Variational Principles for Second-order Differential Equations

Application of the Spencer Theory to Characterize Variational Sprays

Joseph Grifone
Zoltán Muzsnay

Variational Principles for Second-order
 Differential Equations

This page is intentionally left blank

Variational Principles for Second-order

 Differential EquationsApplication of the Spencer Theory to Characterize Variational Sprays

Joseph Grifone
Universite PauF Sabatier, France
Zoltán Muzsnay
Kossuth Lajons لUnivershty, Hungary

Published dy

World Sitenilik Publishing Co. He. Lad

A aalalague recond for this book is aurilable from ine Brilish Labrary

Copynahi © 2003 br Workd Snentafic Publeshing Co. Pri Ldd
 ciectronic or mectanical. incluting pheracopxigg, recording or any iejormelon snorage and rearienal

 Clemance Cemer. Jnc., 2こ2 Resewood Drus. Dawers, M4 09923, LSA. In this case permissinn io

ISBN 951-022-3734-0

Preface

The objective of this book i日 to familiarise the reader with the basic toole of over-determined partial differential equations, ammely the Spencer version of the Cartan-Kähfer theorem, sia the etudy of an old problem of diffrential geometry almost open uatil now, the cbaracterization of serond order ordinary equations, alao called apraye, coming fom a wariational problem. Note that thit problem is pot the game as the cbaracierization of Ruler-LApparge operatnrs, which if fow well understood thanks to the variational bicompler. Using the terminology of J.M. Anderson, we will study the warietional integrating factor's probiem. siact for any noll wingular matrix as the differential operatota P_{o} and n, P_{s} define the same differential equation, we atk if for a quati- linear differential operator P_{r}, thert eviste a mon-tingular matrix ag and a Lagrangian E such that

$$
a_{a}^{d} P_{i}=\frac{d}{d t} \frac{\partial E}{\partial r^{S}}-\frac{\partial E}{\partial \pi^{Y}}
$$

The aolution to this problem requires the study of the integrability of a partial differeatial syatem called the Euder-Lagrange sythem.

The moat siguificunt contribution to this problem is a famous paper of J. Douglan where, using the Riquier'e theory, the pariational difterential equation on 2 -dimensional manifolds are classified. The generalization of ite resultt in the ligher dimenaional case is a tery hard problem because the Buler-Lagrange system is atill extremely oper-determined.

Uling techniques from the Speacer theary of oyer-determined ayatemp
 1he natural framemork of the tangeni bugile auch at algebuaic differen-
tial characterization of compections and derivations by Frólicher-Nijeuhuia brackete, we can present the obstructiode which appear in the 2 -dimetrional cafes it an iptrinsic and natural way. Wheo the dipgension of the manifold is n. एकe apply thin lechuique to the study of a special class of sprays, which xe call isetropic Roughly speatong, a variational isotropic epray tomespogds io the readeric Sow af a Finalet resp. Fiemana manifold with a constant stetionsl emryature it the homngenents yepp. quadratic ctase. Howeqer it
 second order equations. The main theorems provide complete working ij-
 of torsion, invalutivily, Spencer cahpralagy, 2-acyclicity etc.

We briefly deactibe the contents of each rhapter.

Chapter I offery an elementary introduction to the farmal integrabilaty theory of partial differeatial ayatems. No pruofo are giren, but all the notiona are jllustrated with simple examples, so that the formalign of the thecry, which uaually dighearkens the reader, can be easily absorbed.

Chapter II and Chapter [II are deyoted to the preseatation of the connection theory bared on the Fralicher-Nijenbuis graded Lae algehra if providet an adapted formalithy for our prollem, whith allopts ut ta present all the differential relatione and onstructions easily and intrinsically.

In Chapter [V me study variational spraps We eatablush the necereary relations which thes ratiafy and jatroduce a oatural graded Lie algebra manciated to the spray which plays an important role in our study.

The appluatunn of formal integrabitity theory of partial diferential equatione to the the inverse problem begins io Chapter V. We study tbe problem in the general case, i.e. without aby reutrichion ot the climension or on the curvature. We give the firet obstructiont to that a spiay is pariational. Tha chapter prorides useful examples for the reader intertested in the application of the technique. The complete classification of the vartia lional fprays seeme to be mpessible in the ganeral situation, becauge a lot of abstructions, determiaed by the clements of the graded Lic algebra introduced in Cbapter JW, appeas. 1lowewer, it is inbtructive to fee how they arise and this Chapter nffers quite a rlear idiea of the methode empleyed Ti ofder to oblain complete tespulte we testrist purueloca to particular casea That is what we do io the following Chapters.

In Cbapter VI we teeal the 2 -dimentional case of toture, thas chapter, like the original paper of J. Dlourlas, is quite complicated, because
many cases and aub-cases bave to be considered and many obatructions arise. Nevertheless, it is the Fery chapter that the theory of the overdetermined ayatem is tully appliet and all the possidte situatione appear. infolutivity, 2-acyclicity, a $\Delta \mathrm{D}-\mathrm{zefa}$ higher ordtr colomalagy groupte, restrittion of the ayasem etc. Ae we will ate, fom this study a partietlar clats of sprays emerge naturally which we call typscal, becaute it also contairs the quadratic and howageneous eccond order equations, which are the mote frequent in differential geometry. Alhough they require a special oreatneut, the decessay computations are easier.

In the last Chapter we icturn to the ri-dimensional care, but we limit ourfelves to the atudy of isctropic aprafa. When the nen-holonomy ja treak, मe obtain the necessayy and aufficient conditions for the ppray to be variatioual. Some of the results of this Chapter was published in Annates de I'Institut Fourrer receatly.

Acknowlbegments - We xotld like to express ous fratitude to lan Andersun, Sean-Fieyre Buwguigona, Jacques Gasqui, Péter Tilior Nazy and Hilary Deries-Glajater for their belp. encouragement and cint:cism

This page is intentionally left blank

Contents

Preface 4
Chapier 1 An Introdution ta Formal Integrability Thedry of Partial Differenial Sybleros 1
1.1]ntroduction 1
12 Hataitnaz and defnitings 5

1. 3]nYalutivity 9
1.4 Firai oumpatilulily comditions for a PDO 17
2. לThe Cartan-Käber theorem 23
1.6 Speqcer cohamologs 24
1.7 The sumlinear case 28
Chapter 2 Frölicher-Nijenhuig Theory of Deriwations 39
21 Detivations of the exterjux ajgebra 7.17
 31
2.3 Graded Lie ajgebra atructure an recion-ralued formb 37
Chapter \% Differentlal Algebraic Formalisn of Connections 41
3.1 The tensor algebsa of the tangent rector bundle 41
3.2 Sprays and connections 45
3.3 Curvature and Douglas tonsor 55
3.4 The Lasrangian 50
3.5 Sectional curpature asgociated pith a convex Lagrangian 64
 71
4.] ldentaties sakisfied by variational sprays 71
42 Girated Irie algebra asgociated to a second order ODE 76
4.3 The jank of apray 78
Chapters Obstructlons to the Integrability of the Elipr-1; grange 5 ybtem 83
51 First otatuctions for Euler-Lagranige operatot 83
52 Second otairuchons for the Euler-Lagtange operator 86
Chapter B The Classification af Locally Variatlonal Sprays in Twisdimenslonal Manifolds 91
61 Flat sprays 93
62 Rank 5 - 1: Typical mprats 96
6 3 Ranks $=1$: Atypical aprays. 107
B.3. 1 Non-triviality of the Speacer collowology. 108
6 3.2 The inverse probtem when \bar{A} is diagonalizable 117
6.3.2.1 Reducibility of aprays 117
63.2.2 Completion Lemma 121
6 3.2.i findurible cave 130
0.3.2.4 Semi-reducible case 134
6.3.2.5 lineducible case 145
63.3 The inverae problem when A is and-dagnadizatbe 152
6331 fedurable fise 155
63.3 .2 1reducible case 156
6.4 Kank $S=2$ 153
E.M. 1 Typical aprays 163
6.4.2 Atypical apruys 165
Chapter 7 Euler-Eagrange Sybtems in the Isoutrupic Casu 167
7.] The 自at cace 163
7.2 The cou-fat cate 173
72.1 Typical aprays 175
72.2 Atypical aprays 184
Appendix A Formulac 205
A. 1 Formulae of the Frölicher-Nijenbuia Theory 205
A. 2 Formulae for Chapter 5 207
Bibliography 213
[ndex 216

Chapter 1

An Introduction to Formal Integrability Theory of Partial Differential Systems

 achmidt version of the Cartan-Kähler Theorem. Our goal is to study the variational problem related to the intagrability of the Exiler-Lagrange differential operator Since it is a second order tinear partial differential operator,
 operatort. In éction 1.7 the nod linear cate in medtioned.

I.1 Introduction

The fundamental theorem about partial diferential equations iPDEj is the

Theorem 1.1 - (CaUchrikownceskn) Corsider the sustern

$$
\begin{equation*}
\frac{\partial z^{\mu}}{\partial \pi^{n}}-\Phi^{\mu}\left(r_{-}, \frac{\partial z}{\partial r^{1}}\right) \tag{1.2}
\end{equation*}
$$

 Given analytic functions $\int^{2}\left(x^{1}, \ldots x^{n-1}\right)$ on a nerghborhood of 0 such that

$$
f^{\mu}(0)=A^{\mu}, \quad \frac{\partial F^{\prime \prime}}{\forall y^{2}}(0)=A_{V}^{\mu} .
$$

thete exists a umique analytac sotution $z=F^{\prime}\left(\underline{x} x^{\prime}, ~ . ., x^{\prime \prime}\right)$ of the systere
if If on a neighborhoord of $0 \times \mathbf{R}^{n}$ such that.

$$
z^{\mu}\left(x^{\prime}, \ldots x^{x-1}, 0\right)=f^{4}\left(x^{\prime} \ldots ., x^{n-1} j .\right.
$$

Note thal the aystem of PDE in the Cauchy-Kowaleaka Theorem thas two particularities:
(1) The oumber mo of (first order) equations js equal to the number of unkown functons z^{*}
(2) Dre of the iodependent functions, 3^{n}, plays a particular iole.

The idea of the prour is as follows:

1. One begins to look at the formal iotegrability, i.e one looks for formal power series in a serghborbood of $0 \in \mathbb{R}^{\prime \prime}$, which eatisiy the sytitein and the initial condition. Taking into account the particular form of the agstem (the partial derivatives $\frac{y_{c} c^{*}}{\left(x^{n}\right.}$ are expressed in terms of the other components of the 1 -jet of z^{μ}) it is aot difficult to prove that formal aolntions exist.
2. By the testaique of the "majoront senes" poe proves that the formal seties conqerge.

The Cartau-Kihler Theorem gentralites the Cauchy-Kowalerka 'Thea. rem, is the 日ene that the number of equations se not necessatily equal to the aumber of unknown functions, and that avae of the rariables play a particular cole

As we have said, the particular torm of the Cauchy-Kowalenk aystem impliex that formal asolutioun al ways exist. This ix pot the case tor a general sfetem: obatructions can arise and be explicisly computed. Howevtr, if formal integrability of an analgtic 昭tem is ensured, the formal talutiout converge, as in the Cauchy-Kowaleska case.

Tha aituation is similar to the one for aystems of livear algebraic equa-
 form (1.e. the anmber of equations is the fame as the number of unknown rayiables and the matrix is regulart then a solution exata and 14 is unique. For a geacral tyelem, obstructaons appeat: they tan be obtainerl by compputing the "characteristic determinontg" (which amounta to giving all the linear celations betwera the equations). When there compalibility conditiona art gativied. the system tan be put in the Cramer form with some free parametera. Then a parametrized family of atolutiona can be oblaized, and the number of tive parameters depends on the rank of the system. For
the systema of PDE the situatoon is amilar. The ubstroctiong ariving from The Spencer cohomologg correspond to the fact that the characteristjic der iermioants bave to wanish and the number of poralleters (which in this case are arbitrary functions) can be explcitily oomputed.

Let ua considet tloe sifetem of partial differental equations

$$
F^{v}\left(\varepsilon^{a}, z^{\mu},,_{a}^{\mu}, \ldots, \nabla_{u_{1}, \ldots 4}^{\mu}\right)=0
$$

Whetre $\mathrm{p}=\mathrm{t} \ldots \mathrm{F}$ and

$$
=_{a}^{\mu}=\frac{\partial z^{\mu}}{\partial r^{\prime \prime}}, \quad \cdots, \quad z_{n_{1}, \ldots u_{4}}^{\dot{s}}=\frac{\partial^{\dagger} z^{\mu}}{\partial r_{-}^{u} \ldots \xi_{\Sigma_{k}^{u}}^{u}} .
$$

Definilium L. The aytiem 1.2 is docalfy integrable in a neighbarbood

$$
F^{*}\left(r_{n}, A^{\mu}, \ldots, A_{j,}^{\mu}, 0_{3}\right\}=0
$$

 that

 sajutiona sur ro is pated Mi.2t.
[n otber mords, the PDE (1 2) ; ; (local'g) integrable in a neighbcrbood of J_{u} if

 sifitit that $\left\{j_{k} f\right\}_{x_{0}}=F_{0}$.

To study the integrability Tapior series can he used. At first one looks far a formal solution $==i_{i}^{1}, \ldots, z^{\text {m }}$; i.e. a formal series satitifying the

$$
==\sum_{<} \frac{A_{1}}{\alpha^{\prime}}\left(x-z_{v}\right)^{7}
$$

(Trhere α is a multi-index and $A_{n}=\left(D_{n} z\right)\left(x_{o}\right)$). Putting a into the equation, we cad compute A_{8}, by aotring algebraic ayatems. Then we cad look at the convergence of the formad colution.

Example 1.1 vet ula coander the equatrou

$$
\frac{\partial^{2} z}{\partial x^{7}}+\frac{\partial^{2} z}{\partial y^{7}}=11 .
$$

Whta obriouls nokations it can be written.

$$
s_{51}+s_{52}=0
$$

The coefficients of the tormal necjea reidying the equasion munt satinty:

$$
A_{11}+A_{3}=0
$$

 have a $2^{\text {th }}$-ardet tulution ($\mathrm{U} .0, \mathrm{I}, 4,-1$).

If ve want to compute the ather caefficienta of the furmal expenaion, we ared to derive the equation and ptudy the the first prolongation of the cyut*pr

$$
\left\{\begin{array}{l}
z_{12}+z_{22}=0 \\
s_{111}+z_{124}=0 \\
z_{221}+z_{222}=0 .
\end{array}\right.
$$

The numbers $\mathcal{A}_{1}, \mathcal{A}_{1,}, A_{1,1}$ mult calucty the aytem:

$$
\left\{\begin{array}{l}
A_{11}+A_{22}=0 \\
A_{111}+A_{121}=0 \\
A_{211}+A_{222}=0 .
\end{array}\right.
$$

If we take the A_{1} and $A_{1 ;}$ as abore, we can build a $3^{\text {rd }}$-order solution which *xtande the 2nd order *olukion aljexty found For exanaple

$$
A_{1}-0_{1} A_{2}-0_{1} A_{11}-1_{1} A_{2}=0, A_{22}=-1
$$

and

$$
A_{111}-0, A_{115}-0 . A_{15}=0, A_{28}:-0 .
$$

 equatione. If this syetero is consuteat theb we find the Ind ot fet solutrone which are lifted to $\mathrm{f}^{\text {: }}$-ntrater tolutione, ete

Formal intezability at x_{0} mespot that roy kth nader formal polutian at z_{0} can be lifted into an anfinite ordet solution.

As is sboan by the above example, in order to prove that the ktb order solutions can be lifted in tufinite order solutions (i.e. therc exists a formal solution), we need to study the consisteacy of an algebraic system contruning an iofinite number of unkrowns and equations. Fougbly fpeaking the Cartan-Kishler Theorem sagy that if the system is "involutive" and "regnlar" [these aotions wilj be whoduced in the next sections) one only aeeds to sturly the firs projnngaljar:

Gomswier the h th arder spetem
which ts supposed to be "repular" if the system so "invalutive", and every flt -arder solution can be thited in a it +1 l!/h order solatzen, then the system as formatily integrable

1.2 Natativis anul definitlous

 dinates on Mf. Where there is un pospibility of cunfusiuu TMf and $T^{*} M$ will be anted as T and T^{*}. Moreover $i^{\nu} \mathrm{T}^{*}$ and $S^{5} T^{*}$ will dengrate the vector buodlex of the skew-tymmetric and symmetric forms.
[et E be a fibred burdle orer the manifold M with the projection π. One denotes by Srs: E the sheal of the sections of E ovet M. Two sections of F. determibe the tame k th order jet if in one, and hence in frety. lncal coutdinate aystem their Taylor aeries coincide up to order k The clasa determined by tife eection $s \in \operatorname{Sec} E$ at the point $\pi \in \in$ if in depoled by $j_{k}(*)_{p_{0}}$, abd the sel of all k-jeta is denoted by $J_{t}(E)$. With tine projection
 which is called the burdle of $火$-jets of pections of E [f $\Gamma>k$, one defines
 fibred wanifeld over N_{s} ! E), in the case where E ia a pectar buodle over M.

Let $\left(W_{3}, r^{\mathbf{l}}, \ldots, x^{\text {r }}\right)$ be a loced pordinate system on M such that E is
 on $x^{-1}(D) A$ standard dacal coordinate gyatem $\left\{x^{1}, z^{\mu}, z_{a}^{\mu}\right\}$ of $J_{t}(E)$ on $5_{4}^{-1}(C)$ is defined for a section s of E by

$$
\begin{aligned}
& z^{\mu}\left(j_{k}(s)_{x_{0}}\right)=\Sigma^{\mu}\left(9\left\{x_{0}\right)\right) . \\
& z_{i}^{u}\left(j_{\mathrm{k}}(9)_{x_{1}}\right)=D^{u} z^{\mu}\left(s \left(x i j\left\{x_{0}\right),\right.\right.
\end{aligned}
$$

 $\left.{ }_{f y} y_{\text {II }}\right] \leq r_{j}+\ldots+n_{n} \leq k$.

To simplify the potation we deacte π_{k-1} for $\pi_{k . k}$):

$$
\underset{\left(x^{a}, z^{\mu} \ldots \ldots z_{u_{1}, a_{k}}^{u}\right)}{J_{t} E} \xrightarrow[\left(x^{\mathrm{a}}, z^{\mu}, \ldots ., z_{a_{1}, \ldots a_{--1}}^{u}\right)]{J_{t-z} E}
$$

It is easy to 日ee that :+

Then we have the eract sequence.

$$
0 \longrightarrow 5^{*} T^{\prime} \wp E \longrightarrow J_{\mathrm{t}} E \xrightarrow{r_{t-1}} J_{k-i} E \longrightarrow 0
$$

 functicns vaniahing in r_{n} and $\varepsilon \in S \in \in\left(E j_{\text {, }}\right.$, then:
where (i) denotea the syometric prociuct.

Definition 1.2 let E and F be tro vectar bundles over the sume manifold is A partial differential operator (PDO) is a map

$$
P . S+c(E) \longrightarrow S \ll(F) \text {. }
$$

P is a 0 th order operator if $P\left(f g i=f P(n)\right.$ for every $f \in C^{\prime \sigma}(N)$ and $a \in S e c \mid E\}$. The order is k if the map

$$
\begin{aligned}
\operatorname{Ser}(E) & \longrightarrow \operatorname{Ser}(F) \\
\varepsilon & \longrightarrow P(f s)-f P(s)
\end{aligned}
$$

[t is easy to aee that the order of P in \hat{k} if and only if $P(s i$ can be exprested in terme of the ${ }^{\prime}$-jet of s; then P can be identified with a map

$$
p_{n}(F): J_{k} E \longrightarrow F .
$$

Example 1.2 Exterar demuatue
The operator at Seci $T^{*}!\rightarrow \operatorname{Sre}\left(\lambda^{2} T^{*}\right)$ cas be identified prith the morphasm:

$$
\begin{aligned}
& \text { Hofro: } J_{1} T^{*} \longrightarrow \mathrm{n}^{2} \mathrm{~T}^{*} \\
& \left\{x^{2}, w_{u}, i_{a}, v!\rightarrow\left\{x^{2}, \omega_{a}, \downarrow-\omega_{b, 0}\right\}\right. \text {. }
\end{aligned}
$$

Example 1.3 Linear comnection.
Let 「 he a limear rannettion oba rector buide $F \rightarrow$ Af thayacterized by the differeatisid apteator:

$$
\nabla \cdot \operatorname{Sec}(F) \quad \cdots, \operatorname{Sec}\left(T^{\prime} \omega F\right)
$$

$$
5 \quad \mapsto \quad \nabla_{y}
$$

तbere

$$
\begin{array}{cl}
\bar{F}_{s}: \text { SeciTMi } & + \text { ScetFi } \\
x & \longmapsto \nabla_{s} s
\end{array}
$$

Then ∇ ran be defentified with the morphasm-

$$
\begin{aligned}
& \left\{x^{2}, z^{\mu}, z_{n}^{\mu}!\quad \mapsto \quad\left(z^{2}, z_{s}^{\mu}-\Gamma_{=v}^{\mu} i z\right) z^{\nu}\right\}
\end{aligned}
$$

Defistion 1.3 A partal different:of equation R_{t} of ordar k on E is a
 surb that $j_{k}\left\{\mu\right.$) je a atction of R_{k}.

As Fe explained in the lobroduction we beed to derive the aystem to find the integrability conditions. This if the notion of prologgation.

Defaition 1.4 - Let $F^{A}: S e c E \rightarrow S e c F$ be atth order PDO. The map

$$
\begin{aligned}
p_{2}\left(f^{\prime}\right): j_{k+1} E^{\prime} & \longrightarrow J_{1} f \\
j_{k+1}\left(s^{\prime}\right) & \longmapsto j_{1}(P s)
\end{aligned}
$$

in called the $\mathrm{frh}^{\text {rh }}$-arder protorgataon of P.
It is easy to ase that the fith prolongation of a k th order operator depende only on the $(k+\{)$-jet of a C Sec E.
 than of P in x, if $P(s)_{x}=0$. Mort generally $\left(U_{n+i} n\right)_{2} \in J_{t r i}(E)$ is callesu $(k+i)$ th order solution of P in r, if $\left.p_{s}(P)(x)\right)_{*}=0, t \geq 0$. Let us tet.

$$
R_{k+1 . x}(S)=\left\{\left(3_{1}+s\right\}_{t} \in J_{k+1}\{E\}_{y} \mid s \in S c(E) \text { and } n\left\{P^{\prime}\right)(s)_{x}=0\right\} \text {. }
$$

$M_{k+i . x}$ is called the space of $(\hat{k}+\mathrm{J})$ th ander solnctors of the nperator P als.

From now on we will supprose that the differential operator P is auch
 It can be proxed that it is the case if po(\boldsymbol{P}) has a locally conatint rank ($c \mathrm{E}$. $\left.\mathrm{BCO}^{2}\right]_{\mathrm{p}} 395$. Tf the PDO 25 mitten locally in the form

$$
F^{v}\left(x^{a}, z^{\mu}, z_{a}^{4}, \ldots, z_{a_{L}, \ldots, a_{4}}^{\mu}\right)=0, \quad v=1, \ldots, p
$$

this amounte to the mappiog F having locally constent rank.

Deflimition 1.6 The partal differential equation corcesponding to a k th order partial differeatial operatar P^{\prime} is the tibred mandiold $K_{n}\left(F^{\prime}\right)$. A so-
 defined on ${ }^{\prime \prime}$, such that $P s=11$, or equimalently:

$$
m_{1}(P)\left(j_{k} f\right)=-0, \quad \forall x \in t
$$

Let

$$
F_{t+i-1} \cdot K_{k-i} \longrightarrow R_{t+1-1}
$$

be the restriction of the projection $n_{\gamma+i-1}: \beta_{1-1} E \rightarrow S_{t+1-1} E$ to R_{t+2}. The auryectivity of the \mathbf{F}_{4+1-1} for every $\ \geq 1$ metant that every $k^{t h}$-order solution ciu be hifed to a wo-arder solution. Nam we can formulate the following deburition:

Defluition 1.7 A PDO is called formality integrable at x_{0} of
(1) R_{k+1} is a vector bundle for all $\mathbb{2} \geq 0$,
(2) $\ddot{\pi}_{k-d-1 . x_{k}} \cdot t_{k+l, a} \rightarrow f t_{k+i \cdot 1, x_{c}}$ for erery $t \geq 1$ is onto.

In the analytical context, formal mategrability implics the cxistence of solutunas for all the initial data.

Theorem 1.2 (cf. ($B C C^{2} /$, p.3g7) - Let P de a regudar analytical PDO. Stppose that P tg formaily integrable at r_{a}. Then for every
 tarhoart (If of s_{0}, such that $F f-0$, and $; j_{k} f\left(I_{0}\right) \quad F_{0}$.

The convergence of the power series was first eatabluhed by Ehrenpreis, Guiliemin and Steraberg 101965 [$E C G S$) and later by Sweeney [Swe] proviag
 Madgnage gave dure:t praco of the theorem with the method af "majoranta" [Ma]

1.3 Involutivity

The notion of involutivity bas been intreduced by E. Cartin in his theory of extarior differeatial systems |Ca|. to can be explaned as follows. Let μ consider the sybtem

$$
\left\{\begin{array}{l}
\frac{\Delta f}{\partial x}=F^{\prime}(x, y i, \\
\Delta f= \\
\partial y=P(x, y!
\end{array}\right.
$$

If we add to thia syetem the obetruction arisiag from the first prolongation ($\frac{i f f}{\partial y}=\frac{\Delta 口}{\partial x}$), then at in exay lo mee that the system

$$
\left\{\begin{array}{l}
\frac{\partial\rangle}{\partial x}=P(x, y) \\
\partial j=Q(x, y) \\
\frac{\partial y}{\partial y}-\frac{\partial Q}{\partial x}=0
\end{array}\right.
$$

з locally integrable. In othar words, all the phstructions are contained in the first prolongation. Cartan stated that for a general PDO all the otatructions are conlarped in the mitem obtained after a fincte rewmer of prolangationd. This thearen was later proved by Kwanishi [Kul and Quilles [Qui].
lo the Cartan theary, the involutivity it checked by the es called Cartan test. It conkista of computing the diueusions of a flag related to the prolongation of the system. This amounts to producing a certan basis of the tangent mace, rajled n quari-reqular basts, satisfuing mane fanditunns b 1953 Serre expreated the ipralutivity in terman of cobomslogical algebra 'Sel. At preaent the infolutivity is too stroug a condition. the obatructions to the formal integrability belang to tome cohomological groupe of a complex called the "Spencer complex" (the inpolutivity is equivalent to the vanshing of all the cohomological groupe of the Spencer comptex). Finally Quillen prated that the contwombogy of the Spencer coraplex vaishes from a certain order (i.e. there exigts a prolongation of the sypteru which ja involutive!.

Nata - From bow op, tlie PDO will be colajidered an linear (the gonlinear case wilk be conaidered at the ead of thia cbapter).
 $\jmath_{k} E \rightarrow F$ the carreqpanding morptism on the jet bundle
$p_{i l}\left[L^{[2}\right]$ of $3 s$ called the sumber of $f:$

 This amounte to rrstriciag the $\mathrm{P}[\mathrm{O}$ to its maximal order part.

The ith prolongation $n_{x+1!}$ P) of the symbol is deflod by the fullawing diagram:

It is easy in see that $\sigma_{\alpha+i}$ is naturally jidentifed with the symbol af the d_{th} arder proflungation of P. In partictuar

$$
\pi_{k+1}: S^{2+1} \Gamma^{*} E \rightarrow \Gamma^{*} N \varepsilon
$$

is detaned by

$$
i_{x} f_{k+1} i_{t} t=\sigma_{k}\left(t_{k} t\right)
$$

for $K \in T$ and $t f S^{k+1} T$ '.
Let I be a kth order linear differeatial operator. We put

$$
g_{k+1}(P)=\operatorname{Ker} o_{k-1}(P), \quad \int \geq 0 .
$$

Example 1.4 Lat us coasider the axterior dacivative :

$$
d \cdot \operatorname{Src}\left(\mathrm{I}^{\prime \prime}\right) \rightarrow \text { Se: }\left\{h^{\left.\wedge^{2} T^{\prime \cdots}\right\}}\right.
$$

The symbol in the map

$$
\begin{aligned}
& v_{1}(d) \cdot T^{*} \Leftrightarrow T^{*} \\
& A \quad A^{2} T \\
& A v_{1} A
\end{aligned}
$$

dellnod by

$$
\left[\sigma_{1}\left(J^{\prime}\right) A \mid\left(X, Y_{i}^{\prime}=A(X, Y)-A\left(Y, X^{\prime}\right]_{1}\right.\right.
$$

 the monbol is the mop

$$
\begin{aligned}
\sigma_{1}(d): S^{2} T^{-} & \Leftrightarrow T^{\mu}
\end{aligned}>T^{*} \Leftrightarrow \Lambda^{3} T^{*} .
$$

given by

$$
\left|\sigma_{2}(d) B\right|\{, Y, Y, Z)=B\left(X, Y, Z j-B\left(X, Z, V^{\prime}\right)\right.
$$

Example 1.5 [rat it canswet the morariant detivative

$$
\begin{aligned}
& \min (F) \quad J_{1} F \longrightarrow \Gamma^{*} \text { © }
\end{aligned}
$$

The symbol if the map

$$
\begin{gathered}
\sigma_{1}(F) \cdot T^{*} \otimes F-\quad T^{*} \approx F \\
A_{a} \longmapsto A_{a}^{r}
\end{gathered}
$$

$$
\theta(\nabla): S^{2} T^{*} \& F \longrightarrow T 刃 T^{*} \& F
$$

 mrile, for $j=1 \ldots$, id -1,

$$
g_{t}(P)_{\Gamma}, r,=\left\{A \in g_{k}(P)_{r} \mid i_{r} A=\ldots=i_{e}, A=0\right\} .
$$

A basis is called " quast-regtarar" if:

$$
\left.\operatorname{dim} g_{k-1}(F)_{x}=\operatorname{dim}_{g_{k}}!P\right)_{2}+\sum_{j-1}^{n_{1}-1} \operatorname{dim} g_{r}(P\}_{2, t} \quad s_{1}
$$

 IEM

Remarks

(1) For any basis we bave

$$
\begin{equation*}
\operatorname{dim}\left\{g_{k+1}\right)_{k} \leq \operatorname{dim}\left(g_{k}\right)_{k}+\sum_{j=1}^{n-1} \operatorname{dim}\left(g_{k}\right)_{x, 1} \ldots \rho_{1} . \tag{1.4}
\end{equation*}
$$

(2) The charucters defined by E. Cartan are related to the dimensiont of the $\left(g_{k}\right)_{x+1} \ldots$, by

$$
\begin{aligned}
s_{1} & =\operatorname{dim} y_{k}-\operatorname{din}\left(y_{2}\right)_{1} \\
s_{2} & =\operatorname{dim}\left(g_{k}\right)_{c_{1}}-\operatorname{dim}\left(g_{k}\right)_{c_{1} r_{s}} \\
& \vdots \\
s_{1} & =\operatorname{dim}\left(g_{2}\right)_{e_{1}} \quad t_{,-1}-\operatorname{dim}\left(g_{k}\right)_{t_{1}} \quad:_{1}
\end{aligned}
$$

With thete atatangs line candition fis a quaxi. reqular baxia can be writted:

$$
\operatorname{dim} g_{k+1}=x_{1}+2 n_{k}+\cdots+n s_{n} .
$$

This is ibe se-salled Cartan fest.
(3) The followigg property bolds.
 buarja anct s , the Cartan characters. Let the the langest interer such that it \neq (1. Thers the general solution depends on st arbitrary fudethans of \& variables

[^0]Exminjle 1.b Let ua copalder the exterar denviaive. Uning the computation of the Example 1.4 one fiodn

$$
\left.\left.g_{1}(d)=\left\{A \in T^{*} \otimes T^{2} \mid A i X, Y\right)=A \mid Y^{\prime}: x^{2}\right\}\right\}=S^{2} \Gamma^{*}
$$

and therefare

$$
d i m\{1 \mid \pi)-\frac{i(n+1)}{2} .
$$

Talling iute acculuth the exptestion ot $\sigma_{2}(\sqrt{\prime})$ ene bad

$$
\left.g_{2}\left(d^{d}\right)=\left\{B \in S^{2} T^{*} \xi T^{*} \mid B i X,\right\}, Z\right]=B(X, Z, Y j)=S^{3} T^{*}
$$

than

$$
\operatorname{din} 9 \varepsilon(d)=\frac{\pi i n+1 j(n+2)}{b}
$$

Let ur conaider an arbitrary baid $\left\{c_{1}, \ldots, f_{n}\right\}$ of T Mf. We have:

$$
\begin{aligned}
& \left(g_{2}\right)_{r}=\left\{A \in S^{2} T \mid i_{i}, A=r\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbf{R}_{2}\left|z_{2}, \ldots, x_{n}\right|_{1} \\
& \simeq \mathbf{R}_{2}\left|x_{1,1} \ldots J_{n}\right| \text {. }
\end{aligned}
$$

tand tbatetct:

$$
\begin{aligned}
& \text { dumigniz1 } x_{n-1}=\frac{2.1}{7}
\end{aligned}
$$

Now

$$
\sum_{k=1}^{*}\left\{k+l j k=\sum_{k=1}^{n} k^{3}+\sum_{k=1}^{n} k=\frac{n(\pi-1 j(2 n+1 j}{6}+\frac{n(n+1)}{3}=\frac{\pi i(n+1)(n+2)}{k}\right.
$$

then the baria it quats-reglar and the partial duffereflinal operslor of in involutuve.

RENARK - In general, the quasi-regular basis arien naturally and deporids on the geometrical objexts given in the problem. For example, if a Fiemannian metric ja given, it 36 matural to look at the orthonormal basis; if
an endomorphiam occura in the protbera. it is natural to look at the Jofdan basis, the. In the taste of the exteriar derizalime there it no particulay hasis so we have chasen ane ashitanly (in other worde either all the bases are quaxi, resular, or noge of them are).
[n practice, it ofder tu poove inavolutitity, obe starts from a "patural bads" and, talking juto stcourt the inequality 1.4 which saya that for as
 to mivimize these dianelusionn by changiog the baise. We will gite a simple erample here; more compliested onet will tappear in the study of the inverte problem of the calculue of pariatione.
 turnider the PDO

$$
\alpha_{s}: l^{\prime \infty}\left(M j \rightarrow A^{\prime}(M)\right.
$$

debied by

$$
\left.d_{0} f\left(X_{j}\right):=\|(f) X\right)
$$

Tbua asidג) $T^{*} \quad T^{*}$ in defined by

$$
\mid k_{1}\left(d_{k}\left|w_{w}\right|\langle\lambda)=v_{i}(h, K)\right. \text {. }
$$

$$
(0, B)(X, Y)=B(X, h Y) .
$$

Therefore

$$
g_{1}\left(x_{v}\right)=\left\{\left.\omega \in T^{*} \quad \omega\right|_{1 m n}=0\right\}
$$

and

$$
\left.g_{2}\left(d_{n}\right)=\left\{B \in S^{2}\right\}^{\prime} \mid \forall\left(x, x_{i}^{-}\right\}=0 \quad \forall A, y \in T\right\}
$$

 * basiv $B=\left(c_{1}, \ldots, c_{1}, \varepsilon_{1}, \ldots, \varepsilon_{n}\right.$,) witb the c, \in imk agd $\varepsilon_{0} \in$ Kerk (tbis in a "qatural trasin"). We have.

$$
H \in g_{2} \Longleftrightarrow\left\{\begin{array}{lll}
B\left(e_{1}, r_{0}\right) & =0, & i .2=1, \ldots r_{1} \\
B\left(E_{0}, r_{2}\right) & =0, & \quad t=1 \ldots, r-r_{1} \quad 1=1 . \ldots r
\end{array}\right.
$$

$$
\text { Ninge: }=\frac{(\pi-r)(n-x+1)}{2} \text {. }
$$

On the other basd we bave

$$
\left(g_{1}\right)_{c_{1}}=\left\{\dot{\omega}|\dot{\omega}|_{\mathrm{mhn}}=0, \omega\left(e_{1} ;=0\right\}=g_{1}\right.
$$

mpch $\mathrm{f}_{1} \in \operatorname{lmh}$ In the name way

$$
\left.q_{g_{1} i=1}^{\prime} . a,=y_{1} . \quad \text { (ar }\right)=1_{1} \ldots,
$$

and

$$
\operatorname{dim}\left(g_{1}\right)_{1}, p_{1}=n-r . \quad \text { far } \dot{j}=1, \ldots, r .
$$

$\mathrm{N} / \underset{\pi}{ }$
abd mint* ctacerally

St we have
 wensians of the ! $\left.\mathrm{g}_{1}\right)_{1} \ldots$... do nat decrease sufficienty quickly (at present da not deriester at all)

$$
\left.\operatorname{dimi} q_{\mu}\right)_{4}=n-r-1
$$

$$
\operatorname{dian}(a)_{\varepsilon_{1} \ldots c_{0}}=n-r-a,
$$

$$
\operatorname{dim}\left(g_{1}\right)_{\rho_{1}} \ldots \ldots, \ldots, \ldots=0
$$

1.4 First compatibility conditions far a PLsO

In thas sertitan we will eyplain bog to find integrability conditione or bow to cbeck the turjectiujty of $\mathbf{~}_{1}$. Obstructions to the integrability, also called torsiont, ariae at this atage.
 EDAl|ywing diagram:

where \mathcal{K} deaptes the cokernel of the morphism $\sigma_{k+i} . K:=\frac{J^{\prime \prime} N F}{\left[m \sigma_{k+1}\right.}$ and Fis an arbitrary linear conmeckion on F. A clakeical teault in homological
algebra gives the following
Proposithan 1.1 There existe a moryhism $; \rho: \boldsymbol{R}_{\boldsymbol{z}} \longrightarrow \boldsymbol{K}$ such that the serisence

$$
R_{k+1} \xrightarrow{\pi_{4}} R_{k} \xrightarrow{\bullet} K
$$

 that $x_{4} t_{1}=z$ and compute $j_{1}(P) z_{1}$. Wife have
 Inve. Consequently there exiets $4 f T^{+}$公 F euch that $\varepsilon .4=p_{1}(P) r_{1}$ (A is tuiquely determined because z is injoctivel.

