...,n the morphism 

L y IL^E-

By the regularity of E the 2-form HE is symplectic, and the morphism ipk 
is onto. Indeed, it is easy to see that if {Xi,..., Xn} is a basis of Tv, then 
Qi,..., a n € T* defined by a; = ix^E, gives a basis of T*. Consequently 

{au A .... A aik A Qifc+1 }l<il<„.<ik+l<n (4-14) 

is a basis of Ak+lT* and 

JQi, A .... Aaik ® Xj. .. }, .. ^ ^ , , , . , (4.15) 

gives a basis of A*T* ® T". Moreover, if the components of A € Ak+1T* 
with respect to the basis (4.14) are A'1 '"'*+1, then A = ^k(L) where L = 
Aj, ...,fc+1Qi, A ... A aik ® Xilt+1. This proves that ipk is onto. 

Theorem (4.1) shows us that if the spray is variational and E is a regular 
Lagrangian associated with 5, then for every x € TM we have 

Ak
s(x) C K e r ^ ( i ) . 

Consequently if dim>l|(x) > d i m K e r ^ , then the spray is not variational. 
On the other hand tpk is onto, so 

-** "dim A'+'r;" G " ■) = ( t + . )!(n" !
+ i- t )r 

Thus 

d i m K e r * = n - ( ? ) - (, " ) = * ( " + 1}"' , = * ■ (? + ]) (4-16) \kj \k + lj (k + l)\(n-ky. \k + 1J 
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and therefore we obtain Theorem 4.3. 

Remark. In the 2-dimensional case, this condition means that the 
spray is not variational in the neighborhood of x € TM if the dimension of 
As(x) is greater than 3, so we find the criterion given by Douglas' theorem 
VIII. 

Definition 4.5 Let 5 be a spray, x € TM, and let us consider the system 
of linear equations 

{ E £W LL.i,x*» = ° | L € M*) } (4-17) 
»ee,+i 

in the symmetric variables Xij (xij = Xji), where L? i are the components 
of L € As(x). The rank of the linear equations (4.17) is called the rank of 
the spray at x. 

The flat sprays (cf. Definition 3.28) are obviously the rank null sprays. 

Remark . As equation (4.12) shows, the rank of a spray gives the 
number of independent equations satisfied by the variational multipliers. 
Consequently, if the system (4.17) does not have a solution with det(iy) ^ 
0, then there is no variational multiplier for S, and therefore the spray is 
non-variational. Thus we can easily obtain the following 

Theorem 4.4 If at x £ TM we have 

rank5(x) > =£±H, 
then S is non-variational in a neighborhood of x. 

a 



Chapter 5 

Obstructions to the Integrability of 
the Euler-Lagrange System 

In this section we will consider the inverse problem of the calculus of vari­
ations in the case of n-dimensional manifolds and we will examine the 
integrability of the Euler-Lagrange equation. As far as possible we will 
carry out the study without restrictions either on the dimension or on the 
curvatures. 

5.1 First obstructions for the integrability of the Euler-
Lagrange operator 

We denote by Jk (1R) the space of A;-jets of the real-valued functions on TM, 
and let #2(-Pi) C hilR) be the differential equation of the second order 
formal solutions of the Euler-Lagrange operator 

Pi := isddj + dCc - d. 

We have the following 

Proposition 5.1 Let p = J2{E)X be a second order formal solution in 
x € TM \ {0} of R2(Pi). Then p can be lifted into a 3rd order solution 
if and only if 

(irnE)x = 0. (5.1) 

Remark. By Proposition 4.1 we know that this condition means that 
the connection associated to the spray must be Lagrangian with respect to 
the solution E in x. 
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Proof. Since the Euler-Lagrange operator is of a second order to find 
the first compatibihty conditions, i.e. to examine if a given 2nd order 
formal solution can be lifted into a 3rd order solution, we will consider the 
following diagram: 

s3T' -2<*4 T*®T; -5-> id ► o 

1- I-
R3 —l—> MR) -^^> MT;) 

R2 _ U MR) ^ ^ r-x 

where K\ :— Coker CT3(Pi). A simple calculation shows that the symbol of 
the Euler-Lagrange operator <r2 (Pi) is 

a 2 ( P i ) : S2T'^T:, [a2(Pl)a](X) = a(S,JX), (5.2) 

and the symbol of the prolonged system is given by 

a3(Pi) : S3T' —> T*®T:, [<73(Pi)/3](X,r) = 0(X,S,JY), 

where a e S2T;, 13 € 5 3 T; , and X,Y € Tx. Indeed, let f,g € C°°(TM) 
be two functions vanishing at x. We have 

MPihW © dg){X) = [isddj + dCc - d\x{fg)(X) = 
= {is[ddjf g - djf A dg + df A djy - / ddjg] + ddCcf g + 

+ dCcf g + df dCcg + f ddCcg}x(X) = df(X) dg(S) + dg(X) df(S) 
= (dfOdg)x(S,JX), 

and we obtain the expression (5.2) of the symbol of Pi. 
Let us note that the operator Pi is regular on TM\ {0}, because S only 

vanishes on the null-section. 
In order to interpret the obstruction space K\ := Coker03(Pi), we 

first compute the dimension of g3 (Pi) = Ker <T3(PI). A symmetric tensor 
B € S3T* is an element of 53(Pi) if and only if 

B(X,S,JY) = 0 (5.3) 
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for every pair of vectors X,Y € T. If B = {hi...hn,v\...vn} is a basis 
adapted to the horizontal distribution determined by T, i.e. hi € Th and 
Vi := Jhi for i — 1, ...,n, then the equation (5.3) gives 

o) 5 ( ^ , 5 , ^ 0 = 0 , , . 
b) B(vi,S,Vj)=0, ( ' 7 

i,j = l, . . . ,n. Using the symmetry of B, we find that (5.4a) produces n2 

independent equations, and (5.4b) produces "'n2
+ ' independent equations. 

So 

i , n x 2 n(n +1) 
rank CT3(-PI) = " + - ^ — " . 

and the obstruction space K\ is isomorphic to the space of semi-basic 2-
forms: K\ ~ A2T*. So A2TJ can be seen as the obstruction space. With 
the help of this interpretation we can compute the first integrability - or 
compatibility conditions for the Euler-Lagrange operator. Let r r : T* <g> 
T* —> A2TJ be the morphism defined by 

(rrB)(X,Y) := B(JX,Y) - B(JY,X). 

It is easy to see that r r o a3 = 0 and dim (Ker r r ) = n2 + ^^—<■. So we 
have the exact sequence 

5 3 T . ^ s fP^ r . g T . _JV_> A 2 T . ^ 0 (5.5) 

Let V be a linear connection on the tangent manifold of M, and let E be 
a second order solution at x € TM. Using the results of the Paragraph 
1.4 we know that (J2E)X can be lifted into a third order formal solution 
if and only if 7r[V(PiE)] I — 0. The Euler-Lagrange 1-form LJE = PiE is 
semi-basic and vanishes at x so, using the Proposition 4.2, we arrive at 

T r[V(Pi£)], = dj{PiE)x = [djiisddjE + dCcE - dE))x= ( i r H £ ) x 

which proves the Proposition 5.1. 
D 

If n(= dim M) = 1, the above computation shows that every second order 
solution can be lifted into a third order solution. Indeed, in this case 
A2T^ = 0, every semi-basic 2-form vanishes, and therefore we find that 
rp o V = 0. Moreover, it is easy to show that the Euler-Lagrange operator 
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is involutive and then it is formally integrable. Therefore every spray on a 
1-dimensional manifold is variational. 

The situation is different if the dimension of the manifold M is greater 
than one. The above computation shows that in higher dimensional cases 
there exists a compatibility condition for the Euler-Lagrange operator which 
is not identically satisfied for all the second order solutions. Therefore the 
Euler-Lagrange operator is not formally integrable: the space of second 
order solutions - or initial conditions - is too large; some of them cannot 
be lifted into a higher order. In order to eliminate the ones which cannot 
give a solution, we have introduced the compatibility conditions laid down 
in Proposition 5.1 into the Euler-Lagrange system. So we can consider the 
operator 

P2-.= (Pi,Pt) ■■ C°°(TM) —► 5ec(T„*©A2T;), (5.6) 

where 

Pr.= irddj : C°°(TM) —> 5ec(A2T;). 

5.2 Second obst ruct ions for t he Euler-Lagrange opera to r 

Proposition 5.2 A second order formal solution p = jz{E)x of the 
operator P2 at x 6 TM \ {0} can be lifted into a third order solution if 
and only if the equations 

UiAnE)x = o, 
\ (innE)x = o 

hold, where one denotes fig := ddjE. 

Proof. It is easy to show that the symbol of Pp is the morphism 02 (Pr) : 
S2T' —>■ A2TV* given by 

[o2(Pr)a](X,Y) = 2[a(hX,JY) - a(hY,JX)] (5.8) 
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a G S2T*, X,Y G Tx. In fact, if f,g G C°°(TM) are two functions 
vanishing in x G TM, we find 

<72(P2)*(#©ds)(*,n = [irddj]t(f9)(X,Y) 
= [i2h-rddj]x(df®dg)(X,Y) = 2(ihddj-ddj)x(fg)(X,Y) 
= [ih{-dj A dg + df A dj) + djAdg-dfA dj]x(X, Y) 
= 2[df(hX)dg(JY) - df(hY)dg{JX) - df(JX)dg(hY) - df(JY)dg{hX)]x 

= 2[(df ©dg)x(hX, JY) - {df 0 dg)(hY, JX)]x, 

so we obtain (5.8). 

Since P2 = (Pi, Pr), where both Pi and Pr are of second order, we 
have a2(P2) = (<r2(Pi), <r3(Pr)), where a2(P2) : S2T' —+• T' © A2T„*. Of 
course, we also have <73(P2) = (^ (P i ) , ^ ( P r ) ) -

It is easy to see that P2 is a regular differential operator on TM \ {0}. 
Now let us consider v G TM \ {0} and let Pi2,v(-P2) C J?{1R) be the space 
of the second order formal solution of P2 in v. Then P2,„(P2) will contain 
second order regular formal solutions. 

Indeed, let (xx) be a local coordinate system on M, (x',y') the associ­
ated coordinate system on TM in the neighborhood of v. If p := jk(E)v G 
Jk{TM,M) is a fcth order jet of a real valued function E on TM we set 

^••^M^,,,,^...^ (B)' ' - ' - ^ (59) 

Then (x\yx,s,shSj), and (x,,y,,s,sj,Sj_,Sjk,sjk,Sjk) give a coordinate 
system on J\{M) and J2(iR) respectively. A second order jet (j-2E)x — 
(xl,yl,p,pj,pj,pjk,Pjk,Pjk) is a second order regular solution of P2 in 
t; = (xl, vl) if and only if 

det(py) # 0, (5.10) 

and (P\E)X = 0, and (PrE)x = 0 are satisfied, i.e. if we have (5.10) and 
the linear system : 

VaPai + fap«1-Pt = 0, (5.11) 
p « - p « + r ? P a i - r ? p a i = o (5.12) 

for i,j = l,...,n, where fa are the components of the spray and T% are the 
coefficients of the connection F = [J, S]. 
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Choosing pij such that the inequality (5.10) is realized, we can solve 
the system (5.11) and (5.12) for the pivot terms p* and pj±. Therefore we 
can find a regular second order formal solution to P2 in v € TM. 

In order to find the dimension of the obstruction space, we have to 
compute the kernel of the symbol of the prolonged operator. A symmetric 
tensor B 6 S3T* is an element of 33^2)1 if and only if the equations (5.3) 
and the equations 

B(X, hY, JZ) - B(X, hZ, JY) = 0 (5.13) 

hold for every X,Y,Z € Tx. Using the basis {hi,Uj}{ij=i,...,„} of Tx 

adapted to the connection T, that is hi is horizontal and Vi = Jhi for 
every i = 1,..., n, we find that B £ S3T* is found in 33(^2) if and only if 
(5.4) and the equations 

a) B(hi,hj,vk) = B(hi,hk,Vj), , g ^ 
b) B{vi,hj,vk) = B(vi,hk,Vj), 

hold for i,j = 1, ...,n. Let us introduce the notation Bjjk := B(hi,hj,vk) 
and Bijk := B(hi,Vj,vk). The equations (5.14) show that a symmetric 
tensor B is an element of gz{Pr) if and only if the Bijk and the Bijk 

are symmetric in i,j, k. Since there is no other condition imposed on the 
symmetric components Bijk := B(hi,hj,hk) and Bjk := B(vi,Vj,vk), we 
can deduce that 

dim53(P r) -<nn 
On the other hand, an element B of the space g3(Pp) is contained in 33(Pi) 
if and only if the equations (5.4) hold. Using the symmetry of B (5.4.b) we 
obtain n^"2

+1' independent equations. Employing the equation of <?3(Pr), 
the components which appear in the equations (5.4.a) are also completely 
symmetric, so in the system (5.4.a) there are n'"2

+1^ relations. Therefore 
we arrive at 

dimg 3(P2) = 4 n ( n + 1 ) ( n + 2 ) - 2 n ( n + 1 ) - 4 n ( T l + 1 ) ( 2 n + 1 ) (5.15) 

and 

rank(T3(P2) = dim S3T* - dim g3(P2) = n ( n + 1 ) ( 2 n + 1 ) ( 5 1 6 ) 
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Let 

r2 : (T* ® T*) © (T* ® A2T„*) —+ A2T; 0 A2TV* © A3T„* © A3T„* 

be the morphism denned by r2 = (r r , T , , rK , T y ), where 

r r ( 5 , C)(X, Y) := B(JX, y ) - B(JY, X) 

rA(B, C)(X, Y) := B(hX, Y) - B(hY, X) - ±C(S,X, Y) 

TR(B, C)(X, Y, Z) := C(hX, Y, Z) + C(hY, Z, X) + C(hZ, X, Y) 

T[JJ] (B, C){X, Y, Z) := C(JX, Y, Z) + C(JY, Z, X) + C(JZ, X, Y) 

for B e S2T\ C € S2T', and X,Y,Z € Tx. If K2 = ImT2, then the 
sequence 

S3T- - ^ 4 (T* ® r;) © (r* ® A 2 T;) ^ ^ jr2 > o (5-17) 

is exact. 
Indeed, it is easy to check that r2o(73(F2) = 0. On the other hand, Kerr2 

is denned by the systems Tp = 0, TA = 0, TR = 0 and TJJJJ = 0. These 
systems are independent, so that the rank of r2 is the sum of the ranks of 
rr> TA< TR a n ^ Ty j)- ft is e a s y to see that rankr r = rankr , = \n{n - 1), 
rankTfi = rankr,, ^ = ±n(n - l)(n - 2). Then rankr2 = n '"~1

3
) ( n + 1 ) , and 

dim Kerr2 = dim((T* ® T;) © (T' ® A2T;)) - rankr2 = " ( n + 1 ) ( 2 n + 1) 

= rank(T3(P2). 

Consequently Im<73(.P2) = Kerr2 , and the sequence (5.17) is exact. 
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Let us compute the compatibility condition of the operator P2. We have 
the diagram 

3 T * S3T 0-3 ( f t ) * (T*®r;)©(T*®A2rv*) -> A : 2 o 

As 

i?2 

_> j 3 i ? 2 i ^ j ^ e A 2 ! ? ) 

■+ J2H ^ 4 r„* e A2T; 

»0 

2T>* 

Let V be an arbitrary linear connection on TM, and p = (j2E)x a second 
order solution at the point x € TM \ {0}. Then (j2E)x can be lifted into 
a 3rd order solution if and only if [T2V(P2E)]X = 0. Since (uE)x = 0 and 
(ir^E)x = 0, we find that 

Tr[V(PiE)]B = (djPi£)x = (djuE)x = (irnE)x = 0 
TA [V(P2E)]X = (dhwE - ICsirty* = (iAddjE)x 

TR[V(P2E)]X = (dhPrE)x = {dh(irnE))x= 1
2(i[h,h]nE)x = (iRnE)x 

T[JJ][V{P2E)]X= (djPrE)x = dj{djujE)x = ±{d[JtJ]LJE)x = 0. 

Therefore 

T2[V(P2E)]X = {o,iAnx,iRnX)o), (5.18) 

which shows the proposition. 

□ 
The equations (5.7) are not satisfied in the generic case. However, we 

can find a certain special class of sprays, for which these obstructions are 
identically satisfied. We will consider this class of sprays in the Para­
graph 7.1. 



Chapter 6 

The Classification of Locally 
Variational Sprays on 

Two-dimensional Manifolds 

In his paper [Dou], using Riquier's theory, Douglas classifies second order 
variational differential equations, also called variational sprays, with two 
degrees of freedom. In this chapter we will reconsider this problem i.e. the 
classifications of variational sprays on 2-dimensional manifolds. However 
we will use a different approach to Douglas': instead of working with a 
differential system on the variational multiplier, we will study directly the 
integrability of the Euler-Lagrange system, as it is more natural. This 
approach allows us to present all the obstructions in a natural and intrinsic 
way. 

As we saw in the previous chapter, the first non-trivial case is when 
the dimension of the manifold is two. Its study is interesting, because 
all kinds of obstructions to solving an over-determined partial differential 
system arise (problems with the first and higher order compatibility, in-
volutivity, 2-acyclicity etc). In this chapter we give the complete, explicit 
and coordinate-free classification of the variational second order differential 
equations. 

We note that the analysis is much more complicated on higher dimen­
sional manifolds because we have to take the equation involving the cur­
vature tensor into consideration. However, if the dimension is fixed, the 
study is analogous to the 2-dimensional case. 

We assume that the manifolds and the other objects (tensors, functions 
etc.) are analytic. If an object is defined on the tangent bundle, then it is 
assumed to be analytic away from the zero section. 

We have shown in Section 5.1 that the Euler-Lagrange differential op­
erator is not formally integrable. Introducing its compatibility conditions 
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in the system we defined the differential operator P2. The compatibihty 
conditions of this second operator are given by the equations (5.7). Both 
forms IA^E and IRQE are semi-basic. If dim M = 2, then the space of the 
semi-basic 3-forms is the trivial null-space, so the equation IRQE = 0 holds 
for every Lagrangian E. 

On the other hand, as we saw in Chapter 4, using the graded Lie algebra 
associated with the spray and the notion of the rank of sprays, we can give 
simple criteria for the existence of a solution of the inverse problem. In 
particular, on a 2-dimensional manifold we have Ag = 0 for every k > 1. 
Therefore the rank of the spray is determined only by the dimension of Ag, 
i.e. by the dimension of the space of vector-valued 1-forms spanned by the 
vertical endomorphism J, the Douglas tensor A, and its semi-basic deriva­
tions: A', A" etc. Since the equation (4.10) holds identically, the vertical 
endomorphism J does not give any restriction on the variational multipli­
ers. Therefore on a 2-dimensional manifold the rank of the spray is given 
by the rank of the (1-1) semi-basic tensor field (J,A,A',...A^n\...)„eN-

rankS + 1 = rank {J, 4 , A',..., 4 ( n ) , -}n&]N-

Proposi t ion 6.1 We have 

(fL)' = f'L + fL' 

for any L 6 A T ; ® Tv and f € C°°{TM), where / ' := Csf- So, if 
^ ( P + D = f0J + fxA + .... + fpAM with /o, ...,/„ e C°°( rM) , then for 
every r > p + 1 there exist g0,9\, —,9p 6 C°°(TM) such that 

A^=9oJ + giA + ...+gpA^. 

In particular, the rank of the spray is r if and only if {J, A, A',..., AT~l} 
is a basis of the C°°(TM)-module spanned by the tensors (J, A, A', A"..., 
A^,...)neN. 

The rank of the spray only offers the first constraints on the second 
order solutions. However, it is natural to organize the study of the inverse 
problem depending on the rank of the spray, as Douglas does in his paper 
[Dou]. 
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6.1 Flat sprays 

We consider in this section the case when the spray is flat. This means 
that the Douglas tensor is proportional to the vertical endomorphism, thus 
there exists a function A such that A = XJ. In this case the spray has 
rank 0, and it is isotropic (see Definition 3.29). Moreover, the sectional 
curvature of a Lagrangian associated with S vanishes (see Example 3.3). 

Theorem 6.1 Every flat spray is locally variational in a neighborhood 
of a point xe TM\{0}. 

Proof. Let us consider the second order differential operator P2 defined 
in (5.6). It is regular and, as we showed in the Remark on page 87, at every 
point v 6 TM \ {0} there exists a regular second order formal solution of 

Moreover, as we have shown (cf. Proposition 5.2), a second order formal 
solution {j2E)x of P2 can be hfted into a 3rd order solution if and only if 
( M ^ E ) Z = 0. Now 

( M ^ E ) I = (i\j&E)x = \{djdjE)x = X(dyiJ]E)x = 0, 

so every second order solution can be lifted into a third order solution. 
The theorem is proved if we show that P2 is also involutive. The con­

struction of a quasi-regular basis is slightly different according to whether 
S is horizontal or not. 

a) The spray is horizontal 

Assume that the spray is horizontal, and let B = {hi, h2 := S, V\, v2 := C} 
be a basis, with hi horizontal and vi := Jhi. Let B G S2T' be a symmetric 
tensor, and set a^ :— B(hi,hj), bij := B(hi,Vj) and dj := B(VJ,VJ). From 
(5.2) and (5.8) we find that if B € g2{P2) = Kera2(P2), then 

612 - 621 = B(hi,C) - B(S,vi) = l/2[a2(Pr)B](hi,S) = 0, 
b21=B(S,vi) = [a2(P1)B](hi)=0, 
b22 = B(S,C) = [a2(Pi)B}(C)=0. 
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Therefore 

52 (F2) = 

i n an hi 0 
Ol2 ^22 0 0 
bu 0 c n C12 
. 0 0 C12 C22J . 

>, 

where t h e c o m p o n e n t s a n , a i2 , 022, bu, c n , C12 a n d C22 can b e chosen 
arbi t rar i ly . Let us consider t h e basis B := {ei,e2,i>i,i>2} where ei : = / i i + v i 
and e2 := S + ui + ^2- We shall prove that this basis is quasi-regular. 
Denoting the new components of B by a^-, b^ and ĉ - respectively, we find 
that Cij = C{j and that the block b^ is given by 

b = bn + c n C12 
Cll +C12 C12 +C22 

Therefore the components cY, are determined by the components b^ by the 
following relations: 

C12 = 612, 

Cn = hi - C12 = 621 - &12, 

C22 = 622 — C12 = 622 — ^12-

Thus, in the basis B an element B 6 02CP2) is determined by the compo­
nents a n , di2, 022, 611, 612> &21 and 622- Now 

toiPiU = < 

0 0 0 0 
0 022 &21 &22 

0 621 Cn C12 
. Lo 622 C12 C22J . 

> . 

Then dim ^(-F^ei = 3 because there are only 3 free parameters: 022, &2i 
and 622- Moreover 

ff2(P2)«1.«2 = 92(P2)el,e2,v1 = fl2(^2)e,,e2,«,,i;2 = { 0 } . 

So we get 

dimg2(P2)+ J2 dim(p2(P2))e i i e i+ £ dim ( 5 2 ( ^ 2 ) ) , , ^ = d i m ^ P a ) 
t=l,2 i=l ,2 
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which shows that the basis B is quasi-regular. 

b) The spray is not horizontal 

Let S not be horizontal, and consider the basis B' = {hi, /12,1*1,^2}, where 
/12 := hS, V2 := C, Jhi := i>i and vS := Wi + C. We have 

a n 012 611 -(cn + ci2)1 ' 
ai2 a22 - ( c n + c 1 2 ) -(C12 + C22) 
fen - ( c n +C12) cn C12 

-(Cll +C12) -(C12+C22) C12 C22 J . 

where t h e components a n , a i2 , a22> £>ii, c i i i c\i and C22 can b e chosen 
arbitrarily. Let us consider the basis B' : = {e i ,e2 ,1*1 ,^2} , where ei := 
hi + vi and e2 : = /12 + V2(= hS + C). In this basis we find that the new 
components are c^- = C{j and 

£ _ [ &II+C11 - ( C n + C i 2 ) + Ci2 
[ - (Cn +C12) +2C12 -(C12 +C 2 2 ) + 2 C 2 2 . 

As in the previous case, the block Cf, can be expressed w i t h the help of the 
block bij: 

Cll = &12 

C12 = 621 - fei2 

C22 = *>22 + ^21 - &12-

Consequently B 6 32(^2) is determined by its components: a n , 012, a.22, 
611, fei2, &2i and &22- So, d i m ^ A ) . , = 3 and 

fl2(P2)«,..2 = 92(P2)el,e2,vi = ^ ( ^ e , ,e2,„, ,«2 = {°} • 

T h u s we obta in 

dim 9 2(P 2)+ J2 dim(g2{P2))euet+ Y, d i m ( 0 2 ( ^ 2 ) ) ^ ^ = dim a3(P2) 
i=l,2 »=1,2 

which shows that B' is a quasi-regular basis . 
D 

g2(P2) = < 
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Example 6.1 The simplest example of flat sprays is given by the follow­
ing system:* 

x i = 0 , 
i 2 = 0. 

(6.1) 

Of course, we have r j = 0, A = 0, so the rank of the spray is 0. Therefore 
this spray is locally variational. 

Example 6.2 Another example of flat sprays is given by the system 

Xi = 
\ + x\+x\ 

(6.2) 

x2 = y2. 

An easy computation gives: T\ = ^-, T\ = ^-, T2 = 0 and T | = -y2. 
Moreover, .4 = 0 and therefore the system (6.2) is locally variational. 

6.2 R a n k 5 = 1: Typical sprays. 

As we have seen in the previous section, a second order formal solution 
J2(E)x of the operator P2 can be lifted into a third order solution if and 
only if {IA^E)X = 0. Note that this obstruction is expressed in terms of the 
unknown function E. In order to obtain a condition in terms only of S, we 
must introduce it into the system and study 

w = 0, 
i'rft = 0, 

, iA£l = 0. 

In other words, we have to study the differential operator 

(6.3) 

P3 : C°°{TM) —> Sec ft (B A2TZ (B A2T;) 

"In order to simplify the notation, in the sequel for the examples we denote by ( i j ) 
(respectively ( n , ?/,)) the standard coordinate system on the manifold M (respectively 
on TM). 
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defined by 

P3 := (Pi, PA), where PA = iAddj. (6.4) 

The problem is completely different according to whether 5 is typical or 
not. If S is typical, then P3 is involutive and the Cartan-Kahler Theorem 
leads to a simple result. Note that the class of typical sprays contains 
the homogeneous and the quadratic sprays which are the most important 
examples in differential geometry. In the non-typical case, the Spencer 
cohomology is not trivial and the results are much more complicated. 

NOTATION. In the sequel, if {e<} is a base, then we will denote by f* 
the component of the vector X on ej: 

*:=£#*• (6-5) 
In this section we will prove the following 

Theorem 6.2 Let S be a rank one typical spray and x 6 TM \ {0}. 

(1) If A is diagonalizable, let {h\,hS,Jhi,C} be an adapted Jordan 
base of A, and a the semi-basic 1-form defined by ihs<* = 1 ana" 
ihia = 0. Then S is variational on a neighborhood of x ^ 0 :/ and 
only if 

DhXaAa = 0, V I e K e r a , (6.6) 

■where D is the Berwald connection associated with the spray (cf. 
Paragraph 3.2). 

(2) If A is non-diagonalizable, then S is non-variational. However, 
there exists a regular Lagrangian associated to S if and only if the 
function 

C : = ^ - £ c ^ + ^ 2 ' C 1 

vanishes in a neighborhood of x, where /i2 is a horizontal vector 
field such that {hS,h2,C,Jhi} is an adapted base of A in a neigh­
borhood of x. In particular, if S is quadratic or homogeneous, 
then the condition C, = 0 is identically satisfied. 
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Before proving the theorem we will show the following 

Lemma 6.1 Let S be a variational spray such that rank 5 > 1, E an 
associated Lagrangian, and {/it,^t}«=i,2 in adapted Jordan base of A. 

- If A is diagonalizable, then 

fi£>i,/ii)^0 and nE(v2,h2)^0, (6.7) 

- if A is non-diagonalizable, then 

fi£(vi,/i2)^0. (6.8) 

Indeed, using the adapted base {/ii,t>:}:=i,2 the equation IAHE = Ogives 
flE{vi,h2) = 0 in the diagonalizable case, and SlE(yi,h\) = 0 in the non-
diagonalizable case. But E being regular, we have locally det f 9

9;Q ;) i1 0 
i.e. 

\ iiE^hi), nE(V2,h2) J^u-

Therefore we have the inequality (6.8) in the non-diagonalizable case and 
(6.7) in the diagonalizable case. O 

Remark . Taking the Remark of page 64 into account, Lemma 6.1 yields 
that in the case, where the Buler-Lagrange system with its compatibiUty 
conditions has no second order formal solutions so that the inequality (6.8) 
or (6.7) is satisfied, S is non-variational. 

Let us return to the Theorem 6.2. The proof involves two steps. The 
first step is to show that P3 is involutive (Lemma 6.2) and the 2nd step 
is to show that if the hypotheses of the theorem hold, then every second 
order solution can be lifted into a 3rd order solution (Lemmas 6.3 and 6.4). 

Lemma 6.2 The operator P3 is involutive at x € TM \ {0}. 

It is clear that P3 is a second order differential operator. A simple compu­
tation shows that the symbol a2{PA) : S2T* —> A2TV* of PA is 

[a2(PA)a](X,Y) = a(AX,JY) - a(AY,JX), (6.9) 

and the symbol a3(PA) : S3T' —► T* ® \2T* of the prolonged system is 

[(73 (PA )H] (X, Y) = f3(X, AY, JZ) - 0(X, AZ,JY) 
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where a e S2T\ 0 6 53T* and X, Y 6 T. 
Indeed, let / , g be C°° functions both vanishing at x G T; we have: 

<T2(PA)x(df © d$)(X, y ) - { M ( - d j / Adg + dfA djg)}(X, Y) 
= df(AX)dg(JY) - df(AY)dg(JX) + dg(AX)df(JY) - dg(AY)df(JX) 
= (df 0 dg){AX, JY) - {df © dg)(AY, JX), 

which gives the formula (6.9) of the symbol of P3. Since 52(^3) = 92{P\) (~l 
52(Pr) H 52(^/1), 5 6 52T* Ues in 32(^3) if and only if the equations 

B(S, JX) = 0, 
B(hX, JY) - B(hY, JX) = 0, (6.10) 

B(AX, JY) - B{AY, JX) = 0 

hold. 

If we suppose that 5 is typical, then it belongs to an eigenspace of A. 
On the other hand, this 2-dimensional eigenspace is spanned by hS and C 
(see Corollary 3.19), so from Proposition 3.8, vS and C are proportional. 
Taking into account that C ^ 0 at x 6 TM \ {0}, we find that vS = $C. 

The proof of the involutivity is slightly different in the diagonalizable 
and in the non-diagonalizable case, so we will treat them separately. 

a) A diagonalizable 

Let us denote the eigenspace generated by S and C by Ai and the corre­
sponding eigenvalue by Ai. Let us consider the base B = {/ii,i>i}i=i,2, of 
Tx, where 

a) / i i e T x
f t n A 2 , 

b) hi = hS, 
c) Jhi = Vi, i = 1,2. 

Writing the equations (6.10) which express that B e 32(^3) in this basis, 
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we get 

B(w2,vi )=0, 

fl(fc2,«l)=0, 
B(h2,V2)-£B(v2,V2) = Q, 

B(hi,V2)-B(h2,vi) = 0. 

(6.11) 

Indeed 

B(Ah,2,vi) - B(Ahi,v2) = 0 by (6.10c) then A2B(v2,vi) - AiB(i/!,t;2) = 0 
so we have B(v\,V2) = 0, 

B(h2,vi) = B(S,vi) - B(vS,vi) = B{S,vi) - &B(v2,vt) = B(S,Vl) (6 = a ) 0, 

B(h2,v2) = B(S,C) - B(vS,C) (6 = a ) -$B(v2,v2), 

B(hl,V2)-B{h2,v1)i6 = b)0. 

Hence 

9i "»={(* SL. ai2 = <221, &12 = &21, C12 = C 2 

&12 = 0, C12 = 0, 622 = £c "
 C22 22 J 

so dim 52(^3) = 6. 
In the same way, 33(^3) = £3(^1) n g3(Pr) ("I 53(PA), and a tensor 

B € S3T* is found in 53 (F3) if and only if the equations 

B(X,S,JY)=0, 
B(X, hY, JZ) - B(X, hZ, JY) = 0, 

[ B(X, AY, JZ) - B(X, AZ, JY) = 0 
(6.12) 

hold. We note that P3 is a regular operator in a neighborhood of x £ 
TM \ {0}. It is easy to check that this system contains 12 independent 
equations; so dim33(^3) = dim 53T* - 12 = 8. 

Let us consider the basis B = {ei,e2,t>i,i>2}, where 

ei:=hi+V2, and e2 := h2 + Vi + v2 

and denote by aij bij,Cij the coefficients of B in this basis. It is easy to 
see that the elements of 32(^3) are determined by the components a n , 612, 
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S221 6111 bn, and 622- Now 

dim (02)e, = 2, 
d i m (ff2)e,,e2 = d i m (S2)e,,e2,v, = d i m (92)ei,e2,vuv2 = 0, 

and so 

2 2 

dim g2(P3) + $ Z d i m ( ^ ( p 3 ) ) e i e t + ^dim( 3 2 (P3)) e i e2 ,,, Vfc- dim 5 3 ( P 3 ) 
Jfc = l Jk = l 

which shows that the base B is quasi-regular, and so F3 is involutive. 

b) A non-diagonalizable 

In this case the two eigenvalues are equal. We set down A := Ai = A2. Now 
S lies in the eigenspace A because it is typical, and by Proposition 3.8 the 
vectors hS and C span A. Let hi e Th and v\ := Jhi be vector fields in a 
neighborhood of x € TM so that {/ii,/iS,vi,C} gives an adapted Jordan 
base of A. 

Let us consider the base {h\,S,vi,C}. We have B € 52(^3) if and only 
if the equations (6.10) hold, i.e. 

B(S,vl) = B(S,C) = 0, 
B(hl,C) + &B{v1,C)=0, 

B(C,C) = 0. 

Hence 

52 (P3) = 
a,j bij 

ij =1,2 

a i2 = A21, C12 — C21, 
621 = &22 = 0, C22 = 0 

where the parameters an, 012, 022, 611, 612. and cn are arbitrary. Therefore 
dim #2(^3) = 6 . 

Let us now consider the basis B = {ei,e2,ui,V2}, where ei := hi, and 
e2 := S + vi, and let dij bij,Cij be the coefficients of B in this basis. It is 
easy to see that the elements of 52(̂ *3) are determined by the components 
a n , fli2) 022) in> 612 and 621- Consequently <?2(-P3)ei is determined by only 
two parameters: d22, and 62i> so dim52(^3)61 = 2. Moreover, 

dimg2(P3)ei,e2 = dim 52(^3 )e,,<2,t>, = dim52(f,3)e1,e2,vI,t,2 = 0 , 
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and so 
2 2 

dim g2(P3) + Y,dim&W)eiek+J2dim(92(P3))ei^VuVl.= 8. 
fc=l J b = l 

It is easy to see that, as in the diagonalizable case, dim 33^3) = 8, so the 
base B is quasi-regular and P3 is involutive. This proves the Lemma. O 

L e m m a 6.3 Let S be a rank 1 spray so that A is diagonalizable. Then 
every regular 2nd order solution of P3 can be lifted into a 3rd order 
solution if and only if the condition (6.6) is satisfied. 

Indeed, let us consider the map 

(T* ® T ; ) © (T* ® A 2 T ; ) © (T* ® A 2 T ; ) —2-> A 2 T ; © A 2 T ; © A 2 T ; 

defined by T$ = (TT,TA,TA>), where 

Tr(B,Cr,CA)(X,Y) =B(JX,Y)-B(JY,X), 
TA(B,Cr,CA)(X,Y) = B(hX,Y) - B(hY,X) - \CT{S,X,Y), 
TA.(B,Cr,CA)(X,Y) = CA(S,X,Y) - B(AX,Y) + B(AY,X), 

and, considering an adapted base {hS, h2, C, v2} of A, let TC be the function 

TC : ( T * ® r„*) © ( T * ® A 2 r ; ) © ( T * ® A 2 T ; ) ► m 

defined by 

Tc(B,Cr,CA):=B(v2,h2) 

- ^Cr(v2,S,h2) + ^ 7 C * A ( T ; 2 , 5 , / I 2 ) + ^ - I J - C A ^ . S . M . 

for B € T* ® T;, C r € T* ® A2TJ, C.4 € T* ® A2T„*. Let us prove that if 
one puts K% := Im (r3 © TC), then the sequence 

5 3 T * - ^ 4 T * ® ( r ; © A 2 T ; © A2TV*) ^ ® I ^ ^ > 0 

is exact. 
Indeed, it is easy to check that rank#3^3) = 12. On the other hand, it is 

not difficult to see that the four equations defining Ker (T3©TC) are indepen­
dent (using an adapted base, the terms B{v2,h\), B(v2,h2), Cr(S,hi,h2), 
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CA(S,hi,h,2) are pivots for the equations TT = 0, r c = 0, TA = 0 and 
r^/ = 0 respectively). Therefore 

dimKer (r3 © rc) = dim[T* ® (Tr* © A2TV* © A2TV*)] - 4 = ranka3(P3), 

which proves that the sequence is exact. 

Thereby a 2nd order solution J2(E)X of P3 can be lifted into a 3rd order 
solution if and only if (T3 © TC)V(P3E)X = 0. Now 

((T3(BTC)V(P3E))X = {T2V(P2E), TA,V(P3E),TCV(P3E))X. 

The computation on page 90 shows that (T2VP2E)X — (ir^E, M ^ B ) I and 
so (T2VP2E)X = 0. On the other hand 

TA,(V(P3E))X= (CsiAddjE)x - (dAPiE)x = (iA'ddjE)x. (6.13) 

Since rank 5 = 1, there exist Hi and \i2 such that A' = \x\ J + ^2 A. Thus 

(7* V{P3E))x= (i(ltlJ+^A)ddjE)x
 ( 3=? ) H2{iAddjE)x = 0 (6.14) 

and 

( T 3 V ( P 3 E ) ) I = 0 . (6.15) 

Moreover, 

TCV(P3E)X = {v2uE(h2))x-v2 (^irilsiSM) + j^iAOE{S,h2))t 

+ h2(j^x:iA^lE(S,h2))x 

= (duE(v2,h2) -v2ftE(hS,h2) - v2QE(vS, h2) + h2Cl(S,v2))x, 

and du>£ = CS^E, SO 

duE(v2,h2) =v2CtE(S,h2) - h2tiE(S,v22) + flE(S,[v2,h2]). 

Thus 

dujE(v2, h2) - v2flE(S, h2) + h2ClB(S, v2) = - 0 ^ ( 5 , [v2, h2\), 

and therefore 

rc(V(P3E)x = isnE([v2,h2])x = icnE{F[v2,h2])x. (6.16) 
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Let a € T* be the semi-basic 1-form denned by a(hS) = 1 and a(h2) = 0. 
We have 

A = \2J + (\a)®C, 

where A := Ai - X2. The equation i ^ f i ^x ) = 0 gives (Xa)x Aic^E(^) = 0. 
This implies Aicfi = g(C,C)a. Thus, by Proposition 6.1 and equation 
(6.16), the condition TC(V(.P3.E) I = 0 is identically satisfied by the regular 
second order solution (j2E)x if and only if 

ax{F[v2,h2})=0. (6.17) 

Since h2 € Q"1 H T h and a(F[/i2, J/12]) depends only on the value of h2 at 
x, we obtain 

ax(F[h2,Jh2])= ax{FDh2Jh2) = ax(FJDh2h2)x = (Dh2a)(h2)x, 

where D is the Berwald connection. Thus 

T C [ V ( ^ 3 ^ ) ] X = 0 if and only if {DhXtf A d)x = 0 VX € Keri9. 

Lemma 6.2 and 6.3 prove the Theorem in the case when A is diagonalizable. 
O 

Let us suppose now that A is non-diagonalizable. Firstly we have the 
following 

Remark . If E is a regular Lagrangian associated to S on a neighbor­
hood U of x 6 TM \ {0}, then every vector v € U has null length. 

Indeed, E has to satisfy the compatibility condition PAE = 0, i.e. the 
equation %A^E = 0, on U. Computing it on the vectors S and h2 we find 

iAnE{s, h2) = nB(AS, h2) - nE(Ah2, s) = -\nE(c, s). 
Consequently QE(C,S) \U= 0, and therefore S is non-variational. 

In order to prove the second part of 2) of Theorem 6.2 we show the 
following 

Lemma 6.4 Let S be a rank 1 spray with A non-diagonalizable, and 
x £ TM \ {0}. Then every regular second order formal solution of P3 
can be lifted into a third order solution in x if and only if £(x) = 0. In 
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particular if S is quadratic or homogeneous, then every second order 
formal solution can be lifted into a 3rd order solution. 

Let us consider the map rc 

Tc{B,Cr,CA): = B(C,h2) 
+ CA(h2,S,h2)+£CA(v2,S,h2)-±Cr(C,hS,h2), 

where {hS, h2, C, v2} is an adapted base of A. If we set K\ := Im (T3 © rc), 
then the sequence 

S3T* - ^ ^ T* ® ( r ; © A2r„* © A2T„*) - ^ ^ + AT3
C —► o 

is exact. 
Indeed, the four equations denning Ker (r3 © rc) are independent, since 

B(vi,h2), Cr(S,hi,h2), CA(S,hi,h2) andB(C,h2) are pivots for the equa­
tions TT = 0, TA = 0, TA> = 0 and r c = 0. Therefore 

dim Ker (r3 © rc) = dim[T* ® (T„* © A2T„* © A2Tv*)]-4 = rank <T3(P3), 

which proves that the sequence is exact. 

To compute the compatibility conditions of P3, let us consider j2(E)x 

a second order formal solution of P3. It can be lifted into a third order 
solution if and only if (T3 © TC)V(P3E)X = 0. The same computation as in 
the diagonalizable case - actually only the definition of the function rc is 
different - shows that (6.15) holds, thus 

((r3 ®TC)V(P3E))X = (r3V(P3£), rcV(P3E))x = (0, TCV(P3E))X. 

Moreover, we have 

rcV(P3E)x = 
= (c(wE(h2))+h2(iAnE(S,h2))+£v2(iAnE(S,h2))-±C(irnE(hS,h2))) 
= (*c - £c£S + dh

2
2'c])x^E(v2, s)T = c(x) nE(v2, s)x. 

Using Proposition 6.1 we find that if £(x) ^ 0, then there is no regular 
formal solution E of P3 satisfying the compatibility conditions TCV(P3E) = 
0. In the case £ = 0 we find that every second order formal solution can be 
lifted into a 3rd order solution. 

If the spray S is quadratic or homogeneous, then vS = 0, so f̂  = 0. On 
the other hand, the horizontal projection h is also homogeneous: [h, C] = 0 
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and therefore v[h2,C] = [h,C](h2) = 0 i.e. f!£2'Cl = 0. Thus C = 0, and 
every second order formal solution can be lifted into a 3rd order solution. 

Lemmas 6.2 and 6.4 prove the Theorem in the case when A is non-
diagonalizable. 

□ 

E x a m p l e 6.3 [CPST]. Let us consider the system 

{ X! = - 2 x i X 2 

.2 (°-18) 
X2 = X2 . 

Note that as the system (6.18) is homogeneous, the corresponding spray is typical. 
We have hS = S, and 5 is an eigenvector of the Douglas tensor AS = v[h, S]hS = 
v[S, S] = 0. An easy computation gives: 

r! =w, 
A\ =2y2

2, 
A'1 A 3 

A i = 4j/2, 

r 2 =2/i, 
A\ = -2t/iii2 , 

A'l = 8t/iy|, 

r? =o, 
A\ = 0 , 

A ' ? = 0 , 

r>2 
r 2 = -»/2, 
A\ = 0 , 

A'\ = 0. 

Thus rankS = 1 and A is diagonalizable. An adapted base is offered by the 
eigenvectors: 

hi = S = y d^+yd^-2yiy*dy-i+yldy<' 

Vl 

h2 

V2 

= C = 

d 
dxi 
d 

~ dyi 

I d i y -3— +y oy\ 

+ 1/2-3—, 
5yi 

dy2' 

Since [/»2,V2] = 0, the equation (6.17) holds, so the condition (6.6) is identically 
satisfied for every second order solution J2(E)X of P3. It follows from Theorem 
6.2 that the spray S is variational. 
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6.3 R a n k S = 1: Atypical sprays. 

Firstly, let us note that, in contrast to the typical case, there are no ob­
structions to lifting the second order formal solutions of P3 into a third 
order solutions, when the spray is atypical. 

Indeed, as in the typical case, the space 52 (PO is determined by the 
equations (6.10) and d i m ^ P j ) = 6. But if the spray is non-typical, then 
ranka3(P3) = 13. Denning r3 by r3 — (TT,TA,TA'), as we did in the typical 
case and K3 — Imr3, we obtain the exact sequence 

S3T* ^ ^ \ T* ® (r; © A 2T; © A2T„*) —2->. K3 —► o. (6-19) 

Since [T3V(PSE)]X = 0, for a second order formal solution j-2(E)x, any 2nd 
order formal solution can be lifted to a 3rd order one. 

Despite this fact, the inverse problem for atypical sprays is much more 
complicated, because the symbol of P3 is not involutive. Indeed, in this 
case we have dimg2(P3) = 6 and so for any v £ T, dim (<?2(P3))i; > 2, 
(because ivB — 0 yields a maximum of four equations on B 6 52(^3))- On 
the other hand, dimg3(F3) = dimS3T" - ranka3(P3) = 7, and so for any 
basis B = {ei}j=1, we have 

4 

dim 53(̂ 3) < I ] d i mMP 3 ) ) e i . . . e i -
k-0 

Therefore a quasi-regular basis does not exist, and P3 is not involutive. 

Note that involutivity is not necessary for the formal integrability: 2-
acyclicity suffices. Unfortunately P3 is not 2-acyclic: there are non-trivial 
higher order cohomological groups in the Spencer complex. This means 
that obstructions for integrability arise in the higher order prolongations. 
This is the reason why in the study of atypical sprays we need to prolong 
the system. 

Although the study presented in this section may seem too complicated, 
we will expose it in detail because it may be instructive to see how all the 
difficulties of formal integrability appear and can be solved. 
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6.3.1 Non-triviality of the Spencer cohomology. 

The aim of this section is to compute the Spencer cohomology groups of 
the operator P3 and in particular to prove the following 

Proposition 6.2 In the atypical case, the operator F3 is not 2-acyclic. 
The first non-trivial Spencer cohomological group is H^Pz). 

Proof. We will begin by showing the following formula: 

dim gm(P3)=m +4 (6.20) 

for any m > 0. 

To prove it, we introduce the following notation: let P be a differential 
operator and put 

Gm(P):={Be9m(P)\h'B = 0}. (6.21) 

Of course Gm(P) SJ gm(P)/SmT;. 
In our case the elements of gm(P3) are evaluated on at last one vertical 

vector and so 

5m(P3) = SmTZ © Gm (F 3 ) . (6.22) 

Since dim SmT* = m + 1, we have just to prove that 

dimGm(P3) = 3. (6.23) 

The proof is slightly different according to whether A is diagonahzable or 
not. 

a) A is diagonalizable 

Property 1. 

Let S be a rank 1 atypical spray and suppose that A is diag­
onalizable. Then: 
(1) the eigenspaces A; of A are invariants with respect to S, 

i.e. [Ai,S]cAi fori=l,2. 
(2) Let pr4 be the projection on the eigenspace Aj. Then 

pr^hS) ? 0. 
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Let us prove (1). Consider an adapted basis {hi, Uj}i=i,2- We have to show 
that [hi,S] G A; and [vi,S] £ A*, i=l,2. If hi is an eigenvector of A we 
have Ahi = v([hi,S]) = A<fj, and so 

prj{v[hi,S])=0 for i?j. (6.24) 

Since rankS = 1, A' is a linear combination of J and A. Hence the 
eigenspaces are invariant by A'. On the other hand 

A'hi =v[A,S}(hi) = v[Ahi,S] - A[hi,S] = v[XiV{,S] - A[h{,S} = -(SXi)Vi 

+ Xiv{rhi + J[h{,S})-A[h{,S] = -(SXi)vi + (XiJ- A)([hi,S}) 

and A — XiJ = Xj prj, so prj(h[hi,S]) = 0 for j< ^ i. This equation and 
(6.24) show that 

[ / i i ,S]eAi. (6.25) 

Moreover [vi,S] = hi + J[hi,S], so, by (6.25): 

[wi.SJeAj (6.26) 

i = 1,2, which proves (1). 

Now, we will prove (2). Let {/ij,Vi}i=i,2 be an adapted basis to A. 
Using the notation (6.5) the spray is 

S:=SS
hih1+Zlhi+£v1+£v2. 

We have to show that ^ ^ 0 and ^ ^ 0. We have (hS)x ^ 0 because 
J(hS) = C and C does not vanish at x / 0. Thus one of the coefficients 
£jf. is different from 0, say f j^ ^ 0. Let us suppose that (^ — 0. Since the 
spray is atypical, S & Ai, so £f2 ^ 0. Now hS = ff Jii is an eigenvector 
of .4, hence we can take hi = hS and therefore v\ = C. Thus we have 
vS = £f, C + tf2v2. Since f£ ^ 0, vS $ A, . Now vS = v(TS) = 
u[J ,5]5 = v[C,S] and C € Aj . Since Ai is invariant by 5, as we have 
just seen, [C, S] should be in Ai , that is [C, S] = ah\ +bv\. Hence vS = bv\, 
that is vS € Ai, which leads a contradiction. Thus Property 2. is proved. 

Let us now return to the formula (6.23). 

NOTATION: In order to simplify the notation, we will use the symbol 
vk, if the vector v is repeated k times in the argument of a symmetric 
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tensor i.e. 

£( . . .y , . . ) :=S(- - -<W^--0- (6-27) 
A:—times 

To prove the formula we will show by induction that every element Bm 

of Gm(P3) m > 0 is determined by the three independent parameters 

Bm(hm-\v2), flmK,-1.«i). Bm{v?-\v2). (6.28) 

Let TTi = 2 and B2 G g2(P3). B is symmetric and satisfies the equations 
(6.10). Using an adapted basis, these equations become 

' B2(S,vl) = B2(S,v2) = 0, 
' B2(h1,V2)-B2(h2,vi) = 0, (6.29) 

B2(vi,v2) = 0. 

A direct computation shows that dimg2{P3) = 3 and B2 G g2(P3) is deter­
mined by its components B2(h2,v2), B2(vi,v\) and B2(v2,v2). 

For m = 3 the explicit computation shows that B3 G G3(f*3) is de­
termined by the components Bz(h2,h2,v2), B3(vi,vi,vi), B3(v2,v2,v2). 
These parameters are independent, so dim Gs(P3) = 3. 

Let us assume that for any m > 3 we have dim Gm_ 1(^3) = 3, and 
that an element Bm-\ G Gm-\{Pz) is determined by the components 
Bm-^h?-2,**), B ™ - , ^ - 1 ) and B^^v^1). Since Gm(P3) is a lin­
ear subspace of T* ® Gm-\(P3), by the recursion hypothesis every element 
Bm in Gm(P3) is determined by a maximum of 12 components: 

Bm{ei,h™-2,v2), B m ( e i l t ) f - 1 ) I Bm{euv^-1) (6.30) 

i = {1,...,4}, where {ei}j=i,..)4 = {hj,Vj}j=lt2- Prom (6.29) it follows that 
Bm G 9m(P3) is characterized by the equations 

Bm(...S, ...,Vi,...) = 0, 
< Bm{...hi,...,V2,...) - Bm{...h2,...,vi,...) = 0, (6.31) 

Bm(...vi,...,v2,...)=0, 

i = 1,2. Thus for the components (6.30) we have : Bm(h2,v™~1) = 0, 
Bm(v2,v?-l) = 0,Bm(hl,v?-1) = 0,Bm(v1,v?-1) = 0,Bm(v1,h?-2,v2) = 
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0, and the following relations hold: 

Bm{h2,v?-') =-2*-Bm(v?), "2 ) - f S " » > « 
•2 

Sv 

V' 
/ r \ rn~z 

Bm(v2,h^-2,V2) = (p-) Bm(v?), 

Bm(h1,h2
T"2,v2) =-^Bm(h2

n-\v2) - ^Bm(v2,h?-2,v2). 

Therefore i?m is determined by its components (6.28). This proves the 
formula (6.23) when A is diagonalizable. 

b) A is non-diagonalizable 

To prove the formula (6.28) in this case we need the following 

Property 2. 

Let S be a variational spray and suppose that A is not diago­
nalizable. Then hS is not an eigenvector of A. In particular, 
if {/ij,t>i}i=i,2 is a Jordan basis adapted to A, with hi,t>i = 
Jh\ spanning the eigen-distribution A and Zi2,f2 = Jh? span­
ning the other characteristic space, then £jf / 0. 

Indeed, S £ A , so either fĵ  ^ 0 or fjf2 ^ 0. Let us suppose that £* = 0; 
we can choose hS — h\, so that v\ = C, and we have Ah2 = Xv2+C. Thus 
0 = iAn(hS,h2) = n(AhS,h2) + n(hS,Ah2) = \n{vuh2) + Xfl(hi,v2) + 
ft(5, C) = fi(5, C), which is excluded by Lemma 6.1. 

Let us now prove the formula (6.23). We will show that, in an adapted 
Jordan basis for A, an element Bm G Gm(P3) is determined by the compo­
nents 

Bm{h?-\v2), Bm(vuv?~l), B^v?). (6.32) 



112 VariationaX sprays on 2-dimensional manifolds 

Indeed, in an adapted Jordan basis the equations (6.10) for an element 
Z?2 are: 

B2(S,Vi) = 0, i = l ,2 , 
Ba(hi,V2)-B2(h2,vi) = 0, (6.33) 
B2(«i,i;i) = 0. 

A direct computation shows that d imG^Ps) = 3, and B2 G G^Ps) is de­
termined by the components B2 (/»21V2), B2 (vi, V2) and B2 (V2, V2). Likewise 
B3 G G3(pj) is also determined by the three components Bz{h2,h,2,V2), 
Bz{v\,V2,v2) and B3(v2,V2,V2), so dimG3(P3) = 3. 

To show that dimGm(P3) = 3 for m > 3, we suppose by induction 
that dimGm_i(P3) = 3, and that Bm_i € Gm_i(P3) is determined by the 
components Brn-i(h2

n'2,v2), B r a- i(«i ,u2
m"2) , 5 m - i ( t ) 2

m - 1 ) . 
Since Gm(Ps) is a linear subspace of T* <g> Gm_i(P3), an element Bm of 
Gm{Pz) is determined by the components 

Bm(ei,h?-2,V2), Bm{euvuv?-2), Bm{euv^-1), (6.34) 

i = {1,...,4}, where {ei} i=i .4 = {hj,Vj}j=i,-2. But Bm € gm(P3), so the 
equations 

'Bm(...S,...,Vi,...)=0, t = 1,2, 
< Bm(. . . / i ,> . . .>«2 ) . . .)-Bm(. . .A2 > . . .> t ; i> . . .)=0, (6.35) 
>Bm(...vi,...,vi,...) = 0. 

hold. Using these equations and the symmetry of Bm, we find the following 
relations between the components (6.34): 

BmivuVuV?'2) ( 6 = C) 0, s 

Bm(h2,vi,v?-2) (6 = Q) - S - B m f a . t / J 1 - 1 ) , 

B m ( / » . , < - ' ) (6 = 6) Bn(h2,vi,v?-2) = -&-Bm(v1,v?-1). 

To find the relations between the other components, we notice that 
Bm{h'2+1, v?-1-'), and Bm(h'2+1, v?'1, vi) can be determined with the help 
of Bm{hl

2,v^~l), B m ^ , ^ " 1 " 1 " ' , ! ) ! ) , for any l,m such that 0 < I < m - 2. 
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Indeed, we have 

D / . l + l t n - 2 - l \ (6.35a) 

B(h2 ,v2 ,vi) = 
= -^r{dlB(h1,h2,v?-2-',v1)+$s

hlB(vuh2,v?-2-',v1)) 
1 Cs 

A /t-S □ / t l m-2-l .,\(6-35) ?h, , / m _ l _ | > 

and so 

fl(h2
+1,U2

m+1"')(6 = o) 

= -7|-(^15(fci,fci,i;a
m+1-') + €,5

IB(t;i,fci,t;r+1-') + ^B(«2,Ai,«? , + 1- ')) 
Sfc2 

= -7|-(ekIB(fc'2+\«'2m-',«i)+^15(fci1i;2
ra+,-',t'i) + ^aB(«2,Ai,«r+ 2- ')) 

S/.2 

= -^( [a S
1 ( -^) ' + 1<(-^)>(V2" + 1,,I)+d2B(.2,^,^+2-')). 

It follows that Bm{h2,v?+1), Bm{v2,h?,v2), Bm(vx,h?,v2) are deter­
mined by Bm{v™+1 ,v\) and Bm(v\, /i™"1"2). On the other hand 

Bm(huh2
n,v2) = ^-{d,B(h2,h?,v2)+^lB(vuh2

n,v2)+diB(v2,h2
n,v2)), 

hence it is also determined by the components (6.32). Since the components 
of (6.32) are independent, it follows that dimGm{P3) = 3 for any m > 2 
and this proves the formula (6.23). 0 

Let us now prove Proposition 6.2. 

NOTATION. TO distinguish the maps 6 appearing in the Spencer se­
quence associated with a differential operator P, we denote them by 

6ltm(P):T'®gm+l(P)—>A2T'®9m(P), (6.36) 

and 

*2.m(P) : A2T* ® gm(P) —► A3T* ® S m _ , ( P ) . (6.37) 

Firstly let us compute the rank of Si>m(P3). Since the sequences 

0 -► 9m+2 A T * ® ffm+1 ^ A2T' ® 5 m ^ A 3 T' (gi 5 m _ ! -► ... (6-38) 
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are exact in the terms gm+2 and T* <g> gm+\ for any m > 0, according to 
(6.20) we have 

rank<5lim(P3) = dim (T* ® <?m+i(P3)) - d im 5 m + 2 (P 3 ) = 3m + 14 (6.39) 

for m > 2, and so rank^ i^Ps) = 20. 

Consider now the sequence 

0 -► S4T" - ^ T* ® S3T" - ^ A2T* ® S2T' - ^ A3T* ® T* - A A4 -+ 0. 
(6.40) 

Since it is exact, Ker<$2 is determined by 15 independent equations. But the 
morphism 82,2^3) is the restriction to 62 on the subspace A2T* <8><72(P3)> so 
the system ($2,2(^3) = 0 contains a maximum of 15 independent equations, 
and thus 

dim Ker ($2,2(^3) > dim A2T* <8> g2(P3) - 15 = 21, 

and so 

d i m # 2 ( P 3 ) > l , 

which proves that P3 is not 2-acyclic. A direct computation shows that 
dim H% (P3) = 1. 

a 

The obstruction to the second lift 

Since iff (P3) r^ 0> some obstructions arise to lifting the second order formal 
solutions of P3 twice. In this section we will compute them. 