Let us pat $\varphi(z)-r .4$ We mast prove that $\varphi(3)$ does not depend on tbechoice of z_{j}. Let z_{j}^{\prime}, ano be an elecrent of \mathcal{R}_{k+1} surh that $\pi_{k} z_{1}^{\prime}=z$. Of
 of $T^{4} \& F$ such that $\epsilon A^{\prime}=p_{1}\left(P ; z_{j}^{\prime}\right.$. We wut check that $\cdot A=+A^{r}$, i.e. $A-A^{\prime} \notin \mathrm{Ker} \tau=\operatorname{lm} a_{k+1}$. We have

$$
r\left(A-A^{\prime}\right)=p_{1}\left\{f^{\prime}\right) s_{1}^{\prime}-p_{1}\left(f^{\prime}\right) z_{1}-\nu_{1}\left[P^{\prime} \mathrm{I}\left(z_{1}^{\prime}-z_{1}\right)\right.
$$

bence

$$
\because\left(A-A^{\prime}\right) \in P_{1}(P) \in\left(S^{k+1} T^{\prime} \leqslant E\right)=r\left(\sigma_{k, 1}\left(5^{k+1} T^{*} \Theta E^{\prime}\right)=\langle \} \quad \mathrm{I}_{1} 1 \pi_{\alpha+1}\right)
$$

But \bar{z} ia onto, $60 A-A^{\prime} \in \operatorname{Im} A_{k+1}$. This proves that ψ^{\prime} is well-defined.
hon let us check that

$$
\psi=0 \Longleftrightarrow \pi_{x} \text { is stteo. }
$$

We jugt nend to prove that Kery $=\left[m \pi_{k}\right.$. We bave $4(z)=\pi A$, with A

 Let us consuder \sin; we bave

$$
F\left(L^{\prime} P\right) \leq B=\varepsilon \sigma_{k-1}\left[J=E .4=D_{1}^{\prime}(\sqrt{\prime}) z_{1}\right.
$$

[^1]and so
$$
p \cdot(P)\left(s_{1}-E B\right)=0 \text { that is } z_{1}-s B \in R_{k+t}
$$

Defive $\bar{z}:=z_{1}- \pm B$. Wit bave

$$
\left.\bar{\pi}_{f} ; \overline{\bar{z}}\right]=z-x_{d} t B=z
$$

Which proves that

$$
f(z)=0 \Longleftrightarrow \exists \bar{z} \in R_{r+1} \text { suck, llate } \bar{\pi}_{n}\{\bar{z}\}=z_{1}
$$

i.e $\operatorname{Ker} ; \rho=\operatorname{lm} \pi_{k}$. С

Thus the surjectivity of \boldsymbol{T}_{5} can be checked by ahowing that $\psi=0$ We Till now explain how the can be carried out

First notice that if F is a connection on the vector bunde F, we bave
 is a sputtibg $u t \leq: T^{*} \Rightarrow F \longrightarrow J_{1} F$ and therefure it can bet ased iv the diagram to get φ. To construct ψ. siart Gom $s_{k} \in h_{k}$, conajder a 日ection

 we obtain the followig statement:
 (i.e. stach that $\left.P(9)_{x}=0\right)$. We have :

$$
p\left(y_{t}\right)-\left(r-r^{\prime}(s)\right)_{s}
$$

where $\bar{\nabla} 5$ an arbitrary Jmane connectian on the vector bundte F $\xrightarrow{\text { ' }}$. 4 . Mormover $\bar{\pi}_{\lambda}$ is onte tf ond ondy if:

$$
\left.r^{\prime}(x)_{x}=1\right) \Longrightarrow\left[-\Gamma P(s i)_{x}=0\right.
$$

Example 1.8 let un conander the exteriog derifabive

$$
\text { d } \left.\operatorname{Sec}(T) \rightarrow \operatorname{Sectin}^{1} T^{\top}\right)
$$

Wy have the following diagram:

$=\frac{n(n+1][(\pi+2)}{6}-\pi^{2}=\frac{\pi(n-1)(n-2 j}{6}$.
bobce $K^{\prime} \sim A^{3} T^{\prime \prime}$ Ton comapite the Grat compatibilaty conditions we aend a marphinm 7 , wuth that the folloming tequetate it exact:

$$
\begin{equation*}
S^{2} T^{*} \oplus T^{*} \xrightarrow{\sigma_{7}} T^{*} \Leftrightarrow A^{2} T^{*} \longrightarrow \lambda^{3} T^{*} \longrightarrow 0 \tag{1.5}
\end{equation*}
$$

 is mero, wim $\sigma_{2} G$ Ket r. On the etber hand, if $\Omega \in A^{\prime \prime \prime} f^{\prime \prime}$, we can take $C=\frac{1}{1} f$?

NDE we cad compute the first pompatibility coodition of the operator if Let us

 of the antirfmonetasation. Nare precrely, for every 2 -fors in we bave•
 $J_{1} T^{*}$ in a first order solution of the operater d Thin cotans that d. wariabea at the poink I We obtain that
 be lalted in a mecond order malution.

Itemark. Note that T maps $T^{*} \omega K$ on the Cokernel of o_{k-1} Then T ts נust the wap which gives the lenear relations relating the equateons of the first prolongation

Examiple 1.9 Let ax pocender the exteriar dentative and take the dimennion

$$
\left\{\begin{array}{l}
A_{12}-A_{21}=0 \\
A_{21}-A_{32}=0_{1} \\
A_{31}-A_{13}=0
\end{array}\right.
$$

2and than the equatione of the firct prolomigation ato

 theck that thear equalionas are selated by ane and only ane linear relation:

$$
C_{21}+C_{1,1}+C_{1,}+0_{1}
$$

 (that to the rank at $\sigma \gamma$) is B, ur equivaleatly dim $h=1$.

Thia erample enablea us to underatand bow $\mathbb{N}^{\text {and }} \mathrm{f}$ can be found :
Ope writes the syadem π hich defines $\left[m o_{h+1}\right.$. Thed:

- τ is dichod by the relations betwecn the aquations of the syatem;
- dim N^{\prime} ja the aumber of these relations.
 tian 7 We want to etudy the tirst ift of the firat arder lamal solutionn af the oparatof Γ defined by

$$
\begin{gather*}
\nabla: x(N) \longrightarrow S \mathrm{kc}\left(T^{2} Q T\right) \tag{1.8}\\
x \longrightarrow \nabla K
\end{gather*}
$$

whey

$$
\begin{aligned}
\bar{X}: x(M) & \longrightarrow \pi(M) \\
Y & \longmapsto \nabla_{Y} X
\end{aligned}
$$

We have the following diagram

 that:

$$
s,(F)-0 \text { and } 98(F)-0 \text {. }
$$

On the other thand.

$$
-\left(C^{\prime}\right)(X, Y)=C(X, Y ; \cdots(Y, X)
$$

For evety $B \in S^{2} \mathrm{~F}^{\top} \otimes \mathrm{T}$, we bate

$$
\left.+\operatorname{sog}(B)(K Y)=a_{2}(B)(X, Y)-\sigma_{3}(H)(Y, X)=B i, K, Y\right)-B(r, X\}=D .
$$

Now t to clearly onto. pa the vequeace

$$
S^{1} T^{*} \otimes T \xrightarrow{=2} T^{\top} \otimes\left(T^{\prime} \Leftrightarrow T\right) \longrightarrow h^{2} T^{-} \otimes T \longrightarrow 0
$$

in exact. With the belp af the morpbism r, ane car compute the fiza compatabel.
 which determine al $x_{0} \geqslant$ firsi order malution of our operatar, ie. $j_{1}\left(X_{i} ; \in J_{l}(T)\right.$)
 If T denoles the torsion lenwa of \bar{F}, iben at x_{n} ane has

$$
\begin{aligned}
& \text { - R(3: } 2!\pi
\end{aligned}
$$

Of courae, the compatibility condation $\%=0$ is not sationed in the ganeric case. But in the case phere the curvature of the connection $\overline{5}$ vonjshea, the compatibility condition is identically satisfore la this situalinn every firat oreder solution cab he lifter in a ger.and order solition: $\bar{\pi}_{3}$ is oute.

1.5 The Cartan-Kähler theorem

The Throrem 1.2 sbows that thr fromal untegrahility zuarantera the existente of analytical solutient for a fegular analytical PDO. The nontjen of juvelutivity, mhich me stall etudy in the Dext eftion, allows us to check the formal integrabiluty in quite a ajmple way : if the PDO as "qпиणiutuve"
 check that ail the maps inr-」 are outol
 that opematar. Suppose fhat $G_{h+1}\left\{P!\right.$ ic a vectar itatidie on R_{4} t.e. P is Ls regalar. I/
a) $\bar{r}_{\mathbf{k}}: \Omega_{k+1}-\cdots R_{k}$ is anfo,
b) the symbol is anwoiuftive, then $f^{\prime} a_{5}$ formaddy entegrabte.

Example 1.11 Let consider the example of the exterior derivative. The Example 1.4 shows that the symbol ot the operator d is myolutive and the Bxample 1.3 ahows that $\bar{T}_{3}: \mathcal{R}_{2}, R_{1}$ is onto Caing the above Theorem we

Therefore, in the analytic conse; we have the following property: for
 $w \in \mathbb{S c c}\left(T^{*} C\right)$ such that

$$
\text { N }=0 \text { and } ت_{x_{1}}=\text { Lio } .
$$

Example 1.12 Let ut coarider the differentiad aperator deâned in the Exauntle 1.5:

$$
\begin{aligned}
& x \longmapsto \quad \nabla x
\end{aligned}
$$

As we remarked in the $g_{1}\left(\nabla j=0\right.$ and $g_{2} i \nabla j-0$ (see page 19) So alt the basex are quaxi- regular and therefore the PDO is involutuve. On the other band, as we slowed in the Example 1.8 iv the case where the curvoture of the coonection E annishes. the compatibility condition is identically satistiend ond therefore every first order solution can be lifted in a eecond arder salution: $\bar{\pi}_{1}$ is oulu. Therefore we proxed that if the curvature of \bar{y} yanialeg, then the operator $₹$ deferiodly integrable

In the analytical case tbas means that if the curature of the countection vanisbes, ther everf $i_{u} \in T_{r s}$ can be lifted into a parallel rector Geld on a Delgbthorhoar of z_{6} '

1.f Spencer cohonology

It can be shown that the condition of the exiatence of a quasi-regular basia can be replaced by a xeaker rondition. The obstructions to the higher order surcersjue lift uf 1 lue kth noder solution are contained :an bome of the cobtomological grouns if in criten vomplex called Spencer complex.

[^2]Let

$$
\dot{\delta}: S^{r+1} T^{*} \rightarrow S^{k} T^{*} \dot{\varepsilon} T^{+}
$$

be the ratural iujection．δ can be lifted to a morpbjom of vector buadles：
 defined by the following diagram：

［ 4 is not dificult to shor that $\delta^{2}=0$ and that the sequrne．e
is exact（By detinition $5^{T^{*}}=0$ for $!$＜（l）．
Let t＇now be a ktb ortiry partial differeatial equation．We have the tollowe ing commutative diagram：

$$
\begin{aligned}
& \text { Is ! } \\
& S^{*+1} T^{+} \text {多 }
\end{aligned}
$$

From the commutativity of the diagram，we can detuce tba：δ can be reatricted to $g_{t+1+1}:=\operatorname{Ker} \sigma_{\mathrm{x}+i-1} \subset S^{\boldsymbol{k}+i+1}$ 多 \boldsymbol{E} ．So we bive a mop

$$
\sqrt[n]{ }: g_{n+1+1} \otimes A^{\prime} T^{*} \rightarrow g_{k+1} 2 N^{+1} T^{*}
$$

and therefote for every $i \geq k$ we obtain the complex
 the Spencer somplet．
 $\mathrm{N}^{\mathbf{N}} \mathrm{T}^{\mathbf{*}}$ is acted H_{m} :

Theorem 1.4-(J-P SbrRE) (ct $\left.\mid \mathrm{BCG}^{3}\right]$ page 410). The followng properties are equevaterat:
(1) The atymbiol is involutive fithat is: there exists a quasi-regtarar basis).
(2) Ald the groups of the Spertitet cohortology vantish.

It is easy to see that the symbol is alpars 1-acsclic, ie $H_{m}^{0}=0$ and $H_{m}^{\prime}=0$ for $T R \geq k$.

Coldachmidt proped that the 2-acycticity is a aufficient condition to lift the $\{k+1\}$ b order solutions in an minite arder solution Wo ane bas the

Theorem 1.5 - (H Goloschmidr) (e. [日CG] page 410) Let P be a kth order regular bencer partali differentant operator if
a) $\bar{F}_{k}: f_{k+1} \longrightarrow \boldsymbol{R}_{k}$ is orto,
b) the symbol is 2-acyclic,
then P is formally integredele.

Taking inid accound that the aynbol is always 1-aryelic, we can replace the atudy of the invelutivity by the atudy of the cobomulagy in the fourth terms of the Spencer coopleres:
far exesy tizk.
In prantice, ody a finite number of these cobenology groups do aot yanish. Jo fact we have the
 meition of the fibres of E is uniformly bounded on , if by the same comstant, then there exists an integer to such that

$$
I_{m}^{\prime-0} \quad \forall m \geq k_{0} \text { and } \quad v_{j} \geq 0
$$

In nue case the condition of the above theorem will be satixfied becanse we will suppose that E^{\prime} is a westor bunde and so ite rank is constant. Notice however that there is no method allowing us to compute the order of this prolangation From this we have the following trisson of the CartanKuranshi "finiteracr 'lheorem".

Theorem 1.T Let f be a $k \neq h$ arder regular limear PDO if there exests aт iriteyer $k_{n} \geq k$ such that.

$$
\begin{aligned}
& \text { 2! } \vec{x}_{1}: R_{1+1} \rightarrow R_{f} . \quad \text { is onto, for ali } k \leq l \leq k_{0} \text {. }
\end{aligned}
$$

then P is formaily ntegrabie.
 operstor $P:$ Set: $E \rightarrow$ Ser F we hate to
(1) charik the ragularity bypothasis. i.e that grat $25 \geqslant$ vecior buode:
(2) show that there extsts a quisi-regular basus of shows the 2 -acyelicity;
(3) End the compatibilaty conditions $\mathbf{l n}$ sequires
(a) "a good interpretation" of the sbstruction apace $\hat{K}=$ (${ }^{*}$ " $\boldsymbol{F} / / / \boldsymbol{m} \sigma_{k+1}$;
(bit the definition of a merphism $T \cdot j^{*}$ or $-\cdots \mathfrak{K}$ sueb tbat the sequeace

$$
s^{k+r} T^{+} \approx T^{+} \xrightarrow{0,1} r^{+} \text {佥 } H^{r} h^{\prime} \longrightarrow 0
$$

it exact:
 where ∇ fe an arbutrary livear condectiou on F. So one fiuds that $\varphi=0$ thea the operator P is fermatly intefyable

If in the siep (c; one fads that $\because \neq \mathrm{I}$, then uen obtaira a compatability condition for the opetator.

1.7 The nonlinear case

Eet ue now consider the cake of a nenlinear k th order PDO

$$
F: S_{f c c}\left(E: \longrightarrow S_{\text {ec }}(F)\right.
$$

Whete E and F are two vector bundted on M. The aet

$$
R_{k,}=\left\{\left(j_{2} k\right)_{z} \mid s \in S_{r z:}(F) \text {, wand } F(s\}_{z}=0\right\}
$$

us called the set of kth order solutwons at x.
Let $s \in \operatorname{Sec}\left(E^{\prime}\right)$ be $a \operatorname{sention}$ of E and let $f_{4}^{\prime \prime} \operatorname{Sec}(E\} \longrightarrow \operatorname{Sec}(F ;$ be the dinearvzed of P aloag g_{1} defined by

$$
P_{1}^{\prime}\{u)=\frac{d t}{d t} P\left(n+\left.t u \dot{p}\right|_{t=0} .\right.
$$

It is a linear k-order PDO: $\mu_{0}\left(P_{1}^{r}\right): J_{\lambda} E \longrightarrow F$.
It is easy to fee that the gymbol at x of the operator P_{1}^{r} deee bot depend
 the symbol of P at C.

Deflition 1.12 - A (douslinear) PDO is called invalutive of for any k th order polution ξ the symbol of the cortespoodiag linearived operator is invoiutive (i.c. Eor any $\left\{\in \mathrm{F}_{x, 2}\right.$ there exists a quatii texular baxis of T_{n} \}.

By using the fallowing Theorem, the atudy of the formal integrability of a non libear PDO it reduced ta the standy of a ligenar noe

Theorem 1.8-(H. Golsschwidt) Let P he $\mathrm{a} k$ th arder PDO. If the dnecrised $P_{A}^{\prime \prime}$ w formaily integrable for urty kth orifer soluturn s, then P is farmatly mptegrable

Chapter 2

Frölicher-Nijenhuis Theory of Derivations

10 1956 A Fralucher and A. Nijenhuis develeped an elogant theory permituing the clasolfication of the derivations of the exteriot algebes of the
 the discoresy of a datural structure of hie-graded algelta on the madiale of the wethor-valued differential formo, generaliving the Lie-algebua anuctire defined bs the bracket on the vector Gelds.

Further papers of fölhcher and. Nueabuas deal with some applicitions of their theory. in particular with the Dalbeault cohomatogy in somplex wamífo|ds. Later J. Klein, in his puyera devoted to the iblriusil ptegentation of Lagtaygian suechabics (0 . |KI|) demonstrated the relevance of applying this theory to the veetar valued differential fortee in the tangent. bundle. In $|\mathrm{Gt}|$ the Frölicher-Nijeubuis theory is uned to give al algetraic precentacion of the theory of compections and Finsler geometry, which we mill oxplaid in the bext shapter, hocause it plays a centrad role in nut treatment of the niverse problem of the cajculuf of variations.

However, in spise of the interest this structure ofens due to the faci that
 Nipenhuis bracket is ast mell-known, except for some particular casee \like the an-culled Niytrhasa torsion which appeare as an obstruction for the integrability of almoat complex structures, or in the thenry of the completely integrable systemb, ci. for example [MM|; in thus chapter we sbad] give a simple presenelatiun of thia theary and we alall vole the wos important formulas in the Appendir.

2.1 Derivatious of the exterjor algebra

 the exterior differential forms: $A^{F}(, G)=\mathcal{S e c}\left(A^{P}\left(T, f^{\prime}\right)\right.$. We also wite $\Psi(N)=\underset{i \in N}{\Psi^{(} \Psi^{i}(N)}$ for the graded algebra of the wertor-valued exterjor

$$
L: \underbrace{\dot{\delta}(M) \times \ldots \times \text { 主 }(M)}_{i \text { thrarr }} \longrightarrow \mathbf{X}\{M)
$$

where $\bar{x}(M)$ is the $\left(C^{2}(M)\right.$-mordule of the vactor folda on if
Deflnition 2.1 A dertyatasn of degree rof $A(M)$ is a map D : it (M) \rightarrow (4, M) auch that

I!	$D k=0 . \quad k \in R$,	
2		
3k	$D(\sim-ゅ\rangle)=D_{\sim} \dot{\sim}+D_{\dot{*}}$	
4)		$\pi \in A^{2}(M)$.

Et is easy to profe that the derivations of A(M) are local operatoy. The proof of the following proporition is a atraghtformand terification.

Propoaition 2.1 The contritutatur of two deravationts D_{1} and D_{2} defined by

$$
\begin{equation*}
\left[D_{1},\left[D_{2}\right]=D_{1} \circ D_{2}-(-1)^{r_{1} *} \nu_{2} \circ D_{1}\right. \tag{2.1}
\end{equation*}
$$

$\leq n$ deriqution of degree $F_{1}+F_{2}, r_{1}$ and r_{2} betag the degrets of D_{1} amat ρ_{2}.

For example, the exterior differential a is a derivation of degree 1 , and for $X \in X(M)$ the inner product ix, the Lie deritative E_{x} are derivations
 ind d dix - $|i x, d|$.

We can also verify tbe following propertion which show that the aet of the derizations is a graded Eie algebra:

Ptoposition 2.2

i) $\left[\omega_{1}, L_{2} j=(-1)^{r_{1} r_{2}+1}\left[L_{2}, D_{2}\right]\right.$.

The Frälicher-Nijenthuis Thetry it founded an the folloning property
Propositiop 2.3 The deriuations of $\left\{\left(\begin{array}{l}\text { M }\end{array}\right.\right.$ are detersined by their

 ardative, itherefore 3 is suffictent to stop the Propoation for a p-form which

 (2.(M).

A atraightforward application of the properties in the definition 2.1 shora that the atore formula dies an: depend on local coortinates Thas allaxs
 the follawing
 the proplerties art the definitacti 2. 」 cand be extended man untulas way to a dervotzon of tidid.

Corinlary 2.2 All the detyuathons of a degrat Jess on equad to 2 are trizzal.

2.2 Derivalions of type i_{2} and d_{*}

Definltion 2.2 , A derivation is uftype z. if it in trivial nat the functione (i.e. ou i^{n} (Mi).

For example the inner product i_{x} is an i,-dermation. Note that the derivationa of type i_{+}are determined by their action on $\mathrm{A}^{1}($ (hf ; ;

Let us give the basic example of in-rteritation:
Defirition 2.3 To any $L \in \Psi^{\text {rid }}$, af) there ja an attociated derivation of type $r_{\text {. }}$ of degree $\sqrt{ }-1$, noted i_{i} and defined by

$$
\begin{array}{ll}
4! & 7 \times \omega=\omega(K)
\end{array} \quad \text { if } Y \in \Psi(M)^{0}=\mathbf{E}(M) .
$$

where $\dot{\sim} \in A^{1}(M)$ and $X_{1}, \ldots, X_{1} \in I(M j)$.
Extending if, to $\mathcal{N}_{(}^{\prime}(t f)$ the following formala can be proved

$$
\begin{align*}
& \text { íw }_{i}\left(X_{1} \ldots, X_{Z-i-1}\right)= \tag{2.2}
\end{align*}
$$

fon $w \in A^{p}(\mathbb{N})$ and $L \in \Psi^{2}(M)\left(\mathcal{B}_{p+i-1}\right.$ denotea the $(p+1-1)!$-order
 then aue ollidins that

$$
\begin{equation*}
i_{L \omega}\left(X_{1}, \ldots, X_{p}\right)=\sum_{i=1}^{p} \omega\left(X_{L}, \ldots: L X_{1}, \ldots, X_{p}\right) \tag{2.3}
\end{equation*}
$$

Io particular, for the identicy endomorpbsern I and $\div \in A^{\rho}(M)$ obe finds.

As the following theorem sbows, is. is the only example of i_{*} deripation:
Theormpra 2.1 Let D be ani.-deriuation of a degree $\-1 \geq-1$. Them there trist a untaqe $L \in \Psi^{[i+i j j}$ such that

$$
D=i_{t} .
$$

Prouf. Siace an, .derivatiun is deterained by jite action un $A^{2}(M)$, it is sufficient to conatruct $L \in \Psi^{i}\left({ }^{\prime}(1)\right.$ auch that the equality $D \nu=a, \omega$ holds
 praduci" af ω by L.
 identified mith the ("es (M) $)$-multilinear maps

Thech are skew-spmmetric in the first ! anguments by the following identif. cetion :

$$
\dot{L}\left(\mathcal{X}_{1}, \ldots, X_{2}, \dot{*}\right)=\nu\left(L_{1}, X_{1}, \ldots, Y_{r}\right) .
$$

Now if we defion \dot{L} by

$$
\left.\dot{L}_{(} X_{1}, \ldots, k_{1-\Sigma)}\right)=\left(\omega_{\omega}\right)\left(X_{1}, \ldots x_{1} i_{1}\right.
$$

then \bar{L} veribes the required conditions and we can chefine (via the abore

$$
\omega\left((L-\bar{L})\left(X_{1}, \ldots, x_{i}\right)\right)=0,
$$

Definition 2.4 A derivation is of type d. if at commutres (in the senter n! (2.1)] With the exterion derivative d.

The exteriar differential 4 and the Lie devivative C_{y} are d_{+}tfpe derivalons.

 $\in h^{\prime}(t)$. If D ivanda derivation of degree r_{2} then:

$$
\begin{aligned}
\left(D_{\omega}\right) & =D\left(\sum_{i=1}^{\nu} a_{1} d r^{i}\right)=\sum_{i=1}^{\nu}\left(D a_{1} \times f J^{1}+a_{i} D d z^{1}\right) \\
& =\sum_{i=1}^{\nu}\left(\left[弓 a_{i} * d x^{\prime}+(-1)^{\prime} a_{i} d D r^{*}\right)\right.
\end{aligned}
$$

This proves that $D u$ iy detertuined ly the acliun of D on A^{2} finf).

Propusition 2-4 - Let L $\in \Psi^{\prime}($ inf be a vectorial f -form. If we constder

$$
\begin{equation*}
d_{L}=\left[i_{L}, d\right] \tag{24}
\end{equation*}
$$

then f_{L} es a do-derevation of degree t.
Indeed,

Bexides

$$
d\left|i_{t .} d\right|=d\left[1, d-(-1)^{-1} d i_{L}\right)=d i_{t} d
$$

leads in $\left.\mid d_{1} d_{L}\right]-U$

Example 2.1

$$
\begin{equation*}
d x=i x d+d i x=C x \tag{25}
\end{equation*}
$$

where \mathcal{L}_{x} deaches the Lio-derivative with tenper.t to X
(2) If $L \in \psi^{\prime}(M)$), thea

$$
\begin{equation*}
d_{L}=2 u^{d}-d_{L} . \tag{2.6}
\end{equation*}
$$

$$
S_{i}
$$

The follomiag Theverem atales that all the di.-derivations are of this type.

Theorem 2.2 Let D be ad.-derivation of degree i. Then there earsk a unaque $L \in \Phi^{\prime}$ (Mj) such that

$$
D=i l_{L}
$$

 let us defige L by

$$
\mathcal{L}\left[X_{L}, \ldots . X_{t}\right)^{\prime}:=\left\{D f f i X_{1}, \ldots, s_{l}\right]
$$

It is eacily shrown that $\left[\left(X_{1}, \ldots, Y_{1}\right)\right.$ is a derivation of $\{$? field on M, apd that the map

$$
I:\left(X_{1}, \ldots, X_{2}\right) \longmapsto I\left(K_{1}, \ldots, X_{i}\right)
$$

 $\left.(D f) i \chi_{j}, \ldots, X_{1}\right)=L\left(X_{i}^{-}, \ldots X_{i}\right\} \cdot f=\operatorname{df}\left\{L\left(X_{1}, \ldots, X_{1}\right)\right\}=i_{L} d f\left(X_{1}, \ldots, X_{i}\right)$.
mbich yields $\left[1 f=12 d f=d_{2} f\right.$ The uniqueress of L cap be prared as in the Theorem 2.2 ㅁ

Proof. Lel D be a derifation of hiti! The action of D on $h^{0}(S)$ definep a d.-derivation d_{K}.

$$
\Delta f f=u_{K} f
$$

 Therefore there exiaia $\mathcal{L} \in \Psi(J i j j$ surh thal

$$
\text { (1) } d_{k}-i_{L} \quad 0 \quad i^{3}(m)
$$

Now

$$
\begin{aligned}
& i_{i}+d_{N}!f=d_{*} f=D f \quad \text { for any } f \in \lambda_{1}^{0}: M!\text {, }
\end{aligned}
$$

Ther by Corallary 7. (, $D-1_{L}+d_{d}$.
We shall frequently use the following
 M\}, and LEษ:\{M! Jhen
 $A^{\nu+J} T^{*} M$ is defined by

$$
\left\{\tau \Omega j\left(X_{1}, \ldots, X_{\nu+1}\right\}=\sum_{t=1}^{N-1}\left(-11^{i+1} \Omega\left(L X_{1}, X_{1}, \ldots, \dot{X}_{1}, \ldots . X_{p+1}\right)\right.\right.
$$

where ${ }^{A}$ tymbolizes the termb wich does not appear in the cortespond2ng Expressuon.

Proof. Sibce ${ }^{2} \prime=0$, the following for usula holde:

$$
\left(\operatorname{din}_{2}\left(\lambda_{1}, \ldots \lambda_{p-1}\right)=\sum_{i=1}^{F+1}(-1)^{1+1} x_{1}\left(L_{z}\left(\lambda_{1}, \ldots \dot{\lambda}_{1:}^{-} \ldots K_{p-1}\right)\right\}\right.
$$

Let us compute the terme of iflul = ǐdur-sizw. We have

$$
\begin{aligned}
& \left(i_{c}, d 1\right)_{r}\left(X_{1}, \ldots x_{p+1} j=\sum_{i=1}^{p+1}\left(r k^{\prime}\right)_{c}\left(x_{1}, \ldots, f, x_{1}, \ldots, \lambda_{y+1}\right)\right. \\
& =\sum_{i=1}^{\infty+1}(-1)^{t+1}\left[, X_{1}\left(\omega\left(x_{1}, \ldots, \dot{x}_{i}, \ldots, \chi_{p+1}\right)\right)+\right. \\
& +\sum_{i=1}^{p+1}!-1 i^{1+1} X_{L}\left(\left(i_{L} \omega\right)_{s}\left(X_{1}, \ldots, \bar{X}_{1}, \ldots, X_{p+1}\right)\right\}
\end{aligned}
$$

Thus

$$
\left(d_{2} \omega_{1} i_{1}\left(X_{1}, \ldots, X_{p 11}\right)=\sum_{i=1}^{p+1}\left(-1 i_{i}^{=+1} L X_{1} \cdot i_{w}\left(X_{1}, \ldots, \bar{X}_{1}, \ldots X_{p+1} i\right)\right.\right.
$$

On the other haod

$$
\begin{aligned}
& =\sum_{1=1}^{\mu+1}(-1)^{1+1} L \tilde{x}_{1}\left(w\left(x_{1} \ldots \dot{X}_{1} \ldots \dot{x}_{\nu+1}\right)\right\},
\end{aligned}
$$

2.3 Giaded Lic alkelifa structure on dine madule of veciorvalurd firms

Tbe mobt tuportast application of the theory developert in the previance sectiona is te detine a bracket op the module of the vector-valued differeatial forms mbirb arises galurally in differential gernuetcy. A particular case of this bracket is the well-knopra Nifetihtis torsion [t appeara for example on a induifold exdewed with an almot complex atructure and jta pantahng characterizes the integrability of the etructure.

The exterist ibner product on the graded module of the pector velued differential forms $\Psi(M)$ can alsa be introduced by the same formuls as (2.2):

Deffritinn 2.5 [f $K \in \Psi^{k}\left(1 f_{1}\right)(k \geq 1)$ and $L \in \Psi^{\prime}(M)$, then its exterior inater product $K-L \in \Psi^{*+i-1}(A)$ is given by

la particulas ae hase
and

$$
L \times \mathbb{R}^{r}=L \circ \mathbb{R}^{r} \quad \text { for } \mathcal{L}, K \in \Psi^{\prime}(M\} .
$$

The follaxigy Proposition can be proved by a mamplo computation:
Proposition 2.0 The commatator of twa i, (resp. di) -deravadions is also an i_{+}(resp. d.) -derivation.

With the above patations, the bqacket of trot a. Hepe derivationt char be giren by the foltoniog forminla (cf. |FN), (5.Ef):

Ving the Propositjogs 2.2 and 2.6 ane can matraduce ithe following'
 the vector valued ($1+k$)-forten defined by the telation

$$
\left|d_{N_{k}}, w_{1 .}\right|=u|\mathbf{N}, \dot{s}| .
$$

Whe have the following

Praponition $2 . T$

d) $\left[L, K_{n}^{\prime}\right]=(-1)^{d k-L}\left(\mathbb{K},\left.L\right|_{i}\right.$
c) $\left\langle\left\langle d_{1}, L\right|=0\right.$;

where l, k, iz are the degrees of L, K, N respectively
Proof a'; can immediately be verfied by checkang the effect of its action on the functions. In fact,

The propertae bj, ci and d) Follow foom the aralogous identigen fow the derjratjopas
 derivaticn:

$$
\begin{equation*}
\left[i_{L}, d \kappa\right]=d_{k} \bar{n} L+(-1)^{k}| | L h \mid \tag{2.8}
\end{equation*}
$$

(For the proof, ct. |P5 $]$, (5.9)).
 the bracket of tro vector forful recursively:

therefore

For $L . K \in \boldsymbol{\Psi}^{\prime}$

$$
|L, K| \Omega X=\mid I X, K]-I[\cdot X, K]+[K X, I]-K|, X, L|
$$

sunce

$$
\mid L . K][X, Y)-([L K] \wedge X) \wedge F
$$

ont arriver at.

$$
\begin{align*}
{[L, K) i X, Y\}=} & |L X, K Y|+[K X, L Y]+L K|X, Y|+K L \mid X: Y] \tag{2.10}\\
& -I|K \lambda: Y|-K[L X \cdot Y .-L[X, K\}|-K| X, L Y] .
\end{align*}
$$

In porticular, for $h^{\prime}=L$, we get the an called $\mathrm{Najem}_{\text {guts }}$ torsser:

$$
\begin{equation*}
\left.\left.\left.\frac{t}{\frac{1}{2}}|L \cdot L|[X .\}^{\prime}|=| L . Y . L Y\right]-L^{2} \mid X . Y^{\prime}\right]-L(L X, Y \mid-L X . L\}^{\prime}\right] \tag{2.11}
\end{equation*}
$$

Loval erpression
Let ($L . r^{\circ}$) be a local system of caordinates, $L \in \Psi^{2}\{N!$, and $X \in X i M f$,

osmpute the compenents of the tenser [$\mathrm{f}, \mathrm{l}, \mathrm{x}]$. Ore has

$$
\begin{aligned}
& -\frac{\partial S^{-}}{\partial x^{2}} L^{a} \frac{\partial}{\partial x^{x}}=\left(L_{\alpha}^{-} \frac{\partial X^{a}}{i x^{\top}}-L_{i}^{a} \frac{\partial X^{\top}}{\partial x^{2}}-x^{\sim} \frac{\partial F_{\lambda}^{\top}}{\partial x^{\top}}\right) \frac{\partial}{\partial x^{a}}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left[L_{1} X\right]=\left(L_{\lambda}, \frac{\partial X^{a}}{\partial r^{\gamma}}-L_{1}^{n} \frac{\partial K^{\gamma}}{\partial r^{\lambda}}-X^{\prime} \frac{\partial L_{\lambda}^{a}}{\partial r^{\gamma}}\right) \pi z^{h} \otimes \frac{\partial}{\partial r^{n}} \tag{2.12}
\end{equation*}
$$

In the same way one can prove that the local exprestion of the Njjenbuis torsjon of * vectorial l-form \mathcal{L}]s

$$
\frac{1}{2}[L, L]-\left(L_{i}^{\mu} \frac{\partial L_{\hat{u}}^{\lambda}}{\partial x^{\mu}}-L_{j}^{\mu} \frac{\partial I_{d}^{\lambda}}{\partial x^{\mu}}+L_{\lambda}^{\lambda} \frac{\partial L_{\alpha}^{\alpha}}{\partial x^{j}}-L_{\mu}^{\lambda} \frac{\partial L_{j}^{\mu}}{\partial x^{\alpha}}\right) d x^{\alpha} \theta d x^{\mu} \theta \frac{\beta}{\partial x^{\lambda}}
$$

Chapter 3

Differential Algebraic Formalism of Connections

3.1 The tentor algebra of the tamgent vector bundle

ln this cbapter we will explain the differential algebrac formalism of cannection theory introduced by 3 Snfone in [Gr] which will be speciallf adapted ta the inverte problem of rajatiman rale:ulus.