Proposition 6.3 Let p = J3(E)X be a third order solution of P3 at x. 
The semi-basic tensor tp£ G A2T* <g> A2TV* defined by 

<pE (X, Y, Z,U)=\ ((VVirSlE)(AX, JY, Z, U) - (WirnE)(AY, JX, Z, U)) 
- (VViAUE)(hZ, JU, X, Y) + (VViAnE)(hU, JZ, X, Y), 

where V is an arbitrary connection and f2g = ddjE, depends at x only 
on J3(E)X (and not on the fourth jet of E atx). Moreover jz(E)x can 
be lifted to a Athorder solution if and only if (VE), = 0. 
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Proof. Let us denote by P3 := (P3, VP3) the first prolongation of P3. 
To simplify notations we will use 

F 3 :=T;©A 2 T;®A 2 T; . 

Then P3
l : C°°(TM) —■> F3 0 (T* ® F3) is denned by 

P3
l{E) := (u;B, i r f t £ , Mfi £ , Vw£ , V i r n £ , VMfiE). (6.41) 

A standard computation which takes into account that P 3 (F)X = 0, shows 
that 

(<pE), (X, Y, Z, U) := [hU, AY]SlE(X, JZ) - [hU, AX]QE(Y, JZ) 
+ Ax{j2(QE{[hZ, U], JY) + QB([Z, hU], JY) - QE([Z, U], JY)) } 

cycl 

- AY\j2{nE([hZ, U], JX) + QE([Z,hU], JX) - QE([Z, U], JX)) } 
cycl 

- hz{J2(nB([JU, AX], Y) - SlE([JU, AY], X)) }+[hZ, AX]SlE(Y, JU) 
cycl 

+ hu{Y, {^E{[JZ, AX], Y) - QE([JZ, AX], Y)) )-{hZ, AY]9.E{X, JU). 
cycl 

This formula proves that (¥E)X is semi-basic and depends only on the third 
order jet of E at x. 

Let us now compute the obstruction to the second lift. Note that P3 

is a third order operator. Of course its second order part does not appear 
in the symbol, so o~3(P^) — Ox a3(P3). Thus to compute the space of the 
obstruction we only need to construct an exact sequence 

5 4 T . Zli*\ s2T' ® F3 — i - > K —► 0, ( 6 4 2 ) 

because Coker<74(P31) ^ Im (zdT.gF3 x f) where idT.9F3 denotes the iden­
tity map of T* ® F3. 

Let us propose r3 := idT. <8>T3. The morphism T3 is the first prolongation 
of the morphism T3 defined in Lemma 6.3. We have the following diagram: 

S2T' <g> F3 »- T* ® K3 

T* ® (T* ® F3) 
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Now dim#f(^3) — *> hence dim(lmCT5(P3)/KerT3) = 1. Therefore, in 
order to find the exact sequence (6.42) we have to complete the morphism 
T3 with a new one, which gives exactly one new independent relation with 
respect to the system denned by Ker T3 . Let 

S*T* ® F3 - ^ + A2T„* ® A2TV* (6-43) 

be the morphism denned by the formula 

r(htA)(B, BT, BA)(X, Y, Z, U) := BA(hU, JZ, X, Y) - BA(hZ, JU,X, Y) 
+ i {Br(AX, JY, Z, U) - Br{AY, JX, Z, U)), 

where {Bs, Br, BA) £ S2T*®F3 and X, Y, Z, U G T. It is easy to check that 
the equation T(h,A) = 0 is independent of the equation T3 = 0. Therefore 
the sequence 

5 4 T . j ^ \ 5 2 T . 3 p3 _JL^ KI > 0 C6-44) 

is exact, where f£ := T3 X T^h,A), and K3 — \mf\. 

The diagram corresponding to the prolonged operator is 

S4T* ^ ^ > (r* <g> F3) © (S2T*®F3) - ^ > K3®kl^0 

1- _ I' 
R4 ► ^4i? - 2 i ^ > -A (F3 0 (T* ® F3)) 

|"3 j * 3 J,*0 

R3 ► J3R - ^ ^ > F 3 © ( T * ® F 3 ) 

Thus the compatibility condition for the first prolongation of P3 is 

fo1 * T ( ^ ) ) [ V ( P 3
1 £ ) ] I = (0, v(iA,nE)x, (<pB)m). 

Now i jfif; vanishes identically and therefore VijQE = 0. On the other hand 
a 3rd order formal solution j3{E)x of P31 satisfies the equations ( M O E ) , = 0 
and (ViAflE), = 0. So, since the rank of the spray is one, A' is a linear com­
bination of J and A and thus ( V i ^ n ^ ) , = 0. Therefore the compatibility 
condition for P31 is given by the equation <pE = 0 only. 

D 
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6.3.2 The inverse problem when A is diagonalizable 

As we have seen in the preceding sections, if we study the differential op­
erator Pz i.e. the Euler-Lagrange system with the first compatibility con­
ditions 

WE = {isddj + dCc - d)E = 0, 
iTddjE = 0, 

iASlE = 0, 

a higher order compatibility condition appears. This obstruction, noted 
as ipE, can be second or third order PDE. This leads us to define three 
different kinds of sprays: reducible sprays if ipE is of the second order, and 
semi-reducible and irreducible sprays if it is of the third order, according 
to its complexity. Note that this classification is very close to Douglas' 
classification of separable, semi-separable and non-separable sprays, but it 
is not exactly the same. 

6.3.2.1 Reducibility of sprays 

Lemma 6.5 Let S be a rank 1 atypical spray and suppose that A is 
diagonalizable. If J3(E)X is a 3rd order formal solution of P^ at x S 
TM\ {0} and {/ij,fi}{t=i,2> *s an adapted local basis on a neighborhood 
U of x, then 

2 2 

{<pE)x(hi,h2,h1,h2) =^2xi{vittE(vi,hi))x+'^2kittE(hi,vi)x, (6.45) 
t = i t = i 

where Xi and hi are functions onU, depending on the hi, Vi, completely 
determined by the spray (their definition is given by (6.53) resp. by 
(6.54)). 

Proof. Let £ b e a Lagrangian on M such that js(E)x is a 3rd order 
solution of P31. Note that QE depends on the second order jet of E and so 
the terms 

V\SlE{v2,h2), V2nE(vi,h1), Aifi£(u2,/»2)> h2^E(vi,hi), (6.46) 

contain the third derivatives of E. We prove first that they can actually be 
expressed at x in terms of the coefficients of He, without its derivatives. 
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Since the 2-form fi^ vanishes identically on the vertical bundle, we have 
h.2^E{vi,v2) = 0. On the other hand (VP3E)X = 0, so 

(VFH.to.hi.fc,-) = (t;inF(/ij)t;i))I=0, 
(VPA)x(vj,hi,hj) = {Xj - A i) I(« inB(/i j > t ; i ))x= 0. 

Since Ai - A2 ^ 0, we get (VJ QE(hj,Vi)) = 0, for i ^ j . Moreover, 
QE = ddjE is an exact 2-form, hence 

dSlE(vi,Vj,hj) - ViQE{vj,hj) +VjilE(hj,Vi) + hjQ.E{vi-,Vj) 
-SlE{[vi,Vj],hj)-SlE([vj,hj],Vi) -nB([/ij,Ui],Uj) = 0, 

dQE(hi,Vj,hj) = hiSlE(vj,hj) + Vjilsihj, ht) + hjilE(hi,vj) 
- toE{[hi,Vj],hj) - nE([vj,hj],hi) - SlE([hj,hi],Vj) = 0, 

so 

ViilE(vj,hj) = nE([vi,Vj],hj) + QE([vj,hj],Vi) + nE([hj,Vi], Vj), 

and 

h&E{vj,hj) = ilE([hi,Vj],hj) + nE([vj,hj],hi) + fM[/i,-,/ii],Vj), 

for i ^ j , i,j = 1,2. Hence these terms can be expressed with the help 
of fig without its derivatives. On the other hand, (ir^E)x = 0 and 
( M ^ E ) * = 0. Thus we have at x *: 

where 

ViQE(vj,hj) = xi^Eivj^hj) + xl
Vi^E{vi,hi), 

hiilEivjihj) = Xh&Eivjjhj) + Xh&Eivuhi), 
(6.47) 

(6.48) 

for i ^ j . Using these formulas, we find at x: 

fE(hi,h2,hi,h2) = hilE(vi,hi) + h^E(v2,h2) 

+ (A2 - Xi) (^ViliSlEihuVi^-lhuv^ilEihi^))), 

'We are not using the summation convention in this paragraph. 
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where the li are functions on U depending on hit v^. 

I, : = A, v j ^ ~ A, v^"'* - A, h j ^ + A, h&'M - A^? '"" 1 ' * ' 1 

+ (A, - A,) ( e - ) ^ ' 1 - d ^ 1 ^ 1 ) - A^J'^"*'1. 

for i T̂  j , i,j = 1,2. Since pri(hS) ^ 0 (cf. Property 6.3.1) we can choose 
hi := pri(hS). We have at x: 

nE([s,vi],hi) + iiE(vi,[s,hi]) = -nE([J,s]hi,hi) -2QE([vi, s],hx) 
= -2z[°;-s]nE(vi,ht). 

But using once the exactness of $IE we arrive at CS^E — (dis+isd)ddjE = 
disddjE = du>E, and 

s{nE(vi,hi)) = (csnE)(vi,hi) + nE([s,vi],hi) + uE(vi,[s,h1}) 
= 2tls^nE(vi,hi) 

at x, for i = 1,2. Thus for any 3rd order formal solution and for any 
adapted basis, we get 

h$lE{vi,hi) = Hh,ViSlE{vi,hi) + n\.Q.E{vi,hi) + n3
hi$lE{vj,hj), (6.51) 

where 

/ i = - i (^xi , . +%xii-2$!,Vi])> (6-52) 

^hi = ~ 7S~ \€hi Xhj + €VJ XVJ ) > 

for i ^ j , i,j = 1,2. Of course, ^ = 1 if we take /i! = 5. But 

[hi.vJilEihj.vj) = 2^'v'kiS,-v']^(v],hj)+ (^••"•1 - ^ ^ / • t " 1 ) ^ ^ ( v J > J ) 

+ {(tfri] -^ .dTV, , + (̂ ••v-1 -^dTV*,) n£fe,fci), 
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so (<PE)X has the expression (6.45), where the coefficients of the third order 
terms are: 

xi = HWi]-%$'Vi]), (6-53) 
and the coefficients of the second order terms are 

+ (tfrv'] - sltir]U, + (tt"v-] - £ttr])*i. (6-54) 
+ i^rV3]-^'v,]Hs + i^"v']-^'Vi])xi,, 

where i ^ j . 
0 

Note that the obstruction <PE = 0 is of second order if and only if xi = 0 
and X2 = 0. It follows that the analysis of the problem is different according 
whether to the Xi vanish or not. Thus we propose the following definition: 

Definition 6.1 The spray S is called 
- reducible if \i — 0, ^ d X2 = 0, 
- semi-reducible if ^i = 0, and X2 ^ 0, (or \2 = 0 and xi ^ 0), 
- irreducible if xi ¥" 0, ^ d X2 ¥" 0. 

Despite the fact that the functions Xi depend on the choice of the basis 
{hj,Vi}, these notions are intrinsic. In order to see this, we will adopt the 
following 

Definition 6.2 Let A be a distribution on TM and consider A1 = A 
and A r + 1 = [Ar, A r] . The distribution A r (r > 2) is called reducible at x, 
if 

either Ar
x = A^1 or Sx 6 Ar

x. 

A r is called reducible if it is reducible at any x. 

Note that if the spray is found in A r , then either A r is involutive, or S 
is a characteristic field. This terminology is justified by the following 

Proposi t ion 6.4 Let x € TM \ {0}. Then (xi)x = 0 if and only if A* 
is reducible at x for i ^ j . 
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Indeed, we have 

cs 
Xi(x) = X(x) det ]hJ %M] )(x), 

where f£ = 1 and hi = priS. Thus we obtain Xjix) = 0 if and only if for 
i ^ j the vectors prjSx and prj[hi, Vi]x are linearly dependent, i.e. if and 
only if there exists \x 6 St, such that 

Prj([hi,Vi] - fiS)x = 0 . 

But the spray is non-typical, (5 £ A*), hence Xj(x) = 0 if and only if 
/i = 0, that is A? = A< at x or Sx £ A?x at x, i.e. A? is reducible at x. 

0 
With this terminology we can state the 

Corollary 6.1 Let S be an atypical spray of rank 1 and suppose that 
A is diagonalizable. Then every 3rd order solution of the operator 
Pj can be lifted into a 4th order solution if and only if the spray is 
reducible and ki — 0 for i = 1,2. 

6.3.2.2 Completion Lemma 

Recall that we are studying the prolongation P31 of the operator P3 denned 
by the equations 

where LJE = isddjE + dCcE - dE is the Euler-Lagrange form and QE = 
ddjE. As we computed in the previous paragraph, an obstruction denoted 
by tp appears. Namely, if E is a Lagrangian associated to 5, then ifE must 
vanish. The complexity of the equation tp = 0 is expressed by the notion of 
the reducibility of the spray. Denoting by P{htA) : C°°(TM) -> C°°{TM) 
the corresponding differential operator defined by 

P(h,A)E = ^2 Xi^vA^E(vi,hi)]+ ^2 ki^E{hi,Vi), 
i = l , 2 i = l , 2 



122 Vanational sprays on 2-dxmensional manifolds 

we have to study the system defined by 

As we expected, obstructions to the integrability appear several times in 
this system's analysis, but they can be treated in a similar way using a 
general Lemma, which we will state in this subsection. To formulate this 
Lemma, we introduce the following 

Notations. 

1. Consider an adapted local basis B = {/i:,t>i}i=i,2 on a neighborhood 
U of x G TM \ {0} and two functions i?i and t?2 on U, with tf2 ^ 0. We 
put forward 

, x (6-55) 
©',.*, := (2Ml\'s +M£2'hi] +Mls*'v,] - (Srfi)) 

- Y2 (M5
2"h 2 1 + ^ , , u a l - (Si**)), 

where S* is the projection of 5 on the eigenspace A<, i = 1,2. 

2. Consider two functions g\ and g2 on U. We will denote by Pg the 
second order differential operator Pg : C°° ( rM) —► C°°{TM) denned by 

PgE - giilE{vi,hi) + g2QE(v2,h2) 

and by M9l i92 the matrix whose rows are the coefficients of 

VVl(ClE(.vi,hi)), VV2(QE{v2,h2)), &E(vi,hi), flE{v2,h2) 

in the equations denned by the operators 

P(h,A)> V^Pp, V„2PS, Pg. 

Namely, 

■'"91,S2 •" 

/ Xi X2 fci k2 \ 

0 32 32 32 
V 0 0 gi g2 J 

(6.56) 
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where 

5? = CVlgi + 52x1,, 5i = A,,52+52X«1, 
52 = A , 2 5 i + 5 i x i 2 , 52 = £ v 2 52+5iX« 2 -

Lemma 6.6 (COMPLETION LEMMA) 

Let P3 := (Pi = i s ddj + d £ c - d, i rddj , i^ddj) and F9 := (P3, Pfl)-
Consider i € TM\{0}. 

(1) If gi (x) = 0 or g2 (x) = 0, then there are no second order regular 
formal solutions of Pg at x; 

(2) Ifgi(x) ? 0 and g2(x) ? 0, then 
(a) there are regular formal solutions of the differential system 

Pg(E) = 0 on a neighborhood U' of x if and only if 

e J . , * = ° . e « , , * 2 = 0 ' and det(Mfll,OT) = 0 

onU'. 
(b) Moreover Pg is "complete", in the sense that if we add to 

Pg (E) — 0 a new differential equation of type 

av\Q.E{vi,hi) +bv2$lE(y2,h2) -\-rVlE{vi,h-[) + sQE(v2,h2) - 0 

which is independent of the others at x, then the new system 
has no regular second order formal solutions at x. 

Proof. (1) is obvious: if, for example, gi(x) = 0, then PgE vanishes at 
x if and only if ficfo, /i2)i = 0, so there are no regular solutions of second 
order at x. 

(2.b) is almost evident. Indeed, 

/ Xi X2 

det 9* ° "\ "J 7^0 
/ X i 

5i 
0 

I 0 

X2 
0 

52 
0 

* i 

o\ 
92 
5i 

*2 \ 

5? 
9l 
92 ) 

at x, so if p = J3{E)X is a third order formal solution at x of the new 
operator, then viilE(v\,hi), V2^lE(v2,h2), f!E(i;i,fti), ^ E ^ M vanish 
at x and p is not regular. 
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The Proof of (2.a) is more complicated. It will be carried out in three 
steps: in the first two steps we will find the obstructions for the first two 
lifts of the 2nd order formal solutions and in the third step we will prove 
that, after prolongation, Pg becomes 2-acyclic. 

STEP 1 - First lift of the 2nd order formal solutions: 

Every second order formal solution of Pg at x can be lifted 
into a third order formal solution if and only if Qgi g2 (x) = 0 
and&giiaa(x) = 0. 

Proof. The symbol o2(Pgi,g2) : S2T* —> R, of Pgu92 is defined by 

CT2(f9l,92)(a) ■■= 9ia(vi,vi) + g2a{v2,v2), (6.57) 

and its prolongation o-3(Pgii92) : S3T* —> T* is given by 

[o3(P8ug2){0)KX) :=9l0(X,vl,v1)+g20(X,v2,v2), (6.58) 

a G S2T', 0 e S3T', X € Tx. With the notations of the preceding section, 
F3 := T* © A2T; © A 2 r ; , we define 

T : {T* ®F3)®T* >• K3®m®]R 

by f := (f3, pi, p2), where: 

r3(B, Cr, CA, Cg) = r3(B, Cr, CA), 
Pi {B, Cr, CA,Cg) = gi B(vi,hi) + g2 B(v2, h2) - C9(S), 

P2(B,Cr,CA,Cg) = giB(vi,hi) + €fc2(^-Cr(t»i,fti,fca) - ^-CU(hi,Ai, A2)) 

- & ( c , ( A i ) - | C r ( » J | k . , M - y C ^ f e . f t i . f e ) ) 

- « £ (^CA(vUhUh2)) - £ * (C9{vx)-&CA(.V2,hUh3j), 

and A := Ai — A2. Let us put forward ImK = f, and show that the sequence 

ssT. filQ ( T . 0 F s ) 0 r . _ ^ k _^ 0 (6.59) 

is exact. 
It is easy to check that Im<73(P9) C Kerf. On the other hand, g3(Pg) = 

9z(Pz) n g3{Pgu92) where g3(P9l,g2) is defined by the equation 

giB{X,vi,v1)+g2B(X,V2,v2) = 0, (6.60) 



RankS = 1: Atypical sprays. 125 

where X £ Tx. If we replace X by the four elements of a basis of Tx, we 
obtain four equations, two of which are independent and two of which are 
related to the system which defines 53(^3). Indeed, we get 

[n{P91.n)B](S) = g1[j3(Pi)B](v1,h2) + g2[<T3(Pi)B)(v2,h2), 
M P 9 1 , S 2 ) f l ] ( p n S ) = 5 l [er3(P, )£?](<;!,/n) 

-€fcl (^W3(Pr)B](v2,hUha)+^[<T3(PA)B]{h2,hUll2J) 
-£v2 (yMP*)B](t;i,ft,,fc2)) - £ (%[*3{PA)B]{v2,hl,h2j) 
+ d2{jW3(Pv)B](vUhUh2) - ^[<73(PA)B}(h1,h1,h2))> 

{<T3(P9ug2)B}(pr2S) = g2[a3(Pi)B](v2,h2) 
-til(%W*{Pr)B](v2,hi,hi) + ^[<T3(PA)B](hl,h2thlj) 

~& (*[»3(PA)B](v2M,hij) +& (^[a3(PA)B](vuh2,hi)) 

+ d2 (fk3(/V)B)(w2,fcj,fci) - &[o3(PA)B](h2,h2,hij), 

where p n 5 is the projection of S on the eigenspace Aj, i = 1,2. Of course 
these equations are dependent, because 5 = p n S+pr2S. On the other hand 
the equations p1 = 0 and ^2 = 0 are independent of the equation r3 = 0 
(the corresponding pivot terms are u(S) and w(Si)). Thus dim<?3(P9) = 
dim <7! (P3) — 2 and therefore 

ranka3{Pg) - rankff3(P3) + 2. 

Taking into account that the sequence (6.19) is exact, we find 

dim Ker f = dim Ker r3 + dim T* — 2 = dim Ker T3 + 2, 

so dim Kerf = rank(73(P9) and therefore the sequence (6.59) is exact. 
Let us now compute the compatibility conditions. Taking a second 

order formal solution J2(E)X of Pg, the new obstructions are 

Pi(VPgE) = £ (^5,Q£;([/i,, l;,],5) - ( S j ^ n B ^ , / . , ) ) , 
i = l ,2 cycl 

/»2(VP 9 E)=pi(f i E ( [5 , f t i ] , t ; , ) -nE([5 ,wi] , f t i ) ) 

- € h , ((/llPl)"E(wi,/ll) + (/llff2)nE(V2,/t2)-^S2J2£([/ll,W2],/l2)) 
cycl 

- f̂, ((Vlffl )fMfl > Al ) + (vl92)nE(«2, ft2) + X] S2^E([VI , U2], fa)) 
cycl 

+ d2(^2g^E(lvuhi},h2)^-tr^[Y,9^E([vuV2lh1)y 
cycl cycl 
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Since the spray is reducible, the vectors pr i[/i2,U2] andpr iS (resp. pr2[/ii,vi], 
and priS) are linearly dependent and so 

fi£([/»t,t>i],S) = nE([/ij, Vi],pnS) + QE([hi,Vi],prjS) 

where i ^ j . Using (6.49) we obtain: 

pi(VPgE) = J2 {*&$!""* " fc^dT'1 + 2fc,d?'51 - (Ski))nB(vi,hi), 
i = l , 2 

P2{VPgE) = {2gxil\s + 9itf?M] +ffidf2't'11 - (5i5i)) nB(«i,*i) 

+ (ff»C'h a l + ^ " " 2 1 - (S192)) nB(«2,fca)-
(6.61) 

Since J2(E)X is a second order formal solution also of P9 l l S 2 , the equation 

S i (* ) fMvi ,Mx +g2(x)ilE{v2,h2)x = 0 

holds, and so 

pi(vp9E) = egug2nE(vl,h1). 
Therefore pi(VPgE)(x) = 0 if and only if Qgu92(x) = 0, i = 1,2, which 
proves STEP 1. 

Like P3, P9 is not 2-acyclic and an explicit computation shows that 
H^iPg), the second Spencer cohomology group, is non-vanishing. Hence 
some obstructions arise for successive lifts. ^ 

STEP 2 - Second lift : 

Suppose that every regular second order formal solution at 
x of Pg can be lifted into a 3 r d order one. Then every 3rd 
order regular formal solution can be lifted at x into a J^th 
order formal solution if and only if ji(Q%

kl k2)x =0, i = 1,2, 
and det(M9l i92)(z) = 0. 

Proof. We begin by showing that the sequence 

S4T* a4{PB) > S2T* ® F f ' )Kl —>0 (6.62) 

is exact, where f! := (id <8> f) © T(h,A) and T^h,A) 1S defined in (6.43). 
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The equations defining <74(P9) = Kera4(P9) give some restrictions on 
the components containing at least one vertical vector. Therefore we have 
the splitting g4(Pg) = S4T* © G4(Pg), where Gm(P9) is denned by (6.21). 
Now dimG4(Pf l) = 1 and 

dim5 4(P s) = dim S4T* + 1 = 6, 

i.e. dimg^Pg) = dim g4 (P31) — 2. Using the exactness of the sequence (6.44) 
and the fact that the equations id ® pi = 0, i = 1,2 give 8 independent 
equations with respect to the equations f\ = 0, we have 

rank <T4 (Pj) = rank a4 (P31) + 2 = dim Ker f\ + dim S2T* - 8 = dim Kerf1. 

This proves that the sequence (6.62) is exact. 

Let us compute the obstructions to lifting the 3rd order solutions of Pg. 
A 3rd order formal solution jz(E)x can be lifted into a 4th order solution 
if and only if f1 ( V V P 9 £ ) x = 0. Now 

rl(V(VPgE))x = (V( fV(P>) ) , r ( M ) ( V P J £ ) ) i 

= (V(T3(VP3£), VfoVP s E)) i = 1 , 2 , T{h,A){VPgE))x, 

and 

T{htA)(VPgE)x ={P(htA)E)x, 

V(T3(VP3E))X = 0 x v(iA>nE)x = 0, 
v(Pi(vp,£;))i = v(e; i i92n(^,/i1))I, » = i,2. 

As we have just seen, every second order formal solution at x can be lifted 
into a 3rd order solution if and only if ©9l i92(z) = 0, i = 1,2. Let us 
suppose that this condition is satisfied. Then 

f^VVP.E)^ {(P{h,A)E)x, (Ve j l , O T ) I n £ ( t ; i > / n ) I ) . 

Thus, if J3(E)X is a 3rd order regular formal solution, which can be lifted 
into a 4th order solution, we have VQ9l i92(x) = 0 for i = 1,2, that is 
•?i(09.,32)I = °> b e c a u s e w e suppose that (Qgug2)x = 0. 

On the other hand, note that det(M9l i92)(x) = 0 if and only if the first 
row of the matrix is a linear combination of the others, because g\(x) ^ 0 
and 52 (x) 7̂  0. This means that the differential operator P(h,A) c a n be 
linearly expressed at x with the help of the operators VP9(vi), VP9(^2) 
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and Pg. Hence, since V(PgE)(vi), (VPgE)(v2) and PgE vanish at x if 
h(E)x is a third order formal solution, then det(M9l i92)(x) = 0 if and only 
if (P(h,A)E)x = 0 for a third order solution j3(E)x. This proves STEP 2. 

STEP 3 - Higher order lifts : 

The first prolongation Pg of Pg is 2-acyclic. 

Proof. We have gm(Pj) = gm{P9) and gm(Pg) = gm(P3) ngm{Pg) for 
m > 3. An element B 6 g2(Pg) is characterized by the equation 

9iB(v1,v1)+g2B(v2,v2) = 0. (6.63) 

First we will compute dimgm(Pg). Note that 

gm(Pg) = SmT: © Gm(Pg), (6.64) 

where Gm{Pg) = G m ( P 3 ) n G m ( P 9 ) . Now, dim<7m(P3) = 3 and an element 
Bm in GmiP'i) is determined by the components (6.28). Moreover, from 
the equations (6.63), we find 

B{vr)^£iB{vr>)VuVj,Vj)^o 
9i 

for i ^ j , (i,j = 1,2), m > 1. Thus in Gm(Pg) there is only one free 
component: the i?( / i^ - 1 ,v2). So we obtain 

dim gm(Pg) = dim SmT* + 1 = m + 2 (6.65) 

for any m > 3. Hence 

rank<5lirn(P9) = dim (T'® gm+1(Pg))-dim (gm+2(Pg))= 3m+ 8 (6.66) 

for any m > 2. 

Remark . Using (6.66) we can note that rank(5ii2(P9) = 14. On the 
other hand, from the exactness of the sequence (6.40) follows that rank 
S2AP9) < 15- S o dimKer62,2(Pg) > dim A2T* ® g2(Pg) - 15 = 15, and 
therefore 

91 lmSh2(Pg) ^ 

and Pg is not 2-acyclic. 
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In order to show that H^Pg) = 0 for any m > 3, we only need to 
compute d i m K e r ^ . m ^ ) - By the splitting (6.64) we have 

A 3 I " ® f f m_i(P,) = (A 3 T*®S m + 1 T; )©(A 3 T '®G r n _ 1 (P s ) ) . 

Thus for B e A2T* ® SmT* we have 62,m(Pg)B = 0 if and only if the 
equations 

£ B(ei,ej,ek,h?-2,v2)=0 (6.67) 
cycl{ijk] 

and the equations 

Y^ B{ei,ej,ek,h?-l,lJ!r1)=Q, l<l<m (6.68) 
cycl{ijk} 

hold, where {a }i=i,. ..,4 denotes the vectors of the adapted basis {/ii,i>i}i=i,2-
Thus dim Ker (52,2 (Pp) = rank {(6.67), (6.68)}. The rank of this system can 
be found by a completely analogous computation as the rank of the system 
{(6.70), (6.71)} in the proof of the Theorem 6.3. This second one being 
slightly more complex, we would prefer to explore it in detail later on. 
However we can see, that the system (6.67) corresponds to the equations 
a) of (6.70); (6.68) is the same as (6.71), while b) and c) of (6.70) now hold 
identically. We find 

rang(52,m(Ps) = 3m + 4 

and therefore 

dimKer<52,m(P9) = dim(A2T* <g> gm(Pg))-(3m + 10)= 3m + 8 

for every m > 3. So, by (6.66), 

rank<5i,m(Pa) — dim Ker<$2,mtPs) 

for m > 3 and then H^(Pg) = 0 for m > 3. Since H^(P9) = H^{Pg
l) for 

m > 3, we obtain 

for any m > 3, i.e. P 1 is 2-acyclic. This proves STEP 3. 
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The point (2.a) follows from these three steps and then the Completion 
Lemma is proved. 

D 

6.3.2.3 Reducible case 

We will now study the reducible case for the atypical sprays of rank 1 and 
we will prove the following 

Theo rem 6.3 Let S be an atypical spray of rank 1 with A diagonal-
izable and suppose that S is reducible. 

a) If fci = fo = 0, then S is locally variational; 
b) if k\ ^ 0 and fc2 = 0 (or fci = 0 and &2 ̂  0), then S is not 

locally variational; 
c) tf k\ 7̂  0 and fo "fi 0, then S is locally variational if and only if 

Q\ „ = 0 , and 9* =0. 

To prove the Theorem we just have to check that the differential oper­
ator P31 is 2-acyclic. Indeed, if P31 is 2-acyclic, then the proof of a) follows 
immediately from the Corollary 6.1. Note that we have here an example 
of a differentiable operator which is formally integrable though it is not 
2-acyclic. 

The statement of b) is obvious because the compatibility condition 
(6.45), i.e. ki Q(v\,hi) = 0, cannot be satisfied by a regular solution (cf. 
Lemma 6.1). 

c) follows from the Completion Lemma with <?j = k{ for i = 1,2. Indeed, 
in the reducible case we have xi = X2 = 0 and so det(M^1)it2) = 0. 

To prove the 2-acyclicity of P31, let us check first, with the notation of 
page 113, that 

dimKer(52,m(F3
1) = 3 m + 1 4 (6.69) 

for any m > 2. 

First we see that <J2,m(^3) = <̂ 2,m(-P3)- Consider now an element B of 
A2T* ® gm(P3), and let {ej}i=i 4 := {h\,h,2,Vi,V2} denote an adapted 
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basis. Since 

A3:r ® <?„,_! (P31) = (A3r'®5m-1Th*)e(A3r*®Gm_1(P3
1)) , 

we have 62 B = 0 if and only if the equations 

a) ^2 B(ei,ej,ek,h2,...,h2,v2) = 0 , 
cycl{ijk} 

b) ^ B(ei,ej,ek,v1,...,v1,vi)=0, (6.70) 
cycl{ijk} 

c) ^2 B(ei,ej,ek,V2,~;V2,V2) = 0, 
cyc/{ij*} m _ j 

and the equation 

J) 5Z 5(e,,e> ,e f c , /i1 . . . /i1 , /i2 . . . /i2)=0, (6.71) 
cycl{ijk} m_l ( _ , 

hold for 1 < I < m, where i,j, k = 1, ...,4 are all different. The sys­
tem (6.70) gives 12 equations, and (6.71) gives Am equations. The system 
(6.70) means that the components of 62B corresponding to A3T* ® Gm-i 
vanish, while the system (6.71) means that the components corresponding 
to A3T* ® Sm~lT' vanish. 

The system (6.70) is composed of equations for which, among the last 
m — 1 vectors on which B is computed, at least one is vertical. We will call 
these components "first type components" of B, and the others, for which 
the last m — 1 vectors are horizontal, "second kind components". 

Since the elements of Gm(P3), for m > 2, are determined by three 
parameters (cf. page 110), the elements of A2T*®Gm_i (P3) are determined 
by a maximum of 18 parameters. 

Let us now compute the rank of the system (6.70). In (6.70.b) the 
equations corresponding to the indices (ijk) = (123), (134), (234) are in­
dependent (the corresponding pivots are B(hi,h.2,v™), B(hi,V2,v™) and 
B(h,2,V2,v™) respectively), whereas the equation corresponding to the in­
dex (ijk) = (124) depends on the former, because we have the following 
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relation: 

B(h1,h2,v2,v?-l) + B(h2,v,,huv?-1) + B(v2,huh2,v?~1) 
(6.31) £?, , m . (ij*)=(234) (6.72) 

= --^-B(h2,v2,v1 ) = 0. 

In (6.70.c) the equations corresponding to (ijk) = (124), (134), (234) are 
independent (thepivots aieB(hi,h2,v™), B(hi,v\,vm) andB(h,2,vi,vm)), 
and the equation corresponding to the index (ijk) = (123) is related to the 
others by the following : 

B(huh2,vuv2
Tl-1) + Bfa^uhuv?'1) + B(vuhuh2,v?-1) 

(6.31) ff, m (yfc)=(134) (6.73) 
= 7s B(Ai,wi,w2 ) = 0. 

?h 2 

In (6.70.a) the equations corresponding to the indices (ijk) = (123), (124), 
(234) are independent (the corresponding pivots are B(vi,hi,hm~l,v2), 
B(v2,h\,h™~y ,v2) an&B(vi,V2,h2

n~l ,v2)), while the equation correspond­
ing to (ijk) = (134) depends on them. Indeed, using the notation (6.27), 
for every X, Y, Z e Tx and 0 < f c < m - 4 w e have 

B(X,Y,Z,h*+\v(
2
m+2)-(k+2)) (6= > -&-B(X,Y,Z,hk

2,vim+2)-<k+i)). (6.74) 

Thus if we denote the equation (6.70 a) corresponding to the index (ijk) by 
£ijk, then equation £234 can be expressed in terms of the other equations: 

cs f +es f ( 6 i l c ) 

"^l C-(134) ' Sfcj ° (234) ~~ 

= B(vuv2,hS,h?-2,v2)+zZlB(huv1,h2
n-\v2) + ti2B(h2,v1,h2

n-2,v2,v2) 

= -^2B(vllv2,v2,h2
rL-2 ,v2) + faBihuVuK?-1 ,v2) + tiaB(h2,vuh?-1 ,v2) 

= ^B(v2,vi,h2
n'2,v2,v2) +Zh2B(h2,vi,h2

n~2,v2,V2) 
cycl 

= Yl B(pr2S,Vi,h2,h2n'3,vl) 
pT^SfVl ,/l2 

= {-jr) 2 ^ B(pr2S,vuh2,v2 ) = 0, 
2 P r 2 5 , v i , / l 2 

where pr2 denotes the projection on the eigenspace A2. Thus the equation 
£(234) = 0 is a linear combination of the other equations and the rank of 
the system (6.70) is 9. 
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Let us now consider the system (6.71). In the (/ 4- l)th block of (6.71) 
the equations are: 

Y, B{ei,ej,ek,hT-1-'X)=0, 
cyc\{ijk} 

where the i, j,k = 1,.., 4 are all different. In each equation of (6.71) we have 
two "first type" components (namely for (ijk) — (134) and {ijk) = (134)), 
and one "second type" component (ijk = 234). The equation 

£ B{h2,vuv2,h?-',h!i-1)=0 (6.75) 
Cycl{/l2,"l,f2} 

in the l-th block contains the same "second type" component as the equa­
tion 

£ B(hl,vuv2,h?-{,+1\h!l)=0 (6.76) 
cycl{hi,»i ,U2} 

of the (/ + l)-th block corresponding to the index (ijk) = (134). Using the 
relations which determine the space A2T* <g>gm (P£), it is easy to prove that 
these equations are linearly dependent. Indeed, 

la TCL\ <6-70> DC u t ( m - i + 2 ) . ( J - 1 K 
(6.75) = B(vi,v2,h2,h\ ',hy

2 ') 
-(B(vuhi,h2,h?-,+l,h!!rl,V2) + B(hi,h21vuhY-'+l,h,

2-\v,)) 

-(B(h2,huvi,h?-,+\h2-\v1) + B(h1,v2,h2,h?-l+\hlf\vi))(6=)(<>.76). 

Therefore the rank of the system does not change if we remove the equations 
of the Z-th block corresponding to the index (ijk) = (134) for 1 < I < m. 
It is not difficult to check that the remaining equations are independent. 
Indeed, the pivots in the first block are: 

B{h2,vuh?), B(h2,v2,h™), B(vuv2,h?), B(v1,v2,h'p-\h2), 

and in the l-th block, with 1 < / < m: 

B(h2,v1,h^-',hl
2-1), B(h2,v2,h^-',h'2-1), B(vuv2,h?-{,+l),ti2). 

Thus there are 4 dim S"1'1^ - dim Sm-2T* = 3m + 1 independent equa­
tions in the system (6.71) which are also independent of the system (6.70). 
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So, as the rank of the system (6.70) is 9, there are 3m 4- 10 independent 
equations which determine Ker <52,m(P3)- Thereby 

dimKer<52 ,m(P3) = d im(A 2 T* <g> gm(P3))-{3m + 10) = 3m + 14, 

which proves the formula (6.69). 

0 
Taking into account (6.39) now we obtain: 

rang<$i,m(P3) = dimKer<S2 ,m(P3) 

for TO > 2. Thus # £ ( P 3 ) = 0 for m > 2. Since gm(P3) = gm{P$) and so 
H2

m(P3) = H2
m(Pj) for m > 3, we get 

for every m > 3. Therefore the operator P31 is 2-acyclic. 

E x a m p l e 6.4 Let us consider the system* 

J 1 1 = F(xi,±i), 
[X2 = G(x2,X2)-

a 

(6.77) 

We have r£ = r? = 0 and A\ = A\ = A'\ = A'\ = 0. For F and G generic 
A\ — A\ ^ Q so the rank of 5 is 1. The eigenspaces Aj, i = 1, 2, are spanned by 
1 af-' af~ 1 • Thus the A; are integrable and hence reducible. At a generic point 
S is not in A,, so it is atypical. On the other hand, it is easy to check that the 
ki vanish, thereby <pE = 0 for every third order solution. According to Theorem 
6.3 the spray is variational. 

6.3.2.4 Semi-reducible case 

In this section we will s tudy the semi-reducible case for atypical sprays of 
rank 1. We recall tha t this means tha t in the obstruction P( / , ,A) = 0, where 

2 2 

{P(h,A)E)x(hi,h2,hi,h2) = ^2(Xi)xCVi[nE(vi,hi)]x + ^ ( f c O x ^ M ^ O x 
i= l i= l 

' i t corresponds to Douglas' separated case Hal. 



RankS = 1: Atypical sprays. 135 

has to be put in the prolongation P3 of the system 

u = 0, 
irn = o, 
Mf i = 0, 

where w = 0 is the Euler-Lagrange equation. In the semi-reducible case 
one and only one of the coefficients \ii (* = 1>2) vanishes. In particular, 
the operator P(h,A) is of third order. We assume for example that %2 — 0. 
To express the theorem in this case we need to introduce some matrices 
which naturally arise in the study. The theorem containing the results is 
given at the end of this section. 

The computation is carried out in two steps: first we study the ob­
structions to lifting the third order solutions to a fourth order, then in the 
second step we check that the system is 2-acyclic. In the first step two 
cases have to be distinguished: k2 = 0 and k2 ^ 0. 

STEP 1. First lift of third order solutions. 

We will begin by computing the symbol of the operator P} 
and prove that 

ranka4(P4
1) = rankcr4(.P3) + 1. 

We have 

[a3(P{h,A))]B3 = Xi Bsivuv^vx) (6.79) 

and thus 

W4(P[h,A))B4}(X) = XI B4 (* ,« , , «!,«!), 

where B3 € S3T', B4 € S4T* and X € Tx. Since 5m(P4
1) 

9m(P(h,A)) for m > 3, we have 

gm(Pi) = SmTZ®Gm(P*), 

where Gm(P4) = G n ( f t ) n G n ( P ( M ) ) . 
As we have already shown, an element B3 of £3(^3) is determined 

by three free components: B3(h2,v2), B3(vf) and #3(ff) (see page 110). 
Therefore the equation which defines g3(P{h,A))> *na* is X i ^ ^ i ) = 0, is 

= (P3
l,P{h,A)) 

(6.78) 

(6.80) 

= 9m(P3) n 

(6.81) 
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linearly independent of the equations which determine 53 (P3) since #3(1*1) 
is a pivot. Thus 

d i m ^ P , 1 ) = dims3(P3) - 1. 

To compute dim 54 (P,1) we will replace X in the equation (6.80) by the 
vectors of the adapted basis h, and Vi, i = 1,2. We obtain four equations 
in addition to the equations which characterize the space G4(p3). We 
know that dimG4(P3) = 3 (see equation (6.23)) and an element B4 in 
(^(Ps) is determined by its components (6.28). Therefore the new equation 
<Ti(P(h,A))(vi) = 0 is linearly independent of the equations denning #4^3). 

The other equations are related to the equations of 34 (P3): between the 
symbol of P(h,A) an^ the symbol of the other operators of P\ there exist 
the following relations: 

(<74(P(fcM))£«)(S) =Xl(*4(fi)B4)(»l,Wl,ftl), 
(<Ti(Pih,A))B4)(h2)= ^-(a4(Pr)B4)(vuvuhuh2) + ^-(a4(PA)B4)(vi,huhuh2), 
(a4{Pih,A))B4)(v2) = ^■(er4(PA)B4)(vuVi,hi,h2). 

Thus dim^4(P4
1) = dimg4(P3) - 1, which proves (6.78). 

Let T\ : (S2T*®F3) ©T* —► K\ © M® IR © R be the morphism defined 
by 

Tl '■- {H> T(h,A), p \ , p \ , P\) 

with 

f3(B,Cr,CA,C(h,A)) = T3(B,Cr,CA), 
p\(B,Cr,CA,C(hiA)) = C(hl/j)(5) - Xi • B(vuvuhi), 
Pi(B,Cr,CA,C^htA)) = C(hiA)(h2) + —Cr(vi,vi,hi,h2) - -j-CA(vi,hi,hi,h2), 
Pi{B,Cr,CA,C(htA)) = C(h,A){v2) - —CA{vi,v\,hi,h2). 

We shall prove that the sequence 

S4T' ^ ^ (S2T'®F3)(BT' —$-> K\ ► 0 ( 6 - 8 2 ) 

is exact, where K\ — Im T\ . 

It is easy to see that Imo^P,1) c Kerr^. On the other hand, let us 
consider the system T\ - 0. The terms C^A){h\), C(h,A){h2), C(htA){y2) 
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are pivots, so the equations p\ = 0, i = 1,2,3, are independent of the 
system defined by T% = 0. Since the sequence (6.44) is exact, we have 

rank 04 (P41) = rankr^ + 1 = dimKerTj +d imT* - 3 = dimKerr j , 

hence the sequence (6.82) is exact. 

Let us now compute the obstructions. The new compatibility conditions 
for Pj are given by the equations p4(VP4

1) = 0, i = 1,2,3. Let j3{E)x be 
a 3rd order solution of Pi at x £ TM \ {0}. We have: 

P\(VPlE) = S(P(h.A)E) - xiwi(Vws(i;i,hi))= x,[S,t;i]n£r(i/i,/>i) -
- 2xi(viCl"1"S1)fi£(«i,/ii) - 2Xl$fS]v1nE(vuh1) + (5xi)t»ifiE(i;i,fci) + 
+ (Ski)QE(vuhi) + (Sk2)QE(v2,h2) + kiSQE(vuhi) + k2SQE{v2,h2); 

pl(VPlE) = h2(Pih,A)E) + xiVi(VirnE(vuhl,h2))-Yvi(ViASlE(hl,hl,h2)) 

- Xi^i (53fi£([fi,/«i], '»2)J+(/i2X;i)ui^E(' ;i , ' li) + Xi[h2,vi]QE(vi,hi) + 
cycl 

+ kih2QE(vi,hi) + k2h2QE{v2,h2) + (h2ki)QE(vi,hi) + (h2k2)SlE(v2,h2); 

pl(VPlE) = v2(P(h,A)E) - ^vi (Vi„fiE(vi, fci, h2)) 
= Xi«i {y2^E([vi,hi],v2))+(v2xi)v\ilE(vi,hi) + Xi[v2,vi]nE(vi,h\) + 

cycl 
+ (v2ki)QE(vuhi) + (v2k2)QE(v2,h2) + kiv2QE(vi,hi) + k2v2QE(v2, h2). 

Since ff ^ 0 (see the Property on page 108), the system p\ = 0, i — 1,2,3 
is equivalent to the system p\ = 0, pi = 0, pi = 0, where 

~P\ ■= &A + &PI 
Taking into account the relations in R3(P£) we have: 

p}(VP4
1E) = xlv&Eivuhi) + k\nE(vi,hi) + k2QE(v2,h2), 

pl(VPlE) = x2ivinE(vi,hi) + klnE(vi,hi) + klilE(v2,h2), (6.83) 
p3

4(VPJE) = XiVinE(vi,hi) + k*nE(vuhi) + klnE(v2,h2) + k2v2nE(v2,h2), 

where the coefficients xi and kj can be expressed uniquely in terms of the 
spray 5 (their explicit formulae are given in the Appendix by (A.l) and 
(A.2)). We have proved that every 3rd order solution of P\ can be lifted 
into a 4th order solution if and only if the equations p\ (VP4 E) = 0, i = 1,3 
and p2(VP 4

1E)=0 hold. 
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To discuss the different possibilities, we have to consider the cases k2 = 0 
and k2 i1 0 separately. 

i) The case k2 = 0. 

Let us denote by Mi the matrix formed by the coefficients of the operator 
P(h,A) a n ( i the coefficients of the equations of (6.83): 

Mi := 

Firstly we prove the following 

Lemma 6.7 

/ Xi fci k2 \ 
Xl *1 *2 

Xl *1 *2 

V x? *? *2
3 / 

(6.84) 

f/J / / r ankMi = 1, t/ien every third order solution of P\ can be lifted 
into a fourth order solution. 

(2) If rank Mi = 2, then a new second order condition has to be ver­
ified in order to lift the third order solutions and the Completion 
Lemma gives the explicit conditions for the spray to be variational. 

(3) / / r ankMi > 2, then S is not variational. 

Proof. Let us suppose that rank Mi = 1. Since Xi 7̂  0, there exist 
a* £ R,i= 1,2,3, such that (x\, k\, k'2) = ai (xi, h, k2). Thus if (j3E)x 

is a third order solution of P\ at x ^ 0, then we have 

p\(VP}E)x=aiP{h>A)(E)x=0, 

i = l ,2 ,3 . Therefore T\ (VF41 E)x = 0, and every third order solution of P4
X 

can be lifted into a fourth order solution. 
If rank Mi > 2, then it is easy to see that there is no regular second order 

solution satisfying the compatibility conditions ^ ( V P 4 ' £ ) , = 0, i = 1,2,3, 
because these equations imply QE(VI ,hi)x = 0 and $IE(V2, h2)x = 0. Hence 
in this case 5 is not variational. 

If rank Mi = 2, then the system p\(VP\E)x — 0 gives exactly one new 
relation between the terms fiE(^i,/ii) and SlE{v2,h2)} i.e. a new second 
order compatibility condition, which we shall denote as 

aiQ(vi,hi)x +a2ft(v2,h2)x = 0, (6.85) 
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where a\ and a2 can easily be computed from (6.83). This relation yields 
a new differential operator 

Pa : C°°(TM) —> C°°(TM) 

denned by 

Pa{E) := cuilEivuhi) + a2nE(v2,h2), (6.86) 

which has to be introduced into the system. So we have to study the 
differential operator 

{P4\ Pa, VPa) = (Pi P(h,A), Pa, VP„). (6.87) 

Considering the second order part of the system (6.87), (P3, Pa), the Com­
pletion Lemma (Lemma 6.6) with gt :— a,i gives the necessary and sufficient 
conditions for the spray to be variational. 

ii) The case k2 ^ 0 

If /c2 7̂  0, the equation p\ = 0, that is 

k2v2QE(v2,h2) + biQE(vi, hi) + b2QE, (v2, h2) = 0, 

with bi = (kf - ^ - ) , i = 1,2, is of the third order. So, in order to apply 
the Completion Lemma, we need some supplementary computations. Let 
Pb : C°°{TM) —► C^iTM) be the differential operator defined by 

PbE := k2 v2ilE(v2,h2) + biQE(vi,hi) + b2QE(v2,h2). (6.88) 

Introducing it into the system we obtain the operator 

Pl(E):={PlPb). 

The symbol of Pb is 

<r3(A) : S3T* —> R, [a3(Pb)B3] := Xi B3(v2,v2,v2), 

and the symbol of the first prolongation is 

oA(Pb) : S4T* —> 7", [a4(Pb)B4}(X) := k2B4(X,v2,v2,v2), 

where B3 £ S3T', B4 £ S4T', X £ Tx. The equation [a3(Pb)B3] = 0 is 
independent of the equations of g3(P4) because B3(v2) is a pivot. Thus 

dimg3{P*)=dimg3(Pt)-l. 
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On the other hand, 54 (Pf,) is characterized by the equations [<j^{Pb)Bi\{ei) = 
0, i — 1,..,4, where { e j is a basis of Tx. Prom the preceding computa­
tions we know that d i m £ 4 ^ 4 ) = 2, and an element B4 of Gi{Pl) is 
determined by its components B\(h\,V2) and B\{v\). Hence the equation 
[(Ti{Pb)B4](v2) = 0 contains a pivot term. The other equations are related 
to the equations of 04 (P41). Therefore dim (^(Pg1) = dimp4(P4

1) - 1 and 

rank 04 (P51) = rank^tPj 1 ) + 1. 

Let us consider the morphism 

Tg1 : S2T* ®F3®T* ©T* ► K\ © B. © R © JR, (6.89) 

defined by r,? := (f\, p\, p\, p\), where 

f4 (B, Cr, CA,C(h,A),Cb) = r4 (B, Cr, CA, C^,A))I 

Pt{B,Cr,CA,C(h,A),Ct)=Cb(S)-xiB{v2,V2,h2), 

Ps(B,Cr,CA,C(b.,A),Cb) =Cb(hi) —— Cr{v2,V2,hi,Ii2) —T-CM(U2,/I2,/II , /I2), 

pl(B,Cr,CA,C{h,AhCb) =Cb(vi) - fjCA(v2,V2,huh2). 

We shall prove that the sequence 

S4T' "4{Pi))(S2T' 0 P3 © T') © T* r5' )K\ >0 (6.90) 

is exact, where K\ :— Irnxj. 

Indeed, Imo^P,1) C Ker r ] . On the other hand, Cb{h\), Cb(h2) and 
Cb(vi) are pivots, thus the equations p\ = 0, i = 1,2,3 are independent of 
the equations Ker f\. Therefore 

rank 04 (P5*) = rank T\ 4- 1 = dim Ker r4
! + dim T* - 3 = dim Ker T$ , 

which proves that the sequence is exact. 

To compute the new compatibility conditions, we will consider a 3rd 
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order formal solution j3(E)x of P£ at x £ TM \ {0}. We have: 

p\{VPlE) = k2[S,V2}nE(v2,h2) + 2k2V2QE([S,v2],h2) + (Sk2)v2nE(v2,h2) 
+ {Sbi)QE(vi,hi) + biSnE(vi,hi) + (Sb2)QE(v2,h2) + b2SnE{v2,h2), 

pliVPsE) = k2V2(j2nE{{hl,V2],h2))+(hlk2)v2nE{V2,h2) + k2[hi,V2]ilE(V2,h2) 
cycl 

+ (hibi)QE(vuhi) + bihiilE(vi,hi) + (hib2)nE(v2, h2) + b2hiilE(v2, h2), 
pl(VPsE) = k2V2(^2nE([v2,h2],Vl)^+(vik2)v2nE(V2,h2) + k2[vi,V2]nE(V2,h2) 

cycl 
+ (vibi)QE(v\,hi) +biviQE(vi,h\) + (vib2)SlE(v2,h2) + b2viQE(v2,h2). 

Note that the system {p\,p\,p\) is equivalent to the system (^5,^5,^5), 
where 

because £% ̂  0. In the space R3<x (P5) of the third order solutions of P£ at 
x, the 3rd order terms can be expressed with the help of second order terms 
using the equation (6.47) and the equations P(h<A)(E) = 0 and Pb(E) = 0. 
Thus the equations (6.83 a,b) and the obstructions of P£ can be written in 
the form 

P\(VPIE) = cjnjjfa./io + cjnisfo./ia), i = 1,2 re 911 
pl(WPiE) = c\nE(v1,h1)+4QE(v2,h2), i = 3,4,5 K' ' 

where the coefficients can be expressed in terms of the spray 5 (they are 
given explicitly in the Appendix, see (A.3)). Let 

(6.92) 

be the matrix whose rows are the coefficients of the equations (6.91), then 
we have the following 

Lemma 6.8 

(1) If Mi = 0, then any 3rd order formal solution of P$ can be lifted 
into a 4th order solution; 

(2) 7/rankM2 = 1, then the equations (6.91) give a new second order 
compatibility condition which can be studied by the Completion 
Lemma. 
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(3) If rank M2 = 2, then S is not variational. 

Indeed, if M2 = 0, then p\(VP}E) = 0 for i = 1,2, and ^ ( V P ^ E ) = 0 
for i = 3,4,5. So 75 (VP5 £ ) = 0 and therefore the compatibihty conditions 
of the operator P5 are satisfied. 

If rankM2 = 2, then HE(UJ, ht)x = 0 for any 3rd order solution j$(E)x 

which satisfies the compatibility conditions, so E cannot be regular. 

If rank M2 = 1, then we get a new second order compatibility condition 
forPs1: 

ciilE(vi,hi) + C2iiE(v2,h2) = 0. (6.93) 

Denoting by Pc the differential operator corresponding to equation (6.93), 

Pe{E) := ciilE(vi,hi) + c2nE(v2,h2), (6.94) 

we must study the differential operator 

(P*,PC,VPC). (6.95) 

Using the Completion Lemma with #; := Ci, i = 1,2, we have the following 
possibilities: 

(1) If ci or C2 vanishes at x, or the matrix 

M, := 

(X1 

0 
Cl 

0 
V 0 

0 
^2 

0 
c2 
0 

*1 

&1 

e\ 
e? 
Cl 

^2 \ 

h 
e 2 
e2 

C2 / 

(6.96) 

where e\ := c2x'Vl + {v\Ci) and e2 := cixl,2 + (v2Ci), is non-singular at 
x, then the spray 5 is not variational on a neighborhood of x ^ 0. 

(2) If c\(x) ^ 0, c2(x) ^ 0 and det(M3) = 0, then S is variational on a 
neighborhood U of x if and only if ©J1)C2 = 0 and 0c l iC2 = 0 on U. 

In order to complete the semi-reducible case, we only need to study the 
higher order lifts in the case when M2 = 0. 

STEP 2. The higher order prolongations 

P4 = {Pa>P(h,A)) and Pi = (P},Pb) are 2-acyclic. 
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Let us first consider the operator P 4 . With the usual notations we have 

9mi.Pl) = Smn 0 Gm{Pl). (6.97) 

Now Gm(Pj) = Gm(P3) n Gm(P(h,A)). An element Bm in Gm{P3) is de­
termined by the three components (6.28), that is Bm(hm~1,V2), Bm(v™) 
and Bm{vf). Now, if Bm G Gm(P(h,A), then xiBm{vm) = 0, that is 
Bm(vm) = 0. Thus 

dimGm(P4
1) = 2 

and so 

dim gm (P,1) = dim SmT^ + dim G m (P,1) = m + 3 (6.98) 

for every m > 3. Now the Spencer complex (1.10) corresponding to the 
operator P4 is exact in the first two terms, that is in <7m+2(P4) and in 
T*®gm+i(P}).So 

rankJi,m(P4
1) = dim (T* ® pm + 1(P4

1))-dim (gm+2(Pl)) = 3m + 11 
(6.99) 

for every m > 3. On the other hand, from (6.97) we have 

A 3 r*® S m _, (P 4
1 ) = (A 3 T*®5 m - 1 T / : )©(A 3 T'®G m _ 1 (P 4

1 ) ) . 

Let B be an element of A2T*<g>0m(P4
1). We have tf2,m(P4)B = 0 if and only 

if the system consisting of the equations (6.71) and of the eight equations 

^ B{ei,ej,ek,h2
n~2,v2)=0, 

< cycii^*} . (6.100) 
J2 B(ei,ej,ek,v?-1) = 0, 

. cycl{tj*} 

holds, where {e{}i=i...4 are the vectors of the adapted basis {hi, vi}=i,2 and 
i,j, k = 1...4 are all different. We can see that the equations (6.100) are 
the same as the equations of the system (6.70) without b). The analysis 
of (6.70) has shown that (6.70a) and (6.70c) both contain 3 independent 
equations (for the computation see page 133). Therefore the rank of (6.100) 
is 6. 

Moreover, we also showed there that the system (6.71) contains 3m + 
1 independent equations with respect to (6.70) and therefore also with 

http://9mi.Pl
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respect to (6.100). Hence Ker<52,m(P4) is determined by 3m+7 independent 
equations, and 

dimKer^.mtPj1) = dim(A2T* ® 5 m (P 4
1 ) ) - (3m + 7)= 3m + 11. 

So rank<5i,m(Pi) = dimKer<52,m(P4
1) and thus tf^P,1) = 0 for m > 3, 

which proves that P\ is 2-acycUc. 

Let us now consider the operator P5
X = (P4

:, P&), with k2 ̂  0. We have 

ffm(p5
1) = 5 m r A - e G m ( p 5

1 ) , (6.101) 

where Gm(P£) = Gm(P4
1) nG m (P 6 ) . Let Bm e Gm(P£)- If Bm € Gm(Pb), 

then one also has Bm(vm) = 0. Thus 

dimGm(P5
l) = l, 

and so 

dim5m(P5
1) = dimSmTh* + dim Gm(P5

1) = m + 2 (6.102) 

for every m > 3. Prom the 1-acyclicity of the Spencer complex we have 
rank<51,m(P5

1) = dim (T* ® ffrn+1(P5
1))-dim ( ^ ^ ( P ^ ) ) and so, by (6.98), 

we get 

rank<51,m(P5
1) = 3m + 8 (6.103) 

for every m > 3. On the other hand, using the decomposition (6.101) once 
again, we have 

A3T* ® gm-i{P2) = (A 3 T*®5 m - 1 r h *)©(A 3 r*®G m - 1 (P 5
1 ) ) . 