Scmi-basic forms
let $5: T M \rightarrow M$ be the tangent bundle and $\pi_{T \sim} \cdot \Gamma T M \rightarrow$ TM the pecond tangeat bundle. We bare the following diagram:

$$
T T M \xrightarrow{H} T M
$$

and the exact sequeace

$$
\begin{equation*}
0 \rightarrow T M \times T M \xrightarrow{\circ} T T M \xrightarrow{B} T M \times T M \rightarrow 0 \tag{3.1}
\end{equation*}
$$

 Using an adapted coordinate tystem $\left(x^{*}, y^{0}\right)$ on $T M$, where $\left(x^{n}\right)$ are the coordinates on M and y^{3} are the componentis of a vector of $T M$ on the basis $\left(\frac{\partial}{y_{g^{*}}}\right)$, we have
and

$$
y^{\prime}\left(x^{a}: y^{a}, X^{-}, Y^{a}\right)=\left\{\left(x^{\prime \prime}, y^{n}\right),\left(x^{\prime \prime}, \lambda^{a}\right)\right\}
$$

If T ? $M=$ Ker π_{-}is the vertical bundle, then

$$
T^{v} T M=\operatorname{In} i=K+\mathbb{j}
$$

Notb. From nom on we will mork on the manifold ThM. Where there is
 T^{+}and T^{\top} respectipely.

For

$$
\begin{aligned}
& i_{x}: T_{\mathrm{r}(,)} \mathrm{dN} \longrightarrow \mathrm{~T}_{\mathrm{E}}^{\mathrm{o}} \\
& 1 \quad \longrightarrow z(\bar{n}, r)
\end{aligned}
$$

Whe use the formula:

$$
\xi_{x}=\left(i_{F}!^{-1} .\right.
$$

Definition 3.1 A p-form $\omega \in \mathcal{S}^{P} T^{*}$ is stmi-basic if $\Delta\left(X_{1}, \ldots, X_{g}\right)=0$ When cone of the vectors X, is vertical. A vector valued J-form $L \in \theta^{\prime} T^{*}$ 冬 T Le aemi-basic if it tates ite paluee in the vertical bundle and $\left[\left(X_{1}, \ldots . X_{i}\right)=0\right.$ when one of the ventora X_{1} is vertical

 $T_{11}{ }^{-}$].

In an anspted conodnate हystem the sem-basuc sralar and vector forms can be expressed ar:

$$
\xi_{1}^{\prime}:\left(A^{p} T_{2}^{*}\right), \quad A_{c}^{P} T_{T i=1}^{1}
$$

defium in the folloning way: if in $\in \lambda^{口} T_{i}^{*}$ and $\mu_{1} \ldots u_{p} \in T_{r i z}$; then
 ξ_{0} it well-defined because the difference of twro pectors whach project on the 5ugne vecton 19 a rertical rector.
[a the same way, for any $z \in T M$, there is a natural isomorphism
defined by $\xi_{c}^{\prime \prime}:=\varepsilon_{x}^{\prime}$ * \mathbf{E}_{s}. Later on, $\boldsymbol{f}_{1} \xi^{\prime}$ and $\xi^{\prime \prime}$ will be opted ξ if $\mathcal{L} E$ $\Phi^{\prime}\left(M^{\prime}\right)$ is a vectorial l farm and its expression in a local mondinate syterm

$$
\xi_{2} I=I_{i_{1}}^{\{ } . \quad S_{1}(x \cdot 2) 山^{s_{1}} \ldots \ldots A d^{3} \otimes \frac{\partial}{B y^{a}} .
$$

Vertical emadoradryhiastr

Definition 3.2 The teasor $J \in T^{\boldsymbol{*}} \boldsymbol{z} T$ definad by

$$
J: i \circ j
$$

is called vettral endomototism.
The following propertieu can imanediately be ueribed:

Proposition 3.1

$$
\begin{array}{ll}
\text { I) } & J^{2}=0 . \\
\text { 2; } & \text { Ker } J=\operatorname{Im} J=I^{\prime} .
\end{array}
$$

Locally $J=d r^{*}$ \& $\frac{9}{b v^{n}}$ or in other marda

$$
J\left(\frac{\partial}{\partial x^{\prime}}\right)=\frac{\partial}{\partial y^{\alpha}} \quad \text { and } \quad J\left(\frac{\partial}{\partial y^{\alpha}}\right) \cdot 0
$$

Usiog thest formulae, it is eafy to check that the Najeahus torxion of J

$$
\begin{equation*}
\left\ulcorner, \Omega_{1}=0\right. \tag{3.3}
\end{equation*}
$$

Canonical field and homogeneity

 $f i c(d)$ is the vector fiedd $G=i a \delta \operatorname{dnTM}$ ，where $\delta: T M \rightarrow T M X_{M} T M$ i日 the diagonal map defined by $\delta(x)=(x, 2)$ ．

Locally：

$$
\begin{equation*}
C=y^{\circ} \frac{\partial}{\partial y^{\circ}} . \tag{3.4}
\end{equation*}
$$

Remark，C is the infinitesimal trangformation asoociated rith the group of the homothetien with a poaitive ratio．
 finitesimal transformations defined by fe $\left[\mathrm{r}^{1}=\left(\mathrm{x}^{n}, y^{n}!\right\}\right)=\left(x^{n}, \mathrm{f}^{\prime} y^{n}\right)$ we obtaia．

$$
\frac{d}{d+}\left\{\left.f^{e} e^{i}\right|_{1-t}=\left.\left(x^{\circ}, e^{t} y^{n}, d, s^{t} y^{n}\right)\right|_{1-y}=\left(x^{\infty}, y^{n}, 0, y^{2}\right)=c_{v}\right.
$$

The relation

$$
\mid \Gamma, J]=-J
$$

Lan eazily be checked in a coordinate system，taking inlo acciount（3．2）and （3．4）．
 + if

$$
f i \lambda v i!=\lambda^{\top} f(v)
$$

tor aby $\lambda>0$ ．In thic case we will aby that f is $h(r)$ ．it is well knewn that this property is equivalent to the Buler identity，whith in a local coordinate日ybtem can be written：

$$
y^{\Delta} \frac{\partial f}{\partial \psi^{\prime}}\left(x^{r}, y^{\prime}\right)=r f\left(x^{\prime}, y^{r}\right) .
$$

or uping the cancnical fiek

$$
厶_{s} f=r f .
$$

tibers ladeed, let I $C M$ be an subitrary point. Notice that if f is $h(o)$ then it 35 coastant on the stragght lides starting from the ongin of $T_{5} M ; s$
 suppese tbat f a日 $h(1)$ and C^{\prime}; the partial derivativea $\frac{\theta \rho}{\theta_{0}{ }^{\circ}}$ are $h(0)$ and $C^{\prime \prime}$ and thus constant on the fibere. Hence, by the Euler identity. f ia tidear on the libers A recursion argument eabily pields the generad property.
 (\ddagger is $h(r)$) if

$$
\varphi_{C} t=r t .
$$

Notice that if $L \in \Psi^{\prime}\left(T M^{\prime} ;\left\{\begin{array}{l}1 \\ \}\end{array}\right.\right.$ is a skem-aymmetric vector-valued i-form, this condition can te writien: $[C, L]=r L$. [n local coordinates, lei us ronarder tine ravaple, $L \in \psi^{\prime}\left(I^{\prime} M\right)$:
which means that the matrix of the endomorphiam L in the basia $\left\{\frac{5}{3 x^{n}} \cdot \frac{3}{1 y^{n}}\right\}$ ${ }^{5} 5$

$$
\iota=\left(\begin{array}{ll}
I_{4}^{\dot{y}} & L_{马}^{j} \\
L_{B}^{H} & I_{\Delta}^{\dagger}
\end{array}\right) .
$$

Thue L is $h(\Gamma)$ if and only if the functions L_{ρ}^{d} and $L_{i f}^{A}$ are $b(f), L_{\mathrm{n}}^{\mathrm{y}}$ are b $(r-1)$, and L_{o}^{3} are $h(r+1)$

3.2 Sprays and conmectipns

The notion of sprays ban been introduced in (APS'; to give an intrinsic preseptation of oydipary eteopd order differential equations.

Deflinition 3.5 A sparag on M is a vector fiold on the tangent bundle $S \in E(T M)$ buth that:

$$
J S-C
$$

 there are functions f°, auch tbat

$$
\begin{equation*}
S=y^{\prime \prime} \frac{\partial}{\partial x^{*}}+f^{n}(r, y) \frac{\partial}{\partial j^{\prime}} . \tag{3.8}
\end{equation*}
$$

The spray S is called homogeneous if $\left[C, S \mid-S\right.$ and if it is $\mathfrak{C}^{\text {cen }}$ on T Thf (10) and C^{\prime} on the geto section. In this tate the functions $f(x)(x, y)$ are homogenesur of degree 2 in the warialber y^{4}. If, in addation, S is c^{2} an the serv section then the $f^{\prime \prime}(x-y)$ are quadratic in the $y^{\prime \prime}$. th that cose, we witl bay that the epray 18 quadratic.

Dreflitition 3.6 The wertical ventar fitld

$$
S^{*}=[C, S]-S
$$

Whist meanurex the man bomogentity of S it called the deffection of S.
All sprays ase abporjated to a sespod arder aystem of ordinary differential equations, and reciprocidly: a apray can be angociated to any setond order ayatem of ordinary dufferential equations in the foltoring way :

Drefinition 3.7 Let S be a opray. A puth of S is a pasametrized curve $\gamma: I \rightarrow$ M such that γ is an integral curve of S, that is:

$$
\dot{\xi}^{\prime} \vartheta^{\prime}=\gamma^{\prime \prime} .
$$

In a lecal coordinate aystem, if $\left(x^{\circ}(t)\right.$) in a path on M, and the spray

 order differential syatem

$$
\begin{equation*}
\frac{d^{2} r^{2}}{d t^{2}}-f^{\infty}\left(x, \frac{d x}{d i}\right) . \tag{3.7}
\end{equation*}
$$

a-1.... n Reciprocally, if a $6 y$ stem (3.7) if given, one detines S ita a locad crordinatea syatem by $S-y^{c} \frac{y}{y_{x}{ }^{*}}$ । $f^{*}(x, y) \frac{y}{n^{*}}$ and one verties that the defipution does not depend on the conedipates syatem

Defiuition 3.8 Let L be a semi-batic (scalar or veitar) [•form. The polential of L is the semibasic $(l-1)$-form L^{n} defined by

$$
\begin{equation*}
I^{\prime \prime}=i_{s} L \tag{3.8}
\end{equation*}
$$

where 5 it as arbitrary tpray.
\mathcal{L}^{0} iu well defined: it does aqt depead on the chore of S. In fact let S^{\prime} be antother epray. Since $J^{\prime}\left(S-S^{\prime}\right)=C-C=0$, we see that $S^{\prime}-S^{\prime}$ is vertical. So $\mathrm{tg}-\mathrm{s} L-0$ and as L - $\mathrm{i}_{5} L$.

$$
r^{o}=\frac{1}{\{l-1!!} y^{2} E_{-r u_{1} \ldots \alpha_{1-1}}^{N^{l} x^{m_{2}} A_{1} \ldots a d r^{l-1} .}
$$

Connettionn

[n this sectron we mill recall the differential algebraic presentation of the connections theory invroduced in [Gr|, which we athall constant]y ume later on

Deffinition 3.9 A conrection on M in a tenson fied of type (1-l) Γ an $T M$ (i.e. $\Gamma \in \Psi^{\prime}(T M) j$ auch that
i) $J \Gamma=J$.
iij $[J=-J$.
The conaction is called homogeneots if $C, \Gamma \dot{j}=0$, it is C^{2} on $T M \backslash\{0\}$
 called tinear.

Proposition 3.2 If Γ is a connection, then $\Gamma^{2}=\Gamma$ and the eagertetctor space torrespondirig to the elgentrufue -I th the vertical space. Thern, ut any $z \in T$ M, we heve the aplitting

$$
T_{1} T M=H_{\mathrm{E}} \Phi T_{\mathrm{x}}^{\mathrm{V}},
$$

where H_{t} iv the eigenspate corresponding to +t . H. is catled horironta? space.

Procf. From if we bave $\Gamma(\Gamma-I)=0$ then $\mathrm{J}_{\mathrm{p}}(\Gamma-\Omega) \subset$ Ker $J=\mathrm{T}^{v}$.
 Tru(Γ - I) (Keri $\Gamma+I$) that is

$$
(f+f)([-J)=0 .
$$

 $\Gamma X=-X$, one bas $\sqrt{ } \Gamma X=J X$, that is $J X--J X$ and then $J X=0$ So \bar{X} is vertical and $\operatorname{Ker}(\mathbf{C}+\boldsymbol{J}) \subset T^{\nu}$. Finally: $T^{\nu}=\operatorname{Ker}(\Gamma+S)$. \quad.

Expreanion of [" in lecal coordinater:
The matrix of the vertical endonarfhism $\sqrt{ }$ in the adural baxia $\left\{\frac{4}{y^{\circ}}, \frac{3}{\theta^{0}}\right\}$ 1ε

$$
I=\left(\begin{array}{ll}
0 & 0 \\
\delta_{a}^{3} & 9
\end{array}\right) .
$$

The coudition i) and n) of the definition of the connection implies that the matrix of Γ in

$$
\Gamma=\left(\begin{array}{cc}
b_{n}^{x} & 0 \\
310(x, y) & \hat{x}_{a}^{3}
\end{array}\right) .
$$

There $\Gamma_{n}^{\prime ?}$ ard functions called coc货ctetits of the cantrection. If the con-
 (reap linear in y]. [n the livear cabe, one states.

$$
1_{o}^{y_{i}}(z, y)^{\prime}=y^{\prime} \Gamma_{n=1}^{\mathbb{I}}(x) .
$$

Definition 3.10 The eemi-basic tensor $\left.H=\frac{1}{2} \right\rvert\, C^{\circ}$. []. whtch measuras the non hamogenesty of the coanection will be called the tenstor.

We denote

$$
h:=\frac{1}{2}\left\{i+['] . \quad \mathrm{t}:=\frac{1}{2} \frac{1}{2} i d-\left[{ }^{\prime} j .\right.\right.
$$

the hortzontal adod tertical projettors. They verify :

$$
\begin{cases}M_{L}=J_{1} & h_{\mathrm{L}} I=0 . \\ I_{v}=O_{5} & v J=J .\end{cases}
$$

Locally we have.

$$
\left\{\begin{array}{l}
\kappa\binom{d}{\partial r^{*}}=\frac{\partial}{\hat{a} x^{\prime \prime}} \quad \text { [ir } i x, v!\frac{\partial}{\partial y^{3}} . \\
h\left(\frac{\partial}{\hat{\partial} y^{u}}\right)=0 .
\end{array}\right.
$$

Lefinition 3.11 Let N and M be two manifolds, te $\in \mathbf{X}(N)$ and ξ_{2} : $\Gamma_{2}^{2}+T_{\tau[21} N$ the atural injection. The cotariant derivative of z with reapect to is is defined by:

$$
\begin{equation*}
D_{v(s)^{z}}=\zeta_{i \mid \& 1}\left(w_{1,2, v u z}\right) . \tag{3.9}
\end{equation*}
$$

We have the following dhagram.

In particula, for $N=M$ and w. $z \in \boldsymbol{X}(M!$! , we bave

$$
\begin{equation*}
D_{u^{\prime}} z=u:^{a}\left(\frac{\partial z^{\prime}}{\partial y^{n}}-\left[\int_{s}^{f}\left\langle x_{1} z(s)\right) \frac{\hat{\partial}}{\partial z^{i}}\right.\right. \tag{310}
\end{equation*}
$$

 ($x\{t i, g(t)\}$ is a rector field along a curve $\gamma \quad \mid a, k] \rightarrow h$ (i.e. $\gamma=\pi=2 j$, Te arrive ak.

Duelinitioun 3.12 A vector field $z \in T, W$ along a curve γ jo colled parad
 that

$$
v_{\frac{1}{3}} r^{\prime}=0
$$

In otbers मord, 1 i日 a geodestr it ind onfy it

$$
v \circ ?^{\prime \prime}-\boldsymbol{0} .
$$

Canonical decomposition of a connection

In this paragraph we explain the relations between eprafs and connections.
Deflnition 3.13 Let Γ be a connection, A the correspondang horizontal projector. Tbe spray S associated to the connection is defined by

$$
s=\hbar \dot{S} .
$$

where S is an arbitcayy spray.
lodeed, S is a вpray because $J S=J \dot{S}=J \dot{S}=C$. On the otber band S doea not depend on the choce of S^{S}, because if $S^{t} 15$ another spray $J\left(S^{\prime}-S^{\prime}\right)=C-f^{\prime}=0$; then $\dot{S}-S^{\prime}$ is vertical so $h\left(\dot{S}-S^{\prime}\right)=0$.

Locally

It x edigy to rerrify the fallowing
Proposition 3.3 The pathe of the spraty assoctated to the comnectron Γ are the geodesticg of $\bar{\Gamma}$.

 The property follawe from thas equality.

Reciprocally, a connection can be associated to any spray in the followjug pay
Propusitiun 3.4 (al. |Grf). Let S be a spray on M . Then $[:=[S, S]$ is is corthectaoth. The spray associated to $[. f, S]$ is $S+\frac{1}{7} S^{\prime}$, twhere S^{*} is the defiection of 5 . If $\overline{5}$ it homagetientss iresp. quadiatic), them $[. T, S]$ ts formagerecus (tetp. [1thear)].

Proof. Using the equation (3.3) we bave

$$
0=\frac{1}{\partial 2}[J . J|[S, X]=|C, J X|-J[C, X .-J|S . J X|=|C . J| Y-J . S, J X],
$$

and taking ioto account \{9.5\} we bind

$$
\begin{equation*}
S[J, X, 5]=S K \tag{3.12}
\end{equation*}
$$

Not

$$
J\left|J_{1} S\right|, K^{\prime}=J\left[J X_{1} 5\right]-\sqrt{2}^{2}: X_{1} S \mid=J X .
$$

and

$$
\mid J, S] J X=\left|J^{7} X, S\right|-J|J X, S|=-J X,
$$

whach proyes that $|3, S|$ is a consection. The other properties can be casily werified.

L-ocally, if $S=y^{4 \prime} \frac{A}{y_{x}=}+f^{a}\left(x, y i \frac{A}{b y^{-}}\right.$, then the coeflicients of the coonection associated are:

$$
r 9=\frac{1}{2} \frac{\partial f^{n}}{j} .
$$

Note that an the spaay of the canamation $[J . S]$ is not S (except in the
 not the paths of S. To apond thus duticulsy let us introduce the notion of torbion

De:fnition s. 14 Tlle weak tortabr is the ventor, qalued semibibsic 2. form defieed by $t: \left.=\frac{1}{2} \right\rvert\, \gamma, \Gamma^{-}$. The strong torsion is 1 be vectoy-valued semi-bacic 1 -farm $T:=t^{\wedge}-H$. where H is the fersion of the counection.

As we witl see, if the atrong torsion wanisher, thed the weak toraion if sero, but the converse is not gencrally true
Locally

$$
\begin{aligned}
& \Delta i X,\})=x^{\circ} Y^{v}\left(\frac{\partial 1_{n}^{2}}{\partial y^{3}}-\frac{\partial \Gamma^{\prime}}{\partial y^{2}}\right) \frac{\theta}{\partial y^{\lambda}} . \\
& T\left(X^{\prime}\right)=X^{a}\left(y^{*} \frac{\partial \Gamma^{\alpha}}{\partial \xi^{, 3}}-\Gamma \frac{\partial}{\partial}\right) \frac{\partial}{\partial y^{2}} .
\end{aligned}
$$

Then for a lizens remonertion:
50°

$$
\left.\xi_{\xi} \pm!\mathcal{Z}, W\right)=\xi_{s} T(W)=D_{s}\left[\begin{array}{l}
\\
\hline
\end{array} D_{w z}-\mid F, z j j\right.
$$

 t and T coincide aith the classical torsion up the natural jdentification of the tencor algehen of $T M$ with the :epara algetosa of the refical bubdle.

An easy computation enables us to cheek that the strong torsion "counterbalances" the spray, in the sease that ite potential maken up the tifilection of S, that is:

$$
\begin{equation*}
T^{\prime \prime}+S^{*}=0 \tag{3.13}
\end{equation*}
$$

The follnaing Thmomem shows that a conpection is determaned by its spriys and fur atrang torsion:
Theorem 3.1 - fCanonical decomponition) (G_{r} \} (I.55)) - Let 5 be a spmy and T a semi-baste vecter valued i-form counterbadanceng S. Then there ezasts ore and andy one connection Γ whose spray is S and whote atrong torsiot as T. Γ is givetri by

$$
\left[\begin{array}{ll}
\\
& =[J, S] \\
\hline
\end{array}\right)
$$

Proop Consider S and T an in the Themem and purt $\Gamma^{-}=[J, S]+T$ It if easy to verify that Γ is a connection whase qpayy is S and the strang toraian is T. Reciprucally, let las copaider a conaection Γ wbare spray is 3. We bave to prove that:

$$
\Gamma=\mid J . \zeta,+\frac{1}{2}(\{J, \Gamma|\bar{\pi} S-|C, \Gamma|\}
$$

Taking intu account that the spray associated to Γ is $\frac{1}{2}!T+\Gamma i!$, where S is an arbitracy epray, for any condection I and for any spray S we have

$$
\text { U[}-[J, S \text {, } \mathrm{C} S+[J, \Gamma, \bar{S} \cdot(C, \Gamma]
$$

Nox. we bare:

$$
[J, 1 \mid x S=[C, M,-J, S, 1]+[1 ' S, J]-[\mid S, J]
$$

But me also have:

$$
-J[S, \Gamma]-J\left[\left[, S=J^{\prime} I-2, . S\right]-2 x=2 \Gamma-J\right.
$$

and

$$
-1|S . J=\mathbf{\Gamma}| J . S \mid-\mathbf{\Gamma}(j-2 \bar{i}]=1 \cdot 2 \bar{v}=\mathbf{I}+J+[J . S)
$$

where \bar{v} is tho Fectucal progecter of the comenction [J, S. We immediately find the Theorem.

Notice that at $T-0$ then $\Gamma=[J, S]$, and $\left[J . \Gamma \left\lvert\,-[J,|\sqrt{2}, S|]-\frac{1}{2}[[J . J], s]-\right.\right.$ 0 . Therefore $\dot{f}^{\prime}=0$ and sn $H=0$. Reciprocally if $f f$ and τ ranish, then $r-0 . S a T-U$ if and caly if $t-v$, agd the coponention is homogeneous

The atmost compicx siructure associated to a connection

Definition 3.15 Let I be a connection on if, h the correaponding borunental propector The aimenst complex structure associated to Γ i日 the unique vector valued 1 forn F on $T W_{\text {fach that: }}$

$$
F^{\prime} J=k \text { and } F_{2}=-V
$$

 two vechor fielde such that,$J Y=, \Gamma Y^{\prime \prime}=V$. Since $\left[\left\{\xi^{\prime}-\gamma^{\prime}\right)=0, \xi^{\prime}-Y^{\prime}\right.$ is
 one proves that the action of F on horizontal vectore is well defined. On the other hand, F is unique because it is determined on the borizontal and vertical vetors. Ubuntis) we bave $\mu^{2}=-1$.
[t is easy to prove the following properties (for example by computing the twa members on the lurizahlal and rextical vections):

$$
\begin{align*}
F & =\lambda[S \cdot h \mid-\mathbb{N} \tag{3.14}\\
J F & =1 . \tag{3.15}
\end{align*}
$$

Berwadd contection

A linear conaection on T.W ja ansociated to duy cenutetion Γ Tbis dinear connection, given by the cozariant derivative D, called the Berwaid

$$
\begin{array}{ll}
D^{\prime} & =0, \\
U_{b} X J Y & =|\kappa . J Y| X . \\
D_{\searrow x} J Y & =\{J, J Y]_{-K} .
\end{array}
$$

lodeed if D exista it is unigue because one has:

$$
D_{X} \sqrt{ } Y=D_{h X}, \sqrt{ } Y^{-}+D_{/ F X} \cdot \sqrt{ } Y=\left[h_{,}, \sqrt{ } Y_{j}, X+\left[J_{1}, J Y\right] F X\right.
$$

shad

$$
D_{X} \mathrm{~d} Y=D_{X} F+J Y=F D_{Y} J Y=F\{(h . J Y \mid X+[J, \sqrt{\prime}, F X)
$$

Then:

$$
\begin{aligned}
D_{x} Y & =D_{x} h Y+D_{x} J F Y \\
& -F\left\{\left[h_{1}, Y\right] X+\mid J_{1} d Y F X\right]+|\kappa, J F Y| X+[J, J F Y \mid F X
\end{aligned}
$$

79 we find

$$
D_{X} Y=F\left\{\left[h . J Y|X+| J_{1} J^{\prime}\right\} \mid F X\right\}+|h, t Y| X+|J, t+Y| F X
$$

Reciprocilly it is tang to verify that this formula defones a congection on TM.

An ensy compuiation shows that

$$
\begin{align*}
& D \cdot j-0 \tag{3.16}\\
& D I=0 . \tag{3.17}
\end{align*}
$$

In a local coordinatee spotem the Berwald connection it determined by

$$
\begin{aligned}
& D^{\partial} \frac{\partial}{\partial \sigma^{\alpha}}=0 \text {. }
\end{aligned}
$$

3.3 Curvature and Douglas tensmr

The notion of this section will often be used in the following chapters.

Curvature

Deflultion 3.16 The curvature of the connection Γ is the vectot-palued 2 -form R defined by

$$
\left.R=-\frac{1}{2} j h \cdot h \right\rvert\,
$$

Where h it the borizontal projection defined by Γ.
 dystribution is antrgable, an easy computation gives

$$
R(x, r)--1 . h x+b
$$

wharh proves that \mathbb{R} is sema-hasir and that $K=0$ if and andy of the hurizontal dittributson ie mintegrable.

Lacally oine hak

Thus for a dineor carnector we bave

Where $Z . H \in T_{4} T M$, and $z_{=}=\pi, Z, \quad 4=\pi, W$, and D i日 the covariart dervalave associated to 1 .

The following properties are the Branch zentines for a nodined connec-tion-

$$
\begin{align*}
& |J . R|=|h: t| . \tag{3.19}\\
& {[h, R]=(1} \tag{3.20}
\end{align*}
$$

They can easily be proved by using the dacobil identity

The almost complex structure and the curpature are related to each other by the following property:

$$
\begin{equation*}
{ }_{2}^{1}{ }_{2} \cdot \cdot F \cdot F 1-F b+R \tag{3.21}
\end{equation*}
$$

[ndeces, $h^{\prime}\left(\mu^{\prime}, \mu\right](X, Y) \cdot[\mu, y]$: $h, \zeta, h \xi^{\prime} ;$ and

$$
\frac{1}{2} N^{-}[F, F[(\lambda, Y)=|J X, J Y|-|\hbar \lambda, h Y|+F[J . X, h Y]+F[\lambda, K: J Y] .
$$

On the other band we bave

$$
\begin{equation*}
F t\left(X, Y^{\prime}\right)=F\left[J Y^{\prime}, h^{\prime} \mid+F[h \lambda, J Y]-h\left[h X^{\prime}, h\right)^{\prime}\right]+\left[J . X, J k^{\prime} \mid\right. \tag{3.22}
\end{equation*}
$$

and therefore

Fign this property one dedures
Corillagy 3.] The armost amplex strurture associated with a connerfion is utegrable if arud orily if the curnestion is "weakly fint", i.e. $t=0$ atd $R=0$.
]ndeed, $\left[F . F_{1}^{\}}=0\right.$ implies $t=0$ and $R=0$ because $F\left(t, x . Y^{\prime}\right)$ it borisontal and Hit $X,\}^{\circ}$ it is wertical. The converge followe from the fact that $\left[F, F \mid=0{ }_{15}\right.$ equivalent ta $h^{*}[F, F]=0$. \mathbf{B}_{7} a simple computation ane fan prove that

We abso have the following ideptiturs:

$$
\begin{align*}
& {[3, F]=t-F-F t-\sqrt{f}} \\
& \left\{h: F \mid=-R s F^{\prime}-t\right.
\end{align*}
$$

which ean te procred by a stranghtormand recibication The following Proposution can easily te checked mith the help of the above formulae.

Ptoposition 3.5 The fotloung properthes are equivalent:

$$
\begin{aligned}
& 1:|F \cdot F|=0, \\
& 2:|J, F|=0, \\
& 3 \mid \\
& 3: F \mid=0, \\
& 41 \\
& 4=0, t=0 .
\end{aligned}
$$

 pliex $t=0$ and then $R=0$. The cooverse if triniod Moseover we get
 $t=\mathrm{l}$.

Douglas tensor

In his classtral work on the inverse problem of the calculus of tarjations
 tbeory ${ }^{1}$. He coordinate free presertation is the Following (cf. $|\mathrm{KI}|$).
 fined by

$$
A .=
$$

where h and v ate the horizontal and vertucal projecters of the connention $\Gamma=|\sqrt{\prime}, 5|$.
[t 15 easy ta see that A is semi-basuc and

$$
\begin{equation*}
A-[k, S-F+d \tag{325}
\end{equation*}
$$

where F is the dancol complex struiture associater to $\mathbb{i} A$ is related to the curvature by the formula

$$
\begin{equation*}
R=\frac{1}{3}|\sqrt{3}, 4| . \tag{3.26}
\end{equation*}
$$

We can prope this by the following .

$$
\begin{aligned}
& !J . A]=[J,|h, S|]+[J . F .=[h .[3 . S]]-R \\
& =-\mid \kappa[]-A=-2 h . h]-R(3 f .
\end{aligned}
$$

Typical and atypical aprays

ln this paragraph we give some definitions and dascribe properties related to the Douglas tensor.

Proposition 3.6 Let D be the distribution spansed by the spruy S atud the canonteal verticat vector fietn C. Then D is an integrable distrybution if and only if there ansts a function μ such that $n S=\mu C$. In partietalar, if 5 is homogeneous, then D is integrable.
[ndeed, $\mathrm{\Gamma} S=|J . S| S=|C, S|$, 5

$$
\mathrm{i} S=\frac{1}{2}\left(t-1^{\prime}\right) S=\frac{1}{2}\{S-[C . S]) .
$$

 Convertely, if D it an integtable ditreibution, then there eriet functions a, h euch that $\mid C, S]=a \cdot 5+\sqrt{C C}$. Therefore we have $J|C . S|=C=0 C$. Hence $a=1$. Since $.5-2 v .5=a S+b C$. we find that $t S=-\frac{b}{2} C$.

Definition 3.18 Let L be a semi-batic vector valued 1 form ou T. f. We ute

$$
\dot{L}=L F+F I .
$$

where F is the allonat compley atructure associated with the counection | $, J, S \mid$.

Locaily, if $L=L_{i n}^{3}\left(r . y!d x^{4} \omega \frac{0}{y^{4}}\right.$, i.e. in the matrix form

$$
L=\left(\begin{array}{cc}
0 & 0 \\
L_{2}^{\prime} & 0
\end{array}\right) .
$$

then we have:

$$
\dot{L}=\left(\begin{array}{cc}
L_{u}^{j} & 0 \\
L \vdots \Gamma_{u}^{u}-\Gamma_{i,}^{j} \Gamma_{y}^{2} & L_{u}^{e}
\end{array}\right)
$$

[t followa that the eigenvalues of \dot{L} are the eigentalues of the matrix ($L_{i n}^{3}$) with double multiplicity, and \dot{i} is diagoazamable of and onls if the matrin iL ${ }_{\text {a }}^{1}$ f te diagodalizable Mare precisely, we have

Propuxitinn 3. 7 The foldewintg praperties are equivilert.
f) $\overline{\mathrm{L}} X=\lambda . X$,
2) $\bar{L} F X=\lambda F X$.
s) $I \cdot X=\lambda J X$ and $I \cdot F X=\lambda r \cdot, S$,

1e if $X-X^{4} \frac{y}{y_{1}=}+X^{N} \frac{y}{1 \frac{y}{3+5}}$, then

$$
L_{n}^{\prime \prime} Y^{\prime \sigma}=\lambda K^{\prime \prime} \text { and } L_{i}^{1}\left(\bar{X}^{\prime}+X^{\prime} \Gamma^{q}\right)=\lambda\left(\bar{K}^{3}+K^{r} \Gamma_{\gamma}^{9}\right) .
$$

Corollary 3.2 if Γ is a contection and h demotras the horizarial pro. fertaont assactiated to 5 , then if \tilde{X} as an etgentector of $\overline{\mathrm{L}}$ with exgenvalue h and $h_{\mathrm{N}} \mathrm{F} \neq 0$, thetr $h . X$ and $\sqrt{ } X$ are alto engenvectors of \bar{L} with eiger. value λ.
ln order to preaent all compuratisng in a coordinate fite way, we will present it in terms of local beses, chosex in relation to the ratural geometraral plingaters which mover with the given syatem. We introduce the

Definition 3.19 Let L be a semi-basic pector-qalued 1 -form on T.af and
 an adapted thasis of \dot{S}, if B is a Jordan basis of i;uch that the vectors h, are boritontial, and $v_{1}=S h_{1}$.
 not an eigenyector of the Douglas tensor Wes will conader the following

Defintilan 3.20 The eppray S is called typucal, if it is an eigentertor of the teneror A.

T'be termanolagy ik juntified hy the fact that the clans of typital sprays contains the quadratic and the bomogearour tprays, and aloo the spray of the geciatice uf linear ciluntions. More generally wre have the

Proposition 3.8 of the desfratufion D spanned by S ard C is integrable, then S is typucal in purtacular the homogeneous (quadratic) sproys are typirad.

Findeed, if \mathcal{D} is iniegrable, thea ly the above prapacatiat ilfere exista a

Siace $F C=h S$, one finds that $\bar{J}(k S)=\lambda(k S)$ where $\lambda \cdot=C_{5 j}-\mu$, xa $d 5$

If $b S \neq 0$ we can set, using the Proposition 3.5, that $C=J i(h S)$ is a vertiral eignnuector of \bar{A} conesponding to the elgenvalue \dot{A} Then $e^{S}=\mu C$ is alad an cigeduector of A corresponding to the engentalue λ. Tberefore $S=\lambda S+y S$ is an eigenvector of A, i.e. S is typical.

3.4 The Lagtangian

Debnition 3.21 A Lagtarguan is a map $E: T M \rightarrow R$ smooth on $T M$ \{
 bos mazamal jank.
 defínes a (psevdo). Riemannian melric on w by

$$
g(v, 1:]=2 E\left[1: j_{1}\right.
$$

 Finsier atructure.

Note that from the equation $\left.\mid J_{1} \cdot J\right)=0$ we find that $i_{j}, d f_{j}=d d_{J}^{2}=$ $d_{1, T}=0$, , of for every Lagrangian E we bave

$$
\begin{equation*}
{ }_{2}, \Omega_{\mathrm{E}}=(1 . \tag{3.27}
\end{equation*}
$$

Proposition 3.9 A tegular Lagratgana E altows its to define a (psevio)Rientannian metrec mathe vertard bundex, by patting

$$
\begin{equation*}
\left.g \varepsilon[J X, J\}^{\prime} i=\Omega_{E}\left(J . S^{\prime}\right\}^{\prime}\right) \tag{3.28}
\end{equation*}
$$

lodeed, $25\left(\sqrt{ } X^{\prime}, J^{\prime}\right)$ is mell-defined because if Y^{\prime} j日 ancther vector on

 hand, $\mathcal{S F}(J . X . J Y)=1\}_{\Gamma}(J X, Y)=-\int_{E}\left(X, J Y^{\prime}\right)=g E\{J Y, J X\}$, because $\left.1, \hat{S}_{ \pm}-i\right)$

Marenver $g \varepsilon$ is not degenerated because if $\operatorname{se}(J . Y . J Y)=0$ for any $J Y$.
 diegenerated.