If B is an element of A2T* <g> gm(Ps), then we have <52,m(P5)B = 0 if 
and only if the system consisting of the equations (6.71) and of the four 
equations 

£ B(ei,ej,ek,h2
n-2,v2)=0, (6.104) 

cycl{ij*} 

with i,j, k = 1, ...,4 different, holds. 
The equations (6.104) are the same as the equations of the system a) 

of (6.70), which is, as we have already shown, composed of 3 independent 
equations. (For the computation see page 133.) Again using the fact that 
the system (6.71) contains 3m + 1 independent equations with respect to 
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(6.70) and therefore also with respect to (6.104) we find that K e r ^ m ^ s ) 
is determined by 3m + 4 independent equations, and therefore 

dimKer<52)m(F5
1) = dim(A2T* ® gm(P£))-(3m + 4)= 3m + 8. 

Thus rank$i m (Ps1) = dimKer82,m(Ps), for m > 3, which proves that 
H^(P^) = 0 for m > 3, that is P£ is 2-acyclic. 

D 

Using the results of this section, we can state 

Theorem 6.4 Let S be a rank one atypical spray. Assume, that A is 
diagonalizable and S is semi-reducible. 

(1) If k2 = 0, then 

(a) if rank M\ = 1, then S is locally variational; 
(b) if rank Mi = 2, then S is locally variational if and only if 

ai ? 0, a2 / 0, detM0 l ,0 2 = 0 and 6 ^ Q 2 = 0, 0*, Q2 = 0. 
(c) if rank M\ > 2, then S is non-variational. 

(2) If k2 # 0, then 
(a) if M2 = 0, then S is locally variational; 
(b) if rankM2 = 1, then S is locally variational if and only if 

Cl ? 0, c2 ? 0, rankM3 = 3 and 0 ^ C2 = 0, 9*liC2 = 0; 
(c) if rank M2 > 1, then S is non-variational. 

a 

6.3.2.5 Irreducible case 

In this paragraph we consider the case where the spray is irreducible, that 
is the condition of the compatibility of P3 in an adapted basis {/ij, Vj}i=i,2 
is 

Y, XiVinE(vi,hi) + £ kiflE(vi,hi) = 0, (6.105) 
«=1,2 i=l,2 

with xi ^ 0, and X2 ¥" 0- That gives a 3rd order operator P(h,A) which has 
to be introduced into the system. The symbol o-${P(h,A)) '■ S3T' —> Si of 



146 Variational sprays on Z-dimensional manifolds 

P(h,A) is 

[<^3(P(h,A))B3] =XlB3{vi,Vi,Vi)+X2B3{V2,V2,V2), (6.106) 

and the symbol of the first prolongation 04 (P(h,A)) '■ S4T* —> T* is 

[aA(P{h,A))B4](X) = xiB4(Xtvi,vi,v1) + X2 B4(X,v2,v2,v2), (6.107) 

B3 G 53T*, B4 e 54T* and X e T. The equation (6.106) is independent of 
the equations which determine g3(P3), therefore dim53 (P41) = dim ( 7 3 ^ ) -
1. 

Let us now consider the prolonged system. Replacing X in the equation 
(6.107) of g4(P(h,A)) by the four vectors of the adapted basis, we find that 
[<T4(P(h^)B4](vi) = 0, i = 1,2 are linearly independent of the equations 
of 54^3) for i = 1,2, (the pivot terms are PM(I>I) and B^v4,)), while 
the equations [ ^ ( P ^ ^ P ^ / i j ) = 0, i = 1,2 are linearly related to the 
equations of 34^3). Now dim^(P,1) = dim 54^3) — 2, that is 

ranka4(P4
1) = rank<x4(P3) + 2. 

Let 7-4 be the map 

T\ : (S2T* ® F3) ®T* —> K\ © M © R, (6.108) 

denned by r\ := (fj,1, T{hiA), pu p2), where 

T3(B,Cr,CA,C(h,A)) := f3(B,Cr,CA) 

as denned on page 116 and 

pi{B,Cr,CA,C{htA)) := xi B(vi,vi,hi) + X2 B(v2,V2,h2) - C(h,A)(S), 
p2{B,Cr,CA,CihtA)) := C(hiA)(prlS)-xi [Bs(vi,vuhi) + 

+ ^-Crivuv^huht) - ^■CA(vi,hi,hi,h2) - tfCA{vi,vi,huh2)) -

-X2 (-YCr(v2,v2,hi,h2)+ -Y(v2,h2,hi,h2)+ -y-B*(v2,t>2,/ii,/i2)J, 

A := Ai - A2 and pri is the projection onto the eigenspace corresponding 
to the eigenvalue A;. 

A simple computation shows that the sequence 

S4T* *l{Pi)> {S2T* ® F3) e T* rl > K\ —► 0 (6.109) 
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with K\ := Imrj is exact. 

Indeed, Imai(P^) C Kerr^. On the other side C^,A) (S) a n d C ^ ^ ) ^ ^ ) 
are pivot terms in the equations p\ = 0 and p\ = 0, and therefore they are 
independent of the equation fj = 0. Taking into account that the sequence 
(6.44) is exact, we have 

rankffitP,,1) = rankr^ + 2 = dimKerrg + dimT* - 2 = d imKerr ] , 

which proves that the sequence (6.109) is exact. 

Let p = j3(E)x be a 3rd order solution of P} in x e TM \ {0}. The 
conditions of the compatibility of the operator P\ are given by p\ (VP\ E) = 
0, where 

pi{VP\E) = xi(uifiE([ui,S],/ii) - tnrM[hi,S],t;i) + [vi,S\il(vuhi)) 
+ X? (V2^1E([V2, S], h2) - V2&E([h2, S], V2) + [V2, S\QE{V2, h2)) 
- (Sxi)vi£lE(vi,hl) - (Sx2)V2ilE(V2,h2), 

P2{VP\E) = (Sxi)v&E{vi,hl) + (SX2)V2ilE(v2,h2) - Xl{viilE([vi,S],hl) 
- viQE([hi,S],vi) + [vi,S]QE(vi,hi) + ^[h2,vi]QE(vi,hi) 
- Sv2[vi,V2]SlE(vi,hl))+X2{thl[h\,V2]nE(V2,h.2) + &[vUV2]nE(v2,h2)) 

+ Xi(ti7viY,a*([vM,fo)-&vi'52nB([vi,v2],hl)) 
cycl cycl 

- X2(d^2 J2 "*([«*, All. M + £ > 2 J2 HB([V2,Vi], h2)). 
cycl cycl 

which can be written as 

Pi(VPl) = £ fyjtlEivj,^) + J2 S)nB(vj,hj) (6.110) 
i = l , 2 } = 1,2 

i = 1,2, where there is no summation for the repeated index, and the 
coefficients fj and s! i,j = 1,2 are functions completely determined by S. 
Its definition is given in the Appendix (A.6). 

Using the conditions (6.105), the system (6.110) can be written as 

rxviQE(vi,hi) + s\nE(vi,hi) + s2
inE(v2,h2) = 0, 

1 2 ( o . l l l ) 
S2^E(vi,hi) + s2QE(v2,h2) = 0. 

In order to lift the third order solutions of P\ we have to explore on the 
coefficients T\, s'j of this system. 

First case: r\ = 0, s'j = 0. 
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In this case, obviously, any third order solution of P\ can be lifted into a 
fourth order solution. 

Second case: r\ = 0 and rank(sp > 1. 
Since in this case (6.111) contains two linearly independent equations re­
lating fi£(vi,/ii) and fiE(w2,/i2)i there is no regular second order formal 
solution satisfying the above compatibility conditions, and therefore S is 
non-variational. 

Third case: n = 0 and rank(sj) = 1. 

If rank (sj) = 1, then (6.111) gives a new second order equation, which we 
shall denote as 

sinE{vi,hi) +s2ilE(v2,h2) = 0. (6.112) 

In others words we have to introduce into the system the second order 
operator P, : C°°{TM) -► C°°(TM) defined by 

PaE := SitlEivuhi) + s2nE(v2,h2) (6.113) 

into the system. Using Lemma 6.6 we find the necessary and sufficient 
conditions for S to be variational: see at the end of the paragraph. 

Fourth case: r\ ^ 0. 
If ri ^ 0, then the first equation of the system (6.111) gives a new 3rd order 
obstruction, represented by the operator Pr : C°°(TM) —>■ C°°(TM), 
where 

Pr(E) := nv^Eiv^fn) + slnEivuht) + s2
inE{v2,h2). (6.114) 

Now we have to study the integrability of the differential operator 

P 5
1 := (P 4

1 ,P r ) . (6.115) 

The symbol of Pr is given by 

a3(Pr) : S3T' —> R, [a3(Pr)B3] = r, B3(«?), (6.116) 

and the symbol of the prolongation is 

<74(Pr) : S4T' —► T\ [a4(Pr)B4](X) = r, B4(X,«?), (6.117) 
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where B3 € S3T\ B4 € SAT" and X e T. The equation defining g3{Pr) is 
independent of the equations of 53 (P41). Thus d i m ^ P g ) = d i m ^ P j 1 ) — 1. 

Considering the prolongation, it is interesting to remark that Gi(P^) = 
G^Pf) and therefore we also have 54 (P5) = 54 (P41). Indeed, an element 
B4 in Gi(P^) is determined by the components Bi{h\,v2)- Therefore the 
equations <74(Pr)(/ii) = 0 and <74(Pr)(wi) = 0, i = 1,2 can be expressed with 
the help of the equations which define 54 (P,1). Consequently dim ^ ( P / ) = 
dim 174 (P,1) that is 

rank04(P5
J ) = rank04 (P4 ). 

Let us consider the map 

•n? : S'2T* <g> F3 0 T* © T* y K\ ®R®R®R®R, 

denned by 7-5 := (fl, (pj.)«=i,..,4) where 

f4 {B,Cr,CA,C(h^A),CT) =T4 {B,Cr,CA,C(hyA)), 
pl

T{B,Cr,CA,C(h>AhCr)=Cr(S)-r1B(v1,vl,h1), 

p2.(B,Cr,CA,C(fliA),Cr)=Cr{h2) + —Cr(vi,vi,h1,h2) - -j-CA(vi,hi,hi,h2), 

p3
r{B,Cr,CA,C(htA),Cr)-Cr(v2) - -r-CA{vi,vi,hi,h2), 

p4
r(B,Cr,CA,C(htA),Cr)=xiCr(v1) - riC^A)(vi) + -^-CA{v2,v2,huh2). 

The sequence 

S 3 T . ^ ^ \ ( r 8 f 4 ) e r —^-> ^ ► 0 ( 6 1 1 8 ) 

with K\ := Im r j , is exact. 

Indeed it is easy to see that lma\(P4
1) C Ker 74. On the other side, if 

we consider the system defined by 75 = 0, then Cr(hi), Cr(/i2), Cr{v2) and 
CT{v\) are pivot terms in the equations p\ = 0, p2. = 0, p3 = 0, and p4 — 0 
respectively. Using the exactness of the sequence (6.109) we find that 

rank 0-4 {P\) = rank T\ = dim Ker T\ + dim T* - 4 = dim Ker 7-5, 

which proves that the sequence (6.118) is exact. 
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We will now compute the obstructions arising from the maps pl
r. Let 

jz{E)x be a third order formal solution of P$ at x. We have: 

p\iyPlE) = S(PrE) -rioi(VwB(t;i,fci)) 
+ (Ss\)nE(vi,hi) + (Sa])nB(v2,hi) + 8\SilE{vi,hi) + s?SfiE(v2,/i2); 

p2
r{VPlE) = h2(PrE) + rivi(VirnE(vi,huha))-^vi(ViAilB(hi,hi,h,)) 

= rivi (y~" ilE{[vi,hi], h2))+{h2ri)vi£lE(vi, hi) + n[/i2, VI]QE(VI , hi) + 
cycl 

+ s\h2QE{vi,hi) + s?/i2n£;(v2, /12) + (h2s\)QE{v\,hi) + (/i2S?)fiE(u2, /12); 

pUVPZE) = U2(PrE) - jt)l(V«/»n£;(t/l,/l,,/l2)) 

= rit;i^^nB([i;i,/ii],t;2)J+(v2ri)t;ifi£;(t;i,/n) + ri[t;2,Vi]QE(t;i,/ii) + 
cycl 

+ (v2s\)QE(vi,hl) + (V2SI)QE{V2,}12) + s[ V2?IE(VI , /ll ) + Sj V2QE(V 2, A2), 

pt(VPfE) = (xi(«i«i) - n^ifcijjn^i.fci) + (xi(wn?) - r1{v1k2))n(v2,h2) 
+ (xifainJ + XHi - n ( f i X i ) -riki)viQ(vuhi) - ri(viX2)v2&(v2, h2) 
+ ( X l s l - rik2)viSl(V2,tl2) + riX2{[v2,Vl]Sl(v2,h,2) + V2 ( ^ il([v2,Vl], fo)))-

cycl 

Since xi # 0, X2 ̂  0 and ri ^ 0, the 3rd order derivative of E appearing 
in the above expressions can be expressed in terms of the second order jet 
of E using the equations (6.47), (6.105) and (6.111 a). Therefore the new 
obstructions can be written in the form 

pi(vp£) = <?ifi(i>i,/ii)+qin(v2,h2), (6.119) 

i = 1, ...,4, where the coefficients gj- can be easily computed. 
Let us consider the matrix 

M 5 : = 
2 2 

ll 92 
V s\ s\ ) 

(6.120) 

defined with the help of the coefficients of the equations (6.111 b) and the 
equations (6.119). 

If M5 = 0, the conditions of compatibility are identically satisfied for 
every third order solution of P5*. Then any third order solution of P5 can 
be lifted into a 4th order solution. 
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If rank M5 = 2, then ilE{vi,hi) = 0 and £lE(v2,h2) = 0, which is 
excluded if 5 is variational and E is a regular Lagrangian associated to S 
(see Lemma 6.1). 

If rank M5 = 1, then the equations (6.119) and the equations (6.111 
b) are linearly dependent and one of them can be removed. Let us denote 

qiQ(vuhi) + q2Cl{v2,h2) = 0 (6.121) 

the remaining equation. If qi = 0 or q2 = 0, the spray cannot be variational. 
Assuming q\ ^ 0 and q2 ^ 0, the equation (6.121) gives a new second 
order condition of compatibility. In order to introduce it into the system, 
we define the differential operator Pq : C°°(TM) —> C°°(TM) by the 
formula 

Pq{E) := qinE(vi,hi) + q2QE(v2,h2), 

and we consider the new system defined by the operator 

( P 5 \ P ? , V P , ) . 

(6.122) 

(6.123) 

Using the coefficients of the operator (P(/,,A)) Pr(vi), VPg(v2), Pq) we de­
fine the matrix 

(6.124) 

where 

Q\ 

ti 

M 6 : = 

f Xi 
T\ 

9i 
0 

V 0 

= (viqi)+q2Xl
Vi, 

= (t>2<?i) + qiXl
V2 

X2 
0 
0 
92 
0 

«J = 
q\-

*1 

*1 
«J 
*2 
9i 
92 

k2 \ 
si 
92 
9l 
92 / 

= (f 192) + 92X 
= {v2q2) + 9i X 

(6.125) 

According to the same reason that we have already used, we see that 
if rank M6 — 4, then the system has no regular 3rd order solution, so the 
spray S is non-variational. 

If rank Me = 3, then the two first rows can be expressed in terms of 
the others, and this means that the differential operators P(h,A) a n c ' Pr c a n 

be removed from the system. Then the system is equivalent to the system 
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defined by 

P6 := (Ps, Pq), (6-126) 

whose condition of compatibihty can be expressed in terms of the functions 
®«i .92 u s i n 8 * n e Completion Lemma. 

Finally, by a computation analogous to that of the above sections, one 
can check that the operators P\, P5

! and Pg1 are 2-acyclic. Now we can 
state 

Theorem 6.5 Let S be a rank one atypical spray; suppose that A is 
diagonalizable and the spray is irreducible. Then: 

(1) If r\ = 0 and s', — 0 (i,j = 1,2), then S is locally variational. 
(2) If r\ = 0, then S is locally variational if and only if 

(a) det(sj) i j= i l 2 = 0 , 
(b) M4 = 0, 
(c) S l ± 0, s2 ± 0 and 0 j i 8 2 = 0, 0 j l t , 3 = 0. 

(3) If ri ^0 and M5 = 0, then S is locally variational . 
(4) If n ^ 0 and M5 ^ 0, then S is locally variational if and only if 

(a) rank M5 = 1, 
(b) rank M6 = 3, 
(c) 91 # 0, 92 # 0, and 0'?1>92 = 0 , i = 1,2. 

□ 

6.3.3 T/ie inverse problem when A is non-diagonalizable 

The study of the inverse problem in the case where A is non-diagonahzable 
is very close to the study in the diagonalizable case. We will give only the 
results here, referring to [Mu] for detailed demonstrations. The explicit 
formulae are given in the Appendix. 

Let us return to the Section 6.3.1. As we have seen, the supplementary 
condition of compatibihty to lift a 3rd order formal solution p = jz{E)x of 
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the prolongation P31 of the system 

{ UJ = 0, i.e. the Euler-Lagrange equation 
i'rft = 0, 
iAfl = 0. 

is ifiE = 0 (cf. Proposition 6.3). We have the following Proposition, which 
corresponds to Lemma 6.5 in the non-diagonalizable case: 

Lemma 6.9 In an adapted Jordan basis {/ii,Vi}{i=i,2} (ie- hi and 
vi = Jhi span the eigenspace A associated to the eigenvalue A of A, 
and hi, V2 := Jh? span the other characteristic space) we have 

<PE(hi,h-2,hi,h2)=n1V2toE{vi,h2)+ ^ Pi^E(vi,h2), (6.127) 
1=1,2 

where the functions 771, pi and p^ depend only on the spray. Their 
definition is given in the Appendix (A.7). In particular, rji vanishes 
if and only if the distribution A2 is reducible. In this case we will say 
that the spray is reducible. 

Proof. If jz{E)x is a 3rd order solution at x of P31, then we have 
(VP3E)X = 0 and hence 

(VPT)(X,hi,hj) = XnE(hj,Vi) =0, 

(vpA){x,hi,hj) = \xiJnE(hJ,vl) - xii(vuhi) = -xii(vuhi) = 0, 
for every X € Tx. But dilE = 0, and so: 

^E([hi,vi],h2) + nE([vuh2},hi) + QE([h2,hi},v1) -

-hiClE(vi,h2) -VIQE^,^) - h2$lE(hi,vi) = 0, 
toE{[vi,hi],h2) + toE([hi,h2],vi) + CtE{[h2,vi},hi) 

- viQE(hi,V2) - hiilE(v2,vi) -v2nE{vi,hl) = 0. 

Since QE\T„XT„ = 0> hiilE{vi,h2) and viilE(hi,v2) can be expressed by 
fis without its derivatives, i.e. by the second order derivatives of the 
Lagrangian E: 

hiQE(vi, h2) = flE([hi, vi], h2) + QE([V\ , h2], hi) + flE([h2, hi],vi), 
viilE(hi,v2) = ilE([vi,hi],v2) + QE([hi,v2],vi) + SIE([V2, VI], hi). 
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Thus we get 

viQE{vi,h2) =77^ nE(vi,h2)+ vl^E(v2,h2), - . 

hiflE(vi,h2) =Vhi^E(v1,h2) + ■nliSlE(v2,h2), 

and 
vinE(v2,h2) = V2HE{VI, h2) + r]l2nE(vi,h2) + rfv^lE{v2, h2), 

i 2 (6.129) 

hiUE{v2,h2) = h2SlE(vi,h2) +T]fl2nE(vi,h2) +J]i2ilE{v2,h2), 

where the coefficients are denned in by (A.8) and (A.9). 

On the other hand, (£suE)x = {cLuE)x and {CLJE)X — 0 imply that 

snE(x, Y)X = nE([s, x], Y)X + nE(x, [s, Y])X (6.130) 
So 

snE(v2,h2) = ( ^ + ^M]) nE(vu h2) + (4f'^i + z[s
2

M]) nE(v2, h2). 
and 

h2QE(vi, h2) = uiv2^lE(vi, h2) + ulilE(vi, h2) + vlSlE{v2,h2), 

h2nE(v2,h2)= ^ ^V2flE(vl,h2)+ ] T 4^E(vi,h2), ( 6 - 1 3 1 ) 

i=l,2 t=l,2 

where the coefficients i/* and uf, i,j = 1,2, depend only on the spray (their 
definition is given by (A.5). If we collect the second and third order terms 
which appear in the compatibility condition ipE = 0, we obtain the first 
part of the Lemma. 

For the second part, we notice that we have rji (x) = 0 if and only if 
d T ' 7 " 1 ^ +d." , , fcl1 = 0 at x, that is 

/ cS tK . ' n ] \ 

e e V2 

So rji(x) = 0 if and only if pr2Sx and pr2[v\,h\]x are linearly dependent, 
where pr2 denotes the projection on to the characteristic distribution com­
plementary to the eigenspace A in the characteristic spUtting of Tx, that 
is there exists /j. £ 2R, such that 

pr2{[vi,hi] - nS)x = 0 
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Since Sx & Ax , 771 (1) vanishes if and only if either A is integrable (n — 0), 
or 5 , 6 A?, that is A2 is reducible at x. □ ' n 

There are two cases to study, according to wheter S is reducible or not. 

6.3.3.1 Reducible case 

One can check, in a way completely analogous to that in the diagonahsable 
case, that the operator F31 is 2-acyclic (cf. [Mu]). So if the coefficients 
Pi and P2 vanish, the operator P31 and F3 are formally integrable. It fol­
lows that the spray is variational. An example of a spray satisfying these 
conditions is the following: 

Example 6.5 Let us consider the system: 

Sil=X2' (6.132) 
\ X2 = 0. 

We have rj = 0, A\ = A\ = A\ = 0, and A\ = 1. Thus A' = 0, and the 
rank of the spray is 1. The eigenvectors of A adapted to the connection T are 
I hi = g§-, vi — jp- > . In particular, the eigenspace A is integrable, the spray is 

not typical and a Jordan basis of A is < g|-, -^-, g|-, -S- \ ■ Hence the brackets 
which appear in the expressions of the function pi vanish identically. Therefore 
the system (6.132) is variational. 

Let us suppose that p\ and pi are not both zero. In order to give the 
conditions of compatibility of the operator 

PiE := (WE, i r«E, IA^E, P{h,A)E) (6.133) 

where 

P{h,A)(E) = PlnE(vi,h2) +p2nE(v2,h2), (6.134) 

we introduce the following notation, analogous to that of the functions 0 ' 
(see page 122) introduced in the diagonalizable case. 



156 Variational sprays on 2-dimensional manifolds 

Definition 6.3 Let 0i and 02 two function on TM, with 02 ^ 0. We 
can define the functions 9* on T(TM) by the formulae 

, N ( 6 - 1 3 5 ) 

*«,.«, :=(2l?ld7'51 + M ? , M +^^ 2 ' V l 1 " (5it?i)) 

where Si := p n S and S2 := pr2S are the projections of S on to A and on 
to the other characteristic space. 

As the formula (6.127) shows, the higher order compatibility condition 
in the reducible case gives a new second order condition. The analyses of 
the different possibilities in the reducible case are possible with the help 
of Lemma 6.10, which corresponds to the Completion Lemma 6.6 of the 
diagonalizable case. 

L e m m a 6.10 (Completion Lemma in the non-diagonalizable case.) 
Let {/ii,i>j}i=i,2 be an adapted basis of A, x € TM\ {0}, 0 i , 02 smooth 
functions in a neighborhood of x not both zero. Let us consider the 
second order differential operator P# : C°°{TM) -* C°°(TM) defined 
on a neighborhood of x by 

P#E = 4inE{vi,h2) + i?inB(u2, h2), 

and the operator P$ := (P3, P#), and let us denote by N#u#2 the matrix 

( Vi Pi Vi \ 
W*,.*2 := 02 01 t?2 (6136) 

V 0 0j 02 / 
defined by the coefficients of the rows of P(h,A)> VP^(wi), andP$, where 

0i = ( M o + 0 i < + Mtir* - ti;M] - dT ' 1 ) , ( 6 1 3 7 ) 

02 = ( M 2 ) + 0 i < + 02(^ , , w a l - d T l ] ) -
Then 

(1) If 02 (x) = 0, then there are no regular second order formal solu­
tions of P# at x. 
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(2) Ifd2(x) ^ 0 , then 
(a) there are regular formal solutions of P# on a neighborhood U 

ofx if and only if * ^ ^ = 0, *%^ = 0, and det(N tfl,«a) = 0 
onU. 

(b) Moreover, the operator P# is "complete" in the sense that if 
we add to P# (E) = 0 a new differential equation of the type 

aV2flE(Vl,h2) + &V2fij5;(V2,/»2) + f"fl(vi,/l2) + sfl(V2,h2) = 0 

which is independent of P$(E) = 0 and his prolongation at 
x, then the new system has no regular second order solutions 
at x. 

The statements 1) and 2b) can easily be checked by a simple computa­
tion. 

The proof of 2a) is very similar to the proof of Lemma 6.6. As in the 
diagonahzable case, one can see that any 2nd order formal solution of P$ 
can be lifted into a 3rd order solution if and only if ^ ^ ^2 = 0, z = 1,2. 
However, H%(P&) ^ 0, that is P# is not 2-acyclic. Thus there is an extra 
compatibility condition for the prolonged system. An analysis analogous 
to that of the diagonahzable case allows us to show that this obstruction 
appears to lift a 3rd order solution into a 4th order solution. In fact, any 
3rd order solution of P# can be lifted into a 4th order solution, and there 
also exists a regular second order solution if and only if j i , i ( ^ ^ , ^ 2 ) = 0, 
i = l ,2 and det TV,?, ,,j2 = 0. 

On the other side, the first prolongation of P$ being 2-acyclic, the op­
erator P$ and therefore P$ are formally integrable and have a regular 2nd 
order solution, hence 2a) of the Lemma holds. 

In the reducible case we arrive at the following 

Theorem 6.6 Let S be an atypical spray of rank 1 and suppose that 
A is non-diagonahzable and S reducible. Then S is locally variational 
if and only if pi = p? = 0, or p^ ^ 0 and ^ iP2 = 0, i = 1,2. 

Example 6.6 Let us consider the system: 

f £ 1 = F ( x l l x 2 , x l l x 2 ) , 
1*2=0, 
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where ^- f ^ 0. We have r j = 0, and A\ = A% = 0. The rank of the spray is 

1. The eigenvectors of A adapted to the connection T are i hi = g§-, vi = g | - >, 

hence the spray is non-typical. The Jordan basis for A is given by the vectors 

— - r l — 
dxi ' dyi' 
— - r 2 — , 
dx2

 2 dyi' 

d 
Vl = 5 — 

dyi 
d 

dy2 
h2 = 

The computation gives T;I = 0, P2 — 0 and 

^ar}, ar^ arj, , , 
pi = Tj-r -r— + -r r u r n -

0x1 0x1 0x1 1 rifridr\i arj, ^ar}, , , \ 

sr where Vjk :— ■^-J-. So, generically pi ^ 0 and then the spray is non-variational. 

6.3.3.2 Irreducible case 

If S is irreducible, then we have to s tudy t h e integrability of the differential 
operator 

P4E = (uE, irnE, iAnE, P(h,A)E), (6.139) 

where 

P{h,A)(E) :=ViV2^E(vi,h2)+plnE(vl,h2)+P2nE(v2,h2). (6.140) 

Let 

T\ : (S2T*®F3)®T* > K\ © B, © M © R (6.141) 

be the map defined by T\ := (fg1, T(h,A), PI, PI, £3), where 

f3(B,CT ,C'A,C(htA)) = r 3( -B ,Cr ,C , i ) , 

M - ^ C V . C ^ C ^ ^ ) ) = »?iB(u2,ui,/i2) - C ( h , ^ ) ( 5 ) , 

p2(B,Cr,CA,C(htA)) = C(/ l i j4)(/ii) - Y C r ( u 2 , u i , / i i , / i 2 ) - V\CA(y2,h2,hi,h2) 

p3(B,Cr,CA,C(hiA)) = C(hjA)(vi) + r]iCA(v2,v2,hi,h2). 
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->Kl ->0 

It is easy to show that the sequence 

54r* a4{p*]) ( 5 2 T * ® F 3 ) e T * 

with Kj := Im r ] , is exact. 

The new conditions of compatibility for a 3rd order formal solution 
j3{E)x of P4 in x e TM \ {0}, are given by the equations p^VPjE) , = 0, 
i = 1,2,3: 

Pi(VP4
1

JE)=(Si7i)w2n(i;iIh2) + 5(pin(t;i>/»2)+P2n(«2,/»2)) 
+ J7i[5,v2]n(t;i,A2)+i7iW2(n([5)t;i],/i2) + n(wi,[5,/ii])), 

p2(VPlE) ={hitii)v2il(vi, fta) + fti (pin(wi, /i2) + P2^(v2, h2)) 

+ T]l[h\,V2)n(vl,h2) — 771̂ 2 
cycl 

p3{VPlE) =(«n7i)w2n(i;i, ft2) + «i (pin(wi, h2) + P2^{v2,h2)) 

+ T]l lVl. V2p{Vi , h2) - T]lV2 (^2 fi([y2> Vl 
cycl 

With the help of the equations (6.128), (6.129) and (6.131) the obstruction 
can be written as 

Pi(VPlE) = J2 ViV2ilE(vjM+ Y, PjvMvjth2). (6.142) 
j = l,2 J = l ,2 

The exphcit expression of the coefficients fjj and p? is given in the Appendix 
(A.ll). Let 

AT, : = 

/ J?l 0 pi p 2 \ 
*?} »?2 Pi P2 

fji 4 p\ p\ 
\ vl v2 p \ Pi I 

(6.143) 

be the matrix of the coefficients of the operator P(h,A) a n £ i 0I" the equations 
Pi(VPj) = 0, i = 1,2,3. Using a line of reasoning completely analogous to 
the one we have developed in the precedent sections (cf. for example the 
proof of Lemma 6.7, page 138), we find 

- If rank N\ = 1, then every third order solution of P,1 can be lifted into 
a fourth order solution. 
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- If rank N\ = 2, then a new condition of compatibility has to be intro­
duced into the system. 