The local expression of the 2 -form Ω_{F} is

$$
\begin{equation*}
n_{e}=\frac{1}{2}\left(\frac{\partial^{2} E}{\partial x^{3} \partial y^{y}}-\frac{\partial^{3} E}{\partial x^{3} \partial y^{\alpha}}\right) d x^{\wedge} A n^{x^{3}}-\frac{\partial^{3} E}{\partial y^{\Delta} \partial y^{\Delta}} d x^{\Delta} A d y^{J} . \tag{329}
\end{equation*}
$$

and the lagangian E is ragular if und vuly if

$$
\operatorname{det}\left(\frac{a^{7} E}{\partial_{y^{4}} d y^{j^{j}}}\right) \neq 0 .
$$

Using

$$
y_{n} \vec{p}-g\left(\frac{\partial}{\partial y^{\alpha}} \cdot \frac{\partial}{\partial y^{\alpha}}\right)
$$

we abtain

$$
g_{n 13}=\frac{s^{2} E}{\partial y^{2} \partial y^{3}} .
$$

Proposition $\mathbf{3 . 1 0}$ \{ σe j Let $E \quad T M \rightarrow$ it be a regular Lagraraqian. The vector field S on This defined by

$$
\begin{equation*}
i_{s}\left\{\ell_{f}=d!E-\mathcal{L}_{\mathrm{c}} \cdot E\right) \tag{3.76}
\end{equation*}
$$

is a spring and the pathe of 3 are the solutho:s to the Euder-Lagrange mastions:

$$
\frac{d}{d t} \frac{\partial E^{\prime}}{\frac{1}{s^{\prime}}}-\frac{\partial E}{i \not \partial z^{N}}-0 .
$$

lndeed, if S is defined by this expression, one bas
and then $J S=C$ because S_{F} is rot degenerated. Locally, if f; are the componedte of S (igee 36), we have:

On the other band we bive

$$
f_{y}=\frac{\partial E}{\partial x_{y}}-y^{4} \frac{\partial^{2} \varepsilon}{\partial x^{n} \partial y^{n}} .
$$

where $f_{s}=g_{a s} /^{\prime \prime}$. Now the paths of S are the oolutions of the differential gyatew

$$
\frac{d^{2} x^{s}}{d t^{2}}-f^{u x}(x, \dot{x})=0 .
$$

which, taking the abore relations into account, can be written as
which are the Euler-Lagrange equations

$$
\frac{d}{d t} \frac{\partial E}{\partial \dot{x}^{a}}-\frac{\partial E}{\partial x^{n}}=0, \quad \alpha=1, \ldots, n .
$$

 to E. In particular, if E it the quadratic form aspociated to a Riemannian wetric, we can obtain the Lepi-Ciyjta connection. If E defines a Finaler structure, $\Gamma=[J . S$; is the canonical conoection defined by [GT]

Definition 3.22 Let E be a Lagrangian; a ventor v c $T M$ has a rud Vength, if $\Omega_{E}(\mathbb{C} . S)_{v}=0$, where S is an arbitrary spray.

This candition does not deperd on the 中bice of S. [a fact, in etandard tocal courdinates (r, y) of T, M, a wettor $; \in T M$, with lecal erprestion
 $\frac{d^{2} F}{8 y^{2}=9 v^{0}}$.

1enmman 3. 1 if fo is a tegridar Lagrangian, the intetior of the atet of the nudd temget vectors is empty.

 of degree f on (f and therefore, siqce it is C^{0} on the Eera section, it should be cuntrall of the 6 buess of $T M$. Therefore id $\left(\mathcal{C}_{C} E-E\right)=0$, that is $\mathrm{a}_{2} \mathrm{\Omega}_{E}=0$, which is exciuded beatite N_{g} has parimed rank.

Definition 3.23 A spray S is called torfational if there exists a amooth regular Lagrangian E frhich satikies (3.30), the Eulet-Legrange nquatiou.

Taking into account the local property of a Lagtabgian associated to a mariational epray given by the lemma 3.1 we propose the following

Definition 3.24 A spray S is called Jonatly varmatwon in a deigbhoshood of $x \in T M$ if there exisks an apen neighborhood of x and a smopth regular Lagratigian Eion (if surdithat the interior of the set of the aull length vettors is tmply, and which satiafiet (3.30), the Buler-Lagrange equation.

The aim of the fellowing chapters 3 t the locel characterization of the ercond order ordinary dufferential equations which come from a tariational pronejple, i.f. the local characterization of weriational spraye.

Let ut nom introduce the following
Definition 3.25 let E be a Lagraggan and S a spray on the manifold A, then the Euter-Lagrange form aspociated with E and S is

$$
\begin{equation*}
\omega_{c} \cdot:={ }_{1} \Omega_{E}+d f_{C} E-d E . \tag{3.31}
\end{equation*}
$$

It jo easy to bee that ser ia memi-basic, and the local expreasion in the standard comrdinate systom on '1'M j

$$
\therefore_{E}=\sum_{1-1}^{n}\left[s\left(\frac{\partial E}{\partial y^{\prime}}\right)-\frac{\partial E}{\partial r^{\prime}}\right] d x^{\prime} .
$$

Therefore along a curve $\gamma=(x(f)$ assocjated witb .5 wre have

$$
\left.\dot{s i}\right|_{r}=\sum_{i=1}^{n}\left(\frac{d}{d L} \frac{\partial E}{\partial z^{\prime}}-\frac{\partial E}{d x^{\prime}}\right) d r^{\prime} .
$$

Where didt dematest the derivation along 7 . Sid, in arier to find the solutian ts the inverse problem far a given second utdey dyffereatial system, We have to luck for a regulat Lagrangian auth that w'e: \equiv (0. Of colurse, for this purpuse we mast study the local integrability of the secood order partial differential operatot

$$
P_{1}: C^{\infty}\left(T, L_{f}\right) \longrightarrow \text { Ster } T_{1}^{*}
$$

collen the Exder- Logrange operator defiued by

$$
r_{1}:-1 \operatorname{sdd} d_{s}+d C_{c^{\prime}}-d
$$

Femark. To solve the inverse problem of the calculus of zariations we Fijll look for as regalar Lagrangian associaled with the spray. Supposing that the wanifuld .if arrit the operator P_{1} are analytical, we worw only need to proue that
(1) the Eulcr-Lagrange operator (3 32). possibly enlarged with aqme compatıbility conditions, if formally untegrable, and
(2) there exiats a second order regular formal solution.

To show d) we use the theary of formal integrability af paytial differential systemt whose basit notitans are gipen in Chapter 1 , while the ptoof of 2) remaine $\$$ timple linear angebroic fomputation in the spape of the initial cunditious.

Sectional curvature

Let E be a jegular Lagramgian, $\Omega_{f}=d d_{s} E_{\text {, }}$ and g the associated metric defined by the equation (3.78) on the vertical buadie. If the Lagrangan
 Riemanniad metric. In this section fe euppose that E; conver.

Lemina 3.2 Lef $£ \in \Psi(T a f)$ be an arbatrary ($1-1!$ stmi-bastc tetisor on ΓM. We define the function $\dot{k}_{t} \cdot T^{\nu} \backslash(\lambda C\} \rightarrow$ 朝 by

Since $3 \lambda \neq \lambda C$, the denaminatar is not zera, acoording to the Cauchy-
 then

$$
k_{L}(J X)=\bar{k}_{L}(a J X+b L)
$$

This is borne out by

Gbombthical]hterphetation

 Since $i^{-1}\left(\sqrt{ } X_{x_{1}}\right\}-\left\{z_{1}, x_{2}\right\}$ and $i\left(C_{i}\right\}=\left\{z_{1}, z_{1}\right)_{1}, J X$ and C are ibdeped. dent at $z_{1} \in T M$ if and only if the vetors z_{1} and z_{2} are independend Lel $\mathcal{P}_{f x}$ be the plan spanded by $\left(z_{1}, z_{2}\right)$ Since $i^{-1}(x, 3 X+h C)=\left\{z_{1}, \alpha z_{2}+d z_{1}\right\}$ we obsain:

$$
D_{x x}=P_{n, x+\cdots} .
$$

Thus the Lemma expresses the property that \dot{k}, depends only on the point $z_{\mathrm{r}} \in \mathrm{T}^{\prime} M$ and on a 2 -plan tangent to $\pi\left(z_{1}\right)$ contannag z_{1}

Remark. Let f, be a perini-basc vector-palued y -form, such that $i_{L}{ }^{5} t_{E}=$
 we can offer the following

Debhition 3.26 let \mathcal{E} be a Lagrangian and L a semm-bastr vector valued t-form suath that is. $5_{F}-0$. The sectwand furcteon awochated witl F.and L is the fuartion defined by

$$
k_{L}=\bar{k}_{\tau}
$$

In particular we will call the sectronal ciryature of \mathcal{E}, denoted by k_{A} or nuote simply by k, the actional function sabociated to the Disuglas tenser A.

As we have seen, the asctional curpature depends owly on a point $t \frac{\tau}{}$ $T M$ and on a 2 -plas tangent to $\pi i=1$ and coulaining z. A simple computa-
tion shows that

$$
\begin{aligned}
F_{f,}(J X) & =\frac{2 g\left(f^{0}, G\right)}{g\left(C, C^{2}\right.}+ \\
& -\frac{\left.2 g\left(L^{*}, J X\right) g(C,\lrcorner X\right)-g(L X, f X) g(C, C)-g(J X . J . x) g\left(L^{0}: C\right)}{\left.g(C . C) \mid g(J K . J X) g(C, C)-g\left(J X^{2}, C\right)^{2}\right]}
\end{aligned}
$$

Example 3.1 The exctional turvature of Finalder fanifolde.

Let $F \in C^{\circ}(T M ;\{0\}$ be a bomogeneaur jegular bagrangion of degree \boldsymbol{z}
 the cutvature of the chnowical conntection associated to E (c) Faragraph 3.3). We have

Woredver, from the homogeneity $\sigma^{*} E$ we bave $|C, S|=S$ and therefore $1, S=\frac{1}{2}\left(S-[\Omega, S \mid S)=\frac{1}{2}(S \cdot C, S]\right\}-\mathrm{J}$ Jhen:

$$
k(, J X)=\frac{g\left(K^{0} K_{-}, J X\right)}{g(C, J X)^{2}-g(C, C) g\left(, J X^{-}, J X\right)} .
$$

So me find the sectional curvature uatully introduriod for a Fingiter situr.ture (Cf. [Ru|, page 117).

 tensor of the Levj-Cirita connection asaociated to the acalar product:

Therifice k is the usund sectional cursotice of the Fiemannian apace.

Ssotropp

Dellaition 3.27 Wa will हay that the Lagrangien bag tretropti curvature at $: \in T$ if, $z \frac{1}{} 0$, if the sectional currature at t does not depend on the 2 -plan containing the vector 2 .

Exatuple: $\mathbf{3 .} 3$ The case $A=\lambda . J$
Wa find-

and therefare

$$
k_{\lambda, ~}=0
$$

Example 3.4 Tbe cate $A-\mu \neq-Q_{E} \& C$.
We bare:

$$
\begin{aligned}
& H(J X)=2 \frac{\operatorname{kg}(C, C)^{2}}{g i C . C)^{2}}+
\end{aligned}
$$

and therofors.

$$
k_{\mu} \log _{y} \text { f } s e=\mu .
$$

Remark. Since k_{f} if a C^{x}-linear furction on L, we hape

$$
k_{1,+\cdots}+\cdots B_{n}:=\mu .
$$

Dellintion 3.2A A spray S is cialed fot, if the assuciated Dunglus tetisot bas the form $A=\lambda . J$ for some function $\lambda \in \mathcal{C}^{\omega}\left(T M_{i}\right.$.

Rematk. The Erample 3.3 thows us that if a litat apray is onriational then eqery associated Jumatazian than vanishing sectional curvature. For a 2-dimensional majifald, they carrespand to the Case 1 an Douglas' termiaology [Dou]

Proposition 3.11 A Lagrangean has an isotrope sectional curtature * if and only if the Dougtas tensor A has the form

$$
A=\lambda J+\sigma \otimes C+g \approx A^{0}
$$

where.

$$
\begin{aligned}
& \lambda=\frac{g\left(A^{0}, C\right)}{g(C, C)}-k g(C, C) ;
\end{aligned}
$$

$$
\begin{aligned}
& B=\frac{1}{\mathscr{g}(C, C)} i_{c}, S_{k} .
\end{aligned}
$$

Judeedt the anetional curpature it thotropic if and ooly if far every vertical vector $I X \in T_{x}^{v}$ the quadratic form

$$
\begin{aligned}
q(J X i & -\left(k g\left(C, C i-2 n\left(A^{\circ}, C\right)\right): g i(J X, J X) g(C, C)-g(J . X, C)^{2}\right) \\
& k(A X, J X) g(C, C)-2 g\left(A^{\circ}, J X\right) g(C, J X)+g(J X, J X) g\left(A^{\circ}, C\right)
\end{aligned}
$$

rapisher identically. By polariving the quadratac form q, thia condition can be expressed by the following equation:

$$
\begin{aligned}
& -\frac{1}{2}(y(A X, J Y)+g(A Y . J X)) g(C, C)-g\left(H^{\prime}: J X\right) g(C, J Y) \\
& -g\left(A^{4}, J J^{\prime}\right) g(C, J X)+g\left\{, J K . J Y!g\left(A^{c}, C\right) .\right.
\end{aligned}
$$

 prexsion of A.

Remark. Note that if the Douglas teasor of a variational apray has the Inem

$$
\left(+i \quad A=\lambda J+a s C+B y A^{\circ}\right. \text {. }
$$

 1.agrangian has not notessadily isutropic curvature.
 C arc independent, then by Cartan'blemana we find $\alpha=\Delta i_{C} \ell_{F}+b i_{A}, \ell_{F}$

Or the other basd, takng the porteatial of (' ${ }^{x}$) we get $A^{\prime \prime}=\lambda C^{\prime}-a^{\prime \prime} C^{\prime}+$ $3^{n} A^{n}$. Therefore $;^{\prime \prime \prime}-1$ and $a^{\prime \prime}-\lambda$. Since C^{\prime} and $A^{\text {D }}$ are indeperdent. the conditions of Propessition (3.11) beld if and only if $d \leq 0$ (we can
 currature)

Neverthelex, if the veciart C and $d^{\prime \prime}=s(S)$ are propartional (i.e. the
 then the lagrangian associated to the apray has an isctropic curvature. Indeed, if E is the Lagrangian associated to the prray $3, i_{a} l_{x}$ - 0 , theo $\alpha \wedge i_{r}-t_{F}-0$, and therefore $\alpha=\mu i_{C} \Omega_{\mathrm{E}}$. Thereby the condtions of the
 to $\mu \mathrm{az}$ we bave aiready compured).

Taking into consideration the preceding remark, we propose the fellowing

$$
\begin{equation*}
A=\lambda J+a \otimes C . \tag{3.33}
\end{equation*}
$$

कhere $\lambda \in C^{x}(T, \mathrm{~A})$ and o is a semi-basic 1-form on T, 1 .
From the preceding remark we know that if an jeotropic spray is wariaticnal, then every assocrated Lagtongtan has wotropuc curcature Ou goal in Chapter 7 is to examine the conditions for the exintence of a Lagrangran (and therefore the existence of a lakgangiant mith isotropic cur vature) assocrated to a entay

Chapter 4

Necessary Conditions for Variational Sprays

In this chapter we defint a graded lie algebra amoriated to a secind order differential equation. By using chid bation in Theoretin 4.1 we find a large syaten of differential equationg on the Lagrangian (and algebraic conditions on the so-called "pariational multiplier"). This gives more effective conditions to the exjutence of a solution to the inverse problem of the calculua of rariativus ('Theoreme 4.3 and 4.4).

d.1 Identities satisfled by variational eprays

 associated honzontal projetion, and F the associated alfnost-complex structiste. The follourtig properties are equivaletat:

$$
\text { (1) } i_{T} \eta_{E}=0 .
$$

!itic $\quad i_{r} \cdot \Omega_{E}=[1$,
 tion is Lagratigan.

Indeed,

$$
\begin{aligned}
& \left\{\Gamma \Omega_{\Gamma}(J . K, 3\}:-25 H_{F}(J . K . \Delta r)-0 .\right.
\end{aligned}
$$

so a) is equivalent to c). On the other hand we bave
so b) ie equivalent to c).

Definicion 4.1 A counection is called Lagrangian with respect to E, if it satisters the above couditions.

Proposition 4. 2 Let E be a Lagrangean on 4 , and 1 = [3.S] the cormection asaccaated to 5 . Then

In partacular, ff the spray S is pariational and E is a Lagrangann as. snerated to S, them $[$ is lagrangiar unth tergpent to F.

Froof. The Euler-Lagrange form can be writken as follows:

$$
\begin{aligned}
\omega_{E} & =i_{5 d} d d_{J} E+d L_{C} E-\mathcal{L}_{S} d_{J} E-d E=d_{j} L_{5} E \quad \dot{i}_{1}, .5 J^{d} E \\
& =d_{J} L_{S} E-2 d_{k} E .
\end{aligned}
$$

Since $\left[f_{1} J \mid=0\right.$, we bave $d_{J}^{f}=d_{J} \diamond\left(d_{j}\right)=d_{(f, f]}=0$, so

$$
\begin{aligned}
d_{j} \cup \varepsilon & =-2 d_{\Omega} d_{h} E=2 d_{A} d_{J} E=2\left(i_{s} d d d_{J} E-d f_{n} d_{J} E\right) \\
& \left.=2 i_{h} d_{E}-2 d d_{E}=i_{\Gamma} 1\right]_{E}
\end{aligned}
$$

If the spray is raciational and E is a Layrangan aneocisied with $S_{\text {, we }}$
 Lagrangian.

Proposition 4.3 Let S be a sptay. E a Lagrategatt ot \mathbf{W}. Thets

$$
\begin{equation*}
x_{A} \Omega_{E}=d_{h^{\prime} E}-\frac{1}{2} C_{S} d \mu^{\prime} E+\Gamma^{1} \Omega_{\Sigma_{1}} \tag{4.2}
\end{equation*}
$$

twere A is the Douglas tetrsor of S. In partactiskr of 3 is varaational and E ' is a Lagrangian assocrated to S, then

$$
\begin{equation*}
\mathrm{P}_{\mathrm{A}} \mathrm{f}_{E}=\mathrm{n} . \tag{4.3}
\end{equation*}
$$

Proof Since is 1$\}_{\text {e }}=0$, one bas

Which shows i4 2!
Moreoter, if E is a Lagraggan aspocialed to S, then wf $=0$ and the connection Γ is Lagrangian Therefore every term on the right side of the equation (4 2) wnnishes, so id $\left.{ }^{1}\right]_{\rho}=0$.
 Thea we put

$$
\begin{equation*}
L^{\prime}:=h^{\prime} \tag{4.4}
\end{equation*}
$$

where $h^{*} L\left(X_{1}, \ldots, X_{1}\right):=L\left(h X_{1}, \ldots, K_{2}\right)$. The tensor L ' 15 called the semqtasec deryateon of L mith erepect to the apray S.

It 15 clear frim the definition that L ' is gemi-bassc.
 Wre have the formula

$$
\begin{equation*}
L^{\prime}=(S, L]+F I-I J F . \tag{4.5}
\end{equation*}
$$

In partictalar, suppose that S is wamational, E bethg a Legrangan assoctated to S. ff the equatton $i_{[}$lit $_{E}=0$ holds, there the eqtations

$$
\begin{equation*}
i_{L} \cdot \delta_{E}=0, \quad i_{L} \cdot 1 \Omega_{E}=0, \quad{ }^{1} L \cdot \Omega_{E}=0 . \quad \text { etc. } \tag{4.8}
\end{equation*}
$$

hold too.

Proof. Frow the definition we find that

$$
\begin{aligned}
& =\left[S . L\left(X_{1}, \ldots X_{1}\right)\right]-h S, L\left(X_{1} \ldots, X_{i}\right)-\sum_{i=1}^{1} L\left(X_{1}, \ldots,[S, h], X_{1}, \ldots, X_{i}\right) \\
& \left.-\sum_{i=1}^{i} \mathrm{~L}\left(X_{1} . \quad, \mid 5 \cdot X \cdot\right)_{1} \quad X_{1}\right)= \\
& -[5, f]\}\left(X_{1}, x_{2}\right)+F L\left(X_{1}, \ldots, X_{\mathrm{r}}\right)-\sum_{1=1}^{\dot{j}} L\left(X_{1}, \ldots, h\left|S_{1}, i_{1}\right| X_{1}, \ldots, X_{1}\right) .
\end{aligned}
$$

Using the identity $K[5 . h \mid=F+J$ and the hypotlemje that L is semi-basic, we obtain the equation (4.5).

On the other hand, from (4.5) one bas

$$
\begin{aligned}
& =\Sigma_{S} i_{L}^{11} E-d_{L} 1_{E}+i_{\rho} i_{L}{ }^{\left[t_{E}\right.}-i_{f} i_{L} \cdot \Omega_{E} .
\end{aligned}
$$

If S is rayalional and E is x Lagragita *sponated to S, then $\mu_{E}-0$,

 Retursively one fods (4.6).

Definition 4.3 Let \mathcal{A} be the horizontal projector aseociated to the conDention [' = $[J, S)$, and $L \in \Psi^{\prime}\left(Y^{\prime} M\right)$ be 日emi-basic. We propose

$$
\begin{equation*}
d^{N}[:=[h, L] \tag{4.7}
\end{equation*}
$$

Proposition $4.5 \quad J f L$ is a sempibasic vector-wtited forms, them ath L
 Eagrargian arsagzated to S. If the equation it. $\mathrm{S}_{\mathrm{r}}=0$ hodds, then the equation $\mathrm{s}_{\mathrm{d}} \mathrm{if}_{\mathrm{f}}=0$ holds too.

Proof. First wim whom that $d^{h} L$ in semi-basic, that in $\left.h^{*}(y \mid h, L]\right\}=[h, L]$. Since L is semi-basic, i.e. is o $L-0$ and $h^{*}(L)=L$, wt have

$$
\begin{aligned}
& \left.-\sum_{i=1}^{n}!-z y^{+1}\left\{\left|x_{2} x_{1}, L\right| x: \quad \hat{x}_{1}, x_{i+1}|-h| x_{1}, L\left|x_{1}, \quad \hat{x}_{2}, \quad x_{i+1}\right|\right\}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{s=1}^{n} i-1 l^{\prime+1} \mid h_{1} d\left(\left.x_{1} \ldots \dot{S}_{11} \ldots x_{1+2}\right|_{1} x_{i} j\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\sum_{n=1}^{n} i-1\right)^{+2} \mid h_{1} i\left(x_{1} \cdot \dot{x}_{1} . . x_{1+i} \mid\left\{x_{2}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{=-1}^{n}\left(-11^{+2}\left|h_{1} L\right| x_{1} \ldots \hat{S}_{1} \ldots x_{i-1}| | x_{i} ;\right.
\end{aligned}
$$

Where ${ }^{\prime}$ symbolizes the tetw which does not appear in the corresponding expressiux, aud r (a'j denetes the gign of the permutation ar. [t is clear that the value of the secood term is Fertioal, and it qanishes mben one of the argumenta ja pertical. On the otber hand:

$$
\begin{aligned}
& \left.+\mid h\left(n x_{1}\right), L\left(h x_{1} \ldots \ldots \hat{h}_{1}, \ldots h x_{i+1}\right)\right]-h\left[x_{1} K_{1}, L\left(h x_{2} \ldots \hat{X} X_{1} \ldots h x_{i+1}\right)\right]
\end{aligned}
$$

wbere we used the fact ihat the rertical distribution is נntegrable. So we realize that the value of $d^{\text {th }} \mathcal{L}$ is vertical, and vanstes mben one of the
argumenta ja vertical. Thus $d^{h} L$ is gemi-basic.
Nox anfume that S in raxintanpal, F is a Lagrangian astociated to S, and L is a pector-yatued semi-basic l-form By the relation
and taking into actopunt that $L \pi h=1 L$, because L is aemi-basic, we have

If the equation $i_{L} \Omega_{\mathrm{F}}=0$ bolds, then

$$
\begin{aligned}
& =-\int d t_{t} d d_{J} E-\frac{1}{2} d_{t} t_{r} d d_{J} E=0 .
\end{aligned}
$$

4.2 Gradad Lie algebra associsted to a second orfier OnF.

Deflnition 4.4 The graded Lie algebra ($A_{\bar{s}:}(, \mid)$ associated to the epray S is the graded lit sub-algebra of the vector-palued forme 日panned by the vertical eadomosptism $f_{\text {, }}$ the Douglan tensor A, and generated by the action of the efemin basie derivation defined in (4.4), the derivation $d^{\text {dh }}$: and the Frälicher-Nijeduluis bracket , | The graduation of \mathcal{A}_{s} ite given by

$$
\begin{equation*}
\boldsymbol{A}_{y}=\Phi_{k=1}^{n} \cdot \mathcal{A}_{s}^{\mathrm{t}} \tag{4.8}
\end{equation*}
$$

where $A_{s}^{k}:=, A_{g} \cap \Psi^{k}(T: M)$
Lemark. Note that J and A are semi-bassc and that, as me showed in the pecediat paragraph, the apace of semi-basic forme 15 strible by remubasic derivation delined in (4.4), by the derivation d ${ }^{\text {th }}$, and by the PrölicherNiprahuik hrarket it follows that A_{5} is a gracted Lie sub-agetran of the vector-salued setri-bastc fifmes.

The importance of the graded lie algetbra associated to a apray is given by the following

Theorem 4.1 Let S be a vartational spray and E a Lagrarigean assocrated to S. Then for every element L of \mathcal{A}, the equation

$$
\begin{equation*}
{ }^{4} \Omega_{E}=0 \tag{4.9}
\end{equation*}
$$

hoids Therefore every element of A_{3} guves a (necessary) algebraic cond:tion the $g_{n i v}=\frac{d^{2} t}{4 u^{\circ}+v^{3}}$.

Remark. The regular matrix $g_{n, j}=\frac{e^{1} \varepsilon}{b_{n} \wedge y^{j}}$ is called a rariational multipliet.

To prove Tbesem 4.1 we will firti ghow that I and . A saisty ibe tquation [4.8i). Theo we xill prove that all the rectof ralued forms ablained from \checkmark nod A by a finite uuriber of aucetetive pperations which defue A As, aluu satisfy the equation (4.9).

$$
\begin{equation*}
z_{\mu} \Omega_{E}=i_{j} d d_{j} E=d_{j}^{4} E=d \int_{[, J} E=0 . \tag{41D}
\end{equation*}
$$

so thie equatjup (4.9; jolda for J.
(2) The Proposition 4.3 thows that the equatics (4.9) alao holda for $L=A$, There A is the Douglas teneor.
(3) from Propesitions 4.4, and 4.5 respectively we know that if $i_{1}, \mathbf{0}_{r}:=0$ holds for $L \in \mathcal{A}$, then

$$
\begin{aligned}
\mathfrak{I}_{L^{\prime}} \mathfrak{\Omega}_{\mathrm{E}} & =0, \\
i_{\mathrm{d} \cap} L^{\prime} I_{E} & =0,
\end{aligned}
$$

hald tno.
 such that $i_{\kappa} \Omega_{\kappa}=0$ and $i_{1} f_{\varepsilon}=0$. Siace K and L are bemi-basic, we bave $L \bar{N} K \equiv 0$ and hence

$$
\begin{aligned}
& =i_{K} d_{L} f_{F}-(-1)^{\Sigma_{i} m_{1}-11} d_{L} i_{K} \cdot \bigcap_{F}=0 \text {. }
\end{aligned}
$$

 $A_{s i}$ "preserve" the equatian (4.9). Connequently for every I, E, As the equation $2_{5} \mathrm{lt}_{\varepsilon}=0$ boldt.

We can aee that the aboye Theorem give日 second order differentral condatiotis on the Lagrangian. [ndeed, if the spray it rariational and E is a regular Lagraugian asoociated with S, then locally one has

$$
\begin{equation*}
\hat{\partial}_{E}=\frac{1}{2}\left(\frac{\theta^{2} E}{\partial x^{2} \partial y^{2}}-\frac{\theta^{2} E}{\partial y^{\alpha} \partial x^{j}}\right) d z^{\circ} \wedge d s^{3}-\frac{\partial^{2} E}{\partial y^{\circ} \partial y y^{\alpha}} d x^{\circ} \lambda d y^{3} . \tag{4.1}
\end{equation*}
$$

If $\left.L \in W^{1}: T M\right)$ it semi-batic, thed

$$
t_{2} n_{E}=\frac{1}{17} \sum_{\alpha F^{*} B_{1+1}} n \cdot(n) L_{a_{1}}^{3} \ldots \frac{\partial^{2} E}{\partial \theta^{3} \partial y^{\left(x_{1+1}\right.}} d x^{4} \wedge \ldots \wedge d x^{a_{++1}}
$$

 difterential equation in E. $\left\{\boldsymbol{S}_{k 1 /-1}\right.$ deroteq the ($p+1-1$)!-order $\left.s\right\}$ manetric group and $c(\alpha)$ is the aign of o.) Theteby these zud onder equalioua give the algebrait equation

$$
\begin{equation*}
\sum_{a \in A_{i+1}} \varepsilon(\sigma) L_{o n}^{J} \cdot a_{1} y_{s s_{(4)}}=0 \tag{4.12}
\end{equation*}
$$

The groded Lie alebira astocinted with the sprey appears in a gatural way on studyiog the integrability of the Euler-Lagrange equation. Ae we will aee in the following chapters, the elementa of \mathcal{A}_{S}, more preciasly the equations ($\$$.9) and the equations (4 12) on the rariational multiplier appear in the compatibility conditions of the Euler-Lognange equation.

4.3 The rank of sprays

 whith retult in linear conotrainte on the variational multipliera. Usius thene equations we can formulate uecenayy couditions for the spray to be variational. The firtt one je the generalization of Douglaa $V[T]$ Theorem to the n-dimeacitatal cane (xset also ($A T]_{1}|S a|$).

Theorem d. 2 If at $s \in T M$ orle has

$$
\operatorname{rank}\left\{J, A, A^{\prime} \ldots, A^{i d 1} \ldots\right)_{k \in N} \quad \begin{gathered}
n(n+1) \\
2
\end{gathered}
$$

then 5 2s not vamintionat in the mexghborhood of a
Proof. Let ue auppose that S it paristional with an absociated regular Lagrangian \boldsymbol{E}, and g is the bilinear spanmetric 2-fonm !non-degenerate since E jo segulat) on $T^{\prime \prime}$ defined by the formula (3.29). If $L \in T^{*} \otimes T^{n}$, the

$$
\left.\left.g^{\prime} L X,, r\right\}\right)=g(, S X, L Y\}: \quad \forall X, Y \in T_{z} T M .
$$

i.e. locally

$$
g_{1} I_{j}^{k}=g_{2} L_{1}^{k}
$$

 Lave $i_{A 1}+\mathrm{R}_{\mathrm{r}}=0$. Therelore, if the apray w vayiational, then the tentors

 is $\frac{\text { nift }+1}{2}$-dimensional. Consequeotly, if the spray is wariaticnal, then J_{1}

If dim Af 2, then A_{5} only containg the hierachy given by the Daugtas
 2, then we find atber hiertrebse in \mathcal{A}_{5} which give, in the generic case, pew recenary conditiona for the trariational multiplieya. For example, the rurvature teusor R uf the condectiod atasciated to S belongs to A_{9}, because $J_{1} A \in A_{j}$ and $\left.R=\frac{1}{3} \cdot J_{1} A\right) \in \mathcal{A}_{5}$ by (3.26). Thertiote itt temi-basic derivativer $f^{\prime \prime}, N^{\prime \prime}$, etc. ase also elemente of A_{s} - wore preciatly elemento of A_{5}^{2} !see aloo [$\mathrm{SCM} \mid$, $|\mathrm{GM}|$].
 which are generally livearly madependent of the curvature's bartauchy.

Theormem 4.3 Let S be a spruy and $r \in T M$. If there eartate an integer $k<\pi$ for whach

$$
\begin{equation*}
\operatorname{din} A^{k}(x)>k\binom{n+1}{k+1} . \tag{4.13}
\end{equation*}
$$

then the sprayes not warational in a meaghtarhood of π.
Note that for $k-1$ we obtann the Thearem 42.

$$
\begin{aligned}
& \mathrm{A}^{k} \mathrm{~T}_{\mathbf{v}}^{\mathbf{v}} \boldsymbol{\otimes} T^{v} \xrightarrow{\boldsymbol{v}} \mathrm{in}^{k+3} T_{v}^{v} \\
& L \longrightarrow{ }^{2} \text { L? }!_{\Sigma}
\end{aligned}
$$

By the regularity of E the 2 -form 1_{2} is aymplectic, and the morphism w_{r} is onto. Indend. it ja easy to see that a $\left[K_{1}^{\prime}, \ldots, X_{n}\right]$ is a basis of $T^{\prime \prime}$, then

$$
\begin{equation*}
\left\{a_{i_{1}} \wedge \ldots \wedge a_{14} \wedge a_{2 R-1}\right\}_{1}+1 \times \therefore x_{1} \leq n \tag{4.14}
\end{equation*}
$$

is a basjo of $\}^{k+1} T_{5}^{*}$ and
gives a babse of $\lambda^{k} T_{v}^{*}$ क T^{v}. Whareoter, if the components of $A \in A^{E 1} T_{1}^{*}$

Theorem (4 l) shows un that if the sptasy is wariational and E ' is a regular

$$
\left.A_{s}^{k} \mid r j \subset K \times r x_{k}(x)\right\} .
$$

 Ont the uther haud 4is is outh, en

$$
\left.\operatorname{sank} l^{\prime \prime} k=\operatorname{dim}\right\}^{*}{ }^{1} T_{n}^{+}=\binom{n}{k+1}=\frac{n!}{\{k+1!!(n+l-k!!} .
$$

Thut

$$
\begin{equation*}
\operatorname{dim} K \left\lvert\, r r_{k}=n\binom{n}{k}-\binom{n}{k+1}=\frac{k\left(n+1!\eta^{*}\right.}{i k+1)!\left(n-\left.k\right|^{\prime}\right.}=k\binom{n+1}{k+1}\right. \tag{4.16}
\end{equation*}
$$

and therefore $w e$ obtain Theorem 4.3 .

Hemerk. In the 2-dimemional cabs, this condition means that the ppray is not raxiational in the neighborhood of x C T : f if the dimension of $\mathcal{A}_{3}^{1}(\cdot r)$ is greater than 3. so we find the criterion given by Douglas' theorem VIII

Definitiou 4.5 Let S be a apray, $x \in T W$, and let us conaider the aystem of linear equations

$$
\begin{equation*}
\left\{\sum_{\mathfrak{f} \in \mathbb{O}_{1+1}} \varepsilon\left\{(2) L_{L_{1}}^{J} \quad n_{1} x_{i n+t}-0 \mid L \in A_{s}(x)\right\}\right. \tag{4.17}
\end{equation*}
$$

ic the symmetric yariableg $x_{2}\left(x_{2}=x_{21}\right)$, where L_{11}^{i}, are the components of $L \in$ As (x). The rank of the linear equations (4.17) is called the rank of the spray at I

Rernerk. As equation (4.12) shows, the rank of a apray gives the number of iodependend equationt satitied by the rariational multipliers. Consequently, if the bybtem (4.17) doea not have a aolution with det ($\tau_{\text {ti }}$; \ddagger 0 , then there is no variatronal multipler for 3 , and therefore the spray 15 don-rarjational Thus pe can eanily obtaid the following

Theorem 4.4 If at z डTMf we have

$$
\text { rank } S\{x) \geq \begin{gathered}
n(n+1\} \\
2
\end{gathered}
$$

thetr S is min-varmationtal in a nelghborhood of x

Cbapter 5

Obstructions to the Integrability of the Euler-Lagrange System

[a thes setion we will cqasider the averse problem of the calculus of vardation it the cate of in dimencional manifolde and we mill examine the iniegrability of the Euler-Cagrangt quation. As far as potatible we will carry out the stody Fithoul restritituas either on the dimension or ou the curpatures.

8.1 First obstructions for the integrability of the Eulerlugrange operalor

 atad let $R_{2}\left|P_{1}\right\rangle<J_{2}\left(f_{1}\right)$ be the differeotial equation of the second order formal adutiona of the Euler-Legrange opecator

$$
F_{\mathrm{L}}:=i_{s} d L_{v}+d L_{e}-d .
$$

We have the following
Proposition 5.] Letp $=j_{2}$ (E;ix ben nemond arder farmad salustian 2π
 if ana ordy if

$$
\left\{\left\{_{1} n_{E}\right\}_{x}=0 .\right.
$$

Remark. By Proposition 4.1 we know that this rondition menss that the conoection associated to the spray must be Lagrangian with reapect to the solution $\mathbb{E}^{\prime}: 1 \mathrm{r} x$.

Froof. Since the Euler-Lagrange operatot is of a berond order to find the first compatibility conditions, is. to examine if a given 2nd ouder formal solution ano be lifted into a 3 rd order volution, we will consider the following diagram:

 the Euler-Lagrange operator on (P_{1} ! is
and the symbol of the prolonged system 36 given by

Where $\alpha \in S^{2} T_{x}^{*}, \mathcal{S} \in S^{2} T_{x}^{*}$, and $X, Y \in T_{x}$, Ladeed, let $f, y \in C^{\alpha}(T M)$ be twa functions vanisbing at π. We bave

$$
\begin{aligned}
& \left.+d \mathcal{C}_{C} f g+d f u \mathcal{C}_{C} g+f d \Delta C_{C} g\right)_{x}(X)=d f(X) d g(S)+d \rho(X ; d f(S) \\
& =\{d f!d g!!!S, J X) \text {. }
\end{aligned}
$$

and we cbtain the expression (5.2) of the symbol of P_{1}.
 vagishes on the pull-section.

In crder to interpret the obshruction space $K_{1}:=$ Cokeros ${ }_{9}\left(P_{1}\right)$, we tirst compute the dimearion of $n_{3}\left(F_{1}\right)=$ Krr $\sigma_{1}\left(f f_{1}\right)$ A spmonetrac tensor $\mathrm{B} \in S^{3} \mathrm{~T}^{*}$ if an element of $\rho_{3}\left\{P_{t}\right.$! if and onis if

$$
\begin{equation*}
B(X . S . J Y)=0 \tag{53}
\end{equation*}
$$

far every pair nt vertars $Y_{:} Y \in T$. Tf $A=\left\{h_{1} \ldots h_{n}, r_{1} \ldots h_{n}\right\}$ is a basiu atipted to the harascatal distributan deterapined by [', i.e $h_{i} \in T^{n}$ and $b_{2}=\sqrt{2} / h_{\text {for }} i=1, \ldots, n$, then the equalion (5.3) gires

$$
\begin{array}{ll}
n) & B\left(h_{2}, 5_{1} r_{1}\right)=0, \\
n ; & A\left(n_{i}, S_{1}, r_{j}\right) \tag{5.4}
\end{array}
$$

i.j $=1, \ldots$, r. Using the symmetry of B. we find that (5.4 s) produces x^{2}
 Sp

$$
\operatorname{rark} \sigma_{1}\left(P_{1}!-\pi_{1}^{2} \quad, \quad n!n+!\right) .
$$

 the belp of thie interpretation we can compute the fret integrability - or
 $T_{0}^{*}+\Lambda^{2} T_{n}^{*}$ be the morphism defined by

$$
\left.\left.\left(\tau_{\mathrm{r}} B j\left(X, X^{\prime}\right)-B i J X, r\right)-B i J Y, N\right)^{\prime}\right) .
$$

 lave the exact aequebice

$$
\begin{equation*}
S^{4} T^{*} \xrightarrow{m_{x}\left(f_{i}\right)} T^{*} \delta T_{L}^{*} \xrightarrow{r_{r}}{h^{-}}^{-} T_{1}^{+} \longrightarrow 0 . \tag{5.5}
\end{equation*}
$$

Let ∇ be a lipear connection on the tangent manifold of M. and let E be
 14 we know that ($\left.j_{0} E\right)_{x}$ fan he lifted inin a thord order farmal saltation it and anly if $\boldsymbol{T}_{[}\left|\bar{F} i P_{1} \mathrm{~F}_{\mathrm{i}}\right|_{s}=0$. The Euler-Lagrange 1 -form $\omega_{E}=P_{1} E$ is serti-bracic and vanislam al s.an, usiag the Propusitiou 4.2, We arrive at
whid proper the Pieposition 5. ..
[f $14(=\operatorname{din} 3 M)-\mathrm{t}$. the abowe conputation shows that every second order solution can be lifted iato a tbred order bolution. Jodeed, in this case
 $\tau_{\mathrm{T}} \circ \Gamma=0$. Moreover, it is eafy to show that the Euler-Lagrange operator
is inrolutive and then it is formally integrable Therefore every tyatay pa a 1-dimensional manifold is variational.

The aituation is different if the dimension of the mambold M is greater than one. The above computation showa that in higher dimensional casea there exists a compatibility condition for the Euler-Lagrangs operator xhich is not identically tatisfied for all the acond order solutions Therefore the Euler-Lagrange opeyator ja not formally integrable: the space of accond order solutions - or initiel conditions - is too large; some of them canast be lifted into a bigher order. [n order to eliminate the ones which canaot gire a aclution, we have introduced the compatibility conditions laid down in Proposition 5.1 into the Euler-Lagrange ayatem. So we can consider the operator

$$
\begin{equation*}
P_{z}:=\left(P_{b}, भ_{\}}\right\}: \quad C^{\infty}\{T, \Lambda\} \rightarrow \operatorname{Sec}\left(T_{z}^{*} ; \Lambda^{2} T_{v}^{*}\right), \tag{5.6}
\end{equation*}
$$

where

5.2 Second obstructions for the Euler-Lagrange aperntor

Proposition 5.2 A sncand order formal sadution $p-n_{2}($ E.), of the
 and ondy of the equations

$$
\left\{\begin{array}{l}
\left\{\Omega_{A} \Omega_{\Sigma}\right\}_{L}=0 \tag{5.7}\\
\left(a_{R} \Omega_{x}\right)_{z}=0
\end{array}\right.
$$

hald, where one denater $\zeta_{E}:=d d_{j} f$.
 $5^{2} T^{*} \longrightarrow \Lambda^{2} T_{n}^{+}$given by
a $\in S^{2} T^{-}, X . Y \in T_{r}$. In fact, if $f . g \in C^{x}(T, M i$ ase tro functions venisbing in $x \in \mathcal{C} M$, we find

$$
\begin{aligned}
& =\left[i_{s}(-d . \pi A g+d f \Delta d, f)+d . t A d g-d f \wedge A_{s}\right]_{s}(X, Y) \\
& \left.=2\left[d f(h X) d g(J\}^{\circ} ;-d f\left(h r^{\prime}\right) d g(J X)-d f(J X) d g\left(h Y^{\prime}\right)-d f(J\}^{-}\right) d g(h X)\right\}_{x} \\
& \left.=2\left[(d f \rho d g)_{r}\left(h X, \int\right\}^{-}\right)-(d f \rho d \xi)\left(h Y_{:}, f X\right)\right]_{x} .
\end{aligned}
$$

to we obt \sin (5.4).
Since $P_{\perp}=\left(P_{1}, P_{\uparrow}\right)$, where both P_{1} and P_{1} are af second order, we have $\sigma_{7}\left(P_{i}\right)=\left\{\sigma_{7}\left(P_{1}\right\}, \sigma_{2}\left(P_{Y}\right)\right\}$, where $\left.\sigma_{2}!P_{2}\right): S^{2} T^{+} \longrightarrow T^{\prime} \oplus A^{2} T_{i}^{\prime}$. Of course, we also have $s_{1}\left(P_{2}\right\}=\left\{0_{j}!P_{1}\right), o_{x}\left(P_{1} ;\right\}$.

It is easg to are that F_{2} is a regular differential operator on $\bar{J} .4:\{0\}$.
 of the second order formal solution of Γ_{2} in v 'Then $\Omega_{2.0}$ i R_{2}; will contain ececond order regular formal solutiont.

 ($\left.r^{2}, z^{2}, p-p_{2}, p_{2}-p_{2} t-p_{2},-p_{1} r\right)$ is a secord order regular zolution of p_{1} in $\mathrm{t}=\left\{\mathrm{z}^{\top} \cdot \mathrm{v}^{\top}\right\}$ if and orly if

$$
\mathbf{d c t}(p, y) \neq 0 .
$$

and $\left\{P_{1} E\right)_{T}=0$, and $\left(P_{1} E\right)_{T}=0$ are eatitifed, i.e if we have (s 10 , and the lintear systert.

$$
\begin{align*}
& v^{\circ} p_{12}+f^{\prime} p_{n 1} \quad p_{1}=U .
\end{align*}
$$

Ior i., $=1$. n, where $f^{\prime \prime}$ are the componente of the apray and ["] are the coefinients of the connection $\Gamma=[J . S \mid$.

Cboosing p_{12} such that the inequasity (5 10) is radized, wet eatid tolve the gyatem $\left\{5.11\right.$) and (5.12) for the prot terme p_{1} and $p_{1!}$ Therefore we can find a regular becond order formal solution to β_{2}, $n \in T M$

In order to fiad the dimension of the obstruction 5 pace, we have to compute the kerace of the symbol of the pralonged operator. A aymanetric tensor $D \in S^{1} J_{x}^{\prime \prime}$ is an element of go($\left.P_{2}\right\}_{x}$ if and only it the equations (5.3) and the equations

$$
B(X, h Y, J Z)-B(X, H Z, J Y)=0
$$

 adapted to the conoection Γ, that is h_{1} is borizontal and $1_{i}=M_{i}$ frr nvers $1:-1$. , n, we find that $B \in S^{3} T^{*}$ is found in $n_{0}\left(P_{2}\right)$ if and ouly of (5.4) and the equations

$$
\begin{align*}
& \text { a! } \quad B\left(h_{1}, h_{j}, t_{k}\right)=B\left(h_{4}, h_{k}, t_{2}\right) \text {. } \\
& \text { b) } \quad B\left(i_{1}, t_{j}, v_{k}\right)=B!i_{2}, h_{k}, v_{2}, .
\end{align*}
$$

hold for $1.1=1, \ldots, n$ let us introduce the notation $B_{i, \underline{\mu}}:=B\left(h_{1}, h_{1}, t_{k}\right)$ and $E_{1 y^{k}}:=B\left(h_{1}, v_{j}, y_{4}\right.$! The equations (5.14) show that in symunetric kensor n is on element of $a_{3}\left(\beta_{3}\right)$ if and ouly if the $a_{\text {sk }}$ ond the $B_{1 i k}$ are spmanetne m i. $2, k$. Since there it tur uther canditiant impored un the symbetric campontyts $B_{1 s^{d}}:=B\left(h_{1}, h_{\jmath}, h_{k}\right)$ and $B_{\lambda^{4}}:=B\left(v_{1}, E_{1} \cdot v_{k} ;\right.$, we cap deduce that

$$
\text { ding gaifry }-4\binom{n+\cdot}{y} \text {. }
$$

On the other hand, an element B of the space gxi P f) ia contained in $g a(f)$) if and only if the equations (5.4) hold Uang the symmetry of 0 (54.6) we obtain $\frac{n!a+1 i}{2}$ indepeadeat equations Employing the equation of gilifr!, the compounats which ifpess in the equations (54 in) are also complete)y symmetric, so an the efstern (5.4.a) there ate $\frac{n \cdot n-\text { ? }}{\text { ? }}$ relatiods. Therefore we arrive al
and

Let

be the morphasm defined by $r_{2}-\left(T_{r}, \tau_{*}, T_{\mu}-T_{: ~ f, ~}^{\prime}\right)$, where

$$
\begin{aligned}
& \left.\left.\left.\tau_{A}(B . C j(X, Y):=B(\hbar, K .\})-B i \hbar\right\}, X\right)-\frac{1}{2} C i, S . X . Y\right)
\end{aligned}
$$

for $B \div S^{\top} T^{*}, C \in S^{3} T^{*}$, and $X, Y \in T_{z}$. If $K_{z}^{*}=$ lun r_{2}, tuent the sequeace

19 exact

 eyetems are iudepeardent, вo that the tame of 7_{2} is the sum af the ranics of

$$
\begin{aligned}
& =\text { rank } o_{i!} P_{j} j \text {. }
\end{aligned}
$$

Conaequently Imos. f_{2}^{\prime} ! - Ker τ_{i}, and tha aequence (5.17) se exact.

Let un compute the compatibility condition of the operatoy P_{9}. We bave the diagram

Let ∇ be an arbitrary linear connection on T, M, and $p=\left(j_{2} V\right\rangle_{x}$ a second
 a 3rd order solution if and only if $\left.\mathrm{T}_{2} \overline{\mathrm{~V}}\left(\mathrm{~F}_{2} E\right)\right|_{x}-0$ Since $\{\omega \varepsilon)_{ \pm}-0$ and ($15\left\{_{i} \mathrm{~F}\right)_{x}=0$, we find that
'「berefase

$$
\begin{equation*}
\left.r_{2}\left[F ; P_{2} E\right)\right|_{x}=\left(n, i_{A} f f_{x}: z_{H} \Omega_{1}, n\right\}, \tag{5.18}
\end{equation*}
$$

whicb abowa the proposition.

The equations (5.7) are not satisfied in the generic case. However, we can find a certain ppecial clasp of aprayb, for which these obotructions are identically eatisfied We will consider this clase of sprass in the Paragraph 71

Chapter 6

The Classification of Locally Variational Sprays on Two-dimensional Manifolds

In hie paper |Doul, uaing Fiquiet's theory, Douglat claseifes second order marjational differential equations, also called variational spraye, with two degress of freadom lo this chapter we will reconsider this problem i.e. the classifications of variational aprays on 2-dimensional manifolda. Hewetar कe will use n ditfereat spproach to Doughas' unstead of prorking with a dufereatial system on the pariational multiplier, we wili etudy directly the intagrability of the Euber-Lagrange syitew, as it is more natural. Tbis approarb allows us to present all the cbetructions in a natural and intrinsic \#ay.

As we sam ind the previous chapter, the first nad-trivis] case is when the dimension of the manifold 35 two . Its study is interesting, becanse al] kiodt of obstyuctions to tolting ato aver-determithed partas differential aystew aribe (probleme with the first and bigher order compatitility, inwolutivity, 2 -acyclicity etc). [n thia chapter we give the complete, exptiot and coordinate-fyee classification of the pariational eecond order differential equatinus

We note that the analysis in much more complicated on bigher dimensiaual manifalds because we lave 10 take the equation ivvelviag the cur. vature teracr into congideration. Hoxever, if the Aimension is fixed, the atudy is analogous to the 2 -dimensictal case.

Wee assume that the manifolds and the ather objects (tedears, functions etc.') are analyric If an object is sefined on the tangent bundle, then it is

We have shatra in Sectinn 51 tbat thr Buler-Lagrange cutuereatial operator is nat formally integrable Joticducing its compatibility conditions
is the spatem we defined the differeatial operater P_{d} The compatibility conditions of this second operator are given by the equations (s.7). Both

 for every Lagrangian E.

On the other hand, as we 孪 in Chapter 4 , uaing the graded Lie algebra asociated with the apray end the astion of the cantion afyrayt, we can give simple criteria for the eriatence of a golution of the inverte problem. lo particular, on a 2 -dimensional manifold we have $\mathrm{f}_{\mathrm{k}}^{\mathrm{k}}=0$ for every $k>1$. Therefore the rank of the apray as determined only by the dimestion of \mathcal{A}_{ξ}^{1}, i.e. by the dimension of the space of pecter-valued 1 -ferme spanaed by the vertical endomorphism $I f$, the Douglas tensor A, abd itt serid-basic derivations: $A^{\prime}, A^{\prime \prime}$ etc. Since the equation (4.10) holds ideatically, the wertical endomorphism J fors got give any reftriction on the pamational multiphers Therefore on a 3 -dimeneional manitold the rank of the epray is given

$$
\operatorname{rank} S+1=\operatorname{rank}\left\{, S_{,} A, A^{\prime} . \quad . A^{\prime n \mid}, \ldots\right\}_{\mathrm{lth},} N^{N} .
$$

Proposition 6.1 We Rave

$$
(f L)^{\prime}=f^{\prime} L+\int L^{\prime}
$$

 $A^{i n+1)}=f_{n} J^{\prime} \cdot f_{1} A 1 \ldots .+f_{\mathrm{p}} A^{\{p 1}$ with $f_{0}, \ldots . f_{V} \in C^{\cdots 0}[T M)$, then for every $r>\rho+1$ there exist $g_{n}, g_{1}, \ldots . g_{\mathrm{p}} \in C^{\infty}(T, i f)$ such that

$$
A^{(-1}=g_{n} J+g_{1} A+\ldots+g_{r} d^{i p l} .
$$

in particular, the rank of the spray $25 x$ if and ondy if $\left\{\right.$ J. $\left.A . A^{\prime}, \ldots, A^{-1}\right\}$ ${ }_{i s}$ a dusas of the $C^{s}\left(T\right.$ if) -modele spanned by the tensars (J. A. $A^{\prime}, A^{\prime \prime}$. . A|ri, ...)

The rank of the gpiay only ofers the firat conatrainte an the second order salutipas. However, it as natural to organize the study of the ioverse problem depending on ther rank of the npsiy, as Douglas deen in his paper [Dou]

6.] Flat aprays

 ilut the Douglas iearar is proporlional to the vertical endamonplisun, thans théce exists a function λ such that $A=\lambda .3$. In thia case the spray has tank 0 , and it is jeatropic (ate Defibition 3.29). Moreover, the sectuonal

Proof. Let us consider the aecond order differeatial operator fr defined un (5.5) It is regular and, as are showed in the Pemark on page 87, al rivery pout a $C T: M ;$ 付 there exista a regutar second order formal salutian af S 2 .

Moreover, as we hirre stown (ci. Proposition 3.2), a second order formal
 $\mathrm{i}_{\mathrm{A}} \mathrm{H}_{\mathrm{E}} \mathrm{i}_{\mathrm{x}}=0$. NOW
so every ke:und arder salulion casa be liffed jalo a thita in der solution.
The theorem is proved if we thow that P_{2} 㫜 alao iovolutive The conहtuluction of a quast-regular basis 13 anghtly different arcarding to whether S is horizontid or not.
a) The siptay is honcontal
 be a basis. Fifth h_{1} horizontal and $v_{1}=\int h_{t}$ bet $L^{\circ} \mathrm{C} 5^{2} \gamma^{*}$ be a symmetric

Thersfore

$$
g_{1}\left(\Omega_{2}\right)-\left\{\left\{\begin{array}{cccc}
a_{11} & \alpha_{12} & b_{11} & 0 \\
a_{12} & \pi_{22} & 0 & 0 \\
b_{11} & 0 & c_{61} & c_{12} \\
0 & 0 & c_{12} & c_{22}
\end{array}\right]\right\},
$$

 arbatrarily Lei us consider the basis $\dot{B} ;=\left\{c_{1}-e_{2}, v_{1}, v_{2}\right\}$ where $e_{1}:=d_{1}+v_{1}$
 Deacting the aew components of B by $\dot{a}_{i j}, b_{i j}$, and $i_{i j}$ respertirely, we find that $\bar{c}_{1 j}=c_{7 i}$ and that the block $\bar{b}_{i,}$ as given by

$$
\bar{b}=\left[\begin{array}{cc}
b_{11}+c_{11} & c_{12} \\
c_{11}+c_{31} & c_{12}+c_{22}
\end{array}\right] .
$$

Thecefore the components $\dot{c}_{2 j}$ are detacmined by the components $\dot{b}_{i j}$ by the folloring relations.

$$
\begin{aligned}
& \dot{r}_{12}=\bar{r}_{121} \\
& \dot{r}_{11}=\bar{r}_{21}-\varepsilon_{12}=\bar{b}_{21}-\bar{b}_{12} \\
& \dot{r}_{22}=\bar{r}_{22}-\varepsilon_{12}=\bar{b}_{22}-\bar{b}_{12} .
\end{aligned}
$$

Thun, in the basix \dot{B} wneleromal $B \in g_{2}\left\{S_{2}\right\}$ is determined by the camponents $\mathrm{j}_{11}, \bar{i}_{12}, \bar{x}_{22}, \bar{d}_{11}, \bar{i}_{12}, \bar{J}_{21}$ and $\overline{\mathrm{E}}_{22}$. Nam

$$
s_{2}\left|\Gamma_{2}\right|_{21}=\left\{\left[\begin{array}{cccc}
0 & 11 & i_{1} & 0 \\
0 & i_{22} & \bar{b}_{21} & \bar{i}_{22} \\
0 & j_{21} & c_{11} & c_{12} \\
11 & \dot{b}_{22} & c_{12} & c_{22}
\end{array}\right]\right\}
$$

Then din $\boldsymbol{g}_{2}\left(\bar{P}_{2}\right)_{51}-3$ herature there are onfy 3 free paramelers: $\bar{a}_{2 z}, \bar{b}_{21}$ and \bar{b}_{22}. Mरreवrex

$$
g_{2}\left(P_{2}\right)_{*_{1} r_{2}}=g_{2}\left(P_{2}\right)_{n_{1}, m_{2} n_{1}}=g_{2}\left(P_{2}!_{\kappa_{1},<2} n_{1}, n_{2}=\{0\} .\right.
$$

30 we get
datm $g_{2}\left(P_{2}\right)+\sum_{i=1.2} \operatorname{din}\left(g_{2}\left(P_{7}^{\prime}\right)\right)_{r_{1}, r_{1}}+\sum_{1=1,2} \operatorname{dim}\left(g_{9}\left(P_{2}\right)_{r_{1}, r_{3}, v_{1}}=\operatorname{dian} g_{7}\left(P_{2}\right)\right.$
which ahowt that the bagis ${ }^{\text {d }}$ is quasi-regular.
b) The spray as ruve horasarturl
 $h_{2}:=h S, r_{2}=C_{1} J_{L_{1}}:=i_{1}$ and $r_{2} S:=z_{2}+C$. We bave

Where the componcits $a_{11}-a_{12}, a_{22}, b_{11}, c_{11}, c_{21}$ and c_{22} can be chasep arbitrarly. Let us consider the basis $\dot{B}^{\prime}:=\left\{e_{1}, e_{2}, v_{1}, L_{2}\right\}$, where ef $:=$
 compopents are $\dot{i}_{\mathrm{ij}}=\epsilon_{15}$ and

$$
\dot{b}=\left[\begin{array}{cr}
b_{1:}+s_{11} & \left.i_{11}+c_{22}\right)+c_{12} \\
-\left(f_{11}+i_{12}\right)+2 e_{12} & -\left(i_{n}+c_{21} j+\hat{g}_{r: 2}\right.
\end{array}\right] .
$$

As in the preyious case, the block $\dot{G}_{1,}$ can be expressed mith the help uf the hlock \bar{b}_{13} :

$$
\begin{aligned}
& \dot{c}_{11}=\dot{b}_{12} \\
& \dot{c}_{17}=\bar{b}_{21}-\dot{b}_{12} \\
& \dot{c}_{72}=\dot{b}_{22}+\dot{b}_{2 r}-\dot{b}_{12}
\end{aligned}
$$

 $\dot{b}_{11}, \dot{b}_{12}, \bar{b}_{21}$ and \dot{b}_{22}. So, dimim $g_{2}\left(P_{2} r_{1}=3\right.$ aud

Thus we nbtan

Thimb shows that \dot{d} ' is a quasi-tegular bisis

Example 6.1 The simplest example of flat sprays is given by the followjng 日ystem:

$$
\left\{\begin{array}{l}
\ddot{r}_{1}=0_{1} \tag{追.1}\\
s_{2}=0 .
\end{array}\right.
$$

Of course, we have $[1,-0, A=0$, so the rank of the spray is 0 . Therefore this apray is locallf variational.

Exarnple 6.2 Anothar example o: flat aprafs 35 given by the aystem

$$
\left\{\begin{array}{l}
\bar{x}_{1}--\frac{1-\dot{x}_{1}^{2}+\dot{x}_{2}^{2}}{s_{1}} \dot{x}_{1} \tag{6.2}\\
\bar{x}_{2}=y_{2}^{2} .
\end{array}\right.
$$

 Moreover, $A=0$ and therefore the system (6.2) is locally vatiational.

A. 2 Flank $S=1$: Typirat spriys.

As we bave seen it the previpus metion, a second order fonmal solution ${ }_{32}(E)_{1}$ of the operator P_{2} tan le lifted inge a thisd order soijution if and
 unknown function E. lo order to obtain a condition in terme ouly of S, we must introduce at into the system and ettudy

$$
\left\{\begin{align*}
w^{\prime} & =0, \tag{6.3}\\
i_{1} \Omega & =0, \\
i_{\lambda} \Omega & =0 .
\end{align*}\right.
$$

Ia nther wards, we have to ftudy the differential operator

[^3]detioed by
\[

$$
\begin{equation*}
R_{1}:=\left(P_{z}, P_{A}\right), \quad \text { where } \quad P_{A}=i_{A} d d_{\lambda} . \tag{6.4}
\end{equation*}
$$

\]

The problem is completely different sccarding to whether S is typifal as not. If S i日 typical, then P_{1} is involutive and the Cartan-Kïher Theorem leads to a sumple result Note that the tlast of typical sprops santains the bomogencont and the quardatic sproys wbich are the moat important examples in differential geometry, to the nad-typical cue, the Spencer cohomolngy is not trivial and the results are muth more complizateri.

Norktion. In the bequel, if $\left\{\mathrm{f}_{1}\right\}$ is a base, then we will denote by ξ_{e}^{X}, the component of the peator X on ϵ_{1} :

$$
\boldsymbol{X}:-\sum \varepsilon_{t_{i}}^{x_{i}}
$$

[n this section we will prove the foliviping
Theorem 6.2 Let \mathcal{S} be a rank pne typieal spray and $x \in T, f \backslash\{0\}$.
 base of $\overline{\mathrm{A}}$, and a the semi-btese 1 -form defined by $\mathrm{c}_{\text {ges }}=1$ and w_{1} a $=0$ Ther S is tuttitatanal on a neighborhood of $x \neq 0$ if and ondy if

$$
D_{\Delta X^{+2}} \lambda \mathrm{n}=0 . \quad \forall x \in \text { Fier } n,
$$

where D it the Bersuald comectron assactaterd thth the spray fof Panagraph 9.2).
(2) If A is non-dagonadzable, then S is nor-varmathorat fowever, there extsts a regular Lagrangian associnten to S if and orily if the frnction
varishes in a netghtorhaod of x, where k_{2} is a horizontai vector field such triat $\left\{h S, h_{2}, C, 3 h_{1}\right\}$ is an wapted base of A in a neigh. borhood of $\%$. In partectar, if S is quadrate on homogeneous, then the condition $\{\equiv 0$ wa teriticality satisfied.

Before proving the theorem we will ahow the following
Letnman 6.1 Let S be a variational spray such that jank $S \geq 1$, E ar

- If Ai is dagotativale, then

$$
\begin{equation*}
s_{E}\left(v_{1}, h_{1}\right] \neq 0 \text { and } \quad s_{E}\left(v_{2}, h_{2}\right) \neq(\hat{y} \tag{5.7}
\end{equation*}
$$

- if \bar{A} is rotid-diagondizable, then

$$
\left\{\varepsilon_{\varepsilon}\left(z_{1}, k_{2}\right) \neq 0\right.
$$

 i.e.

$$
\left.\operatorname{dec}\left(\begin{array}{ll}
s_{F}\left(\left[l_{1}, k_{1} j,\right.\right. & \Omega_{f}\left(t_{1}, d_{2}\right) \\
\Omega_{E}\left(l_{2}, k_{1}\right), & \Omega_{E}\left(r_{2}, h_{2}!\right.
\end{array}\right) \neq 1\right\}
$$

 i. 6) in the diagonalizable case

Rentark. Taking the Remart of page b4 into account, Lemma b. 1 yieldu that in the case, where the Eunr-Lagrange 日yatem with ses compatibility
 Dr (6.7) is fatisfiech. S is nen-qoriational.

Let us return to the Theorem 6.2. The prood involvet two alepe. The fist stop is to show that $P_{\perp} 35$ mpolutive ($[$ memma 6.2) and the and step is ta show that if the bypotheses of the theorem bold, then erery gecond order unlution cart le lifered intu a 3 Fd order solution (Lemman 6.3 and 6.4).

It an clear that P_{1} is a seromit order differeatal oprentor. A simple computation shows that the symbol $a_{2}!^{\prime} P_{A} j: S^{2} T^{-} \longrightarrow i^{2} Y_{v}^{*}$ of P_{A}^{\prime} ff

$$
\begin{equation*}
\frac{d}{1} r_{2}\left(F_{A} ; R\right](X, \gamma)=a(A X, J Y)-\alpha(A Y, J X) . \tag{6.9}
\end{equation*}
$$

$$
\left.\left[\sigma_{A}\left(\Gamma_{A}\right)\right]\{X, Y]-\mathcal{O}(X, A)^{\circ}, J Z\right)-3\left(\mathcal{S}^{-}, A Z, J Y!\right.
$$

Where $\mathrm{a} \in S^{2} T^{*}, \dot{d} \in S^{9} T^{*}$ and $X, Y \in T$.
lodeed, let f, g be $C^{\prime \infty}$ functiona both vabishing at $z \in T_{i}$ we bave.

hold.
If we suppose that ${ }^{5}$ is typical. then it belonga to an eigenapace of A On the ntber band, this 2 -dimensignal eigenspace is spanned by hsian C (see Corollary 3.19), so from Proposition 3 B, us and C. are properitanal.

The proof of the involutivity is slightly different in the diagonalizable and io tie non-dingonaluable case, wo we will treat them separatels.

a) Aj diagonalizable

 sponding eigenvalue by λ_{1}. Let us zoasidet the base $B-\left(14, r_{2}\right\}_{1 \sim 1.2}$, of T_{x} where

$$
\begin{aligned}
& \text { (a) } H_{H} \in T_{x}^{n} \cap A_{2} \text {. } \\
& \text { d) } i_{2}=5.5 \\
& \text { r) } 3 h_{\mathrm{t}}-v_{1},-1.2
\end{aligned}
$$

Te get

$$
\left\{\begin{array}{r}
b\left(a_{2}, v_{1}\right)=0 \tag{611}\\
E\left(h_{2}, v_{1}\right)-0 \\
D\left(h_{2}, v_{2}\right)-\xi_{2}^{S} D\left(v_{2}-v_{2}\right)-0 \\
D\left(l_{1}-v_{2}\right)-E\left(h_{2}-v_{1}\right)-0 .
\end{array}\right.
$$

tadeed

Heare

$$
g_{2}\left(P_{3}\right)=\left\{\left(\begin{array}{ll}
a_{i j} & b_{2} \\
b_{15} & c_{i j}
\end{array}\right)_{15=1,2} \left\lvert\, \begin{array}{l}
a_{12}-a_{21}, b_{12}-b_{21}, c_{32}=c_{21} \\
b_{12}=0, c_{12}=0_{i} b_{22}=\xi_{r}^{5} \cdot c_{22}
\end{array}\right.\right\},
$$

so $\operatorname{dim} \operatorname{sn}\left(\mathrm{N}_{3}!=6\right.$.
 RE $S^{3} \mathrm{~T}^{*}$ it found in $g_{3}\left(F_{7}\right)$ if and only if the equationa

$$
\left\{\begin{align*}
B(Y, S, \sqrt{ }) & =0\}_{1} \tag{6.12}\\
B\{X, h Y, J Z j-B(K, \hbar Z, J Y) & =0 \\
\Delta(X, A Y, J Z)-B(X, A Z, \sqrt{ }) & =0
\end{align*}\right.
$$

bold. We sote that P_{3} is a regular opetalor in a aeighborhood of $r \in$ TiN $\{$ \{ $\}$ \}. It is easy to check that this spaten condains 12 ivdependent equations; 35 dims $g_{1}\left(F_{3}\right)=\operatorname{dim} S^{s} T^{*}-12=8$.

Let ua canaider the batis $\dot{\boldsymbol{q}}=\left\{\kappa_{1}, e_{2}, v_{1}, v_{2}\right\}$, where

$$
r::=h_{1}+l_{y} . \quad \text { and } \quad e_{2}:=h_{2}+b_{1}+t_{2}
$$

and deaote by $\bar{a}_{1 j} \dot{b}_{1 j} \dot{c}_{1 j}$ the coeffi:-ients of H in thia basis. [t is easy to Eet that the alements of $g_{2}\left(P_{x}\right)$ are detcimined by the components $\bar{u}_{\mathrm{ti}}, \tilde{\mathrm{e}}_{12}$,
$\dot{u}_{i z}, b_{11}, \dot{b}_{12}$ and \dot{b}_{22} Now

$$
\begin{aligned}
& \operatorname{dum}\left(g_{2} l_{r_{1}}-2 .\right. \\
& \operatorname{dim}\left(g_{2}\right)_{r_{1}, r_{2}}=\operatorname{dim}\left(g_{2}\right) r_{1}, r_{1} 4_{1}=\operatorname{dim}\left(g_{2}\right)_{r_{1} r_{2} x_{1} H_{2}}=0 .
\end{aligned}
$$

and 50

Which showa that the base $\dot{\phi}$ is quasj-regular, and $\kappa F_{: 1}$ is involutive.
b) A Tion-dragomilzable

In that case the iwa ergeoraluer are equal. We set dawa $\lambda:=\lambda_{1}=\lambda_{2}$. Naws 5 lies in the eigeropace Δ because it is typucal, and by Propacition 3 . . b the
 usigbborthood of 5 f $T M$ eo that $\left\{h_{1}, ~, ~ S, v_{1}, C\right\}$ gives an adapted Jordan bave of is.
 if the equation \{ f .1 u$\}$ hold, i.e.

$$
\left\{\begin{aligned}
B(S, r)=B(S, C) & =0 \\
\left.B i h_{1}, C\right)+S \cdot B(1, C) & =0 \\
B(C, C) & =0 .
\end{aligned}\right.
$$

Hente

$$
\left.\left.g_{2}\left\{P_{3}\right\}=\left\{\begin{array}{ll}
a_{31} & b_{1 j} \\
a_{11} & c_{15}
\end{array}\right)_{1 ;-1.2} \right\rvert\, \begin{array}{l}
a_{12}=a_{21} c_{12}-c_{21} \\
b_{21} \cdots h_{21}=0_{1} c_{21}=0
\end{array}\right\} .
$$

where the parameters $a_{11}, a_{12}, a_{12}, b_{11}, b_{12}$, and c_{11} are as bitrauy. Therefare $\operatorname{dimsman}_{5}\left(F_{3}\right)=5$.

 ensy to sen that the elements of gin (P) are reeterwived bof the components

and 50

It is easy to see that, as in the dagooalisable case, dimgaifs) - 8, 50 the base $\bar{B}^{\bar{j}}$ is quabi-regular and $F^{\prime}{ }^{\prime}$ is jorolutive. 'Thas proves the Lemma o
 every regalar ind arder solation of P_{j} can te lifted into a \$nad arder solution af ard onily if the corndition (8.8) 1.5 satarfied.

Jateed, let us caviter the wap

and, considering an adapted base $\left\{\hbar S, h_{2} . \mathcal{C} \cdot x_{7}\right\}$ of \bar{A}, let t_{6} be the function

$$
\left.\therefore:\left(T^{\prime} \otimes T_{0}^{\prime}\right\} \mathbb{N}^{\prime} T^{\prime} \otimes A^{2} T_{v}^{\prime}\right)\left(\mathbb { P } \left(T^{\prime} \otimes A^{2} T_{1}^{*}: \longrightarrow \mathbb{R}\right.\right.
$$

definded by

$$
\begin{aligned}
& \left.r_{2} i\left[A_{1}, C_{A}\right]:=S i v_{2}, h_{2}\right\} \\
& \quad-\frac{1}{2} C_{\Gamma}\left(1_{2}, S, h_{2}\right)+\frac{\xi_{\xi}}{\lambda_{1}-\lambda_{1}} C_{A}\left(v_{2}, S, \phi_{1}\right)+\frac{1}{\lambda_{1}-\lambda_{1}} C_{A}\left(\kappa_{2}, S, h_{2}\right)
\end{aligned}
$$

is exact.
[ndeed, it is easy to cherk that rank $g_{3}\left\{\left(\mu_{3}\right)=12\right.$. On the cther hand, it is

$C_{A}\left(S . h_{1}, h_{2}\right)$ are pivets for the equations $\tau_{r}=0, \tau^{=}=0, r_{A}=0$ and $\tau_{A^{\prime}}=0$ respectuvely). Therefore
which prover that the sequence is tyact
Thereby a 2 and order solution $j_{2}(B)_{x}$ of S_{3} can be lifted into a Srd order

 вo $\left\{\mathrm{n}_{2} \nabla \mu_{2} E\right\}_{r}=0$. On the other baod

$$
\begin{equation*}
\tau_{A} \cdot\left(\nabla ; P_{J} E i\right)_{x}=\left\{I_{s} i_{A} d d_{A} E\right\}_{x}-\left(d_{A}^{\prime} P_{1} E\right)_{x}=\left(i_{A} \cdot d d_{s} E\right\}_{x} \tag{613}
\end{equation*}
$$

Smine rank. $5=1$, there exist μ_{1} and μ_{2} 日uch that $A^{\prime}=H_{1} J+\mu_{2} A$ Thus
and

$$
\begin{equation*}
\left(r_{2} \nabla(P, E j)_{x}=0 .\right. \tag{6.15}
\end{equation*}
$$

Mirearer,

$$
\begin{aligned}
& +k_{2}\left(\frac{1}{\lambda_{2}-k_{1}} i_{A} Q_{r}\left(S, k_{2} i\right),\right.
\end{aligned}
$$

Thus
and therefore
 We have

$$
A=\lambda_{2} J+(h a) \approx C .
$$

where $\dot{\lambda}=\lambda_{1}-\lambda_{1}$. The equation $i_{A} \Omega_{E}(x)-0$ gives $\left(\lambda_{a} i_{2} A i_{C} \Omega_{E}(x)=0\right.$.

 secourd order solution ($j ;$ E'p $^{\prime \prime}$, if and ouly if

$$
\begin{equation*}
\alpha_{x}\left(f\left(f_{1} \cdot \dot{h}_{2}\right]\right)=0 . \tag{זינ6}
\end{equation*}
$$

Siace $k_{2} \in o^{\perp} 1 T^{h}$ and $a\left[F\left[k_{2} . J h_{2}\right]\right.$! depends only on the value of k_{2} at r, we obtain

$$
\left.\sigma_{x}\left(F \mid h_{2}, f l_{2}\right]\right)=\alpha_{x}\left(F D_{\lambda_{2}} J t_{2}\right)=\alpha_{x} i F J D_{h_{7}} h_{2} j_{x}=\left(D_{\lambda_{2}} N\right)\left(h_{z} i_{2},\right.
$$

where D is the Bermald connection. Thus
 \diamond

Let us auppose now that A is non-diagoualizable. Firsty we have the following

Fremerk. If E is a yegular lagrangian akeuciated to S on a neighborhood U of $x \in T A\{\{0\}$, then every vector $\mathfrak{i} \in[$: has aull length.