- If rankNi = 3, then: 

(1) if fj2 = 0, i = 1, 2, 3, the spray is non-variational; 
(2) if one of the fj2, i = 1, 2, 3 does not vanish then a new 3rd order 

condition of compatibility has to be introduced in the system. 

- If rank N\ = 4, then the spray is non-variational. 

The new conditions of compatibility can be written in the form 

V2V2^E(v2,h2) + q\^E(vi,h2) + q\SlE{v2,h2) = 0, 
(6.144) 

q2flE(vi,h2) + q^flE(v2,h2) = 0, 

where the coefficients r)2, q\ can easily be computed from the matrix (6.143). 

a) Case r)2 = 0 

Let us assume that r)2 — 0 and the rank of the matrix Â i is two. In this 
case the two equations of (6.144) are linearly dependent, and give a new 
relationship between the terms £lE{vi,h2) and CtB(v2,h2). Let us denote 
it by 

qi^E(vi,h2)+q2nE(v2,h2) =0. (6.145) 

According to the Completion Lemma (Lemma 6.10) we obtain the necessary 
and sufficient conditions for 5 to be variational. 

b) Case T)2^0 

If T)2 ^ 0, then the first equation of the compatibility conditions (6.144) 
gives a new 3rd order condition, and therefore we have to consider the 
operator 

P*E:=(Pl,P9), (6.146) 

where Pq : C°°(TM) -► C°°( rM) denotes the operator 

PqE := r)2v2nE(v2,h2) + qlQB(vi,h2) + qlSlE{v2,h2). (6.147) 
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Let us consider the map 

751 : S2T' ® F3 © T* © T* r ' ) AT] © 5? © M © JR, (6.148) 

defined by T\ := (f4\ p\, p2
q, p3

q), where 

"Ti (-S) Cr,CA, C(h,A),Cq) = r4 (#> C"r, C/i, C(fc>/i)) 
pJ(B,C,r,C^>C(fc^)>C,)=C,(5)-iteB(«2>«2,ft2), 

P ^ ^ i C r . C ^ . C ^ . ^ . C , ) = C,(/ii) - — Cr(v2,V2,/ii,/i2) + — #(/.,,!))(M, 

P^B.Cr.c^.q^j.c,) = 171 c , ^ ) -m[°i(P(h,A))B}(v2), 
and T4 is defined on page 158. By a standard computation one can check 
that the sequence 

S3T' "3{P* )>(T*(8>Fi)®T* T5' )K\ —» 0 (6.149) 

is exact, where K(P$) denotes the image of 7-5. Let js{E)x be a 3rd order 
formal solution of P5* o n i g TM \ {0}. Computing the obstructions, we 
arrive at: 

pl(VPs E) = (ST}2)V2nE(V2,h2) + S(qiQE(vi,h2) + q&EiVi^i)) 

+ T)2[S, V2]QE(V2, h2) + 7/2D2 (nE([s,v2],h2) + nE(v2,[s,h2])) 
p2

q{VPsE) = (hiri2)v2Q.E{v2,h2) + hi{q&E{vi,h2) + q2Q.E{v2,h2)) 

- —{{h2T)i)v2Q.E{vi,h2) + h2(qiQE(vith2) + q2ilE(v2,h2))\ 
771 1 > 

+ 1]2[hl,V2]QE(v2,h2) - 772[/l2,U2]nE(»J2,/l2) + 7/2^2 ( J t flg([/ll, Vj], h2) ) , 

/ ^ ( V P s ' P ) = VI(VIV2)V2QE(V2,h2) - ri2(vir)i)v2QE{vi,h2) 
+ T/lfl (q\^E(vi,h2) + q2ilE(v2,h2))-TflVl (piflf:(l>l, A2) + P2&E(V2, h2)) 

+ 77l772[m , V2]ilE(v2, h2) + 7717̂ 27J2 f ^ ile([vi , V2], h2)j . 
cycl 

Moreover, using the equations (6.128), (6.129), and taking into account that 
(P(htA)E)z = 0, (PqE)x = 0, we can eliminate the 3rd order terms from 
the expression of the conditions of compatibility, which can be written in 
the form: 

^(VP4
1) = r - inB (7j 1 , / i 1 )+r^ £ (7j 2 , / l 2 ) , (6.150) 
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i = 1,2,3. Let us consider the matrix 

(r\ 
N2:= 

r2 

To .1 (6.151) 

\ ti QI ) 
defined by the coefficients of the second order conditions of compatibility 
(6.150) and (6.144 b). We have the following possibilities: 

(1) If N2 = 0, then every third order solution of the operator P5 can 
be lifted into a fourth order solution; 

(2) / / rankA^ = 1, then the equations (6.150) are equivalent to one of 
them, which we denote 

Pr := r in £ (u i , / i 1 ) + r2flE(v2,h2) = 0. (6.152) 

(3) If rankA^ = 2, then fi£(vi,/ii) = fi^t^,/^) = 0 and S cannot be 
variational (see Lemma 6.1). 

Indeed, 1) and 3) can easily be checked by a simple computation. Let 
us consider the case, when rank ./V3 = 1. 

If r2 = 0, then there are no regular second order solutions of P5
! which 

satisfy the compatibihty conditions (6.144 b) and (6.150), so the spray S 
is non-variational. 

If r2 ^ 0 we must study the integrability of the system: 

Let 

N*:= 

(nv 

fm 
0 

V2 

T\ 

\ 0 

Pr, VP r) 

0 

m 
0 

r-i 
0 

Pi 
9i 

-2 

n r\ 

(6.153) 

P2 \ 
92 

r2 / 

(6.154) 

be the matrix defined by the coefficients of P(h,A)> ^V(^i). VPr(v2) and PT. 
The coefficients fj are given explicitly in the Appendix (A. 10). 

Since r2 jt 0, we have rank N4 > 3. Obviously, if rank N4 = 4 then 
S is non-variational, because there are no second order regular solutions 
satisfying the compatibihty conditions. 
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If rank iV4 = 3, then considering the system Pe := (P3, Pr)» i.e. tne 
second order part of the system (6.153), the Completion Lemma (Lemma 
6.10) get us the necessary and sufficient condition for S to be variational. 
Therefore we can state the following 

Theorem 6.7 Let S be a rank one atypical spray and suppose that A 
is non-diagonalizable and S reducible. 

(1) If rank N\ — 1, then S is locally variational; 
(2) Ifr&nkNi = 2, and 

(a) if 772 = 0, then S is locally variational if and only if 

detNqun=0, g z ^ O , and * j I i B = 0, i = 1,2, 

(b) ifm^O, and 
i. t / rank ^2 = 0, then S is locally variational, 

ii. if rank N2 = 1, then S is locally variational if and only if 
r a n k N 3 = 3 , r 2 ^ 0 , and *• , r2 = 0, t = 1,2. 

«t. i/rankiV2 = 2, then S is non-variational. 
(3) If rank Nr = 3, and 

(a) if 772 = 0, then S is non-variational, 
(b) if 772 ^ 0 , and 

i. rankJV^ = 1, then S is locally variational if and only if 
rankiV3 = 3, r2 ^ 0, and * ' l i P j = 0 , i = 1,2. 

ii. rankW2 = 2, then S is non-variational. 

(4) If rank N\ = 4, then S is non-variational. 

6.4 Rank S = 2 

6.4.1 Typical sprays 

In this section we suppose that the spray has rank 2. This means that 
the tensor fields J, A, A' give a basis of the C°° (TM)-module spanned by 
{J,A,A',...,AW,...}. 



164 Variational sprays on 2-dimensional manifolds 

Let us return to the study of the operator P3, that is of the system 

UE = 0 , 

irfi£ = 0, 
lA^E = 0 . 

As we have seen (cf. page 90 and 103), a second order formal solution 
32(E)x of P3 in x € TM \ {0} can be lifted into a third order solution if and 
only if IA'^E = 0. If rankS = 2, this gives a new obstruction which has 
to be introduced into the system. Then we have to study the differential 
operator 

P4 : C°° (TM) ► Sec (T„* e A2T„* 0 A2T„* ® A2T„*), 

denned by P4 := (P3, PA>), where P\< = i^ddj. 

Propos i t ion 6.5 [Don] Let rank5 = 2. If A and A' have a common 
eigenvector, then the spray is not variational. 

Indeed, if A and A' have a common eigenvector, then they also have a 
common horizontal eigenvector hi and a vertical one v\ = Jh\. Let /i2 and 
V2 = J/12 be such that {h\, vi, /12, ^2} is an adapted Jordan basis for A and 
denote by aij the components of the matrix of A' in this basis, that is: 

A'hi = anVi + ai2v2-

Of course, a\2 = 0. Note that, since rank 5 = 2, we have 021 ^ 0 if A is 
diagonalizable and an — a22 i1 0 if A is not diagonalizable. 

Suppose that the spray S is variational and let £ be a regular La-
grangian associated to S. Since IA'SIE = 0, we have 

M<n(/ii,/i2) = anfi(ui,/i2) - a2iCl(vi,hi) - a22Q(v2,hi) = 0. 

Now a2ifl(vi,hi) = 0 if A is diagonahzable and (au - 022)ft(vi,/i2) = 0 
if A is not diagonalizable. Then fi£;(ui,/ii) = 0 in the diagonalizable case 
and fi£;(t;i, /i2) = 0 in the non-diagonalizable case and this is excluded (cf. 
Lemma (6.1)). 

D 

Corollary 6.2 The typical sprays of rank 2 are not variational. 
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Indeed, suppose that S is in the eigenspace A* corresponding to the 
eigenvalue A. In this case hS and C = Jh are also found in A* (cf. Propo­
sition 3.7). Then vS € A*, hence there exists n 6 1R, such that vSx — p.Cx. 
We have 

A'(hS) = F(A'hS + A'FhS) = FA'hS = Fv[AS,S\ - FA[hS,S] = 

= Fv[XC, S] + FA[vS, S] = (S\)FC + XFv[C, S] + ^FA[C, S], 

but 

[C, S] = [J, S](S) = hS-vS = hS- fiC, 

and so 

A'(hS) = (SX)FC - XFvS + nFA(hS) = (SX)FC = (SX)hS. 

This means that hS is a common eigenvector for A and A', whereby we 
can conclude that the spray is non-variational. 

6.4.2 Atypical sprays 

We will now consider the cases where the spray S is atypical. Using the 
results of the Completion Lemmas (cf. Lemmas 6.6 and 6.10) we can eas­
ily formulate the necessary and sufficient conditions for the spray to be 
variational. 

a) A is diagonalizable 

Let {hi,fi2,v\,V2} be an adapted basis and A'hi = anVi + ^2^2- The 
compatibility condition which has to be introduced into the system P3 = 0 
is 

iA'^E(hi,h2) = -a2 if t£(ui, / i i) + ay2^E{v2,h2) - 0. 

Note that a\2 and a2\ are not both zero, because rank 5 = 2. The situation 
is the one described in the Completion Lemma 6.6. Thus we can state the 
following 

Theo rem 6.8 Let S be an atypical spray of rank 2, with A diagonal­
izable. Then S is locally variational if and only if 
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1) A and A' have no common eigenvector ( i.e. 012021 7̂  0), 
2) ©-«„.«„ = 0 , t' = l ,2, 
3) rank(M_021 ,a i2) = 3, 

where the matrix M_a 2 1 i a i 2 is defined in (6.56) with g\ = —021 and 
92 = 0.12-

b) A is non-diagonalizable 

If A is non-diagonalizable, then the computations and results are similar 
to those in the diagonahzable case. In a Jordan basis adapted to A' the 
compatibility condition iA'^E — 0 is 

(an -a22)^E(vi,h2) + a ^ f i f K ^ . M = 0 . 

Using the Completion Lemma 6.10 we arrive at the following 

Theorem 6.9 Let S be an atypical spray of rank 2 and suppose that 
A is non-diagonalizable. Then S is locally variational if and only if 

1) A and A' have no common eigenvector (i.e. 012 ^ 0), 
2) * a „ - a 2 2 , a 1 2 = 0 , 1 = 1,2, 
3) rank(7V0u_a22,0l2) = 2 , 

where the matrix N a u _ a 2 2 i a i 2 is defined by (6.136) with i?i = a n — 022 
and $2 = 012-



Chapter 7 

Euler-Lagrange Systems in the 
Isotropic Case 

In the previous chapter we gave the complete classification of the variational 
sprays on 2-dimensional manifolds. Despite the fact that the dimension 
of these manifolds is low, the complete analysis is complex, as we have 
seen. In the higher dimensional cases the situation is, of course, much 
more complicated since the conditions of integrability involves not only 
the Douglas tensor, but also the curvature tensor and its derivatives and 
the higher order elements of the graded Lie-algebra associated to the spray 
(see Section 4.2). Therefore it is not really reasonable to expect a complete 
classification of variational sprays on n-dimensional manifolds where n € W 
is arbitrary, unless we consider a particular class of sprays. 

Natural restrictions can be imposed on the curvature of the natural 
connection associated to the spray. In this chapter we will consider isotropic 
sprays, whose geometrical meaning was explained in Section 3.5: if they 
are variational, the associated Lagrangian has isotropic curvature. They are 
analogous to the geodesic of a Riemann manifold with constant curvature 
for non quadratic second order equations. 

As in the previous chapter, manifolds and the other objects (tensors, 
functions etc.) are assumed to be analytic. If an object lives on the tangent 
bundle, then it is assumed to be analytic away from the zero section. 

7.1 The flat case 

The simplest case of isotropic sprays is when the semi-basic 1-form a in 
the Douglas tensor (3.33) vanishes, and so the spray is flat (see Definition 

167 
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3.28). The following theorem is a generalization to the n-dimensional case 
of the Theorem I of Douglas. 

Theorem 7.1 Every flat spray is locally variational on TM \ {0}. 

Remark . This Theorem has also been proved by I.M. Anderson and 
G. Thomson in [AT] using Cartan's Theory of exterior differential systems, 
and recently by M. Crampin, E. Martinez and W. Sarlet in [SCM] using 
Riquier's Theory of partial differential systems. Our result has already 
been published in [GM]. 

Proof. Recall that a second order solution J2(E)X of the Euler-Lagrange 
operator Pi can be lifted into a third order solution if and only if (ir^fi)i = 
0, where T = [J, S] and QE = ddjE (cf. Paragraph 5.1). Thus we have to 
study the integrability of the differential operator Pi — (Pi, irddj). We 
have already showed that P2 is a regular operator on TM \ {0}, and that 
at any x € TM \ {0}, the set of second order formal solutions, i?2,*(-P2)i 
contains regular 2nd order formal solutions (see Paragraph 5.2). 

On the other hand, the compatibility conditions for Pi are given by the 
equations 

iA^E = 0, 
iRQE = 0, 

(cf. Proposition 5.2). Now 

IA^E = ixj^E = A i jn £ = Xd2jE = Xd[jj]E = 0, 

and 

IR^E - ~i^[xj,j}^E ~ -^d[Xj,J]djE= -\(dXjd2jE + dj\d2j)= 0. 

Thus the conditions of compatibility are satisfied. 

Let us now prove that P2 is involutive. Let B 6 S 2 T ' be a symmetric 
tensor. Since g2 {Pi) = 32(A) f~l gi(Pr), we have B G 32(^2) if and only if 

B(S,JX) = 0, (7.1) 
B(hX, JY) - B(hY, JX) = 0, (7.2) 
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for any X,Y G T (cf. (5.2) and (5.8). In an adapted basis {/ii,t>i}i=i,...,n 
with h\,..., hn horizontal and Vi = J/i*, these equations are 

B(S,Vi) = 0, (7.3) 
B{hi,vj)-B(hj,vi) = 0, (7.4) 

where i < j , i,j — 1,..., n. Since these equations are independent, we find 

,. , _ N n ( n + l ) 2 dim5 2(P2) = - ^ — i + n2. 

On the other hand, as we have seen in Section 5.2, we have 

dim 33(^2) = 5 • 

To give a quasi-regular basis, we will consider the homogeneous and the 
non-homogeneous case separately. Note that the spray is homogeneous if 
and only if it is horizontal. Indeed 

TS = [J, S]S = [C, S] - J[S, 5] = [C, S], 

so vS = £(S - [C, S}) and hence vS = 0 if and only if [C, 5] = S. 

Homogeneous case 
Let us first consider a basis B = {/it,fi}i=i...n of T^ with hi,...,hn 

horizontal, hn := S and J/ij = Vi for i = l,. . . ,n. We have un = C. Let 
B £ 5 2 r* and put forward 

a.ij := B(hi,hj), bij := B(hi,Vj), and Cij := B(vi,Vj). 

Note that 
a) ajj = aji and Cij = Cji i,j = l , . . . ,n, 
t) &m = 0, t = l,...,n, 
c) b^ = bji, i,j = l,...,n. 

The relation a) comes from the symmetry of B, while the equations b) 
and c) correspond to the equations (7.3) and (7.4) respectively. An easy 
computation shows that this basis is not quasi-regular. Let us now consider 
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the basis B = {ej,i>i}j=i...n where 

et := < 

hi+ivi, for i = l,...,n— 1, 
n 

ftn + ^ ^ A , for t = n. 
*=i 

We shall prove that this basis is quasi-regular. Let us denote 

dij = B(ei,ej), bij = B(a,Vj), and cy- = B(vi,Vj). 

We have Cy = Cy for i, j = 1, ...,n, and also 

&ii = < 

Oij + 2 C{j , 

X!c*i> 

i , j = l , . . . , n - 1; 
i = n; 
i — n. 

k=l 

These relations allow us to express the components of the block (cy) in 
terms of the components by: 

I 
1 

Cij — 
i - j 

- (b^ - bji), 

i < n, 

1 < i < j < n, 

5« - *>ni ~ ^ T : (bjk ~ hi), i<n, 
kjti l 

1 -
Cnn — Unn / j , Okn • 

kjtn 

Thus an element B of 52(̂ *2) is completely determined by its components 
d^ and 6y. Taking into account that the matrix (dij) is symmetric, we 
obtain 

(n - k)(n - k + I) 
dim52(P2)e i . . .ek = - J-^ - + n(n - k). 
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On the other hand dim<?2(-F>2)ei...e„,«i...vfc = 0, for k = 1, ...,n, whereby 

n n 
dimff2(P2) + ^dim(f l2(P2))e]...et + £ d i m (<fc(^) ) e i ^^ ^ 

k=l fc=l 

, n(n + l) ^ (n - l)(n - k + 1 ) v ^ , , , 
= "2 + 2 + J2 — 2 + z > ( n - *) 

t = i fc=i 
2 n(n + l) n ( n - l ) ( n + l ) ra2(n-l) 4n(n + l)(2n +1) 

= n +^2~ + 6 + 2 = 3 
= dim 53(^2), 

which proves that the basis B = {ej,Vj}j=i,...,n is quasi-regular. 

Non-homogeneous case 
In this case we have vS ^ 0. First consider a basis {/i»,^t}i=1 ..„ with 

V{ = Jhi, hn — hS such that the vectors hi, for i = l,...,n — 1, are 
horizontal and the equation vS = X)*=i vk holds. In this basis for an 
element B 6 52(f2) w e have the following relations: 

a) aij = aji and ĉ - = Cjj, 

6) 6jj = bji, 

n 

k=\ 

for i = 1, ...,n. The relations a) show that Z? is symmetric, the equation 
b) comes from the equation (7.3), while the property c) comes from the 
equation (7.4), because 

bni = B(hS,Vi) = B(S,Vi) - B{vS,Vi) (=3 ) -B(vS,vt) = - £ c « . 

Let us now consider the basis B = {ei,Wi}i=i,...,n where e, = hi + ivi for 
i = 1,..., n and denote by 2y, b^ and cY,, i, j = 1, ...,n the components of 

for i = 1, ...,n. The relations a) show that B is symmetric, the equation 
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B in this basis. We have cY, = c^j and 

bij = bij+icij, i,j = l , . . . ,n - 1, 
n 

bin = - 2 j c t n + z'ci„, i = l , . . . , n - l , 

n 

6nj = - 2 j c f c i + ncin, t = l , . . . , n - l . 
fc=i 

Hence, as in the homogeneous case, the block {dij) can be expressed in terms 
of the elements of the block (b{j). We arrive at the following relations: 

Cij =-■ : {bij -bji), l < j < i < n , ( 7 . 5 ) 
I -J 

— 1 ~ ^ ^ n 1 ~ ~ 
Ci, = r (&nt - bin) - bni + Y ^ - :{bki-bik), 1 < t < n, ( 7 . 6 ) 

n — i , *—■', Ac — i 

1 n—1 -
Cnn = T (bnn + V " T^nk ~ &fcn ) • ( 7 .7 ) 

n — 1 \ ^ ^ n — k I 
fc=i 

Equation (7.5) is obvious. To check (7.6), note that 

n - l 

bni = bni + ncin = 2 J C«« ~~ C*> _ (n _ l ) c 

and hence, using (7.5) 

c« = {bni ~ bin) ~ bni - > —; :—• 
n - i *—' k - 1 

k=l,k^i 

To prove (7.6) note that 6nn = 6nn + ncnn, so 
n - l 

bnn = - 2 J C*« + (n _ l)Cnn, 
*=1 

and thus 

fc=l * = 1 

Now, as in the homogeneous case, an element B of 92(^2) is determined 
by the components of the blocs 2*j and b^ where a,ij is symmetric, and 
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therefore we find, as in the homogeneous case 

j - / n \ (n - k)(n - k +1) . , , 
dim52(P2)e1...e t = ^ '-+n(n-k), 

and dimg2(P2)ei...en,vl...vk = 0, for k = l,...,n. Hence the same compu­
tation as in the homogeneous case shows that the basis B is quasi-regular. 
The Theorem is proved. □ 

The computation of the Cartan characters shows that the general solu­
tion depends o n n + 1 functions with n variables *. 

7.2 T h e non-flat case 

We suppose in this section that the spray is isotropic, i.e. A = XJ + a ® C, 
where Q is a non-zero semi-basic 1-form. 

Note that if L is a semi-basic (1-1) tensor, its matrix in the natural 
b a s i s { a ! w } i s 

* - G 5 o). 
where (x1) is a local coordinate system on M and (xl, j/') is a local coordi­
nate system on TM. To give an intrinsic definition of the Jordan blocks of 
the matrix (L&), we put forward L = FL + LF (cf. page 58): it is clear, 
from the matrix of Lx, that Lx has the same Jordan blocks as (L^(x)) of 
the components of L. Now we can formulate the following intrinsic 

Definition 7.1 A semi-basic (1-1) tensor L has a constant algebraic 
type on an open set U, if the degrees of the elementary divisors in the 
Jordan decomposition of L are constant on U. 

Lemma 7.1 Let S be a non-flat isotropic spray (a ^ 0) and xo G TM. 
Then: 

(1) AXo is diagonalizable if and only if isQXo ¥" 0-
(2) If A has a constant algebraic type on U and S is variational on 

U, then isax ^ 0 for every x G U. In particular 0 £ U. 

'Th is result is different from the results of ([Dou], [AT], and [SCM]) because we consider 
Lagrangians to be time-independent and, moreover, in our problem the unknown func­
tion is the Lagrangian E, whereas in the works mentioned the unknowns are - iF ; ■ 
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Proof. Let us denote by Span (X) the line bundle in T spanned by the 
vector field X G X(TM), and more generally Span (A"i,.., Xk) denotes the 
distribution spanned by the vector fields Xi G X(TM), i = 1,..., k. 

Then the horizontal eigenspaces of A are H = a1- D Th and Span (hS) 
corresponding respectively to the eigenvalues A and A+a(S). If a(S)Xo = 0, 
then AI0 has a multiplicity of 2n. Now if AXo is diagonalizable, we have 
Axo = XI; but this is excluded because aXo ^ 0. 

Conversely, if a(S)Xo ^ 0 then 

T^=HX0®Span(hS)X0, 

and we have a splitting of TXo into eigenspaces corresponding to the eigen­
values Al0 and (A -I- isaxo): 

TX0 = (n® Jn)xo © (Span(hS) 0 Span(C))xo 

which proves that AXo is diagonalizable. Therefore we find (1). 

(2) Since A is an algebraically constant type on U, either A is diago­
nalizable or non-diagonalizable at any point of U. This means that either 
isa \u— 0 or isa \u± 0. Suppose that S is variational and E is a regular 
Lagrangian associated to S. The condition of compatibility i^fie = 0 (cf. 
Proposition 5.2) gives i\j+a«iC^E — 0 i.e. a A ic^E = 0. Since a ^ 0, 
there exists ps € C°°(U,1R) such that ic^E — PEa on U, and hence 
fi(C, 5) = pEa(S). So, if isa = 0 on U, then every x G U has null length. 
But this is excluded by Lemma (3.1). Then we have isa | i /# 0. Finally 
it is easy to see, for example using local coordinates, that isa(0) = 0, so 
0#U. 0 

Let us now assume that the spray S is variational, and let £ be a re­
gular Lagrangian associated to S. The compatibility condition M Q = 0 
gives i\j+a^c^E = 0, i.e. aAic^E = 0. Now isaic^E-^E(C,S)a = 0 
at x0. Taking into account that fi£(C, 5) ^ 0, if {isa)Xo = 0 then axo = 0 
which is excluded, because the spray is not flat. Then we have: 

Corollary 7.1 Let S be a non-fiat isotropic spray with A — X J+a®C, 
and let A be algebraically constant. Then if (isa)x = 0, then S is not 
variational on a neighborhood of x. 

In the following we suppose that A has an algebraic constant type and 
isa ^ 0 on a neighborhood of i G TM. 
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As we have seen in Lemma 5.2, a necessary condition to lift a second 
order formal solution J2(E)X of Pi into a 3rd order formal solution is that 
(IA^E)X — 0, i.e. ax A (ic^E)x = 0. Then we have to introduce this 
equation into the system and consider the differential operator 

P3 := (Pi, PT, PA) : C°°(TM) —> Sec (T„* © A ; > A*), 

where A* = { e e A2
V | 3 6 € Tv* : 0 = a A 9 }, and PA : C°°{TM) —► 

Sec A„ is denned by 

PA = IAMJ. 

As we will see, the study of the integrability of this system will depend 
on the degree of non holonomy of the distribution V spanned by S and C. 
The first case, when V is integrable, arises if and only if S is typical: 

Proposition 7.1 An isotropic non-flat spray is typical if and only if 
the distribution V spanned by S and C is integrable. 

Proof. The integrability of T> implies that then the spray is typical (cf. 
Proposition 3.6) . 

Conversely, let 5 be an isotropic spray with isa ^ 0 and suppose that 
it is typical. Note that [C, S] = S - 2vS. To prove that V is integrable, 
we only need to prove that vS and C are linearly dependent. As we have 
seen, the eigenvalues of A are A and A + isa. The dimension of the vertical 
eigenspace of A corresponding to A + isa is 1. But S is typical, that is 
it is an eigenvector of A. Thus, by Proposition 3.7, hS and C = JS are 
eigenvectors corresponding to the same eigenvalue as 5. Now, if vS = 0, 
then vS and C are linearly dependent; if vS ^ 0, then vS is also an 
eigenvector corresponding to the same eigenvalue as C, because S and hS 
are also eigenvector corresponding to the same eigenvalue as C. Hence vS 
is proportional to C. 

a 

7.2.1 Typical sprays 

In this section we suppose that the distribution V = Span(5, C) is in' e-
grable, that is S is typical. The following Theorem contains the case of 
homogeneous sprays in particular. 
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Theorem 7.2 Let S be a non-flat isotropic spray, with A = A J + a ® C 
We suppose that A has an algebraic constant type on a neighborhood of 
x and that S is typical. Then S is locally variational on a neighborhood 
of x G TM if and only if 

1. i s a ^ O , (7.8) 
2. a A dja = 0, (7.9) 
3. a A a' = 0, (where a' = ih£sa), (7.10) 
4. a A DhXa - 0 for every X G Kera, (7.11) 

where D is the Berwald connection on TM associated to the spray S. 

Proof. First we notice that at any x G TM \ {0} there exists a regular 
2nd order formal solution. 

Indeed, using the notation introduced on page 87, a second order jet 
{hE)x G J2{JR) is a regular second order solution of P$ in x = (xl,vl) € 
TM if and only if it satisfies the inequality (5.10), the linear equations 
(5.11), (5.12), and the linear equation (PAE)X = 0 which is 

PtjA{=PkiM> (7-12) 

where py = J*. £ , (x) Let {vi,...,vn} now be a basis of T£ so that the 
matrix A\ is diagonal, and let gx be a scalar product of T% so that the 
basis {vi,...,vn} is orthogonal. We then have gx(AxX,Y) = g(X,AxY). 
If (pij) is the matrix of gx with respect to the basis {^r}j=i,...,n, we find 
that"(5.10) and (7.12) are satisfied. Solving the system (5.11), (5.12) with 
respect to the pivot terms pi and pji we arrive at a regular second order 
formal solution of P3 at x G TM. 

The proof of the formal integrability of the operator P3 involves two 
steps: 

S T E P I: First compatibility conditions. 