Indeed, \mathscr{E} bas to sotinfy the comparibilaty condition $P_{A} E=0$, i.e. the equation $i_{A} \Omega_{E}-0$, an $\left(\mathrm{f}\right.$. Cowputiag at an the vectors S and h_{2} we find

Consequently itric C, S; $\left.\right|_{t r} \leq 0$. and therefore S is non-var:ational
lo arder to prove the second port of 2) of Theorem 6.2 We ehow the following
 $r \in T$ if $\backslash\{0\}$ Ther every regular stcond order formal solufion of I ?

particuins if S is quadratec ar homogeneous, then every second orier format solycion gan be difted into a Ind order soletson.

Let un consider the map τ_{ε}

$$
\begin{aligned}
& \left.T_{C}!\mathcal{R}, C_{r}, C_{A}\right):=A\left(C_{1}, h_{2}\right) \\
& +C_{A}\left(h_{2}, S_{1} \mu_{2}\right\}+E_{C}^{S}\left(C_{A} u_{3}, S, h_{3}\right)-\frac{1}{2} C_{\Gamma}\left(C, h S_{i} \dot{r}_{2}!,\right.
\end{aligned}
$$

 thed the stequence
is exact
 $B\left(w_{1}, h_{2}\right\}, C_{1}\left(S . h_{1}, h_{2}\right\}, C_{A}\left(S, h_{1}, h_{2}\right)$ and $B\left(C_{1}, h_{2}\right)$ are pirots for the equatiuns $\pi=\Pi_{,} \tau_{A}=0_{1} \tau^{\prime}=0$ and $r^{*}=1$). Theretore
 which proves that the sequence is exact.

To compute the compatibility conditions of P_{3}, let ue consider $\mu_{2}\left(E j_{x}\right.$ a secpad ofder formal onlutjan of i's It can be lifted inte a thard order solution if and ondy if $\left(\tau_{1} \oplus \tau_{e}\right) \nabla\left(P_{3} E\right)_{x}=0$. The same computation as in the dagonadeable case - nutually ocly the definition of the function f_{c} is difereut - sbaws (hat (6.15) holdg, thes

Moreover, we have

Using Proposition 6.1 we find that if $\langle(r) \neq 0$, then there is uo segular formal solution F of P_{j} satsefing the compatibility conditiofs $T_{s} F_{i} P_{3} B j-$ l). In the case ($\equiv \mathrm{U}$ 下e fud that ever'f second order formad solution con be lifted into a $3+d$ corder golution.
 the other band, the horizontal projection h ja also homogetuent: $[h, C]=0$
and therefore $\left.1_{i} \mid \Lambda_{2}, C\right]=\left(h_{1} C\right)\left(h_{2}\right)=0$ 1.e. $\xi_{v_{2}}^{\left[h_{2}, C\right]}=0$. Thus $\zeta=0$, and every second order formal solution can be lifted into a 3rd order eolution.

Lemmas $\overline{6} .2$ and 6.4 prove the Thearem in the cage when \bar{A} is pondiagoadjizahle.

Example 8.3 [CFST]. Let un ronnder the Eyriem

$$
\left\{\begin{array}{l}
\ddot{z}_{1}=-2 \dot{r}_{1} \dot{r}_{2} \tag{6.18}\\
\dot{y}_{2}=r_{\hat{i}}^{*} .
\end{array}\right.
$$

 $\mathrm{r}(S, S]=0$ da eaty compntation nrea.

$$
\begin{aligned}
& \Gamma:=r_{2}, \quad \Gamma_{2}^{\prime}=\eta_{1}, \quad \Gamma_{i}^{2}=0 . \quad \Gamma \dot{i}=-\xi_{2},
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}^{\prime 2}=A_{y}^{3}, \quad A_{3}^{\prime \prime}=A_{y_{1}} k_{2}^{\prime} . \quad A_{i}^{\prime 2}=0 . \quad A_{2}^{\prime 3}=0 \text {. }
\end{aligned}
$$

Thus rank $\mathcal{S}=1$ and $\overline{4}$ in dipagaluaziv. AD adapted base u offered by the eigenreetan

$$
\begin{aligned}
& v_{1}=\epsilon^{\prime}=y^{\prime} \frac{g}{i y_{1}}+y^{2} \frac{\partial}{\partial y_{2}},
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{HIS}_{5}-\frac{\partial}{\partial_{y 1}} .
\end{aligned}
$$

 satiafied far exery exoad arder solutian $j_{2}(E)_{x}$ af Γ_{1}. It fallowa from Thearem 6.2 that the upray S is variationd

6.3 Rank S 2 1: Atypical Gprays.

Firstly, let up note that, in coutrast to the typiteal cate, there aje on obstructiona to liftiog the second arder furcinsl solutivins of P_{3} into a third order solutione, when the ajpay is atypical.

Indeed, as in the typital case, the apace $\operatorname{cn}_{2}\left(P_{3}\right)$ is determined by the

 case and $K:=\left[m T_{y}\right.$, we obtan the exact sequence

$$
\begin{equation*}
s^{1} T^{*} \xrightarrow{\theta_{13} F_{3}} T^{*} \otimes\left(T_{v}^{-} \exists \Lambda^{2} T_{v}^{*}() \Lambda^{2} \Gamma_{2}^{*}\right) \xrightarrow{r_{1}} h_{s}^{\prime} \longrightarrow 0 . \tag{6.19}
\end{equation*}
$$

 order formal solution can he lifted to a 3rd order one.

Despite this fact, the igverge problem for atypical eprags is much more coraplicated. becaute the tymbal of $P_{1} 38$ not intalutive. Indeed, in this
 (because $i_{\mathrm{r}} B=0$ gields a maximum of four equaluons on $H \subset g_{2}\left(F^{\prime} f\right)$). On
 basis $\mathrm{H}=(\text { r, })_{1-1}$. We bave

$$
\operatorname{dim} g_{s}\left(P_{3}\right)<\sum_{t=1}^{*} \operatorname{dim}\left(g_{2}\left(\mu_{x}\right)_{+1},\right.
$$

Therefore a quasi-regular basis does not exict, and P_{J} is not iuvulutive.
Note that involutifity is not deceseary for the formal integrability: 2 acychisty sulfices. Unfortunately P_{s} is net 2-acyslac there are noo-trivial bigher order cathomalogical groups in the Spencer complex This weans that obstructiong for inlegrability anse in the bigher order prolongations. This is the feassou why in the sthidy of atypical spasyx we peed to prelong the syster.

Althougli the study presented in thas section may seem too complitated, we will expute it in tetaj bocause to may be instructive to bee how all the difficultes of formad integrability appear and can be colved.

6.3.1 Non-triviality of the Spenter conormalogy.

The aim of this uection is to compute the Spencer cohomology groups of the operator F_{J} and in particular to prove the following

Proposition 8.2 It the atypical case, the operator P_{1} is rot 2-acyelca The first non-transl Spencer cohornological group is $\boldsymbol{H}_{2}^{\hat{1}}\left(\mathrm{P}_{3}\right)$.

Proof. We will begin by showing the following formula:

$$
\begin{equation*}
\lim _{m} g_{m}\left(P_{3}\right)=\pi+4 \tag{6.20}
\end{equation*}
$$

for ang $m \geq 0$.
To prove it, we introduce the following notation. let P be a differential operator and put

$$
\begin{equation*}
G_{\mathrm{mot}}(P):=\left\{B \in g_{m}(P) \mid h^{2} B=0\right\} \text {. } \tag{G.21}
\end{equation*}
$$

In our case the tlentente of $\varphi_{m}\left(P_{y}\right)$ are eyaluated on at labt one vertical pector and so

$$
\begin{equation*}
g_{m}\left(P_{j}\right)=S^{\prime \prime} \mathrm{J}_{\dot{\prime}} \mathscr{F}^{\left(G_{m}\left(P_{t}\right) .\right.} \tag{6.22}
\end{equation*}
$$

Since $\operatorname{dim} S^{\mathrm{h}} T_{v}^{v}=\pi+1$, we bave juas to proune that

$$
\begin{equation*}
\operatorname{dim} G_{\mathrm{m}}\left(P_{\mathrm{s}}\right)=3 \tag{6.23}
\end{equation*}
$$

The proos is elightly different according to whether A is diagonalizable or not.
a) A is diagoratizable

Property 1.
tef S be a rani, 1 atyproci spray and suppose that \bar{A} is ditap. onalazabie. Then:
(1) the eigenspaces Δ, of \dot{A} ate muariants with respert to S, i.s. $\left[\Delta_{1}, S\right] \subset \Delta_{1}$ for $i=1.2$.
(v) Let Pr , be the propertion on the agumpace A, Then $p_{0}(\ln 5) \neq 0$.

Let us prove (1). Consider an adapted basis $\left\{h_{1,}, x_{1}\right\}_{1=3.2}$. We have to show
 bave $\left.A h_{1}=t:\left[\mid h_{1}, F\right]\right]=\lambda_{1} \nu_{1}$, and so

$$
\begin{equation*}
p r_{s}\left(x\left[h_{1}, S\right)\right]=0 \text { for } i \neq j \tag{5.24}
\end{equation*}
$$

Suce fank S - 1, A^{\prime} is a linear combination of J and A. Hence the engergpaces are invaruant by A^{\prime}. On the other hand

$$
\begin{aligned}
& +\lambda_{1} v\left(\left[\lambda_{2}+J\left[h_{2}, S \mid\right)-S\left[h_{1}, S\right]=-\left(S \lambda_{2}, v_{1}+\left(\lambda_{1} J-A\right)\left(\left[h_{1}, S \mid\right]\right.\right.\right.\right.
\end{aligned}
$$

and $A-\lambda_{1} J=\lambda_{1} \mu \mathrm{r}_{\mathrm{j}}$, so $\mathrm{fr} \boldsymbol{f} \boldsymbol{f}\left\{\left\{\left[h_{1}, S \mid ;=0\right.\right.\right.$ for $j \neq i$. This equation and (6.24) 日hom that

$$
\begin{equation*}
\left|\hbar_{2}, S\right| \in A_{1} . \tag{6.25}
\end{equation*}
$$

$$
\begin{equation*}
\left[v_{2}, S^{5}\right] \in \Delta \tag{6.26}
\end{equation*}
$$

$i=1.2$. Which proves (i),
Now, we mill prove (2). Let $\left\{t_{i} \cdot v_{i}\right\}_{1=1,2}$ be an adapted basis to A. Using the iotation (6.5) the spras 15

$$
S:=\varepsilon_{h_{2}}^{s} h_{1}+\xi_{h_{2}}^{s} h_{2}+\varepsilon_{v_{1}}^{s} v_{1}+\xi_{i_{2}}^{s} l_{2}
$$

 $J(h S)=G$ and C does ugt vanish at $\pi \neq 0$. Thus one of the poeflicients $\varepsilon_{i}^{\mathcal{S}}$ is different from 0 , ay $\xi_{h,}^{s} \neq$ II. Let ut auppose that $\varepsilon_{h_{3}}^{s}=0$. Since the
 of \mathcal{A}_{1}, hence we can take $\kappa_{1}=h_{1} .5$ and therefore $v_{1}=C$ Thus we bave

 that ja vï $\in \Delta_{2}$, which leads a contradiction. Thus Froparty 2. is preped.

Let us now retura ta the formula (6.23).
Notation: Ith order to simplafy the notation, we will ute the symbel r^{k}, if the teetor y it repeated k times on the argasment of a symmetric
tetsor t.e.

$$
\begin{equation*}
B\left(\ldots, v^{k}, \ldots\right]=\mathbb{B}[\ldots \underbrace{v \ldots \ldots v_{1}}_{z-\text { limen }} \ldots j . \tag{6.27}
\end{equation*}
$$

To prove the formila we will show by unduction that erery elemed B_{m} of $G_{m}\left\{P_{x}\right\}, n>0$ ig determined by the three jndependent parameters

$$
\begin{equation*}
B_{m}\left(h_{2}^{m-1}, v_{2}\right), \quad B_{m}\left\{v_{1}^{m-1}, v_{l}\right\}, \quad B_{m}\left(r_{2}^{m-1}, r_{2}\right) \tag{G.2A}
\end{equation*}
$$

Let $\pi=2$ and $B_{2} \in \mathbb{S}_{2}\left(P_{3}\right) . B$ is spmonetcic and eatisfied the equations (6.10). प才sing aur udapted besis, thest equations become

$$
\left\{\begin{align*}
B_{2}\left[S . v_{1}\right)=B_{2}\left(S, v_{2} j\right. & =1] \\
B_{7}\left(h_{1}, v_{2}\right)-B_{2}\left(d_{2}, r_{1}\right) & =0 \\
B_{3}\left(v_{1}, v_{3}\right) & =0
\end{align*}\right.
$$

A direct computation show that $\operatorname{dim}_{2}\left(P_{3} j=\sqrt{3}\right.$ and $\mathscr{F}_{2} \in g_{2}(\mathcal{F} j)$ is deter-

For $m=j$ the explicit comuntation suows that $B_{j} \in G_{3}\left(P_{j}\right)$ ja de
 These parameters are independent, so dim $G_{1}\left\{F_{3}\right\}=3$.

 B_{m} in $G_{m} i F_{x}$! is detetwinted by a marimum of $t 2$ components:

$$
\begin{equation*}
B_{n_{1}}\left(n_{1}, L_{2}^{m-2}, \varphi_{2}\right\}, \quad B_{1 n}\left\{\left(e_{1}, i_{1}^{m-1}\right), \quad H_{m}\left(n_{1}, 1_{2}^{m-1}\right)\right. \tag{6.30}
\end{equation*}
$$

$j=\{1, \ldots, 4\}$, where $\left\{c_{1}\right\}_{2=1}, 4=\left\{h_{3}, v_{j}\right\},=12$. Prom (6.29) it folloms that $J_{m} \in g_{m}\left(f_{s}\right.$! is characterized by the equations
$i=1,2$. Thus for the components (6.30) we bave $. B_{m}\left(k_{2}-v_{1}^{m-3}\right)=0$. $B_{m}\left(i_{2} \cdot v_{1}^{w_{1}-1}\right)=0, B_{m}\left(h_{1}, 1_{2}^{m}{ }^{1}\right)=0, B_{m}\left(i_{1} \cdot v_{2}^{\prime \prime \prime}{ }^{\prime}\right)=0 . B_{m}\left(u_{1}-j_{2}^{m-j}-v_{2}\right)=$
0., and the following relations hold:

$$
\begin{aligned}
& B_{m}\left\{k_{7}, r_{2}^{m-1} ;=-\frac{\psi_{H_{2}}^{S}}{\varepsilon_{n_{7}}^{S}} B_{y_{i}}!r_{2}^{m}\right\}_{1}
\end{aligned}
$$

Therefore $R_{\text {v, }}$ is detecmaned by its somponents (6.28). This proves the formala (B.23) कhen \mathcal{A} is disganalitable.
b) A is mon-riagomajazale

Ta prove the furmula (6.28j in this case we need the following
Praperty 2.
[uet S be a variationat sproy and suppose that A as not diagonatitusble Ther iLS es nat an engenvector of A. It particular. if $\left\{h_{i}, \%_{0}\right\}_{4-1,2}$ is a Joruan bitis adapted to \bar{A}_{1} weth h_{1}, NL_{1} $/ / h_{1}$ spanaititg the elger-distribution A and $h_{2}, 1_{2}=j h_{2}$ span riting the ofher characteristic space, theth $\xi_{i,}^{S} \neq 0$.

 ntiS.C? $=$ (

Let us aow prove the formula (6.23). We will show that, in an adapted Jordan basie for \tilde{i}_{1} ar element $B_{r n} \in \mathcal{G}_{m}\left(P_{3}\right)$ is determued by the componeats

$$
\begin{equation*}
\left.D_{m}: h_{2}^{m-l}, L_{2}\right), \quad b_{m}\left(v_{1} \cdot v_{2}^{m_{1}-l}\right) . \quad B_{m}\left\{v_{2}^{3}\right\} . \tag{6.32}
\end{equation*}
$$

Indeed, in an adapted Jordan basis the equations (6.10) for an element B_{2} are:

$$
\left\{\begin{array}{l}
\left.B_{7}!. S_{2} v_{n}\right)=\left(h_{1} \quad i=1,2,\right. \tag{6.73}\\
B_{3}\left(h_{1}: r_{7}!-B_{7} ; h_{2}, v_{1}!=0\right. \\
B_{7}!t_{1} \cdot v_{1}!=0 .
\end{array}\right.
$$

A direct computaljan abow that dint $\mathcal{r a n}_{2}\left(P_{3}!=B_{1}\right.$ and $B_{\mu} \in G_{2}\left(P_{y}\right)$ is de-
 $\left.B_{3} \in G_{3} ; P_{3}\right)$ is alta deternined by the three componenta $B_{3}\left(h_{7}, h_{1}, t_{1} ;\right.$,

To show that $\operatorname{dim}\left(G_{m}\left\{P_{3}\right)=3\right.$ for th >3, we auppose by induction

 ($i_{m i}$ i f_{8}) is delermined thy the companenis

$$
\begin{equation*}
\Omega_{m}\left\{e_{1}, d_{2}^{n-z}-v_{2} j, \quad\left[f_{11} i_{1}, l_{1}, e_{2}^{m-2}\right), \quad B_{m}\left(n_{1}, v_{2}^{m-1}\right)_{1}\right. \tag{6.34}
\end{equation*}
$$

$i=\left(l_{1}, \ldots, 1\right)_{\text {, where }}\left\{c_{2}\right\}_{1=1 .}=\left\{h_{2} x_{1}\right\}_{1=1.2}$. But $B_{m} \subset g_{m}\left\{P_{3}\right\}_{\text {, po the }}$

$$
\left\{\begin{array}{l}
B_{m}\left(\ldots, 5_{1}, \ldots, v_{1}, \ldots\right)=0 . \quad i=1.2 \tag{C.35}\\
b_{m}\left(\ldots A_{1},, v_{2}, \quad 1-L i_{m}\left(\ldots h_{2}, \ldots, 1_{1}, .\right]-0 .\right. \\
\theta_{m}\left(. v_{1}, ., v_{1}, .\right)=0
\end{array}\right.
$$

hold $U_{\text {日ang }}$ these equations and the 昭mmetry of $U_{\text {in }}$, we find the following relations betweren the components (6.34).

To find the relations between the olher comporents, pe astice that

tadeed, we have
and so

$$
\begin{aligned}
& B\left(h_{2}^{1+1} \cdot N_{2}^{\prime \cdots+1-1}\right)^{(5)}=
\end{aligned}
$$

 muned by $\left[H_{m}\left\{x_{1}^{m+1}, n_{1}\right\}\right.$ and $V_{m}\left(v_{1}, h_{!}^{1!+7}\right)$. On the other hand
hence it is alondetermaned by the cnompanents (6 32). Sance the components
 anct thia prover tle for

Let ub now prove Propotitiod 12.
Notation To destraguzh the maps fopparang an the spencer se. guence assectated with a dufferenthrl operatar f ', we tenote them by

$$
\begin{equation*}
\hat{f}_{1 m}(P) \cdot T^{*} \phi g_{m+1}(P) \longrightarrow \Lambda^{2} T^{*} \triangleq g_{m}\langle P\} \text {. } \tag{6.36}
\end{equation*}
$$

apl

Firstly let u日 compute the rank of $\delta_{1, m}$ (P_{3}). Sibct the sequences
 (6.20) Fe bave

Consider now the sequence

$$
\begin{equation*}
n \rightarrow S^{4} T^{*} \xrightarrow{H} \gamma^{*} \Leftrightarrow S^{4} T^{*} \xrightarrow[i_{1}]{ }+s^{2} T^{*} \& S^{d} T^{*} \xrightarrow{t_{3}} \Lambda^{3} T^{*} \Leftrightarrow T^{*} \xrightarrow{\xi} A^{4} \rightarrow 0 \tag{6.40}
\end{equation*}
$$

Siuce it is exact, Ker f_{2} is determined by 15 mdependent equatione. But the

 and thus
and so

$$
\text { dimu } H_{2}^{2}\left(P_{3}\right) \geq 1
$$

 $\operatorname{dim} N_{2}^{2}\left(B_{j}\right)-I$.

The obstruction to the second Ifit
Siace $H_{7}^{7}\left(P_{j}\right) \neq 0$, some cbatructions ariae to lifting the second order Formal 30]utions of P_{x} trice. [n thas astion $\begin{gathered}\text { re will compute them. }\end{gathered}$
 The serti-busx tensor $\varphi_{E} \in i^{2} I_{v}^{*}<i^{2} \Upsilon_{v}^{*}$ dejined b;

Proof Let us denote bj $F_{9}^{\prime \prime}=\left(P_{3}, \nabla P_{3}\right)$ the firat prolongation of P_{3}. To pimplify notations we will ure

$$
F_{3}:=T_{n}^{\prime \prime} \cap A^{2} T_{t}^{*} \text { 于 } A^{2} T_{0} .
$$

Then $P_{3}^{\prime}: C^{\infty}(T M) \longrightarrow F_{1} \oplus\left\{T^{*}\right.$ Q F_{3} ' is defined by

$$
\begin{equation*}
f_{l}^{\prime}(E):-\left(w_{E}, i_{\Gamma} f_{E} \cdot 1_{A} f_{E}, \nabla_{i_{E}} . \nabla i_{\Gamma} \Omega_{E}, \nabla_{i_{A}} \cap_{E}\right\} . \tag{6.4}
\end{equation*}
$$

A standard computation which takes into account that $P_{3}^{\prime}\{E\rangle_{\mathrm{x}}=\mathbf{O}$, shoms that

$$
\begin{aligned}
& +h \in\left\{\sum_{s y=1}\left(A_{\mathcal{E}}\{|J Z, A X|, Y\}-\Omega_{\varepsilon}\{|J Z, A X|, Y\}\right)\right\}-|h Z, A Y| \Omega_{E}: X_{,}, J(Z)
\end{aligned}
$$

 ardex jet of E at s.

Let us aow compute the obatruction to the second lift. Note that P_{3}^{\prime} if a third prder pperator Of courbe itg serand arder part doer not appear
 abstruction we ouly ment to canstruct ab exact équeace

$$
\begin{equation*}
S^{4} T^{-} \xrightarrow{\sigma_{4}: F_{31}} S^{2} T^{*} \& F_{3} \xrightarrow{1} \dot{K} \longrightarrow 0 \tag{6.42}
\end{equation*}
$$

 tity map of $\mathbf{J}^{*} \mathrm{NF} \mathrm{F}_{\mathrm{j}}$.
 of the wouphism f_{1} defored in Lemind 6.3 . We have the folloring diagraw.

 order to find the eract aequence (6.42) we haze to complete the morphism F_{1}^{1} with ρ new one, which gives exattly one pew independent relation with jeapect to the systreu defined by Ket J_{j}. Let

$$
\begin{equation*}
S^{2} T^{+} \& F_{3} \xrightarrow{r_{A} A 1} \Lambda^{2} T_{n}^{+} \& h^{2} T_{1}^{*} \tag{6.43}
\end{equation*}
$$

be the morthisw defined by the formula

$$
\begin{aligned}
& +\frac{1}{2}\left(B_{[}(A X, S Y . Z . D)-B_{r}(-A Y . J X . Z, E!) .\right.
\end{aligned}
$$

where $\left(B_{s}, B_{\Gamma}, B_{A}!\in S^{2} T^{*} S F_{3}\right.$ and $X, Y, Z, U \in T$. It is easy to check that the equation $\tau_{\mid 1, A\}}=\mathbf{0}$ is indepedilent of the equation $\tau_{3}^{\prime}=0$. Therefore the tequence

The diagram correspending to the prolonged operator is

$$
\begin{aligned}
& R_{1} \longrightarrow J_{1} R \xrightarrow{D_{1}^{\prime}\left(\rho_{3}^{\prime}\right)} \delta_{1}\left\{F_{j} q\left(T^{+} \xi F_{3}\right)!\right. \\
& \text { } n_{n} \quad\left\|_{n} \quad\right\|_{n}
\end{aligned}
$$

Thue the compatibuity condition for the first prolongation of P_{3} as

Now $i_{g} \Omega_{E}$ rabishes identicalky and thetefore $\bar{V}_{1}, 1 l_{r}=0$. On the other hand

 bination of J and A and thut $\left\{\overline{v i}_{A},\{ \}_{F}!=0\right.$. Therefore the compatibility condition tor Plj is given by the equation $\rho_{r}=0$ only
6.3.2 The inverste probicurn wifuen \bar{A} is ditgonalizntite

As we have sean in the preceding enctions, if we study the differential operator Ps, i.e the Euler-Lagrange system with the firat compatibility conditions
a higber order compatibibty rondition appears. This sbatruction, noted as p_{1} : can be second or third order PDE. This leads us to define three different kinds of sprags: reductble sprapg if $\mathcal{F E}$ is of the second arder, and semi-reductble and arreducible eprafb if it is of the third order, according to its complexity Notc that thas classification is yery clese to Douglas' classtication of sepwable, semi-separable and non-separable sprage, but it is not exaetly the same.

6.3.2.1 Reducibility of sprays

Lemma 6.5 Let S be a rank A atyptal spray and suppose that A is
 $T M \backslash\{0]$ and $\left(h_{1}, V_{i}\right\}_{\{2=1}$ it is an adapted doesal basis on a neighborhood I' of s, then

$$
\begin{equation*}
\left\{\varphi_{E}\right\}_{2}\left(h_{1}, h_{2}, h_{1}, h_{2}\right)=\sum_{i=3}^{2} x_{i}\left\{v_{1} \Omega_{E}\left\{v_{2}, h_{1},\right\}_{x}+\sum_{i=1}^{2} k_{1} \Omega_{E}\left(h_{2}, v_{1}\right\}_{N}\right. \tag{6.45}
\end{equation*}
$$

where λ_{i} and k_{i} are functions on V^{\prime}, dependerg on the $h_{\mathrm{r}}, \mathrm{t}_{1}$, cempletedy determened by the spray folthr definatarn is giver by (6.53) resp. of (5.54)).

Proof Let E^{\prime} be a Lagrangian on © such that $j_{i l}\left(E^{\prime \prime}\right)$, is a 3 rd order solution of $f^{\prime \prime}$ Note that tite depends on the second order jet of E^{\prime} and so the terms
contain the third derivatives of E. We prove first it at they can actually be expressed at x io terme of the coentienta of Ω_{6}. Nithout its derivalives.

Since the 2 -form f_{E} vanishes idenlically on the vertical bundle, we have

$$
\begin{aligned}
& \left(\nabla A_{R}\right)_{t}\left\{v_{2}, h_{1}, h_{j}\right)=\left\{v_{2}\left\{\mathrm{t}_{E}\left(h_{j}, v_{1}\right)\right\}_{x}=0 .\right. \\
& \left(\nabla P_{A}\right\}_{x}\left(v_{2}, h_{2}, h_{j}\right)=\left(\lambda_{1}-\lambda_{i}\right)_{2}\left(v_{j} \Omega_{E}\left(h_{j}, v_{1}\right)\right\}_{F}=0 .
\end{aligned}
$$

Since $\lambda_{1}-\lambda_{2} \neq 0_{\text {, we get }}\left(v_{1}, \Omega_{\mathcal{E}}\left(\lambda_{1}, t_{1}\right)\right\}_{x}=\hat{l}_{1}$, for i $\neq 2$. Woreover, $\bigcap_{E}=d_{d} E$ jt hat eract 2-Vorm, heace

во

$$
v_{i} \Omega_{E}\left(v_{s}, h_{j} j=\Omega_{E}!\left|w_{i}, v_{j}\right|, h_{j} j+\Omega_{E}\left(v_{j}, d_{j} \mid, v_{1}\right)+\Omega_{E}\left(\left[h_{j}, v_{i}\right]_{1} v_{2} j,\right.\right.
$$

and
for $i \neq j, i, j=1.2$ Hence these terme can be expreased mith the belp
 $\left(i A^{\prime} f \rho_{f}\right)_{x}=0$. Thus we bave at I^{1}.
where
for $i \neq j$. Using these formulan, we find at x :

$$
\begin{aligned}
& +\left(\lambda_{2}-\lambda_{1}\right)\left(\left|h_{2}, r_{2}\right|\left(\Omega_{E}!h_{1}, r_{1} l\right]-\left[h_{1}, r_{1} \mid\left\{\left(r_{E}\left(h_{2}, r_{P}!\right)\right) .\right.\right.\right.
\end{aligned}
$$

 $h_{1},-$ pra $_{1}(h S$) We have at x :

at r , For $i=1,2$. Thus for any 3rd order formal solution and for any adapted basis, we get
where

$$
\begin{align*}
& \mu_{\Lambda_{1}}=-\frac{\xi_{1}^{\underline{v}}}{\xi_{h_{1}}^{\underline{s}}} .
\end{align*}
$$

fur : $\neq j, j, j=1,2$. Of course, $\bar{i}, \bar{i}, 1$ if we take $k_{1}=S$. But
 terms are
and the coefficiente of the aecond orden terms are

$$
\begin{align*}
& k_{1}=l_{1}+2 \varepsilon_{h_{1}}^{n_{1}}, י_{1} l_{\varepsilon_{1}}^{s_{1}, 1, l} \tag{6.54}
\end{align*}
$$

where if $\neq \hat{j}$.
 and $\lambda_{2}=0$. It follows that the analysie of the problem is different according whether to the χ_{1} vabibh or not. Thua we propase the following definition:

Definition 6. 1 The spray S is called
reduczble if $\left.\gamma_{1}-1\right)_{1}$, $\mathrm{n}_{1} \mathrm{r}_{2}-0$,

- sermi-reducibic if $\chi_{1}=0$, and $22 \neq 0$, (or $x_{i}=0$ and $x_{1} \neq 0$),
- irreductible if $\quad u_{1} \neq \mathrm{n}_{1}$ and $\mathrm{k}_{2} \neq$ ㅇ.

Deppite the fact that the functions x_{1} depend on the choire of the basis $\left\{k_{\mathrm{t}}, \mathrm{w}_{3}\right\}$, these dotions are iatriakic jo order to see thas, we witl adopt the follnaing

Definition 6.2 Let Δ be a distribution on T wh and censider $\Delta^{\prime}-\Delta$
 ii

$$
\text { Hilluer } A_{x}^{r}-\Delta_{=}^{r-1} \text { uf } S_{x} \in \Delta_{x}^{r} \text {. }
$$

A^{\prime} is Lalled reducible it it is resurisle at and' s.
Note that if the spray 36 found in Δ^{r}, then either \dot{S}^{r} jo involutive, or S 15 a characteristic tield. This termmology is jushtien by the following

Proposition tid Let $z \in T M$! $\{0\}$. Then $\left(x_{1}\right)_{x}=0$ if ard onify tf $A_{;}^{2}$ ts reductile at 5 for $i \neq 1$.

Indeed, we hate
 $i f j$ the vectore $p \pi, b_{x}$ and $p r_{7} \mid h_{2}$. $\left\langle\left._{\mid}\right|_{x}\right.$ are lincarly dependent, if. if and only if there exists if $f \mathbb{R}$, such that

$$
p p_{i}, i\left|\dot{\mathrm{r}}_{\in}, x_{2}\right|-\{1 S\}_{x}=0
$$

But the spray is oen-typical, ($\$ \notin \lambda_{1}$), hence $\lambda_{1}(\pi)=0$ if and anly if

With this tetwinology pe cas thate che

Corallary 6 . 1 Leti $\$$ br an atypacal spruy of ratik f artd suppuse that \dot{A} is diagoralizable. Then every itrd orfer solution of the operator P! cotr be lafted itto o 4 th order solution if and onity if the spony is redtectife and $k_{1}=0$ for $i=1,2$

G.3.2.2 Completion Lemma

Recall that me are studying the prolongation $f_{3}^{\prime \prime}$ of the operator P_{1} defined by the equations

$$
\left\{\begin{aligned}
n \mathrm{E} & =\hat{\nu}_{1} \\
a_{1} \Omega_{F} & =\hat{l}_{1} \\
\mathrm{~J}_{\lambda} \Omega_{\mathrm{S}} & =0
\end{aligned}\right.
$$

where $\omega^{\prime} r=i_{s} d d_{s} E+d C_{e} \cdot E-d E$ if the Euler-Lastange Form and $f_{t}:=$ ddsE As we computed in the previous paragraph. an ntatimetinn deated by φ appears Namelf, if E ' is a Lagangian associated to S, then $\varphi \boldsymbol{c}$, mutt yansb the confelexity of the equation $A=0$ is expressed by the notion of
 the corresponding duferential operator defired by
we have to study the sybtem defined by

$$
\left(F_{1}, F_{\left(\lambda, \lambda_{j}\right.}\right) .
$$

As we expected, ontructuans to the iategrability appear several timeta in thiz sfotem's analjais, but they can be treated in a similar way usiog a geaeral hemoma, whrb we will state io tbus sulsection. Tin fncmulate this Lemma, we introduce the following

Notations

s. Contider an adapted local bastia $B=\left\{h_{1}, x_{2}\right\}_{1=1}$ on a aeighborhood
 put formard

$$
\begin{align*}
& -\frac{S_{1}}{A_{2}}\left(\delta_{1} \xi_{h_{2}}^{\left[s_{1} \cdot h_{2} \cdot\right.}+\delta_{1} \xi^{\left[s_{2} \cdot x_{2}\right]}-\left\{S_{1} L_{2}^{\prime}\right)^{\prime}\right) \text {, } \tag{6.55}
\end{align*}
$$

There S_{i} is the projection of $S \mathrm{od}$ the cigenapace $\Delta_{i}, i-1,2$.
 secoud eyder differential oper atar $P_{1}: C^{\infty}(\Gamma, S) \longrightarrow C^{\infty}$ iTMi defued by

$$
P_{g} E-g_{1}\left\{l _ { F } \left(v_{1}, \Lambda_{1} j+g_{2} f!_{F}\left\{v_{2}, h_{2}\right\}\right.\right.
$$

and by $M_{g, 91}$ the watrix whase row are the coetricienta of
in the equations definted by the aperatars

$$
F_{i n, \lambda]} . F_{n, 1} P_{g} . \bar{v}_{n,} P_{\psi}, F_{g} .
$$

Namely,

$$
M_{5_{1}} \ldots_{2}:\left(\begin{array}{cccc}
0_{1} & x_{2} & k_{1} & k_{2} \tag{5.5E}\\
g_{1} & 0 & u_{1} & y_{1}^{2} \\
0 & g_{2} & 4_{7}^{1} & y_{2}^{2} \\
0 & 11 & g_{1} & g_{2}
\end{array}\right)
$$

where

$$
\begin{array}{ll}
g_{1}^{7}=C_{v, g_{1}}+g_{2} x_{v_{1}}^{1}, & g_{1}^{7}=C_{v_{1}} g_{2}+g_{1} x_{i_{1}}^{\prime} \\
g_{2}^{\prime}=C_{v_{2} g_{1}}+g_{1} x_{v_{2}}^{1}, & g_{2}^{\prime}=c_{v_{2}} g_{2}+g_{1} x_{i_{1}}^{2} .
\end{array}
$$

Lemman b. 6 (Cokpletidn Lemma)

(1) if $g_{1}(x)-0 a r g z(x i=0$, then there are mo second order regedar forroal solutwon of \dot{F}, at z;
(I) Jf $\eta_{1}(x)$ i 0 and $g_{2}(\vec{j} j+0$, fhen
(a) there are regular formal sohifions of the differentiad systern

on \mathbb{U}^{\prime}.
(b) Mormber fry us "fompleten", in the serse that if we add to $\left.\dot{f}_{\mathrm{u}}(\mathrm{E})=1\right)$ a new differential equation of type
 which is tadepertent of the others at x, then the netw system has ma regtalar second onder formal soletpons at z.

Proof (lj 15 obrious: $1 f$, for example, $A_{1}(x)=0$, then B, E ranighes at
 arder at x.
(2 b) 35 thacst evideach. Indeed.

$$
d \rho 1\left(\begin{array}{cccc}
x_{1} & x_{2} & k_{1} & k_{2} \\
g_{1} & 0_{1} & g_{1}^{L} & g_{1}^{2} \\
0 & g_{1} & g_{2}^{L} & g_{2}^{2} \\
0 & 0 & g_{1} & g_{1}
\end{array}\right) \neq 0
$$

 al 2 al

The Proof of (2.a) is moye complicated. It will be cartied out in tlate stefs: in the fiyst ino atepa we will ford the cleteructions for the first cwo lifts of the 2ad order farmal salutiong and is the thind step we will prove that, after pralugation, $\dot{\Gamma}$, becomes 2 -acyclic.

STBP 1 - First fift of the 2nd arder formal saiutions:
Eucry second onder formal soltution of \dot{P}_{g} at x can be fifted mate a thand onder formal solution if and ordy if Θ_{31}^{\prime}, ,,$(z)=0$ and $\Theta_{g_{1, g 2}}^{2}(T)=0$.

Prof. The symbol $a_{2}\left(P_{9.92}\right): S^{2} T^{4} \longrightarrow \boldsymbol{K}$. of P_{51} in defined by

$$
\sigma_{2}\left(P_{9_{1}, g_{2}}\right)(\alpha):=g_{1} \alpha\left(v_{1}, v_{1}\right)+g_{2} \alpha\left(t_{2}, v_{2}\right) ;
$$

and ste prologgation $\sigma_{S}\left(P_{9_{1}}\right.$ g: $): S^{1} S^{*} \longrightarrow T^{+4}$ is gizen by
$\Delta \leq S^{*} T^{*}, \dot{j} \in S^{*} T^{*}, X \in T_{x}$. With the butationa of the preceding Etction,

by $\mathrm{T}=\left\{\mathrm{f}_{1}, \mathrm{H}_{1}, \mu_{2}\right\}$. xhere:

$$
\begin{aligned}
& \left.\mathrm{A}_{\mathrm{A}} ; B \cdot C_{\mathrm{r}}, C_{A}, \mathcal{C}_{2} j=\mathrm{r}_{1} ; B, C_{r}, C_{A}\right) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& p_{7}\left(B, C_{r}, C_{1}, C_{5}\right)=g_{1} B\left(v_{1}, h_{1}\right)+\left\langle h_{2}\left(\frac{g_{1}}{2} C_{1} \cdot\left(v_{1}, h_{1}, h_{2}\right)-\frac{g_{1}}{\lambda} C_{A}\left(h_{1}, h_{2}, h_{2}\right)\right)\right. \\
& -\xi_{h_{1}}^{s}\left(C_{2}\left(h_{1}\right)-\frac{g_{1}}{2} C_{r}\left(x_{2}, h_{1}-h_{2}\right)-\frac{g_{2}}{\lambda}\left(C_{A} ; \dot{c}_{2}, h_{2}, h_{2}\right)\right\}
\end{aligned}
$$

and $\lambda-\lambda_{1}-\lambda_{2}$. Let uf put forward Im $\dot{A}=\dot{\tau}_{\text {, }}$ and show that the eequeace
is exact.

$$
\begin{equation*}
y_{1} B\left(X_{1} v_{3}, r_{1}\right)+y_{2} A\left(X_{1} v_{2}, v_{2}\right\}=0 . \tag{5.60}
\end{equation*}
$$

Where $X \in T_{x}$ lf we replace X by the four elemeats of a basis of T_{x}, we obtain four equations, two of which are independent and two of whici are related to the spatem which defines gin (7)) [ateed, we get

$$
\begin{aligned}
& -\xi_{k_{1}}^{\overline{3}}\left(\frac { g _ { 1 } } { 2 } \left[\sigma _ { 3 } \left(F_{1} ; B\left[u_{2} \cdot h_{2} \cdot h_{1}\right)+\left.\frac{\sigma_{1}}{\lambda}\right|_{\sigma_{3}}\left(P_{A}\right) B!\left(h_{1} \cdot h_{2}, h_{1}\right)\right.\right.\right.
\end{aligned}
$$

 these equationa are depeodent, berause $S=p r_{1} S^{\prime}+\mathrm{pr}_{2} S$. On the ofiner hand
 (the corresponding pivot terms are $\Psi\{S\}$ and $\left.\omega_{i}^{\left(S_{1}\right)}\right)$ Thus dim $g s(P ;!=$ dumg) $\left(P_{j}\right)-2$ and therefore

$$
\text { rank: }\left[\sigma_{1}\left\{f_{g}\right\}=\operatorname{rank} o_{n}!t\right\}+2
$$

Let us nor compute the compatibility conditions. Taking a second coidet formal solution $\dot{j}_{i}(E)_{x}$ of Γ_{g}, the new obstructions are
 and pros; are unearly dependent and so
where $\neq 3$. Using ($\mathbf{6} .49$) we ablzun:

$$
\begin{align*}
& +\left(g_{2} c_{t_{2}}^{\left|x_{1}, b_{2}\right|}+y_{1} \xi_{w_{2}}^{\left|s_{1} \cdot z_{2}\right|}-\left(S_{1} y_{2}\right)\right) \Omega_{e}\left(p_{2}, h_{2}\right\} . \tag{4.81}
\end{align*}
$$

Since $i^{\prime}(E)_{x}$ is a second order formal solution also of $P_{91}, 3$, the equation

$$
g_{1}\left(r \mid f l_{\varepsilon}\left(h_{1}, h_{l}\right)_{x}+g_{s}(r) l_{\varepsilon}\left(t_{2}, h_{2}\right)_{x}=0\right.
$$

holds, and so

$$
\rho_{1}\left(\bar{v} \dot{P}_{*} E\right\}=\theta_{g_{1}, g n}^{\prime} n_{E}!\tilde{E}_{L}, n_{L} j .
$$

Therefore $p_{i}\left(\overline{,} \hat{\mu}_{g} E\right)(x)-0$ if and only if $\Theta_{g, g_{2}}^{i}(x)=0, i=1,2$, which proveq STEP 1.

13ke [3, \mathcal{H}_{9} is not 2 -acyclic and an explicit computation ahows that
 sobue ulvstrucliont arise for succeraite difts.

STEP $\hat{2}$ - Second dif :
Suppose that everty regular sexond ander formal soletion at t of $\dot{F_{g}}$ cath be tifted inte a $i^{-\alpha}$ order ant. Then eurry srod onder reglilar formal solution cans be tafted at i 2 mito a ; th
 and det $\left(M_{g \ldots, z_{2}}\right)\left(r^{\prime}\right)=0$.

Proof. We begin by ahowing that the sequente

The equations defining $g_{4}\left(\dot{F}_{g}\right)=\operatorname{Ker} \rho_{1}\left(\dot{P_{g}}\right)$ give some reatrictions on the components containing at least one vertical vector. Therefore we bave
 Now $\operatorname{dim} C_{4}\left(H_{5}\right)=1$ and
 and the fact that tile equations id $\otimes \rho_{1}=0, i=1.2$ give 8 : indeperdent equations with respect to the equations $ो ; 0$, we have

Thig proves that the sequetice ($\mathrm{b} . \mathrm{t} \mathbf{t} \mathbf{)}$) it exaril.
Let us compute the obatructions to luting the 3 rd order sclutions of \dot{P}_{v}.

and

As we have just aefin, every second atder formal solution at 2 can lifted into a 3rd otder colution if and only if $\left.\Theta_{y r, y,}(T)=1\right), i=1,2$. Let us arppose that thia condition 3 a atistied. Then

Thus, if $\mathrm{j}_{\mathrm{s}}(E)_{\mathrm{r}}$ is a 3 rd order regular formal solution, which can be lifted into a 4th order soiution, we have $F \theta_{91.92}^{2}\left\{I_{j}^{\prime}=0\right.$ for $:=1.2$, that is $j_{1}\left(\Theta_{g_{1}, g_{2}}^{\prime}\right)_{s}=0$, because we suppese that $\left(\Theta_{g_{1, ~}^{2}}^{2}\right)_{s}=0$
 row of the matrix 3 a dnear combination of the others, because g_{1} ($\mathrm{j}!\neq \mathfrak{l}$ and $g_{2}\{x\} \neq 0$. This means that the diffeyential operator $P_{\text {In }}$ A: san be linearly exprebsed at r with the help of the operatora ∇P_{s} in in $\nabla P_{s}\left(a_{5}\right)$
mid P_{5} Hever, since $\bar{\forall}\left(P_{3} E j\left(v_{1}\right), ~\left(\nabla P_{7} E\right)\left\{n_{2} j\right.\right.$ and $P_{\nu} E$ wanish at π if fst $\left.\mathrm{E}^{\prime}\right)_{x}$ is a third order formal solntion, theo det($M_{51,50}$)(x) -0 if and only

STEF 3-Higher order dfts:
The first prodongation \dot{P}_{g}^{\prime} of \dot{P}_{9} is z-acyclic.
Proof Wie bave $g_{m}\left(\dot{P}_{g}^{l}\right)=g_{m}\left(\dot{P}_{g}\right)$ and $g_{m}\left(\dot{P}_{g}\right)=g_{m}\left(P_{1}\right){ }_{1} \|_{g_{m}}\left(P_{g}\right)$ for $m \geq 3$. AD element $B \in g_{2} i\left(P_{9}\right)$ is charatterized by the equation

$$
\begin{equation*}
g_{1} B\left(w_{1}: v_{2}\right)+g_{2} B\left\{\left(y_{2}, z_{2} z_{2}\right)=0 .\right. \tag{8.83}
\end{equation*}
$$

Farst we will compute dime gind (\dot{S}, j). Note that

$$
\begin{equation*}
y_{m}\left(\dot{P}_{0}\right)=5^{n} T_{k}^{*}: G_{m}\left(\dot{S}_{p}\right) \tag{6.64}
\end{equation*}
$$

xhere $G_{1}\left(f_{j}^{\prime}\right)-G_{m}\left(\rho_{j} \mid \cap C_{m}\left(P_{y}\right)\right.$. Now, $\operatorname{dim} G_{m}\left\{\beta_{1}!=3\right.$ and an etement B_{n} in $\mathrm{C}_{\mathrm{m}}\left(\Gamma_{3}\right.$) is deterninat by the components (628 j Noreover, from the equatione (6.63), we find

Sur $\left.1 \neq j,\left\{i_{1}\right\}=1: 2\right\}_{3}, \mathrm{~m} \geq 1$ Tbus in $G_{m}\left(\dot{P}_{v}\right)$ there is poly one fiee

$$
\begin{equation*}
\operatorname{dina} g_{m}\left(\dot{P}_{g}\right)=d i z a S^{m} T^{\prime}+1=m+2 \tag{6.65}
\end{equation*}
$$

for any $m \geq 3$ Hence

$$
\begin{equation*}
\operatorname{rank} \delta_{1 m}\left(\dot{P}_{g}\right)=\operatorname{dijut}\left(T^{2} \mathbb{E} g_{m=1}\left(\dot{P}_{g}\right) j-\ln \| a x\left(g_{\mathrm{ra}+2}\left(\bar{P}_{\rho}\right) j=3 \mathrm{rrı}+8\right.\right. \tag{6.66}
\end{equation*}
$$

for any $m \geq 2$
 other hand, from the tharinesa of the aequence (6.40) follows that ronk
 therefore

$$
H_{2}^{i}\left\{\dot{P}_{g}\right\}=\frac{\operatorname{Ker} \lambda_{2} z\left(\dot{P}_{\xi}\right)}{\left[m \delta_{1} d\left(\dot{P}_{y}\right)\right.} \neq 0 .
$$

and \dot{P}_{Δ} is and 2-acyclic.
[t order to chom that $H_{m}^{2}\left(\bar{P}_{v}\right)=0$ for any $m \geq 3$, we obly need to

 equations

$$
\begin{equation*}
\sum_{v p r i!j, k)} B\left(\epsilon_{1}, c_{1}, r_{k}, r_{2}^{m-2}: v_{2} j=0\right. \tag{567}
\end{equation*}
$$

and the equation
hold, where $\left\{\dot{e}_{1}\right\}_{1=1}, \ldots, 1$ denetes the vectore of the adapted basis $\left\{h_{1}, v_{1}\right\}_{1=1,2}$. Thus $\operatorname{dim} \operatorname{Kcr} \phi_{2}:\left(P_{q}\right\}=$ rank $\{\langle 6.6 T\},(B .68)\}$. The rank of this syetem can be found by a completely amalogous comporation as the rank of the system (f(f.70)), $(6.71\})$ in the proof of the Theorem 5.7. This second ate being tiigbtly more compiex, we would prefer to expluee it ia detail later on. However hre can ate, that the ayasem ($G .67$) corre日ponde to the equations a) of (6.70); (8.68) is the bame as (8 71), while b) and ε) of (670) now hold identically. Wie ind

$$
\operatorname{rang} \delta_{2, m}\left\{\dot{P}_{y}\right\}=3 m+4
$$

and therefore
for every or .> 3. Sa, by (6.66).
 $\mathrm{me}_{\mathrm{t}} \geq 3$, we obtain

$$
H_{i n}^{2}\left(\dot{P}_{y}^{১}\right)=0
$$

The point (2 a) follows from these three tlepa and then the Completion Lembern is proved

6.3.2.3 Reduczble case

We Till nore study the yeducible cate for the atypical sprays of rank 1 and we will prate the fallariag

Theorem 6.3 Let S be an atypucad spray of rant it wish $\dot{\lambda}$ dacpozal. wable and suppase that S ts redurable
a) If $k_{1}-k_{2}-0$, ther S is iocaliy umiationad;
b) if $k_{1} \neq 0$ and $k_{2}=0$ for $k_{1}=0$ and $k_{2} \neq 0$), then S is ropt docaldy vanctional;
c) if $k_{1} \neq 0$ and $k_{2} \neq n$, then 5 is Jocadly watiational if and onty if

$$
\theta_{+, x_{2}}^{1}=0 . \quad \text { and } \quad \theta_{2,2,2}^{2}=\{
$$

To prove the Thenceta we just have to theck that the differeatial speralor F_{3}^{1} is 2 -acysicic. lmdetd, if P_{1}^{1} is 2 -acyclic, then the proul of aj iollows iomediately from the Corollary ©.1. Note that we have here an erample of a difereatiable operatcr mhach is formally integrable though it is net 2-acycle.

The atatemeal of b) is obrious because the compatibility condition (0.45), i.e. $k_{1} f\left(f^{\prime}\left(t_{1}, h_{1}\right)=0\right.$, canool be satisfied by a regular solution (cf. Lemma 6.1)
c) folows from the Completion lemma with $g_{2}=\dot{k}_{2}$ for $i=1,2$. Indeed. un the redurable case we have $x_{1}-x_{2}=0$ and so del ${ }^{\left(W_{k_{1}}, k_{2}\right.} \mathrm{j}=0$.

To prove the 2-acyclicity of P_{3}, let we check first, with the notation of page 113, that

$$
\begin{equation*}
\operatorname{dim} k E T E_{1, m}\left(f_{l}^{\prime}\right)=3 \pi t+14 \tag{6.69}
\end{equation*}
$$

fir duty $\pi x>2$.

batis. Siver

We haye $\delta_{2} B=0$ if and only if the equations
and the equation
hnid for $\mathrm{K} \leq t \leq m$, where $i, j, k-1, \ldots 4$ are all differeat The spgtern $\{6.70$) giten 12 equatipnx, and (6.71) give fmequations The system
 vanish, while the system ($\mathbf{3} .71$) means that the cemponents comespopting

The system (6.70) is cromposed of equations for which, among the last
 these campanents "firat type cornpooents" of $\{i$, and the othern, far which the last th-i vectols are harizuatal, "eecuud kiul tomponetls".

Since the elements of $f_{m}\left(P_{3}\right)$, for on ≥ 2, are deteraniued by three payametere (cif. page 110), the elements of $A^{*} T^{*} S\left(G_{m-1}\left(P_{j}\right)\right.$ art determined by a maximum of 1 s parameters.

Let us now comprite the rank nit the system (6 70! Jn (670.b) the equations conespending to the indices i? 3 ik) - (129), i! 134), ('234! are in-

 dex $i \mathfrak{i j k}\}=\{124 j$ depeods co the fermer, berause we bave the following
relation:

$$
\begin{align*}
& \left.B\left(\kappa_{2}: h_{2}, v_{1}, v_{1}^{\prime n}\right)^{1}\right)+B\left(h_{2}, v_{2}, h_{1}, r_{j}^{-k}\right)+B\left(v_{2}, h_{1}, h_{2}, v_{1}^{m_{1}-1}\right) \tag{0.72}
\end{align*}
$$

Io (6.70 c) the equations corretponding to (ijsk) $=$ (124), (194), ('2'4) ase
 and the equation corresponding to the index $(\dot{j} j)-,(123)$ is related to the others by the following :
 (294) ure indepeudent (the cor1esponding pivate are $B\left(v_{1}, h_{1}, h_{2}^{m-1}, v_{2} h_{1}\right.$
 ing to $i j \mathrm{jk}$) $=$ (13 H i depende on them. [ndeed, uang the notation (4.27), for evers $X . \mathrm{J}^{\prime}, Z$ ᄃ $T=$ and $0 \leq k \leq m f$ we have

Thus if we denote the equation (i. 70 a) corresponding to the jadex ($2, j k$) by

where $p \pi_{2}$ depatey the projestion on the eigenspice A_{2} Thus the equation $\mathcal{E}_{\text {ase }}=6_{15}$ a lidesy rombination of the or her equatimen and the jank nf the sythem $\left\{\begin{array}{c}\text { (6.70) } \\ \text { is } 9 .\end{array}\right.$

Let un vom contider the system (5.71). [n the ([+ 1)th block of i6.71) the equalitue are.

$$
\left.\sum_{\left.r y+1 c_{1}\right) \nmid t \mid} \| \mid \varepsilon_{1}, \epsilon_{5}, c_{2}, k_{1}^{m_{1}-l-1}, \kappa_{2}^{1}\right]-0 .
$$

Thete the i. $\jmath, k=1 . . .4$ are all different. In each equation of (6.71) we have
 and one "second type" eomponent $\{i j k=234 j$. The equation
is the l-th block contains the same "becoud type" component as the equn. ties
of the ($1+\mathrm{J} j$-th block rorecsponding to the index $\{i j k)-(134!$. Daffk the relations which delerminn the suace $\mathrm{N}^{2} T^{*}$ (8 g(m) $\left(P_{3}^{\prime}\right)$, it is easy to prove that these equations are linearly' depeudent. ludeed,

$$
\begin{aligned}
& -\left(B\left(b_{1}, h_{1}, k_{2}, h_{1}^{-i-1}, n_{2}^{\prime-1} \cdot v_{1}\right)+E\left(h_{1}, k_{2}, v_{1}, h_{1}^{\pi-1+2}, h_{2}^{\prime-1}, L_{2}^{\prime} ;\right)\right.
\end{aligned}
$$

Therefore the rank of the system dees not ebange if π e remave the equations
 It is not difficult to check that the rewaiaing equations are indepencient. tigiced, the pivous io the first bleck are.
and io the i-th block, with $] \leq \sqrt{ } \leq m$:

 equations which determine Ker $\dot{\delta}_{2, m}$ (P) Thereby

which proves the formula (6.69).

Taking into account (6 39) now we obtain:

$$
\operatorname{crng} \Delta_{l . m}\left(F_{1}\right)=\operatorname{dim} \operatorname{Kec} \delta_{7 . m}\left(P_{3}\right)
$$

for $m>2$. Thus $H_{m i}^{2}\left(P_{x} j=0\right.$ for $m>2$. Since $g_{m}\left(P_{1}\right)=g_{m}\left(P_{1}^{1}\right)$ and s $H_{m}^{2}\left(\mu_{y}\right)=H_{m}^{2}\left(\mu_{y}^{\mathrm{L}}\right)$ for $m \geq 3$, we get

$$
I_{m}^{2}\left(f_{y}^{\prime}\right)=0
$$

for every m \geq '3. ']'herefore the qpetpory Y_{1}^{\prime} is 2-acgelic.

Example 6.1 Let w caosider the ayatem ${ }^{\text {t }}$

$$
\left\{\begin{array}{l}
\dot{x}_{1}=r\left(\boldsymbol{x}_{1}, \dot{x}_{2}\right) \tag{477}\\
\dot{x}_{2}=\left(i\left(x_{2}, \dot{x}_{2}\right) .\right.
\end{array}\right.
$$

 S moot in Δ_{1}, 8 it is atypical. On ibe other band; it is easy to cbeck that the
 6.3 the splay in variational.

6.3.2.4 Semp-reductible case

In ther gection we will study the scmi-crducible case for atypical sprays of rank l. We recall that thia means that in the obstruction $P_{\mid n, A)}=\mathrm{f}_{\text {, }}$ where

Ift correaponde to Iomgizn' saparated eate Ilal.
bas to be put in the prelengation P of the aystem

$$
\left\{\begin{array}{r}
u^{2}-0 b_{1} \\
a_{r} \Omega=0, \\
i_{A} n=0
\end{array}\right.
$$

Where $x-0$ is the Euler-Lagrange equation. In the semi-reducible case cone and only one nt the coeticients $\chi_{i},(i=1,2)$ vanishes. In partitular, the operator $F_{14, \ldots,}$ te of thard order. We assume for example that $x_{2}-0$. To express the theorem in this case Fe need to introduce some matrices which naturally wige in the dudy The theorem cantainine the retulte $3 t$ given at the end af this pention.

The computation is caried out in two asepe. first we atudy the obstidutions io lifting the third order selutiona to a fourth order, then in the second atep we check that the syetem is 2-acyclic. In the first step $\$$ wo cascs have to be dastinguished: $k_{2}-0$ and $k_{2} \neq 0$.

Sterp 1. Firsat lift of thard order solutions.
We xill begin by computing the symbol of the opeyator $F_{i}^{\prime}=\left(P_{j}, P_{\mid h . i t}\right)$ and prove that

$$
\begin{equation*}
\operatorname{rank} d_{4}\left(P_{4}^{\mathrm{l}}\right)=\operatorname{tank}\left(\mathrm{c}_{1} i P_{\mathrm{J}}\right]+\mathbf{I} . \tag{678}
\end{equation*}
$$

Wie have

$$
\begin{equation*}
\left[\sigma_{3}\left(P_{1 h_{1}, i_{j}}\right)\right] R_{1}=x_{1} B_{3}\left(i_{1}, x_{1}, x_{1}\right\} \tag{6.76}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\left.\left|\sigma_{4}\right| P_{4}, A_{i} ; B_{4} ;(X)=x_{1} B_{4} ; K \cdot v_{1}, x_{1}, v_{1}\right) \tag{6.80}
\end{equation*}
$$

Where $B_{1} \subset S^{3} T^{*}, n_{4} \subset S^{+} T^{*}$ and $X \in T_{3}$. Sinte $g_{m}\left(P_{4}^{l}\right)=g_{m}\left(P_{3} ; 7\right.$

$$
\begin{equation*}
g_{\mathrm{m}}\left(P_{4}^{\prime}\right)=S^{m} T_{\mathrm{n}}^{\prime} \text { 也 } G_{1 \mathrm{n}}\left(P_{4}\right) \tag{6.81}
\end{equation*}
$$

where $\left\{_{m}\left(P_{j}\right)=G_{m}\left\{P_{j}\right) \cap G_{m}\left\{F_{(b, j j}\right)\right.$.

 is a pirat. Thut

$$
\operatorname{dim} g_{3}\left(\Gamma_{4}^{2}\right)-\operatorname{dirl} g_{3}\left(\Omega_{3}\right)-1 .
$$

To compute dimgaifit) ae will replare X an the equation (5.8n) hy the pectore of the adapted basis h_{i} and $x_{i} i=1,2$ We chtain four equationa in addition to the equations mhich characterize the space $G_{4}\left(P_{2}\right)$. We know that $\operatorname{dim} G_{4}\left(F_{3}\right)=3$ (ape equation (6.23)) and an elemert B_{4} in Gi! P is is determined by its components (6.28). Therefore the mew equition $\sigma_{4}\left(P_{\left(n, a_{1}\right)}\right)\left(i_{1}\right)=0$ is linearly independeat of the equations defining $g_{4}\left(F_{g}\right)$.

The other equations ary related to the equations of $g_{s}(f s i!$ between thr tymbol of $F_{1 h}$ al and the aymbel of the other operators of P_{1} there exist the following relations:

$$
\begin{aligned}
& \left.\left(\sigma_{4}!P_{i, 1_{1}}\right) B_{4}\right)\left(h_{2}!=\frac{\lambda_{1}}{2}\left(\sigma_{4}\left(P_{1}\right) B_{+}\right\}\left(v_{1}, v_{1}, h_{1}, h_{2}\right)+\frac{\gamma_{1}}{h}\left(\sigma_{4}\left(P_{A}\right) B_{4}\right)\left(v_{1}, h_{3}, h_{1}, h_{2}\right) .\right.
\end{aligned}
$$

 by

$$
\left.\tau_{4}^{1}:=\left(\tau_{i j}^{1}: \tau_{1}, A\right): p_{4}^{1}: p_{4}^{2}, p_{4}^{3}\right)
$$

mith

$$
\begin{aligned}
& \alpha_{1}^{\prime}\left(B, C_{T}, C_{n}, C_{i n+1}\right)=C_{(n, 1}[S)-x_{1} \cdot B i t_{1} t_{1}, h_{1} i \text {, }
\end{aligned}
$$

We shall prove that the sequence

$$
S^{4} T^{*} \xrightarrow{\sigma_{4} x_{4}^{\prime} i}\left\{S^{2} T^{*} \Leftrightarrow F_{3}\right\} \otimes T^{*} \xrightarrow{:!} K_{4}^{\prime} \longrightarrow 0
$$

is exach, where $K_{d}^{\prime}=[$ tu- -1 .

are purots, so the equations $\rho_{4}^{\prime}-9, i-1,2.3$, are independeal of the sybtem defined by -1 - 0 . Since the sequence (6.44) is exact, we have

$$
\operatorname{rank} \sigma_{4}\left\{P_{4}^{\prime}\right\}=\operatorname{rank} 7_{j}^{j}+1=\operatorname{dim} \operatorname{Ker} r_{y}^{\prime}+\operatorname{dim} T^{*}-3=\operatorname{dim} \operatorname{Kes} r_{4}^{1} .
$$

bencere the sequerte (6.822 is exact.
Let us now compute the obstructions The new compatibility conditions for F_{1}^{3} are given by the equations $\rho_{1}^{\prime}\left(F_{1}^{\prime}\right)=0 . i=1.2 .3$ Let $j_{1}^{\prime}(E)_{5}$ be

$$
\begin{aligned}
& +\left(S k_{1}\right) \Omega_{E}\left(w_{1}, h_{1}\right)+\left(S k_{7}!Q_{E}\left\{w_{2}, h_{2}\right)+k_{1} S R_{E}\left\{v_{1}, h_{1}\right)+h_{2} S \Omega_{\varepsilon}\left(z_{2}, h_{y}\right) ;\right.
\end{aligned}
$$

Situce $x_{i}^{\prime} \neq 0$ (ase the Property on page t0B), the aystem $\rho_{4}^{4}-0, i-1,2,3$ ja equivalent to the system $\rho_{4}^{2}=0, \tilde{p}_{4}^{2}=0, \rho_{4}^{3}=0$, where

$$
\bar{\rho}_{1}^{2}:=\zeta_{\lambda_{2}}^{2} \rho_{2}^{2}+\xi_{12}^{\prime} \rho_{4}^{1} .
$$

Taking inte accouth the relationa in $R_{3}\left(P_{3}^{\prime}\right)$ we have:
where the ceefficienta χ_{i}^{j} and \hat{k}_{i}^{j} can be expressed uniquely to terms of the apray 5 (their explicit formulae ary given in the Appradix by (A.j) and ($A .2 /$). We bave proved that every 3 rd order solution of Γ_{1}^{\prime} can be lifted into a 4th order aolution if and only if the equations $\rho_{t}^{i}\left(Y P_{1}^{\prime} E\right)=0, i=1.3$ and $\left.\bar{\rho}_{4}^{2} \mid \bar{f} P_{1}^{\prime} E\right)=0$ bold.

To dincruat the different ponvibilities, we bave to consider the casea $k_{2}=\mathrm{n}$

1) The case $k_{2}=0$.

Let un denote by $A_{\text {a }}$ the matrix formed by the coeflicients of the operation $r_{\text {in.Al }}$ and the cooficienta of the equatione of (6.85):

$$
N_{1}:=\left(\begin{array}{lll}
x_{1} & k_{1} & k_{2} \tag{6.84}\\
x_{1}^{1} & k_{1}^{1} & k_{2}^{1} \\
x_{j}^{2} & k_{1}^{2} & k_{2}^{2} \\
x_{1}^{2} & k_{1}^{3} & k_{2}^{3}
\end{array}\right)
$$

Firstly we prove the following

Learme 8.7

(1) ff rank $M_{\mathrm{L}}=1$, then every third order solution of P_{d}^{\prime} tan be fifted into a fourth arder solution.
(y) If rank $W_{1}=2$, then a new steond orfer condition has to be ver:fied morder to lift the thand order solutions and the Completion bemma geves the expictic cardinars far the spay to be variational
(3) $/ f$ tark $M_{1}>2$ then S is nat varationat.

Proof. let us auppose that rank $M_{1}=1$. Since $\chi_{1} \neq 0$, thore cust
 is a thard order colution of P at $x \neq 0$, then we bave

$$
\rho_{1}^{\prime}\left(\nabla P_{4}^{\prime} F\right\}_{x}=a^{\prime} P_{\mid n, A)}(E)_{2}=0 .
$$

$i=1$, 2: 3. Therefore $\mathrm{r}_{4}^{1}\left(\nabla P_{4} E\right)_{I}=0$, and every third order colution of P_{4}^{l} can be lifted into a fourth order oolution.

If rank $M_{1}>2$, then it is eagy to ene that there jo ut retular second order tolution astisfyiog the compatikility conditione $\left.\rho_{1}^{\prime} / \nabla P_{1}^{\prime} E\right)_{x}=0, i=1.2,3_{1}$ becaute these equations imply $\Omega_{\mathcal{E}}\left(n_{1}, A_{1}\right\}_{I}=0$ and $\mathfrak{f r}_{E}\left(t_{1}, h_{2}\right)_{z}=0$. Hence in this case S is not qariational.

If Jank $M_{1}-2$, then the sytem $\left.p_{1}^{\prime} \mid f \rho_{d} E\right\}_{x}-U$ gives exactly one dew
 order compatjbility condition, which we bial deante as

$$
\begin{equation*}
a_{1}\left\{\left(v_{1}, h_{1} f_{x}+a_{2} n\left(z_{2}, h_{2}\right)_{x}-u_{1}\right.\right. \tag{6.45}
\end{equation*}
$$

where a_{1} and a_{9} can easily be computed from (6.93). This relation yiehds a new dalferential aperator

$$
P_{s}: C^{\infty}(T M) \longrightarrow C^{\infty}(T M)
$$

defined by

$$
\begin{equation*}
P_{1}(E)-a_{1}\left\{l_{E}\left\{n_{1}, h_{1}\right\}+a_{2} f_{E}\left(v_{2}, h_{2}\right) .\right. \tag{6.86}
\end{equation*}
$$

which bas to be cotroduced into the bystem. So we have to study the dullerential operator

$$
\begin{equation*}
\left.\left\{P_{\mathrm{a}}^{\mathrm{k}}, P_{n}, \nabla F_{\mathrm{n}}\right\}=\left(P_{1}, \Gamma_{n}, n\right\}, P_{\mathrm{a}}, \bar{V} P_{n}\right) . \tag{6.87}
\end{equation*}
$$

Consider:ng the second ordet patt of the system [687$)$, $\left(P_{9}: P_{9}\right)$, the Completion Lemma (Lemma 6.6) with $g_{n}:=a_{1}$, give日 the becessary and aufficieat conditions for the spray to be variational.
iil The case 10: $\neq 0$
If $f_{2}+11$, the muation $\beta_{4}^{1}=0$, that is
with $b_{1}=\left(k_{1}^{3}-\frac{t_{1}}{b_{1}}\right) . i=\mathbf{I} .2$. is of the third order. Sn, in order to applg the Coropletion Lemma, Fe beed aome supplementary conplitions. Let $P,: C^{\infty} \mid T: M f: \longrightarrow C^{\infty}(T, M)$ be ille didereulinal aperator defined by

Inteoducing it into the sfeterin the obtain the operatar

$$
P_{\xi}^{\prime}(E)=\left(P_{4}^{\prime} \cdot P_{h}\right) .
$$

The symbol of P_{D} ja

$$
a_{3}\left(F_{k}^{\prime} ; S^{s} T^{*} \longrightarrow N_{1} \quad\left[\sigma_{3}\left(P_{3}\right) B_{3}\right]:=x_{1} B_{3}\left(n_{2}, p_{2}, r_{2}\right):\right.
$$

and the aymbol of the first prolongation jo

$$
\operatorname{dmm} g_{1}\left(P_{5}^{\prime}\right)=\operatorname{dim} g_{1}\left(P_{4}^{1} ;-1\right.
$$

On the other hand, $g_{4}\left[P_{3}\right)$ is characterized by the equations $\left(\sigma_{4}\left(P_{8}\right) B_{4}\right)\left(e_{1}\right)=$
 tions we knsw that $\operatorname{dim} G_{4}\left(P_{4}^{\prime}\right)=2$ and an element B_{4} of $G_{4}\left(P_{1}\right)$ jo determined by ita components $\left.B_{1}\left(\pi_{2}^{\gamma}, t^{\prime}\right\}\right)$ and $B_{1}\left(v_{2}^{4}\right)$. Hence the equation $\left(0_{1}\left(P_{0}\right) B_{4}\right)\left(b_{2}\right)=0$ contang a pivot term The other equations ase related to the equations of $g_{4}\left(P_{1}^{\prime}\right)$. Thorefore $\operatorname{dim} g_{3}\left(P_{3}^{\prime}\right)=\operatorname{dim} g_{s}{ }^{\prime}\left(P_{1}^{\prime}\right) \quad 1$ and

$$
\operatorname{rank} \sigma_{4}\left(P_{s}^{j}\right)=\operatorname{san} k \sigma_{4}\left(P_{1}^{1}\right)+1 .
$$

[et us consider the morptixiau

$\mathcal{P}_{x}^{x}\left(B_{1}, C_{1} \cdot C_{A}, C_{A, \lambda}, C_{b}\right)=C_{s}\left(h_{1} ;-\frac{k_{1}}{2} C_{C}\left(v_{2}-v_{2}, h_{1}, h_{2}\right)-\frac{k_{7}}{\lambda} C_{A}\left(v_{2}, h_{2}-h_{1}, h_{2}\right)\right.$.