We have already computed the symbol of PA and its first prolongation 
in Section 6.2. We will now compute dim03^3). Let B G S3T*; since 
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93(Ps) = 93{Pi) n 93{Pr)rtg3{PA), we have B 6 g3(P3) if and only if 

B(X,S,JY)=0, (7.13) 
B(X,hY,JZ)-B(X,hZ,JY)=0, (7.14) 

B(X, AY, JZ) - B(X, AZ, JY) = 0, (7.15) 

for every X, Y, Z G T. Let B = {/it, ^«}x=i...n be a basis adapted to A so that 
hi,..., hn-i are horizontal eigenvectors corresponding to the eigenvalue A, 
hn := hS (which is a horizontal eigenvector corresponding to the eigenvalue 
A + isa), and Vi = Jhi, for i — l,...,n. The equation (7.13) yields the 
system: 

B(hi,S,vj) = 0, (7.16) 

5 ( ^ , 5 , ^ ) ^ 0 , (7.17) 

for i, j — 1, ...,n, while the equation (7.14) gives 

B(hi,hj,vk) - B(hi,hk,Vj) = 0, (7.18) 
B(vi,hj,vk)-B(vi,hk,vj) = 0, (7.19) 

for i, j , k = 1, ...,n, and the equation (7.15) gives 

fl(/it,C,^) = 0, (7.20) 
5 ( ^ , ^ 7 , ^ ) = 0, (7.21) 

for i = 1, ...,n, and j = 1, ...,n — 1. Since the spray is typical, there exists 
H 6 C°°(TM) so that vS = fiC. Thus the equation (7.20) can be expressed 
with the help of the other equations. Indeed, noting that C = vn and using 
(7.19), we arrive at 

B(hi,C,Vj) = B(vj,hi,vn) = B(vj,hS,Vi) = B(vj,S,Vi) - fiB(vj,C,vi) = 0, 

for i,j = 1, ...,n — 1, and 

B{hn,C,Vj) = B{hS,C,Vj) = B(C,hS,vj) = B(C,S,Vj) - iiB{C,C,Vj) = 0, 

for i = n, j — 1, ...,n - 1 according to (7.17) and (7.21). Now there are 
four blocks in the tensor B: B\ = B(hi,hj,hk), Z?2 = B(hi,hj,hk), B3 = 
B(hi,Vj,vk) and B4 = B(vi,Vj,vk). Of course, B\ and B4 are symmetric 
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in the indices i,j,k, because B is symmetric. By (7.18) and (7.19), B2 and 
B3 are also symmetric. Thus 

/ O N 4 n ( n + l ) ( n + 2) 
dim 33 (Pr) = —- ^ -, 7.22) 

A simple computation shows that the system (7.16), (7.17) contains "(n
2

+1? 
equations which are independent of the equations (7.18) and (7.19). More­
over, each equation of (7.21) is independent of the equations (7.16), (7.17), 
(7.18), and (7.19). Hence 

. „ . An{n + l)(n + 2) /2n(n + l) (n - l )n . , , \ 
dim53(^3) = —* f L ~ (—^2 " + 2 + (" " 1)). 

and so 

/ n s J- r.3^» J- / o x 4n3-I-9n2 + 5n - 6 z? OQ\. ranga3(P3) = d i m 5 J r - dimp3(P3) = . (7.23) 

In order to find the conditions of compatibihty for P3 we consider the maps 

TUM : ( T * ® r ; ) © ( T * ® A 2 ) e ( T * ® A 2 ) —> A2, 
T V 

defined by 

( T * ® T ; ) © ( r * ® A 2 ) © ( r ' ® A 2 ) —► A3 

(T* ® r;) © (T* ® A2) © (r* ® A2 ) _► T;®T; 

cycl 

W B s . B r . ^ X * , ^ ) - 5^ BA(JX,Y,Z), 
X,Y,Z 

TA,(Bs,Br,BA)(X,Y) := BA(S,X,Y) - {BS(AX,Y) - BS(AY,X)), 

where X,Y,Z £ T, and 
TH(Bs,Br,BA)(X,Y):=±Br(JY,X,S) + Bs(JY,X) 

- ^-BA{JY,S,X) - ^-BA(hX,S,Y) 
isa isa 

for X, Y 6 H where Ti = ax C\Th. Let us consider r3 := (r2, T\J,A\, TA>, T-H) 
where the morphism r2 is defined as in the Paragraph 5.2 (on page 89), 
and let K3 := Im T3. Then the sequence 

S3T* - ^ ^ > (T* ® Tv*) © (T* ® A2) © (T* ® A*) —2-> K3 —> 0 

is exact. 
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Indeed, it is easy to see that r3 o o\{P3) = 0. On the other hand, one 
can check that Ker r[Ji/4) is denned by l n ' ' » n ~ 2 ) equations, while Ker TV is 
denned by (n — 1) equations and Ker rn by (n — l ) 2 equations. Now these 
equations are independent and they are also independent of the equations 
which define Ker T 2 (P2) . Thus 

dimKerT3(P3) = dim Ker T 2 ( P 2 ) 

+ dim(T* ® \l) - C " - 1 ^ " - 2 ) _ ( „ _ ! ) _ ( „ _ 1)2, 

and so 

,. v , „ . 4n3 + 9n2 + 5n - 6 dim Ker T 3 ( P 3 ) = = rangcri(P3) 
o 

which shows that the sequence is exact. 

Let V be a linear connection on TM, and p = J2(E)X a regular 2nd 
order formal solution of P3. p can be lifted into a 3rd order solution if and 
only if [T3V(P3E)]X = 0, that is {T2,T\J,A],TA, ,Tn) [V(P 3 JE) ] X = 0. Taking 
into account that (UJE)X = 0, ( ir^B)i = 0 and {IA^E)X = 0, and using the 
equation (5.18) we have 

T2[V(P3E)]X = r2[V(P2£)]x = (0, 0, iRnE, 0 ) x . 

Now 

3P = [J, A] = [J,\J + a®C]=dj\AJ + dja ® C - a A J, 

so 

3(if ln £) I = (dja)x A (IC^E)X-

But (IA^E)X = « I A (IC^E)X = 0 and ax ^ 0 thus, there exists ps E M 
such that 

(iCnB)x=PEax. (7.24) 

So 

3(iftfte)x = PE (dja A Q) X . 

Noting that PE ^ 0, because QE is non-degenerated, we have (IRQE)! = 0 
and therefore T2[V(P3E)]X = 0, if and only if the condition (7.9) holds. 
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Let us now compute the condition of compatibility given by T[J<A]. We 
have 

T[,„„[V(P3£)]s = (djiAnE)x = (i[JiA]SlE)x ~ (dAd2jE)x = 3(iRnE)x, 

so T{JIA] does not give a new condition: if dja A a = 0, then the condition 
T\J,A][V(P3E)]X = 0 is satisfied. 

To compute the obstruction coming from the equation rA< [V(P3-E)]x = 
0, note that we have 

TA,[V(P3E)]X = (CsiAnE - dAPxE)x = (iAAE)x. 

Since vS = \iCy we arrive at 

A' = v[S,A]h = v(£s\)J + \[S,J}-£sa®C + a®[S,C])h 
= A' J + a' ® C + a <g> vS = A' J + (a' + pa) ® C, 

where we set 

A' = £SA and a'=h'(£sa). 

Thus 

iA'Q = (a' + pa) A i c ^E = PE((*' + fia) Aa — pEa' A a. 

Hence TA> [V(P3.E)]X = 0 if and only if the condition (7.10) of the Theorem 
is satisfied. 

Finally let X, Y € U. We have 

Tli[V(P3E)]x(X,Y) = ±V(irnE)(JY,X, S) + VuE(JY, X) 

- -^-V(iAilE)(JY,S,X) - ±V{iAnB)(hX,S,Y) = ljY(i2h-,SlE(X,S)) 
ISOc IsQ I 

+ JYuE(X) - -^-JY(iAnE)(S, X) - -^-hX(iAQE(S, Y)) 
ISO ISCt 

= JY(ihQE - QE)(X, S)) + duE(JY, X) - nJY(ilE{C, X)) - hX(QE(C,Y)) 

at x. Now ic&E{X)x — 0 because X £ ax, then 

(i JYQE{C,X) = JY QE(fiC,X) = JYflE{vS,X), 

hence 

TH[V(P3E)]X(X, Y) = JY QE(X, S) + duE(JY, X) + hX ilE(S, JY). 
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On the other hand dbJE = ^s^E, s o 

dujE{ JY, x) = JY nE(s, x)-x nE(s, JY) - nE{s, {JY, x\), 
hence 

TH[V(P3E)]X{X,Y) = QE(S,[X,JY})X. 

Consider the basis B = {hi, J/it}i=i,...,n. where hj G Ti for i = 1, ...,n - 1 
and hn := hS. We have at x G TM: 

nE(S,hi) = nE(vS,hi) = ^QE(C,hi) = -^-iAflE(S,hi) - ^-ijnE(S,hi) = 0, 
isct isa 

SIE(S,V,) = flE(hS,Vi) = QE(C,hi) = -^-iA^E{S,hi) - -^ijttE{S,hi) = 0, 
isct isa 

for i = l,...,n - 1. It shows that flE(S,[X,JY])x = QE(S,[X,JY}c)x, 
where [X, JY]c denotes the component of the vector [X, JY] on C = Jhn 

in the basis B'. Therefore 

TH[V(P3E))X = 0 if and only if [X, JY]C = 0 

by Lemma 7.1. Now, writing the spectral decomposition of A, we can easily 
obtain the projection on to the eigenspace corresponding to the eigenvalue 
A + isa, i.e. the projection on to the distribution spanned by S and C: 

: -(A - XI) = -—(if a ® C + a <g> hS). 
A + isa — A isa 

Therefore the projection on to the space spanned by C is 

- — i f Q <8> C. (7.25) 
isa 

Thus 

[X, JY}c = —a(F[X, JY)) ® C. 
is® 

Let D be the Berwald connection associated to 5. Taking into account that 
X,Y EH - aL nTh and that a(F[X,JY])x depends only on the values 
of the vectors X and Y at x, we have 

a(F[X, JY])Z = a(F([h, JY]X)X = a{FDhXJY)x = DhXa(Y)x 

for every Y 6 V., which shows that 

rw[V(P3£)]x = 0 if and only if {DhXa Aa)x=0 V i e Ker a. 
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So we have proved that a regular second order formal solution of F3 
can be lifted into a 3rd order formal solution if and only if the equations 
(7.9)-(7.11) hold. In order to prove the Theorem, we only need to prove 
that P3 is involutive. 

S T E P II.: P3 is involutive. 

Since 32(^3) = 92(Pi)r\g2(Pr)r\g2(PA), an element B G S2T' is found 
in 02(^3) if and only if the equations (7.1), (7.2) and 

B(AX, JY) - B{AY, JX) = 0 (7.26) 

hold for any X,Y € T. Let B — {/it>^:}i=i,...,n, be a basis of Tx with 
hi € Ha = Th n a x for i = l,...,n - 1, hn = S and Jh{ = v{. Set 
dij := B(hi,hj), bij := B(h{,Vj) and ctj := B(vi,Vj); first we will prove 
that B is found in #2(^3) if and only if 

c„i = 0, i = l , . . . , n - l , 
6m = 0 , i = l,...,n-l, 

_ (7.27) 

. bij = bji, i,j = l, . . . ,n. 

Indeed, 

- using the equation (7.26) computed on X — S and Y = hi for i = 
1, ...,n — 1 we find 

B(AS,Vi) - B(Ahi,C) = isaB(vn,Vi) = (isa)cni. 

- If i < n, then using (7.1) we find 

bni = B(S,Vi) - B(vS,Vi) = B(S,Vi) - fiBiv^Vi) = B(S,v{) = 0. 

- For 6nn we have 

bnn = B(S,C) - B{vS,C) = B(S,vn) - nB(vn,vn) = / i c n n . 

Hence 

, ^ ,. ~9™. / , \ n(n - 1 ) 3n2 - n + 2 dimff2(P3) = d imS 2 T ' - n - (n - 1) - V
 g ' = . 

Let us now consider the basis B = {e»,Uj}t,j=i,...,ni where: 
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ei = hi +vn, 

d = hi + (i - l)vi, for i = 2,...,n — 1, 
n 

en = hn + Y^Vi. 
t = i 

If dy = B(ei,ej), b^ — B(ei,Vj) and c\, = B(vi,Vj) are the components 
of 5 , the block [6y] is 

" 1 2 ' C 1 2 6 2 , n - l + C 2 , „ - 1 0 

* i . » - i + ( « - l ) c , . » _ , • • fcn-i.._. + ( « - l ) c , - i . » - i 0 

£*. XX»-i 

and, of course, c^ = Cjj. Then Cy can be expressed in terms of the block 
(bij) in the following way: 

Cm — 

Cnn = 

Cii = 

Cli = 

rL-. = 

o, 
bin, 

«-fiibi* - 6>i), 

- M, 

rL, 6,* 

1 < i < n; 

1 < i < j < n, 

i = 2 . . . ( n - l ) , 

.̂ i = i < n. 
fc=l, fc^i 

A; — z 

Therefore the elements of 52(^*3) are determined by the a,j and the 6y. 
Thus 

dim 5 2 (P 3 )e 1 ...e„ = k(n - k)(n - k + 1) + (n - l ) (n - * ) , 

and 

d i m p 2 ( f 3 ) e i . . . e n , w i . ..»* = 0 , 
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for k — l, . . . ,n, so 

n n 

&m g2{P3) + ~Y^&im. g2{Pz)ex
 e* +^2d[m92(P3)ei...e„,vl...vk 

k=l fc=l 

3 n 2 - n + 2 ^ (n - k)(n - k + 1) -A. , , , , , 

* = i * = i 

= - (4n 3 + 3n2 - n + 6) = dim 93 (P3), o 

which shows that P3 is involutive. The Theorem is proved. □ 

Note that the Theorem holds for homogeneous and quadratic sprays. 

Taking into account a result of Szenthe (cf. [Sze]) which states, that 
if a homogeneous (resp. quadratic) spray is variational, then there exists 
also a homogeneous (resp. quadratic) regular associated Lagrangian, we 
can state: 

Theorem 7.3 Let F be a homogeneous fresp. linear] connection on 
an analytical manifold. Locally there is a Finsler [resp. Riemann] 
structure with isotropic curvature so that the canonical [resp. Levi-
Civita] connection is T if and only if the spray of T is isotropic, and 
the Douglas tensor satisfies the conditions of Theorem 7.2. 

7.2.2 Atypical sprays 

When the spray is atypical, the distribution V spanned by 5 and C is 
non-integrable (cf. Proposition 7.1). This is equivalent to the fact that the 
distribution V spanned by vS and C is 2-dimensional. As we will see, the 
study of the atypical case greatly depends on the degree of non-holonomy of 
f>, that is on the length of the sequence V C V2 C X>3 C . . . where P 1 = f>, 
and Vk+l := [Dk, Vk]. In this last section we will study the case where the 
holonomy is weak, that is T>2 = f>, or, in other words, T> is integrable. 

We recall that if A = \J + a<8iC with isa = 0, then S is non-variational 
(cf. Corollary 7.1). Thus we can assume that isa ^ 0. We shall prove the 
following 
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Theorem 7.4 Let S be an isotropic atypical spray, with A = XJ+a<8>C 
and suppose that the distribution t> = Span(C, vS) is integrable. Then 
S is variational if and only if 

o A a ' / O , 
a A dja = 0, 

a" A a + Q ' A Q = 0, 

isa 

isa' (dja A a') = 0, 
DhxaAa = 0, VXeof1-, 

where, for a scalar form 0, we put forward 

P' = h'(£s(l). (7.28) 

The proof of the theorem will be carried out in 4 steps. 

STEP I: First lift of the second order solutions of P3. 

Lemma 7.2 A 2nd order solution {J2E)X of P3 at x 6 TM can be 
lifted into a 3rd order solution if and only if 

(iA>nE)x=0, 
(aAdja)x=0, (7.29) 
(a A dja)'x = 0. 

Proof. We recall that Ker<73(P3) is defined by the equations (7.13) -
(7.15), that is, in an adapted base, by the equations (7.16) - (7.21). Note 
that the equations (7.21) are independent of the others, whereas some of 
the equations (7.20) are related to the others by 

[O3(PA)B] (S,S,hj) = B(S, C, Vj) = B(C, S,v3) (7=7) 0, 

for j = 1, ...,n — 1. Thus 

dimKero3(P3) = dimKera3(P2) - [n(jl~ 1} + (n - 1) + " ^ 1 }] 

= dimKero3(P2) - (n2 - 1), 



186 Euler-Lagrange systems in the isotropic case 

and therefore 

ranka3(P3) = rank<73(P2) + ("2 - !)• 

Let 

(T* <g> T*) © (T* <g> A2r„*) © (T* ® A2) -2* fsT2 © A2T' © A3TV* © A3T„* 

be the morphism defined by r3 = (71
2,TJ4<,T[ji>i],T[/,ii4]), where 

f2(Bs,Br,BA)(X,Y) =T2(Bs,Br)(X,Y), 
TA>(Bs,Br,BA)(X,Y) =BA(S,X,Y) - {BS(AX,Y) - BS(AY,X)) , 

T[j,A](Bs,Br,BA)(X,Y,Z)=BA(JX,Y,Z) + BA(JY,Z,X) + BA(JZ,X,Y), 
cycl 1 cycl 

rlh<A](Bs,Br,BA)(X,Y,Z)= £ BA(hX,Y,Z) + - £ Br (AY,y ,Z) . 

We will prove that the sequence 

S3T' - ^ ^ > T* ® T* © T* ® A* © T* ® A^ —I2_> /jf3 _► o 

is exact, where K3 :— Imr3. 
It is easy to show that Im<73(P3) C KerT3. On the other hand, the 

equations TA> = 0, T\J,A] = 0, and T\h,A] = 0 yield 

(n - 1) + i (n - l)(n - 2) + i (n - l)(n - 2) 

equations which are independent of the system r2 = 0. 
Indeed, let us consider an adapted base B = {hi,Vj} with hi € H for 

i = 1, ...,n — 1, hn := hS and Vj = Jhj. 
i) Taking X = hn and Y = hi in the equation TA> = 0 we obtain (n — 1) 

new equations independent of the system T2 = 0. There is no other indepen­
dent equation of T2 = 0 : if X,Y G Ua, then BA(S,X,Y) = 0, since BA G 
T*ig)AQ. However, since A\Ha = \J, the equation TA'(Bs,Br, BA)(X,Y) = 
0 is related to the equations TT = 0 and then to T2 = 0, because 

TA .(£? s ,B r ,PM)(X,y) = BS(AX,Y) - BS(AY,X) = \TT(BS)(X,Y). 

ii) On the other hand, once again using the fact that A\na = XJ, the 
equation TIJ,A] — 0 restricted to %a does not give new equations with 
respect to the system T2 = 0. It gives independent equations when it is 
computed on the vectors S, /i, and hj with 1 < i < j < n, and then 
TIJ^J = 0 adds | ( n — l)(n — 2) new equations to the system (T2, TA>) — 0. 
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Hi) A similar argument shows that T\h,A\ = 0 gives new equations if one 
of the arguments is S, and the other two vectors are hi, hj for 1 < i < j < n. 
Therefore T]h,A] = 0 gives ^(n — l)(n — 2) new equations. 

Note that these equations are independent, because the (n — 1) compo­
nents BA (S, S, hi) are pivot terms for the equations TA' = 0 and BA (vi, S, hj) 
and BA(hi, S, hj) are pivot terms for the equation TJJ^J = 0, and T[h,A] = 0 
respectively i < j , i,j = l,...,n — 1. Therefore 

dimKerr3 = dimKerf2 - [(n - 1) + (n - l)(n - 2)] 
= dimKerr2 + dim(T* © A£)- (n - l ) 2 = rank<73(P3). 

which proves that the sequence is exact. 

We can compute the conditions of compatibility for P3. Let V be an 
arbitrary linear connection on TM and J2{E)X a 2nd order regular formal 
solution of P3 at x. 32(E)x can be lifted into a 3rd order solution if and only 
if ( T , V ( P 3 £ ) ) X = 0. Note that (wE)x = 0, {irnE)x = 0, and {iA0.E)x = 0. 
Prom {IA^E)X = 0 we get (a A ic&E)x — 0; thus there exists pi ^ 0 such 
that 

Plax = {ic^E)x- (7.30) 

Let us compute now the compatibility conditions. We have: 

. Ti[V(PsE)]x = T2[V(P2E)}X = 0, 

• TA.\V(P3E)]X = CSIA^E - dAPiE = (iA.{lB)x, 

• (cf. section 7.2.1) 
T[J,A][V(P3E)]x = {i[J,A]^E)x = (i3R^E)x = S{dja A 1C^E)X 

= ZpE(djaAa)x, 

•7]fc,/i][V(P3^)]x = ^(dAir^E)x+(dhiA^E)x = [dA,dh]djEx = d[A%h]djEx. 

Now [h,A] is semi-basic, hence d[A,h)djE — i[A,h]^E, and 

[h,A] = [h,[h,S\-h[h,S\]=[h,[h,S\] + [h,F + J] = 

= [h, [h, S]] +[h, F] + [h, J] '=° -[R, S]+FR- R~KF = R'. 

Thus 

T\h.A]MP3E)]x=iJVilE. 
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Now A - A J + a ® C, so 

fl' = ft*v [S, R] = h'v(fa\ - a)' A J + fact)' ®C + dja® vS) (7.32) 

and then 

iR'^E = faa)' A i c ^ E + dj A ^ S ^ B 

= (dja) ' A p ia + d ja A (pia ' + piot) '— (7.33) 

= p\ [{dja)' A a + (dja) A a'] = pi faa A a) ' . 

Thus 

7 l f c M 1[V(P3E)]<=/>i(djaAa) ' . 

Therefore r3[V(P3£;)] I = 0 if and only if (iA'^E)x = 0, faa A a)x = 0, 
and (dja A a)!,. = 0, which proves the Lemma. 

0 

Note that 

A' = ft* (v[S, A]) = h'v({CsX)J + XT + (Csa) ® C + a ® [5, C]). 

Since ft*u(r) = u o ft = 0 and v[S, C] = v(-T(S)) = vS, we have 

A' = A' J + a' ® C + Q ® w5. (7.34) 

Thus 

M ' ^ E = a ' A i c f i £ + Q A I'vS^E-

Therefore the condition z^-fi = 0 is equivalent to the equation 

a' A icflE + a A ivs&E = 0. (7.35) 

Since, by hypothesis, vS is not proportional to C, this condition is a new 
equation on J2{E)X which we will introduce into the system. 

In order to simplify the computations, we put forward d' := a' — if^- a, 
and 

A' := a ® vS + a' ® C. (7.36) 

We have 

A' = A'+p1A + p2J, (7.37) 
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with /ii = ^ - and /x2 = if^^-^'- So the equation IA'^E = 0 is equivalent 
to i^,Q.E = 0. 

Now we must study the integrability of the differential operator 

P4 = (P3, PA>) ■ C°°(TM) —> Sec (Tv* © A* © A* © A*i4,), 

where 

A-a.4- : = { © € A2T„* I 3 9,9' £T;-. 0 = a A 0 + d ' A 0 ' } , 

and 

PA, :=iA,ddj : C^TM)—»SecA*ia,. 

STEP II: First lift of the second order solutions of P\ 

Remark . If 5 is a variational atypical spray in the neighborhood of x E 
T M \ { 0 } , t h e n 

(Q A a')x ^ 0. (7.38) 

Indeed, if S is variational and E is a regular Lagrangian associated to 
5, then E satisfies the condition of compatibility of P3: IA'^E = 0. Now 
A' = A J + a' ® C + a ® vS, so 

0 = M'fJx = a' A ic^l + Q A ivs^t-

If (Q A Q')X = 0, then a A ivs$lx = 0; so ivs&x is proportional to a^ and 
hence to ic^x, that is (vS)x is proportional to Cx. But this is excluded by 
hypothesis. 

Prom now on we shall suppose that aAa'^0. 

The following Lemma highlights the role of the graded Lie algebra As 
spanned by J, and A, containing A', ..., R, R', ... in the inverse problem t. 

^For the definition of .4.S, see Section 4.2. 
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L e m m a 7.3 Let S be an atypical isotropic spray. A 2nd order solu­
tion (J2E)X at x 7̂  0 of Pi can be lifted into a 3rd order solution if and 
only if 

IR^E 

ifi'Sls 
{RI'^IE 

V\/4 ' ] n E 

* M ' ] n B 

iAME 

Da\n 

= 0, 
= 0, 
= 0, 
= 0, 

= 0, 

= 0, 
= 0, 

where D denotes the Berwald connection. 

Proof. The symbol a2(PA,) : S2T* —► A* of PA, is given by 

(o2(PA,)B2)(X,Y) = B2(A'X,JY)-B2(A'X,JY), 

and the symbol of the first prolongation (73 (PA,) : S3T* —> T* <g> A£ is 

(a3(PA,)B3)(X, Y, Z) = B3(X, A'Y, JZ) - B3(X, A'Z, JY)}, 

where B{ e S{Tm, i = 2,3, and X,Y,Z £ T. Thus g3(Pi), that is 
Ker(T3(P3) fl Ker<73(F^,), is characterized by the equations (7.13) - (7.15) 
and 

B(X, A'Y, JZ) - B(X, A'Z, JY) = 0, (7.40) 

X,Y,Z € T. Let us set 

Ha,&- : = ( d ' ) ± n ^ Q , 

and consider the base B = {hi,Vi} where /i, 6 Wa,a' for i = 2, ...,n — 1, 
hn = S and Vi = Jhi. In this basis a'(hi) = 0 if and only if a' = 0, and 
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the equation (7.40) gives the following system: 

'{ihla')B{hi,C,vi)=0, 
{ihla')B{vi,C,vj)=0, 
(isa)B(hi,vS,Vj) = 0, 
(isa) B(vi,vS,Vj) = 0, 
(isa) B(hi,vS, Vl) - ( ih ld') B(hi,C,C) = 0, 

_ (isa) B(vi,vS,vx) - {ihla')B(vi,C,C) = 0, 

where i = l,...,n, and j — 2, ...,n - 1. It is not difficult to verify that 
among these equations only 

(isa)B(hi,vS,Vj) = 0, 
{isa)B(h1,vS,vl) + (ih,a')B(huC,C) = 0, 
(isa)B(vi,vS,v1) + (ihla')B(vi,C,C) = 0, 
{isa) B(vn,vS,vi) + (ihla') B(vn,C,C) = 0, 

for i = l, ...,n, and j = 2, ...,n - 1, i < j , are independent of the system 
(7.13) - (7.15). It follows that 

rankCT3(F4) = ranka3(P3) + j ( n _ ! K n + 2)" ( 7 4 1 ) 

Let r4 := (r3, T[JtAl], T[A, ^ T[hA,y T A „ , 771,772, %) be the morphism de­
fined for {Bs,Br, BA,BA.) € T*'® (TB* © A2T; © A2 © A2

a-,) by 

cycl 

^.^(Bs.Br.BA.BAOC^.y.^) = J2 BA,(JX,Y,Z), 
X,Y,Z 

cycl 
T[AlyAl](Bs,Br,BA,BA,)(X,Y,Z)= £ BA,(A'X,Y,Z), 

X,Y,Z 
cycl cycl 

T[KA](Bs,Br,BA,BA,)(X,Y,Z) = \(J2 Br{AX,Y,Z)) + £ BA,(hX,Y,Z) 
X,Y,Z X,Y,Z 

and 

TA„(Bs,Br,BA,BA,)(X,Y) = BS(A'X,Y) - BS(A'Y,X) - BA,(S,X,Y) 
m(Bs,Br,BA,BA,)(V,W) = (ih,a) BA(V,S,W) - {is a) BA,{V,huW), 
m{Bs,Br,BA,BA,){X,W) = ( I M Q ' ) BA(JX,S,W) - (isa) BA,{JX,huW), 
r,2{Bs,Bv,BA,BA,)(V,W) = BA{JV,S,W)-BA,{W,S,V)-

- i(isQ) Br{JV, W, S) - {isa) BS{JV, W), 
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for X,Y, Z G T, V e Ha and W € na,&>. 

We shall prove that the sequence 

S3T- -^^\ T* ® (r; © A2T; ® A2 e A2
d,) —2-» jr4 -> o 

where Jf4 := ImT4, is exact. 
It easy to check that Im«73(P4) C Ker r4. On the other hand a computa­

tion of the number of the equations of r4 = 0 independent of the equations 
of T3 = 0 gives: 

(1) Using the fact that A'\y,a &, = 0, we find that T,J ^,, = 0 (resp. 7\htA] = 
0) does not give new equations if X,Y,Z£ %<*,&', and it gives \{n-
2)(n — 3) new equations for X = hi, Y = hj, 1 < i < j < n and Z = S 
or Z = hi, and n — 2 equations for X — hi, 1 < i < n, Y = hi and 
Z = S. 

(2) T,^, ̂ , , = 0 gives new equations only for X = hi, Y = 5 and Z — hi 
1 < i < n; then it gives n — 2 new equations. 

(3) T4,, = 0 gives new equations only when one of the vectors is found in 
Ha,&' and the other is S or hi; so we obtain 2(n — 2) equations. If the 
vectors are S and hi it again gives one new equation. 

(4) In order to find the number of equations given by the rji, i = 1,2,3, 
note that we have, modulo T3 = 0 

.4ntisym 771. 

«4ntisymr?2, 

■4ntisym7?3. 

- T M ' ] | ' 

ISp«n(S)®-X 

= 7 lU'] | ' 

hence 7/1 and 7/2 give (n — 2)(n — 1) + (n — 2) new equations and 773 
gives | ( n - 2)(n - 1) + 2(n - 2) new equations. 

It is not difficult to check that these equations are independent, so we arrive 
at 

dim Ker r4 = dim Ker r3 + dim (T* ® A2
 <&,) - \ (In2 - 1 In - 4) 

= rank(T3(P3) + \{n2 - n + 4) = rankCT3(P4), 

which proves that the sequence is exact. 
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Now we can compute the compatibility conditions for P4. Let V be a linear 
connection on TM and jv{E)x a regular 2nd order solution of P4 at x € 
TM \ {0}. Then the equations uE = 0, ir^E = 0, IA^E = 0, IA,QE = 0, 
and hence IA,QE = 0, hold at x. Let us compute [T4V(P4E)]X = 0 : 

(1) T3[V(P4£)]z =T3[V(P3£)]x = (OAif l f iB^f iE^, 

(2) v,A'][v(p4£)]x = W/u.n*)* = ( V , ^ E ) -

since (dA,djQ.E)x = 0, 

(3) T[h,,i<][v(p4£)]x = (d/»i/4-n£ + idj4,irfi)x = (dhdi4,£;).r + (di4(dfcd1/£;)iI 

= (d[h,A'}dJE)z = (*[h,i ']n£)« 
Now < = i[J, T] = 0, and so, by (7.37), we arrive at 

[h,A'] = [h,A'] + (dhm)AA + dtii A hA + fn[h, A] + {dhm) A J 

+ d/i2 A h j + /i2[/i, J]=[/i, A'] + {dhfii) AA + m[h, A] + (dhf*2) A J, 

and therefore i,h A,\flE = i[h,A']^E- On the other hand 

[h, A'] = [h, A}' - [h', A] + RAFA - AF, 

so 

l[h,.4']0£ = iR"^E + i[A,A]^E-

Let us first consider the term i\A,A)^x- We have 

[A, A] = [AJ, XJ] + 2[AJ, Q ® C] + [Q ® C, a ® C] = 2A(dj A) A .7 
+ 2(A(dja) ® C + (£ cA)a A J - A Q A J ) + £ 5 ( a A a) ® C, 

so 
(7 30) (7 29) 

J[A,A]^B = 2A(dja) A i c n = 2piA(dja)Aa = 0, 

and thus 

(4) V t A l ] M P 4 E ) ] x = (dA,iA,QE)x = (d%djE)x = {d{A,MdjE)x 
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(5) TA„[V(P4E)}X = {dfiPiE-CsifiilBU = ( ^ , , , 0 * ) , , 
but 

(A')' = [5, A'] ( ?=6) [S, A'} + (Csin)A + MI[S, A] + Cs»iJ + ^[S, J), 

hence i,,,.,£lE — iA"^E, s ° 

TA„[V{PiE))x = iA,lnEx. 

(6) In order to compute the obstructions given by rji, i = 1,2,3, let us 
take X en,Y e UQ& and Z e T. We have at x: 

mV(P*E) = a ' ( / i i ) X ( M n £ ( 5 , r ) ) - a(S)XiA,(n(huY)) 
= a(S)a'(hl)X(icn(Y))-icn(Y)) = 0, 

%v(p4£) = jxiAnE(s,Y) -YiA,nE(s,x) - ±isaJxirnE(Y,s) 
-a(S)JXujE(Y)=a{S)(JXn(vS,Y) + YnE(C,X) 
+ JXQ(vS, Y) + <LJE(JX, Y))= <lE(S, [JX, Y]) 

T73V(F4^) = a ' (f t i )JZ(i^n j B(5,y)) - a(S)JZiA.(Sl(hi,Y)) = 
= a(5) a'(hi) JZ(icnE(Y)) - icil(X)) = 0. 

As we already computed in section 7.2, we find 

7?2[V(P4£)]z = 0 if and only if (DhXa A a ) , = 0 VA" e Ker a. 

So the condition [T4V(PiE)]x = 0 is equivalent to the system (7.39). D 

STEP III: Expression of the compatibility conditions (7.39) in 
terms of the spray 

We shall now prove that the conditions (7.39) can be expressed in terms of 
the spray without the 2nd order solution (only in this case every 2nd order 
solution can be lifted into a 3rd order solution.) 

Let ji{E)x be a 2nd order solution of P4 at x. Since (iA'^E)x = 0, 
there exists p2 € R such that 

(ivsttE)x = Pia'x+ P2dx. (7.42) 

Therefore we also have 

{ivS^E)x = P\Q.'X + fcax, (7.43) 
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(7.44) 

where p\ = p2-pi'-f£-

• As we have already showed (see page 187), the condition iflfix = 0 is 
equivalent to axA(dja)x = 0, andi/j<nx = 0 is equivalent to (aAdja)'x = 0. 

• Prom (7.34) we have 

A" = h*v[S, A'] = X"J + a' ® C + 2 a' <g> vS + a ® [5, «5] 
= A" J + (a" + (A + isa)a)<g>C + 2a' ® uS 

Thus, at x : 

iA..QE = (a" + (A 4- isa)a)MC^E + 2a' A ivSil ( ?=9) 

= pi (a" A a + — a ' A a ) . 
V P\ ' 

This expression shows that if 5 is variational, then 

a A a' A a" = 0. (7.45) 

Let us suppose that this condition is satisfied. Then there exist a,b 6 2R 
so that a" = aax + ba'. We obtain at x : 

zVfifi =p1(a" Aa+ —a'Aa)=pi(b + 2—)a'Aa. 
\ p! / \ pi/ 

Since pi ^ 0, iA"SlEx = 0 if and only if 

6 + 2 ^ = 0 . (7.46) 
Pi 

If vSc and vSjy. denote the components of vS in the splitting Tv = 
Span(C) © JTi, then we have 

ivSn(S) = ivScn(S) + ivsJnn(S) = cc
sicti(s) + Q(vSJn,s) ij==0 

= ec
sicn(S) + icn(vSjH) (7=0) &SPMS), 

because a\n = 0. On the other hand 

ivsti(S) = piisa' + p2is<x = P2isa 

by (7.42). Thus 

CcS = - , (7-47) 
Pi 
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and therefore b = -2 ££s. Since ££s = a^,s\', the condition of compatibility 
iA„Q = 0 is equivalent to 

a" A a + ^ 2 2 a' A a = 0. (7.48) 
isa 

• Prom (7.36) we have 

[J, A'] = [J, A'] + d//i A J 4 + m [J, A] + (djn2) AJ + dfjL2AJ2 

+ fi2[J, J] = [J, A'} + (djm) A A + m [J, A] + (dJfi2) A J, 

thus 

\j,A']®E = i\J,A']^E + ^li[J,A}^E + (djfli) A lA^E, (7-49) 

and then 

T[J,A'}l^(P*E)h =i[J,A']^E =i[J,A']^E = HR'SIE-

Using the computation (7.33), we find that r,j ^,,[V(PtE)]x — 0 if and only 
if {dja A a)x = 0. 

• Let us now consider the condition ifi-fi^ = 0. We have 

R" = h'v[S,R'] = h'v(cs{djX)' + a')AJ + Cs(dja)' ® C 

+ ((djX)1 + a') A [S, J] + Cs(dja) ® [S, C] + Csdja ®vS + dj® [S, vS]) . 

But 

v[S, vS] = v[hS, S] = v[h, S](S) = v[h, S](hS) = A{S) = (A + isa) C, 

and 

v[S, C] = v(-T(S)) = v(-hS + vS) = vS, 

hence 

R" = {(djX)" + a")AJ + ((dja)" + (a(S) + X) dja)®C + 2(dja)' ® vS. 

Therefore we have at x : 

iR..QE = ((dja)" + (isa + X)dja)Aic^E + 2(dja)' A ivSnE. 
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Using (7.30) and (7.43) we arrive at 

iR'^E = 9x ({(dja)" + (isa + A) dja)Aa + 2(dja)' A a ' ) +2p,{dja)' A a 

= Pl ({(dja)" + (isa + A) dja)Aa + 2(dja)' A a' + 2^-(dja)' A a). \ p^ 

On the other hand from (7.47) we have 

p^ _ iFSa - isa' 
Pi ^a ' 

so the condition iff HE = 0 is equivalent to 

((dja)" + (isa + A) dja)Aa + 2(dja)' A a' + 2 ( ? F S ° " ^ " ^ (dja)' A a = 0. 
isa 

Modulo the compatibility condition IRQ = 0, i.e. the equation a A d ja = 0, 
we find that 

iR..VlE = Pl (((dja)" + (isa + A) djajAa + 2(dja)' A a'"j+2p2(dja)' A a 
= p, ((dja)" A Q + 2(dja)' A a')+2p2(dja)' A a 

= Pl (dja A a)" - dja A faa" + 2p2a'} ( ?=9)
 Pl dja A (a" + 2^-a'^j . 

Now the condition IR" HE = 0 is equivalent to 

^ A ( a " + 2 i f S a " i s a ' a ' ) = 0 , (7.50) 
\ isa / 

which, taking into account (7.48), can be expressed by the equation 
isa' (dja A a') = 0. (7.51) 

• The last condition of integrability is given by the equation i,h ^.lfijj = 0. 
It gives a new condition only if it is computed on the vectors S, hi and X, 
wi thX eHa,a>: 

eye I 

T[A,j,]V(P<E)(X,S,hl)= J2 JX(iA,n(S,hl))+a(S)vS(a'(hl)Q(C,X)) 

+ a (^)C(a(S)Q(vS,X)) = a(S)&'(hi)(vSSl(C,X) - CilE(vS,X)) 
cycl 

= a(S)a'(hi)(dn(vS,C,X)+ £ QE([vS,C},X)) 
vS,C,X 

= a(S) &'{hi){ilvStc]ilE(X) + ivSnE([X, C]) + icSl(\vS, X})). 
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Taking into account the equations (7.30) and (7.42), this expression van­
ishes if and only if 

i [„s .c]f isW = — ^ { a ( [ v S , X ] ) + a'([X,C]) + £a([X,<7])). 

These computations show that all the obstructions can be expressed 
without the second order solution j2{E)x except the last one. However, if 
the distribution spanned by vS and C is integrable, then this condition 
can be expressed uniquely in terms of the spray. Indeed, in this case there 
exist Ai and A2 such that [vS, C] = \\C + X2VS, hence 

i[vS,c]^E = (X1P1 + X2p2)a + X2pia'. 

But 

H0,0< = r ' T l a i - n a ' \ 

and thus a\u = 0 and a'\n = 0. So 

i[vS,c]ftB(X) = 0 

because X e 'Haa' ■ Therefore 

T{A,A,^(P4E){X,SM) 
= isaihla'(Xlpla([vS,X}) + X2p2a([X,C}) + X2pla'([vS,X})). 

On the other hand we have 

i[x,c]a = -Cca(X), i[vS,x]°t = £vsa(X), i[vS,x}a' = £vS<x'(X), 

so T[A,tA,]V(P4E)(X,S,h1) = 0 if and only if 

(A, (CvSa) -X-A (Cca) + A2 (CvSa')) = 0, 

that is 

(A! (CvSa) - A2
 lFsa tS° (Cca) + A2{CvSa')) A a A a' = 0. 

isa 

Thus we have the following result: 
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/ / the distribution spanned by vS and C is integrable, then 
all the conditions of compatibility for P4 given by (7.39) can 
be expressed vnth the help of the spray S. 

STEP IV: Involutivity of P» 

We shall now prove that P4 is involutive. Since 52(^3) = 92{P\) ^92(Pv) H 
92(PA) H 92(PA,)> an element B 6 S2T* is in 52(^3) if and only if the 
equations 

a) B(S,JX) = 0, 
b) B(hX, JY) - B(hY, JX) = 0, 

(7.52) 
c) B{AX, JY) - B(AY, JX) =0 , 
d) B(A'X, JY) - B(A'Y, JX) = 0, 

hold. Let us denote by vSjn := vS — aLs\' C the projection of vS on 
JTi with respect to the sphtting Tv = SpanC © J'H. Note that VSJU ^ 0, 
because 5 is not typical, (and so vS is not proportional to C), and that 
F(VSJH) € Q X . Let us consider the base B = {/ii,«t}t=i,...,n, with 

a) / i i e T / l n a - L for i = 1, . . . , n - l ; 
b) ftn_i := F(vSjn); 
c) hn := /iS ; 
d) vt = Jht. 

Using the notation B = I '3 '3 1 for the matrix of B € 52(Pi) hi 
6ji 

this basis, i.e. aij = B(hi,hj), b^ = B(hi,Vj) and c^ = B(vi,Vj), for 
i, j = 1, ...,n, we have the following relations between the components: 

0, i = l , . . . , n - l ; 
0, i = l,...,n; 

0, i = l , . . . , n - 2 ; (7.53) 

1) 
2) 
3) 
4) 
5) 
6) 
7) 

Cni 

Cn- l,i 

C n - l , n - l 

&ni 

bn,n-l 

bnn 
bij ~ bji 

- _ ^ i •d , <» 
i s » 

C, •nni 
' c n n i 

0, i,j = l,...,n. 
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Indeed, 

(1) Since isa ^ 0, we obtain from (7.52c) computed on X = S and 
Y = hi, i — l , . . . ,n — 1, 

B{AS,vt) - B(Ahi,C) S=h" a(S) ■ B(vn,Vj) (7 = c) 0. 

(2) If i < n - 1-: 

, . (7.52.C) , c . (7.52.d) 
cn-lii = B{vn-1,vi) = B{vS,Vi) - 0. 

(3) Using (7.52.c) and then (7.52.d) we find 

C - L n - x = BivS.Vn-t) = ^B(C,C) = Cnn. 
isa 

(4) If i < n - 1, then using (7.52.a) and also (7.53.b) we find 

bni = B{S,Vi) - B(vS,Vi) = -B(vSjn,Vi) - £sB(vn,Vi) = 0. 

(5) 6n ,n_! = B(hS,vn-!) = B(S,vn-x) - B(vS,vn-i) (7 = a ) 

= -B(vS,vn-1) = -±£B(C,C) 

(6) Using the equations (7.52.a) and (7.53.b) we find 

bnn = B(hS, C) = B(S, C) - B(vS, C) = -B(vS, vn) = '4^- cnn, 
isa 

(7) bij - bji = B(hitvj) - B(hj,hi ( ? = ' 6 ) 0. 

It follows that 

dim32(A) = | (3n 2 - 3 n + 4). 

Let us now consider the base B = {ej, 1/^=1,...,„, where 

for i = 2, ...,n — 2, 
ei 

e-i 

e n - i 

en 

- hi +vi +vn, 
= hi +ivi, 
= Vn-2 + hn-i, 

-K +
 iFsa' c 

isa 
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We will show that B is quasi-regular. Putting forward &ij = B(ei,ej), 
bij = B(e{,Vj) and c^ = B(vi,Vj) = c^ we can express the matrix (bij) in 
terms of the components b^ and c^: 

/ 611+Cll • • fcln-2 + Cl„_2 6l ,n- l C„„ \ 
6 l 2 + 2 c i 2 • • 62n-2 + 2C2n-2 &2,n-l 0 
bl3 + 3Cl3 ••• 63n-2 + 3C3„-2 fo.n-l 0 

6 l n - 2 + 6n-2,n-2 + 
+(n - 2)ci„_2 +(n - 2)c„-2,n-2 6n-2,n-l 0 

fcl,n-l + Cl,n-2 • • fcn-2,n-l + Cn_2,n-2 bn- l ,n - l 0 
\ 0 • 0 0 0 / 

On the other hand 

&n-l,i = fct,n-l + (n_'2_i) (ftn-2,i — fci,n-2), 1 < 1 < 71 - 3| 

6<n = 0, 2 < i < n; 

5ni = 0, 1 < t < n 

Ci„ = 0 , 1 < i < n; 

Ci,n-i = 0 , 1 < i < n; 

Cn-2,n-2 = &n- l,n-2 _ 6n-2,n- 1, 
iFvSOt i 

Cn-l ,n- l — - : "in, 

= bin, 
1 

(i-j) 
(bij - bji), 1 < t < j < n - 2; 

Therefore an element B £ 32(̂ *3) is determined by the following free com­
ponents: 

aij, i,j = l,...,n, i<j; 

bij, i = l,...,n-2, j = l,...,n-l, i < j ; 
ca, 1 = 1,..., n — o; 

bin, bn-l,n-2 bn-l,n-l, & n - l , n - 2 -

If we note B = I -u ' _*J' I the matrix of an element £ € 52(^4)1 the 
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blocks of B are given by: 

/ Oil °12 

(o»j) = 

d l„ \ 

*-.. / 

62i 

(bij) = 

? i . n - 3 *1.» 

"2,n-3 "2,n-2 
"ln-1 "In 

^ - 2 , 7 . - 3 ? n - 2 , n - 2 * n - 2 , n - l 
* * n - 2 . n - l & „ - l , „ - l 

and 

(*>) = 

V 

* * 

* * 

* * 
* * 

where we wrote only the free parameters explicitly, and "*" denotes the 
determined components. Now 

( (n - k)(n - k + 1) 

dimg2(P4)Cl ...«k = ' 

+ (n-(k + 2))(n - 1) + 2 + (n - 3), 

for 1 < k < n - 2; 

^Y~ + 2 + (n - 3), for A: = n - 2, 

1-2 
2 

(n - 3), 

+ (n - 3), for fc = TI — 1, 

for A: = n, 

and 

dimp2(P4)e,. 
Jn-(A; - (A ;+ 3), for & = 1, ...,n - 3, 

for k = n — 2, n — 1, n, 
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SO 

dimg2{Pi) + ^2dimg2(P4)e1...ek + 5 Z d i m 92 (Pi)ei...en,«,... »* 
t=i fc=i 

3 n 2 - 3 n + 4 " (n - * ) ( n - * + 1 ) ^ U , „ „ , w 
= j + £ - 2 - + £ ( n - ( f c + 2 ) ) ( n - l ) 

*=i fc=i 

+ 2(n - 2) + n(n - 3) + - (n - 2)(n - 3) = -(4n 3 - 4n + 6) 
2 6 

= dim$3(P4), 

which shows that the base B is quasi-regular. Theorem 7.4 is proved. □ 



Appendix A 

Formulae 

A . l Formulae of the Frolicher-Nijenhuis Theory 

If K G ¥*(M), L 6 ¥{M), N € $ n (M) and u £ A"(M), then 

(1) iLdK ~ (-l)k(l-l)dKiL = dKA-L + ( - 1 ) * ^ , * ] . 

In particular, if X, Y £ X{M), and K, L € tf1 (M), then 

a) ixdx = -dnix + C-KX + i[K,x], 
b) ixCy = Cyix +i[x,Y], 
c) IK£X - Cxix + i[K,x], 
d) iRdi = dt%K + dLK - i[K,l\-

(2) [K,L]AN = [KAN,L] - {-\)l^-^K7\N,L\ 

+ (- l) f c / + 1 ([LAN, K) - (-l)k{-l-"L-K[N, K]). 

In particular, if X,Y e X(M) and K,L,N € *2(Af), then 

a) !* [# , W] = [A"X, JV] - K[X,N] + [NX,K] - N[X,K], 

b) [X,NK] = [X,N]K + N[X,K], 
c) [K, L]AN = [A-AT, L] - ff[N, L] + [LN, K] - L[N, K], 
d) \ [K, K) (X, Y) = [KX, KY] + K2 [X, Y] 

-K[KX,Y]-K[X,KY], 
205 
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e) [K,N](X, Y) = [KX,NY] + [NX, KY] - K[X,NY] 
- K[NX, Y] - N[X, KY] - N[KX, Y] 
+ KN[X,Y] + NK[X,Y}. 

(3) iNiLw = (-l)(n-W-lhLiNuj - (-l)(n-l)(l-lHNKu + iL*Nuj. 

In particular, if X,Y 6 X{M), N,Le <Zl(M) and K G 9k{M), then 

a) IRX = ixihc - ij<ix, 

c) IKAX = ixix + (-l)kii<ix-

(4) WtfTT = WAJK5T. 

(5) <LAKTT = u A dun + {-l)q+kdu A i/c7r. 

(6) [L,uA A-] = dLu A AT - (-l)d+')(«+*)dw A (LAK) + (-l) '«w A [L, AT]. 

In particular, if f,g E C°°(M), X,Y e X(M), K,L € ^ ( M ) and 
UJ,W £ A^M) , then 

a) [;<:,/;<:] = ( £ * / ) * : + / [ * , * ] 
b) [KJX} = dKf®X-df®KX + f[X,K] 
c) [gK, fX] = g(dKf ®X-df®KX)- {fCxg)K + gf[K, X] 
d) [K,gL] = (dKg) AL-dgAKL + g[K,L] 
e) [fK, gL] = f(dKg AL-dgAKL) 

+ g(dLf AK-dfALK) + fg[K, L] 
f) [X,LJAK} = (CXUJ)AK + CJA[X,K] 

g) [K,uA L] = dKuj AL-duAKL + (-l)qu A [K, L) 
h) [K,u®X] = dKu ® X - du ® KX + {-l)qu A[K,X] 
i) ±[u)®X,u®X} = (wA£XLJ-(ixu)duj)®X 
j) [uj®X,n®Y]=(u)A£XTr-n{X)du)®Y 

+ (TT A CYU-U(Y )dn)®X + (u A 7r) ®[X,Y]. 
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A.2 Formulae for Chapter 5 

xi =x^ATl] + x^isr] + xi^h
s
l'Vi] + (sXl), 

2 , S 3 , I rS . rS \ 

Xl = Su2Xl -*2(/*h,ffc , +S«l)> 

+ Cfa (xi^2**'1 + xi(«iCi*9*1,lJ) + (*x.) + x.el?''"1) 
X? =Xi^V

1
2'"ll + 2xid7""1 + (''2xO, 

(A.l) 

*! = X i / i i 1 d f l ! - 2 X i ( ^ d f l l ) + (^ i ) + 2A:1^'"], 

*? =tfa (xi*ivh,1xi, + x.^d?''" 1)+xi(^^ 2 , v i 1)+xi&r i ]xi 2 
+ klX

i
h2 + (h2k1))+^2k3

i+k2(2dS
1'Vi]-fi1h1d1), 

kl = ^ a ( x I ( « l ^ , • h , 1 + Xi&"'"1X»2 +X.^ 2 ' " , 1X' 2 +*.X*a (A.2) 
+ (A2*3))+^ a*i-*2/i21^'v , 1

I 

*? =xi€lV'v,1xi. +Xl(«.fl7,•h,1) + x.(«.«iw
1
a•,',I) + x i^ a , , , , I xi a 

+ («2fci) + *ixi2. 

*i = xiCwidV'1'11)+xidV-"1^2, +xidr , Ixa
a+(«»*»)+*ix2

a , 

d = * ; - ( X J - ) * 1 , * = 1,2, 

4 = * a - ( ^ - ) * a i t = i,2, 

c ,+ 2 = fc, A),2 . = 1>2i 
v Xk 2 ' 

e! "■--£)'■-(£)<■ 
4 =^-e)^-#K 

(A.3) 

2 
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f[S>2] [S,v2] . 
v.fc2 = x>anh,tf™ + xk2£lral + x k 2 ^ 2 C 2 1 + (5x»a), 
x2

2 = & (x>aC'M + *k2 O^""2') + («ix»2) + xfc2dr21) 
+ ^ 1 x^ 3 -< (Mh 2 ^ 2 +^ 2 ) , 

xk2 =xk2d,;"',2l+2x,2^2
,"'2l+(^xk3), 

ai2=x,yH^r]+(skij+2ki2dsr\ ["l.«2]^2 < = ^ ( x k 2 ^ ? , h a ) + xk2C , , ,2,x^ +xfc3C,"aJxi1 +*:axJ, 

< =x.2^2"'2 1 + xk2dh
l
2"'2lx?2 +xk2^I

,'"2lxS1 + « < + <x 2 , , 

6ia = X k 2 / .U^ 2 1 - 2xk2 («*£"2l) + (S*'a) + 2<$••»!, 
&k2 = & ( x * a # " h a I x i a + x ^ d * " " 2 1 ) + xk2(«2dh

2
i,U21) + (fci*a

a) 
+x*a«$ralxi1 +* 2

2 xi 1 )+« 2 +*k2(2^val-Mi2as
2), 

6k2 = X ^ ' ^ x i , + Xk2 (V2^M]) + Xk2 (^>V"al) + X ^ ' ^ x i , 
+ (»i*2a) + *2

axl l . 

I/2 = - ^ 
$ 

i/1 - - — /V[s,,;i 1 + f[s'h2] - f ? nl - fs n1 ̂  
"l — jr\$*\ + ^ 2 ShiVhi SvjVvij, 

2 1 /,[S,vi] ,S 2 ,S 2 N 

£h2 - ( "1 = - l - T ^ — + 

1 _ c[S,v2) 

?h 2 
)■ 

i / 1 — e ■3' 
"2 — ?«i 

*[S,ha] _ £ h j / l , l \_&ji_ 

ih2 

..2 _ c[S."2] , ASM) _ ihx(u
2 + „? \ - ^ - n 2 

?h2 ?h2 

(A.5) 
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f\ =x1(£<?'sl+dV,s,+d7'sW1 +^"sl)-(5Xl) 
ri =x2(^'S!+^s]v2+drsW2+&-s])-(sX2) 

+^(d?''"1+driI)+tf.,,SI+d7,sW. +as
2d'ri1 

rS =(5x2) - X2(ii^"kl] + tit$?M] + zU%'vl] + &&'-vl] 

•1 =xi««.#-SI) + K " 8 1 ) + «IT1
,'SW1)+X»€{?'S1M11 

-J =X2((.2^'S1) + (v2^/'s))+d;2,sVL)+xid7'sW, 
s? = - x. ((«i#i,sl) + («4V,SJ)+&(&,,h,1xi1 + (-.d?-"'1) 

+ e W V . + & t f r , 1 xk + « 8 i r , 1 x i , + « r , 1 x i 2 ) 
- x * ^ , ^ " 2 l + fcUl'T2lxJ2 + tf, «*d?,fc21 + £tfI

a,kaIxia 

+ &&Mxll+&t[ZMxll +ti^'hi]»U + tf,dr,Ixi1) 
si = - xi (& «i^1,M1 + ^{&'k,Ix5, + & ^M] + rfUI^'x2, 

+d?'sw, +&$ri]i>i +&tfr,]xi+&t\!?'vi]xi, 
+zu[:ri]xi)-x2 (& («2^-hi1)+??, ̂ (^•'"1) 
+suihr2]xi2+£ (^d?""1)+£ («a^2",,J)+^d?'"2lx^ 
+€JUl?-h,1x2, +^d? ' h l Ixl + * U v , h , K + £ d r , J x 2 , ) 
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- «,^ ,M1+>*& ,VI] - h*lZM] - fc4V,val + < « 1 ' v i 1
 (A 7) 

+ ̂ •" , 1 - sIT* W i (2d1,'",12^1'vi1 + €tha
1,hal^a'*11) 

p2 = 2^'"-V? + $»••>>,& +1, ,^-" '1 + fci^V"11 + C ' " " 1 ^ 
+ (2dh

1
,,vi1+sir11 - slT2lh*, + (2^,>"11+tf;M]+dhri]rt> 

1 _ J « i . * i l l * i . »a l [«2- v i l 
*}v\ — S * l ' S*-2 ^V2 ' 

2 , l » l . * l ) 
Vvi = 5 * 2 ' 

1 _ l * i . » i l l v i , *a l 1*2.Ml 
Vhi Sui **" SV2 S"/l2 > 

2 J * l . « l l 
»/hl = ? v 2 

1 J v l . " 2 l [»2.*2l l*a .» l l 
Vva — S v i — S/12 S h i ) 

2 _ J » l . » 2 ) J * 2 . « l l 
Vv2 — SV2 ~~ S/l2 » 

1 1*1.V2l [v2.*2l l * 2 . * l l 
*7*2 = S v , + ?«2 ~~ ^ 1 ' 

2 1*1 ."2) l *2 . * l l 
V/l2 — S^2 ~~ ^*2 

/ \ . 1 . fAvi.v?] Av2>^] t t * 2 . u l ] \ 
ri=(vir1) + riT}vl+r2{i\,lu 2'-Ch^ - & , )> 

I \ . 2 . / V l x i . ^ l t l ' , 2 . < ' l ] \ 

r2 = («i»,2)+ri»7„1 + r 2 ( £ V - & 2 ) , 

f\ = (v2ri), 

?\ = (V2r2), 

(A.8) 

(A.9) 

(A.10) 
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P5 =(5P2) +p 1^" 2 1 + P » ( € ^ 1 + C a I ) 
+'/i (vU?2!+»!tfr]+<^v21+(^ii"1)), 

7?? =/ilT/l + P 2 f l 
j . r>. Mfci."a] j _ c[*i-»a]„, e[»i.M] _ tC'j.'ii] _ e[fta,»i]\ 
+ '?H?V2 + 5fc2

 V l ~~ ? v i ^/,2 5»a y. 

P? =AIPI +pinl +M»l + vU+miriU1^ + "MV'"21 (A n) 
+ 7i1ri1,'VaI + («2^"VlJ) + (V2$a

lM]) + («2fiS,,h21)), 
pl =(f*lP2) + PlVki +P2(« /1 +»7fc2) 

tf =(wi^.)+P2+IJI (^" V 2 ) +"4V ^ + & •"2l+d*2' •V21 - d? , h , )) , 

P! =(« .P. ) + P I ^ + P 2 ^ ++«?!«^V"8 1 + "i€iV,uaI 

+ i/US;,,wal + (t^l2
1,,,2)) + («a^ , ,ual) + 0»tf1

,,h,I))> 
pi = ( f lP2) +Plf?v, +P2»7«2 

+91 ( W a l + " ? d v , W 2 1 + < d r 2 1 + («2€&,hl1))-
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tension, 48, 
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