We stall prove that the sequence

 $C_{b}\left(\mathrm{t}_{\mathrm{L}}\right)$ are pirots, thus the equations $\mathrm{p}_{5}^{i}=0, i=2,7,3$ are iadepeaseat of the equations Ker $\dot{\tau}_{4}^{d}$. Therefafe
which proves that the sequeuce is exact.
To compute the bew compatibility conditiona, pe will consider a 3rd
order formal solution $j x!E_{j x}$ of P_{s}^{\prime} at $\left.x \in T M\right\}\{0\}$. We have:
 There

$$
\bar{p}_{s}^{2}:=\mathcal{\xi}_{n, 1}^{\mathcal{S}} p_{5}^{2}+\xi_{v_{1}}^{\mathcal{S}} \rho_{3}^{3} .
$$

 uring the equation $(B, 47)$ and the equations $P_{i}, \ldots(E)=0$ and $P_{h}\left(E^{\prime}\right)=0$. Tbue the equatjans $\{6.93 \mathrm{a}, \mathrm{b}\}$ and the a bitucticas of $\mathrm{F}_{\mathrm{s}}^{\mathrm{L}} \mathrm{can}$ be written in tbe form

$$
\begin{align*}
& \mu_{1}^{\prime}\left(\nabla P_{4}^{\prime} E\right)=\mu_{1}^{\prime} \Omega_{\Sigma}\left(1_{1}, h_{1}\right)+\kappa_{7}^{2} \Omega_{\rho}\left\{v_{2}, h_{2}\right): \quad \tau=1,2 \tag{6.9}
\end{align*}
$$

 given explicitly io the dppendix, see (A.S); Let

$$
M_{2}=\left(\begin{array}{cc}
c_{1}^{1} & c_{2}^{1} \tag{6.92}\\
\vdots & \vdots \\
c_{1} & c_{1}
\end{array}\right)
$$

be the watrix plose rowa are the coefficients of the equations (8.91), then me have the following

Lemma $\mathfrak{6}, \mathrm{B}$

(f) If $W_{2}=0$, shen any 9 nd arder formal sotution of $P_{\mathrm{g}}^{\mathrm{L}}$ cars be difted unto a 4 都 order solution;
 compatibilaty corncifem which can be studand by the Complethon temora.
(3) J/ rank $M_{Y}=2$, then S is not torational.
 for $i=3,4,5$. Sc is $\left(\nabla f_{5}^{2} E\right)=0$ and therefore the compatibility conditjors of the operator $f_{3}^{\prime \prime}$ are satisted
 which satisfies the compatibility conditions, во \boldsymbol{E} cannot be regular.
[f rank $M_{2}=1$, then we get a new becond order compatibitity cooditson for P_{5}^{1} :

$$
\begin{equation*}
n_{1} \Omega_{E}\left(v_{1}, h_{1}\right)+n_{E} \Omega_{E}\left(4_{\zeta}, h_{2}\right)=0 . \tag{693}
\end{equation*}
$$

Denatiag by P_{6} the differedial oprerator corresponding to equatiou (0.93),

$$
\begin{equation*}
P_{c}(E)=c_{1} S_{E}\left(t_{1}, h_{1}\right)+s_{2} f_{E}\left(x_{2}, h_{2}\right), \tag{6.94}
\end{equation*}
$$

We muat atudy the differential operator

$$
\begin{equation*}
\text { ifrs, } \left.\mu_{c}, \nabla P_{r}\right\} \tag{5.85}
\end{equation*}
$$

Uaing the Canapletion Letrina with $g_{1}:=r_{1}, i=1,2$, wt have the following posabibilities:
(i) If c_{1} of c_{2} qanishea at r or the matrix

$$
M_{3}:=\left(\begin{array}{cccc}
x_{1} & 0 & k_{1} & k_{2} \tag{4.98}\\
0 & k_{2} & k_{1} & b_{1} \\
r_{1} & 0 & r_{1}^{L} & k_{2}^{1} \\
0 & r_{2} & r_{1}^{\prime} & \varepsilon_{j}^{2} \\
0 & 0 & r_{1} & c_{2}
\end{array}\right) .
$$

 \boldsymbol{x}, then the apray S^{\prime} is not variational on a neighborhood of $\mathrm{r} \neq 0$.
(2) If c_{1} (x) $\neq 0, c_{2}\{x\} \neq 0$ and $\operatorname{det}\left\{M_{3}\right\}=0$, than $S 15$ variational on a neigbbortheod U^{\prime} of x if and only if $\Theta_{r_{1}, r_{2}}^{d}=0$ and $\Theta_{c_{1}=2}^{2}=0$ on U^{\prime}.

In order to complete the semi-reducible case, we only ueed to stridy the bigher order lift in the cabr when $\mathrm{M}_{2}=\mathrm{U}$

STEP 2. The hagher order proloogataons

Let urf Grat cqnaider the operator P_{8}^{l}. With the unal notationg we have

$$
\begin{equation*}
\left\{P_{n}\left(P_{4}^{\mathbf{l}}\right\}=S^{m} T_{h}^{*} e G_{, n}\left\{P_{j}^{\prime}\right\}\right. \tag{6.97}
\end{equation*}
$$

$$
\operatorname{dim} G_{m}\left(P_{1}^{\perp}\right)=2
$$

and so
for every $m \geq 3$. Now the Speacer complex (1.10) corresponding to the operator $P_{1}^{\prime \prime}$ is cxact in the efrat two terms, that ia in $g_{m+2}\left(P_{i}^{\prime}\right)$ and in

for equry $\pi \approx 3$. On the other hand, from (6 97) we have

Let B be an element of $i^{2} T^{+} \otimes_{2 m m}\left(P_{1}^{\prime}\right)$. We have $d_{2 m}\left(P_{4}\right) B=0$ if and anly if the ayatem conarating of the equations (671) and of the enght equations
 i.j. $k=1.4$ are all differeat Whe can ker that the equationa (6 IDO) are the same as the equations of the sysiem (6. T0) withput b). The amalytic of (6.70) has shown that (670 aj and (6.70c) beth contann 3 independen equationa (for the computation sres page 1,3a). Therefore the tank of (G.IDI]) is 6 .

Moreovet, we alao showed there that the syatem (6.71) coalains 3nt + I independent equations with reppect to (670) and therefore also with
 equations, and

$$
\operatorname{din}(1) K e t \delta_{7, m}\left(P_{4}^{l} j\right)=\operatorname{dim}\left(n^{2} P^{*} \Leftrightarrow g_{m}\left(P_{t}^{l} j\right)-\{3 m+i\}=3 m, 11 .\right.
$$

 which proves that Γ_{1}^{\prime} is 2 -acyelic.

Let ut son conkider the operator $P_{3}^{2}=\left\{\mu_{4}, P_{b}\right)$, with $k_{2} \neq 0$. We have

$$
\begin{equation*}
g_{m}\left(f_{n}^{\mathrm{i}}\right)=S^{r} T_{h}^{*}+G_{n}\left(P_{n}^{1}\right) . \tag{array}
\end{equation*}
$$

where $G_{m}\left\{P_{5}^{\prime}\right\}=G_{m}\left(P_{1}^{\prime}\right) \cap G_{m}\left(P_{b}\right)$. Let $\delta_{m} \in G_{m}\left(P_{5}^{1}\right)$. If $\Omega_{m} \in G_{m}\left(P_{b}\right)$. then one also has $B_{\text {ma }}\left(v_{\mathrm{s}}^{\prime \prime \prime}\right)=0$. Thus

$$
\operatorname{dim} O_{\ldots}\left(\int_{k}^{\prime} j\right)=1
$$

and to

$$
\begin{equation*}
\operatorname{dim} g_{\mathrm{rv}}\left(P_{s}^{\prime}\right)=\operatorname{dun} S^{\mathrm{m}} T_{\Delta}^{*}+\operatorname{dim} G_{m}\left(P_{\mathrm{u}}^{\mathrm{L}}\right)=\pi n+\underline{2} \tag{6.102}
\end{equation*}
$$

for every $m \geq y$. From the j-acyclatity uf the Speacer complex we layz
 we get

$$
\text { riarik } \dot{j}_{1, m n}\left(P_{5}^{\prime}\right)=\xi_{3 \pi t}+b
$$

for every to ≥ 3. On the sther hand, using the decomposition (6.101) pace again, we have

$$
A^{3} T^{*} \infty g m-1!P_{1}^{\prime}!=\left(A^{1} T^{2} \otimes S^{\prime \prime}{ }^{1} T_{b}^{*}\right) \div\left(A^{3} T^{*} \approx G_{m-1}\left(P_{S}^{3}!\right)\right.
$$

 and only of the system consisting sf the equations (t.'ri'; and of the four equations

$$
\sum_{\text {syck } 1 \text { whj }} B\left(r_{i}, r_{1}, r_{k}, r_{2}^{m-2}-r_{2}\right)=0 .
$$

with $i . j, k=l_{1} \ldots .4$ different. hulds
The equations (6.104 ; ate the same as the equationt uf the system aj) of (6.70), whith is, as we have already ahomn, composed of 3 iudependent equationts. (Fas the cumputation ate page 133.) Again usivg the fact that the system (6.31) contains $3>\mathrm{i}+1$ independent equations mith respect to
 is determined by $3 n 2+4$ independent equations, and therefore

$$
\text { dim Ker } L_{1} m^{\prime} P_{3}^{\prime} ;=\operatorname{dim}\left(A^{2} T^{*} Q g_{m}\left(F_{n}^{\prime}\right)!-(3 m+4)=3+1\right.
$$

Thus ratik $\delta_{1, m}\left(P_{3}^{\prime}\right)=$ dim Kiet $\overline{0_{2, m}}\left(P_{s}^{\prime} ;\right.$, for $m \geq 3$, wbich proyes that $H_{m}^{2}\left(P_{s}^{\prime}\right)=0$ for $m \geq 3$, that is P_{3}^{1} is 2-acpelic.

Wting the texult of his section, we can afate

Theorem 6.4 Let 5 be a ratik one atypical spray. Assume, that it is diagsonalizable and S is setti-fedtutible.
(s) If $k_{y}=0$, theti

 $a_{1} \neq 0, a_{2} \neq 0_{1}$ des $h_{a_{1}, a_{8}}=0$ and $\theta_{a_{1} a_{2}}^{1}=\hat{b}_{1} \theta_{a_{1} a_{2}}^{2}=0$.

(2) if $k_{2} \neq 1$), them

 $c_{1} \neq 0, c_{2} \neq 0, \operatorname{sank} H_{s}=3$ and $\xi_{r_{1}, r 2}^{1}=0, \Theta_{r_{1}}^{2}=0 ;$
(c) if rank $\mathrm{N}_{2}>\mathrm{I}$, then S is rom. wanateqnafi.

632.5 Irreductible cate

ln this paragraph pet consider the case phere the spray jo arredurible, that is the condition of the compatibility of F_{1} in an adapted basis $\left\{k_{1}, v_{2}\right\}_{1=1,2}$ ja

$$
\begin{equation*}
\sum_{\varepsilon=-, 2} x_{1} v_{1}\left\{\lambda_{E}\left(+_{1}, h_{L}\right\}+\sum_{r-3.2} k_{i}\left\{l_{E \cdot\left(i_{2}, h_{1}\right)=0 .}\right.\right. \tag{6.105}
\end{equation*}
$$

With $x_{1} \neq 0$, and $x_{2} \neq 0$. That givec a 3 td order operavor $P_{i s, 1}$, which has to be jutuoducted into the gysiem. The symbol $\sigma_{1}\left\{P_{i+1, A l}\right): 5^{3} T^{*} \rightarrow$ 界 of
$P_{\text {(} \mathrm{A} . A \mid}$ IB

$$
\begin{equation*}
\left[\sigma_{1}\left(F_{(\alpha, A)}\right)!B_{3}\right]=\chi_{1} B_{1}\left(v_{1}-v_{1}, v_{1}\right)+\chi_{2} B_{3}\left(v_{1}, v_{2}, v_{2}\right), \tag{6.106}
\end{equation*}
$$

and the symbol af the firat prolongation $\sigma_{4}\left(F_{(n, A)}\right) \cdot S^{4} J^{*} \rightarrow T^{*}$ 19

$$
\begin{equation*}
\mid \sigma_{4}\left(P_{\left(N_{1}, A_{1}\right.}\right) B_{4}(X)=x_{1} B_{1}\left(X, t_{1}, v_{1}, v_{1}\right)+\lambda_{2} B_{4}\left(X, v_{3}-v_{2}, v_{2}\right) . \tag{6.107}
\end{equation*}
$$

$B_{\downarrow} \in S^{*} T^{*}, B_{4} \in S^{4} T^{*}$ and $X \in T$. The equation (6.106) 19 independent of
 t.

Let ut now consider the prolonged afatem. Replacing X in the equation (6.107) of $\rho_{4}\left(P_{(S, 1,1}\right)$ by the four vectore of the adapted basis, we find that

 equatione al $g_{4}\left(\beta_{3}\right)$. Now $\operatorname{dim} g_{4}\left(f_{4}\right)-\operatorname{dim} g_{s}\left(\beta_{3}\right)-\underline{v}$ that is

$$
\operatorname{riunk} \sigma_{4}\left(P_{4}^{\prime}\right)=\operatorname{rank} \sigma_{4}\left(P_{3}\right)+2 .
$$

Let 7 lite the map
detined by $r_{4}^{\prime}=\left\{\begin{array}{l}\tilde{f}_{j}^{\prime} \\ \left., r_{(x, a)}\right) \\ \rho_{1}\end{array}, \rho_{2}\right\}$, where
ay defined un page 116 and
$\lambda:=\lambda_{1}-\lambda_{2}$ and $p r$, is the projetion onlo the einempase comerpondiak ta the eigentalue λ_{1}

A sumple compuration ahows that the sequence

Fith $K_{1}^{3}:=\operatorname{lit}-1$ IE exact.
$\operatorname{Indec}, \operatorname{Im} \sigma_{1}\left(P_{i}^{\prime}\right)=\operatorname{Ker} \tau_{1}^{\prime}$. On the other aide $\mathcal{C}_{(h . A 1}(S)$ and $\mathcal{C}_{(1 n, A)}^{\prime}(p r, S)$ are pirot tems in the equations of $=0$ and $\rho_{4}^{\prime}=0$, and therefore they are independent of the equation $\dot{\tau}_{1}^{1}=$. Talaing jnto account that the eequence (6.44) is exack, we have
$\operatorname{rank} \sigma_{1}\left(P_{1}^{\prime}\right)=\operatorname{rank} \tau_{3}^{\prime}+2=\operatorname{dim} \operatorname{Ker} \tau_{j}^{\prime}+\operatorname{dim} T^{\prime \prime}-2=\operatorname{dim}$ Ker $\tau_{L_{1}}^{\prime}$
Thich propes that the equaence $i 6.109$; is exact.
 couditions of the compatibility of the operator P_{4}^{1} aye giren by $\mu_{1}\left(F_{i}^{\prime} E\right.$) $=$ U. where
mbuchatten as
$:=1,2$, where there is no stammation for the tepeated iodex, and the cue再lieuta r_{j}^{*} and $s_{j}^{2} i, j=1,2$ are functions completely determined by S. Ite defintion is given in the Appendix (A.6)

Using the conditiona (6105), the gystem (6110) can bre written is

$$
\begin{align*}
& r_{L} v_{1} 1 l_{C}\left(t_{2}, k_{1}\right) \div s_{1}^{1} f_{E}\left(u_{1}, h_{1}\right)-s_{1}^{2} \eta_{E}\left(v_{2}, h_{2}\right)=b_{1} \\
& s_{2}^{1} l_{F}\left(v_{1}, h_{1}\right)-s_{2}^{2} \mathrm{I}_{\mathrm{E}}\left(L_{2}, h_{2}\right)=\{\text {. } \tag{6.111}
\end{align*}
$$

In arder to lift the thard arder acilutions of $\boldsymbol{P}_{\boldsymbol{f}}$ we lave to explore ou the roettrinents r_{3}, sif nf this sysiem.

Fizst r.ase: $\mathrm{T}_{1}=0$, s' $=0$

In this cane, nheidasty, any thisd ordey solution of Γ_{4} can be lifted inio a fourth order colutjon.

Setond case: $r_{3}=$ it and $\operatorname{rank}\left(s_{j}\right)>1$.
Sunce in this case (6.111) mantains two linearly minependent equations relating $\Omega_{E}\left(v_{1}, h_{1}\right)$ and Ω_{E} ! z_{2}, h_{2}), there is mo regular becond order formal solution satistying the abore compotibility conditions, and therefore S is nod-yantationad

Third case: $\tau_{1}=0$ apd rauk $\left(y_{j}^{\prime}\right)=\mathbf{I}$.
 shall demate as

$$
\begin{equation*}
s_{1} \sqrt[l]{l_{E}\left\{v_{1}, h_{3}\right\}+s_{f}\left\{h_{f}\left(v_{2}, h_{3}\right)=0 .\right.} \tag{6112}
\end{equation*}
$$

In othere worde the have to introduce into the syatem the asonnd order operator $P_{A} . C^{*-}(T A) \rightarrow C^{*}(T M)$ defined by

$$
\begin{equation*}
P_{1} E:=\kappa_{1} \Omega_{E}\left(v_{1}, h_{1}\right)+w_{2} f l_{E} ;\left\{v_{2}, l_{2}\right\} \tag{6.113}
\end{equation*}
$$

 reqditions for S to be varralional: see at the end of the parigrimi.

Fourth case: $r_{1} \neq 0$.
If r : $\neq 0$, then the first equation of the arstem (6.111) gives a new 3 Ord ordey
 where

$$
\begin{equation*}
P_{r}[E):=\hat{H}_{1} v_{1} s_{E}\left(t_{1}, h_{1}\right)+s_{1}^{2} s_{E}\left(v_{1}, h_{1}\right]+s_{1}^{2} \Omega_{E}\left(r_{2}, k_{2}\right) . \tag{5.114}
\end{equation*}
$$

Now we have in study the integrabality of the differ oritial operator

$$
\begin{equation*}
P_{s}^{1}:=\left\{P_{1}^{1}, P_{r}\right\} \tag{8.115}
\end{equation*}
$$

The symbol of P_{r} is given by

$$
\sigma_{1}\left(P_{r}\right): \xi^{s} T^{*} \rightarrow \delta_{1} \quad\left[\sigma_{3}\left(P_{r} ; B_{3}\right]=r_{1} R_{1}\left(r_{1}^{3}\right),\right.
$$

and the symbol of the prolongation is

$$
\begin{equation*}
\pi_{4}\left(P_{r}^{\prime}: S^{4} T^{*} \rightarrow T^{+}, \quad\left[\sigma_{4}\left(P_{r}\right) B_{\mathrm{t}}\right](X)=r_{\mathrm{L}} H_{4}\left(X, v_{i}^{3}\right)\right. \tag{6.117}
\end{equation*}
$$

Where $B_{1} \in S^{1} \mathrm{~T}^{+}, B_{4} \in S^{4} T^{+}$and $X \in T$. The equation defining $g_{a}\left(F_{r}\right)$ is independeat of the equations of $g_{y}\left(P_{1}^{\prime}\right)$. Thus $\operatorname{dim} g_{x}\left\{P_{3}\right)=\operatorname{dim} g_{x}\left\{P_{1}^{\prime}\right\}-1$.
Considering the prolongation, it is interesting to remark that $G_{d}\left\{\int_{5}^{\prime}\right)=$ $\mathrm{C}_{4}\left(\mathrm{~F}_{4}^{\prime \prime}\right)$ and therefore we also bave $g_{4}\left(\mathrm{P}_{\mathrm{n}}^{1}\right)=g_{4}\left(\mathrm{P}_{1}^{1}\right)$ [ndeed, an element B_{4} w $\mathcal{C}_{4}\left(P_{5}^{\mathrm{L}}\right)$]s determined by the cormponente $D_{4}\left(h_{2}^{3}, L_{2}\right.$! Tberefore the equatoons $\sigma_{4} i S_{r} j\left(h_{1} ;-0\right.$ and $\sigma_{4}\left(F_{r}\right) i\left(L_{i}\right)-0 . i-1.2$ can be expressed with the help of the equations which define $g_{4}\left(P_{1}^{3}\right)$ Consequently dim gai! P_{s}) $=$ $\operatorname{dim} 94\left(P_{7}\right)$ that is

$$
\operatorname{csuk} \sigma_{4}\left(P_{s}^{\prime}\right)=\operatorname{rank} \sigma_{4}\left(P_{4}^{l} ;\right.
$$

Let ua consider the map

The sequence

 we consider the system तetined by $r \frac{1}{s}-0$, then $C_{r}\left(h_{1}\right), C_{r} i_{2} 1, C_{i}\left(L_{2}\right)$ and
 respecirfely Uelag the exactuess of the sequeace (6 tD9 ! we ind that

$$
\operatorname{rank} \sigma_{4}\left(r_{s}^{\prime}\right)=\operatorname{tank} r_{1}^{1}=\operatorname{dinu} \operatorname{Kec} r_{+}^{1}+\cos _{\mathrm{i} m} T^{+}-4=\operatorname{dim} \operatorname{Ker} r_{\mathrm{i}}^{2} .
$$

which proves that the sequence (6.118) is eract.

We will now compute the obstructions arraing from the mapa $\rho_{\mathrm{r}}^{\prime}$. Let $j 3(\text { e. })_{r}$ be a third order formal solution of $\mathrm{P}_{\mathrm{\prime}}^{\prime}$ at r . We have.

$$
\begin{aligned}
& \rho_{1}^{\prime}\left(\nabla P_{1}^{1} E_{i}^{\prime}=5 ; P_{1} E\right)-r_{1} v_{3}\left(\nabla_{\omega_{2}}\left(v_{4}, H_{1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{r}^{1}\left(\nabla P_{s}^{\prime} E j=u_{s}(P \cdot E)-\frac{r_{1}}{\lambda} 1_{1}\left(F _ { i } i _ { A } \left\{\left\{_{x}\left(r_{2}, h_{1}, h_{2}\right)\right]\right.\right.\right.
\end{aligned}
$$

Since $\chi_{1} \neq 0, x_{1} \neq 0$ and $r_{1} \neq 0$, the 3 rd order derivative of E appearing un the above expersfions can be expresed in terms of the becond order jet of E ngiag the equation (6.47), (6.105) and (6.111 a) Therefore the aew obstructions can be writtea in the form
$i=t . \quad$, where the cofficients q_{1}^{j} can be easily computed.
Let ut consider the matrix

$$
M_{5}=\left(\begin{array}{ll}
\nabla_{1}^{1} & p_{2}^{1} \tag{6.120}\\
\nabla_{1}^{2} & d 7 \\
q_{1}^{7} & q_{7}^{1} \\
s_{1}^{1} & s_{1}^{2}
\end{array}\right)
$$

defined with the belp of the cocticients of the equakions (f.111 b) and the equationa (6.119).

If $M_{s}=0$, the conditiuns of copupatilility are atentically satisiled wr every thiyd order tolution of P_{3}^{l}. Then any thart arder solution of P_{3}^{1} san be lifted ipto as sith arder anlution.
 excluced if S is variational and E is a regular Lagrangan arociated to S (see Lemma 6 !).

If rank $\mathrm{F}_{5}=\mathrm{t}$, then the equatinns (6.119) and the equations (6.111 b) are liaearly depeadert and ane of them can be rewaved Let w deante

$$
\begin{equation*}
w_{1} \Omega_{1} i_{1}, h_{1} h+\sigma_{2} ?\left(r_{2}, L_{2}\right)=0 \tag{6.121}
\end{equation*}
$$

the remwing equation. If $q_{1}-$ Dor $q_{2}-0$, the spray cannot be variational. Aspuming $q_{1} \neq 0$ and q : $f 0$, the equation (6.121) gives a gew kernad order condition of compatibilaty. In order to introduce it into the system,
 frombla

$$
\begin{equation*}
P_{0} i E:=\psi_{1} \Omega_{E}\left(v_{1}, h_{1} j+q_{2} R_{E}\left(l_{2}, h_{2}\right),\right. \tag{6.122}
\end{equation*}
$$

and we canside the newt system defined by the opersiok

$$
\begin{equation*}
\left\{P_{b}^{\prime \prime}, P_{v}, \nabla P_{5}\right\} . \tag{6.123}
\end{equation*}
$$

 fine the watrix

$$
h_{6}:=\left(\begin{array}{cccc}
x_{1} & k_{2} & k_{1} & k_{2} \\
\gamma_{1} & 0 & s 1 & s_{1}^{2} \\
\pi_{1} & 11 & v_{1}^{1} & y_{2} \\
0 & 4 & i_{1}^{2} & q_{2}^{1} \\
0 & 0 & y_{2} & q_{2}
\end{array}\right)
$$

where

According to the eame reason that we have already ured, we see that if land. $\mathrm{M}_{5}=\mathrm{A}$, then the system bad so regular 3rd order solution. oo the apray 5 is oec-uariational.

If rank $\mathrm{Sf}_{8}=3$, then the two firat rowe can be expreared in terms of
 be rewored from the sytem. Thea the syetefo is equivalent to the system
defingd by

$$
\begin{equation*}
\Gamma_{\mathrm{h}}:-\left(\Gamma_{3}, \Gamma_{7}\right) \tag{6.126}
\end{equation*}
$$

Whese condition of compatibulaty can be expressed in terms of the functions $\theta_{41,92}^{1}$ using the Completion lemma

Finally, by a computation analegous to that of the abpve sectuns, poe can check that the operators $P_{4}^{11}, r_{3}^{\prime \prime}$ and $\Gamma^{\prime \prime}$ are 2 -acyche. Now we can state
 dagonalizabie and the apray is isredtroble. Thet.
(2) If $x_{1}-0$ and $s_{2}^{\prime}-0$ (i.j-1.2), then S is focally warzational.
(2) If $\mathrm{T}_{1}=0$, ther S is locally varrationad if and ondy if
(a) int ($x_{\mathrm{d}}^{1} \mathrm{itj-1.1.2}=\mathrm{U}$,
(b) $\omega_{1}=0$.
(c) $s_{1} \neq 0, s_{2} \neq 0$ and $\Theta_{1}^{\prime} n_{2}-0, A_{1}^{j}=-0$
(3) If $\tau_{1} \neq 0$ and $w_{5}=5$, then s is lacally variational.
(f) If $x_{1} \neq 0$ and $\mathrm{M}_{5} \neq 0$, then 5 is locally variational af and ortly if
(a) rant $\mathrm{Mf}_{5}=1$.
(b) ratt $M f_{b}=2$.
(c) $y_{1} \neq 0 . g \neq 0, \quad$ and $H_{a 1,42}^{\prime}=0, \quad i=1,2$.

6.3.3 The inverse problem when \bar{A} is mon-diagnatizable

The study of the inferge problem in the case where A a now-diagonalizable 13 pery clobe ta the study in the diagonalizable care. We will give only the results bere. referring to $|\mathrm{Mu}|$ for detailed demonatrationa. The explicit formalat are greed in the Appendix.

Let ue teturn to the Section in.in. At we have tetn, the sufpiensentary condition of compatibijity to lift b قrd order formal solution $p=j_{3}\left(F_{1} i_{2}\right.$ of
the prolongation Γ_{1}^{1} of the syatem

$$
\left\{\begin{aligned}
w-0 . & \text { a.t the Euler-Lagrange equation } \\
\operatorname{ir}^{5} t & =0 . \\
i_{d}!t & =0 .
\end{aligned}\right.
$$

Le $\omega \mathrm{r}=0$ (cf. Piopesition 6.3) We hove the following Proposition, whith corresponds to Lemma 6.5 in the non-diagenatizable case

Lemma 6.9 In an adapted Jardan basis $\left\{h_{2}, v_{1}\right\}_{1=1,2\}}$ (1.e. da and
 andid $h_{2}, r_{7}:=3 h_{2}$ gpan the other characteratac space) we hate

$$
\begin{equation*}
\varphi_{F}\left(k_{1}, h_{2}, k_{1}, h_{2}\right)=h_{1} l_{2} l_{E}\left(y_{1}, k_{2}\right)+\sum_{1=1.2} p_{1} l_{F}\left(i_{i}, h_{2}\right) . \tag{6.127}
\end{equation*}
$$

where the functions h_{1}, fis atd In depend onty on the spray. Thes
 If and ondty if the distrobution A^{1} is tediscible. In this mase twe will sory that the sprany es ceriacihle.
 i $\left.\nabla P_{7} E\right)_{r}=0$ and hence
fer every $\lambda \in J_{x}$. Bul $d \Omega_{F}=0$ (1. and su:
 חle mithout its derivatives, i.e. by the second opder derivatived of the Lagrangina E.

Thus we get

and
where the coteliciente are defined in by (A.8) and (A.9).

$$
\begin{equation*}
s \Omega_{\mathbb{L}} i X, Y i_{L}-\Omega_{L} \cdot\left(|S, X|, Y_{S}^{\prime}+\Omega_{\Sigma} i X,|S, Y| i_{2}\right. \tag{6.130}
\end{equation*}
$$

So
and
where the coeficuents v_{1} and $v_{1}^{5}, i, j-1,2$, depret ondy on the Fprisy (their
 which appear on the compasibility coodition wo $=0$, we obtain the flrst part of the Lermua.

For the second part, we patice that we have pitzi: U at and coly if $\varepsilon_{n_{2}}^{\left|c_{1}, n_{1}\right|_{v_{1}}}+\varepsilon_{w_{2}}^{\left|t_{1}, n_{1}\right|}=0$ al x_{1} ilal $_{\text {a }}$
 where p^{2} 2 denpter the projection on to the chasactenstir dutribution cam. plementary to the eigenspace \mathcal{L} in the characteristic splitingo of T_{3}, $\mathrm{I}_{\text {tat }}$ is there existr $j t \in \mathbb{R}$, such that

$$
L r_{2}!\left|n_{1}, h_{L}\right|-a 5 j_{2}=0
$$

 or $S_{=} \in \Delta_{r}^{2}$ that $28 \Delta^{2}$ is reducible al x.

There are two catec to study, according to mbeter S is reducibie or not.

6331 Redurible :ase

Onf ran rhmek, in an way completely analogots to tbat in the rimgenalissble
 D and in vanish, the operstor S_{3}^{l} and P_{1} are formally integrable. Tt fol, lows that the spray is variatrodad An example of a sptay antisfying theare condations is the following.

Examiple 6.5 Let in caasider the fytutem:

$$
\left\{\begin{array}{l}
\tilde{s}_{1}=z_{2} \tag{6.132}\\
\dot{x}_{2}-(1 .
\end{array}\right.
$$

We have $\left[-5=0, A_{1}^{1}=A_{1}^{2}-A_{i}^{2}=0\right.$, and $A_{i}^{2}=1$. 'I'bur $A^{\prime}=U$, ded the rank of the tpray is 1 . The eigeovectora of A adapted to the coonectian $]^{\prime}$ are

 the byatam (6.132) is watiationad

Let us suppose tha: fin and r_{i} are aot both sero. In order to give the conditions of compatibility of the operator

$$
\begin{equation*}
\left.P_{s} E:=\left\{\cup E: \dot{C}_{\Gamma}^{d}\right\}_{E}, i_{A} \Omega_{E}, P_{(A, A 1} E^{\prime}\right) \tag{6133}
\end{equation*}
$$

where
we intradure the following actation, aralogous to that nf the functions f f^{i} (ser page 122) atraduced in the diggondizolle cage.

Definition 6. 3 Let ψ_{1} and v_{2} two function on $T M_{1}$, with $\hat{\theta}_{1} \neq 0$. We can define the functions $\Psi_{0_{1}, s_{x}}^{b}$ on T (3 M) by the formulae

Where $S_{1}:={ }_{j+1} S$ and $S_{7}:=\tau_{2}, S$ ate the projections of S on to Δ and on to the other characteristic space.

As the formula (6.127) sbans, the bigher order cumpatibijlity condition in the reducible the gives a new setond artier condition. The araybers of the different pattibilititt io the redurible case are poasible with the belp of Lemma 6.10, which conrepponds to the Completion Lemma 6.6 of the diagonalizable case.

Lemma 6.10 (Completion Lemma th the ren-deagonaizabie case.)
 functions in a reightarhood of 5 nat both zero. Let us contader the second order dafferthtal aptritor $P_{0}: C^{\infty}(T M)+C^{\infty}(T M)$ defirted on a geightorhood of x by

$$
\Gamma_{0} E=A_{1} \delta_{E}\left\{a_{1}, h_{2} j+w_{1} \Omega_{E}\left\{v_{2}, h_{2}\right\}_{s}\right.
$$

and the operator $\dot{\mu}_{2}=\left(\mu_{1}, \mathcal{H}_{i}\right)$, and let wa derate by $N_{v_{1}}, \nu_{2}$ the matrus

$$
\dot{v}_{v_{1}, \sigma_{2}}:=\left(\begin{array}{ccc}
\eta_{1} & p_{1} & p_{2} \tag{6.136}\\
\bar{v}_{2} & \dot{v}_{1} & \bar{v}_{p} \\
0 & \dot{v}_{1} & v_{2}
\end{array}\right)
$$

Lefined by the coeffictents of the rows of $P_{i n, 3 ;}$, F $\left.P_{0} i_{1} t\right\}$, and P_{i}, where

Then
(I) if $0_{2}\{x$ i $=0$, then there are no repular secend order formal solu. tiont of $\bar{\Gamma}_{0}$ at x.
(2) $1 ; \hat{o}_{2}(x) \neq 0$, then
(a) there afe regular formal salutwons of \bar{P}_{y} ort a neighborhood $[$,
 an [!
ib) Mortaver, the operator \bar{V}_{v} is "complete" the sertse that if wie add to $\bar{P}_{s}(E)=0$ a rew dafferentiad equation of the tyfe

$$
\left.n_{1} v_{2} \Omega_{\varepsilon} \cdot\left[v_{1}, h_{2}\right]+h v_{2} \bigcap_{s}!v_{2}: h_{2}\right)+v \bigcap_{\{ }\left(v_{1}, h_{2}\right)+s \Omega\left(v_{2}, h_{2}\right]=0
$$

whith is indeperdent of $\bar{P}_{0}(F, j)=0$ and his prolongotion at s., theth she new sgatem has to regalar seturnd arier solthtions $\Delta t s$.

The statrments 1) and 2b) ran easily be checkerl by a simple anmpataton.

The proof of 2at in rery similar to the probf of Lemula 6.5. Ae in the diagotalizable case, aqe can see that suny 2nd order fonimal colution of \bar{P}_{0}
 Hondever, $H_{z}^{Z} i \dot{P}_{y} ; \neq \|$ that is \bar{j}_{y} is oot 2 -acyclic. Thue there is an ertra compatibility condition for the prolonged aystem An andysit analogoug to tbat of the dingonalizable case allows us to show that this nhatruction

 $z=1.2$ and $\mathrm{ain}_{1} \mathrm{~N}_{\mathrm{vi}_{1}, \nu_{1}}=0$.

On the other 晾de, the first prolongation of $\dot{P}_{\text {it }}$ being 2 -acyclic, the sp erator \bar{F}_{d} and therefore P_{0} are fommally integrable and bave a regtan $2^{2 x d}$ order solution, beace 2a) of the [emma bolds.

In the seducjble case we ayrive at the following
Theorem 6.6 Lef S be an atyptcal spray of rank f and suppose that
 if and onder af $p_{1}-p_{2}-0_{1}$ or $p_{2} \dot{f}$ of and $\psi_{p_{2}, \beta 2}=0_{1}, 1=1,2$.

Example 0.0 Let us connider the ayntem

$$
\left\{\begin{array}{l}
\ddot{x}_{1}-F i v_{1} r_{2} \dot{z}_{1}, x_{2}: \tag{6.1.38}\\
\ddot{x}_{2}=\mathfrak{b}
\end{array}\right.
$$

where $\frac{q^{3}{ }^{2}}{{ }^{2} \mathrm{w}_{2}^{2}} \neq 0$. We have $\Gamma_{y}^{2}=0_{1}$ and $A_{1}^{2}=A_{2}^{2}=0$. The tank of the fipray is 1. The eigeprectars of didapted to the caspectian I' are $\left\{h_{1}=\frac{n}{g_{r_{1}}}, v_{1}=\frac{v}{v_{k_{1}}}\right\}$,

$$
\begin{array}{ll}
h_{1}=\frac{\partial}{\partial x_{1}}-\Gamma_{1}^{j} \frac{\partial}{\partial y_{1}}, & v_{1}=\frac{\partial}{\partial y_{1}}, \\
h_{2}=\frac{\partial}{\partial x_{1}}-\Gamma_{2}^{j} \frac{\partial}{\partial y_{1}}, & v_{2}=\frac{\partial}{\partial y_{2}} .
\end{array}
$$

The compulation gives $\eta_{7}=0_{1} J_{2}=11$ and

$$
\begin{aligned}
& P_{1}=\Gamma_{1} \frac{\left.\partial \Gamma_{1}\right|_{11}}{\partial r_{1}}-\frac{d \Gamma_{11}}{\partial r_{1}}+\frac{\partial \Gamma_{13}}{\partial r_{1}}-\Gamma_{11}^{1} \Gamma_{11}^{1}- \\
& \cdot \Gamma_{11}^{\mathrm{t}} \Gamma_{1}^{\prime}\left(\Gamma_{1}^{\prime} \frac{\partial \Gamma_{21}^{2}}{\partial y_{1}}+\frac{\partial \Gamma_{11}^{1}}{\partial y_{1}}-\Gamma_{\mathrm{L}}^{\mathrm{L}} \stackrel{\partial \Gamma_{11}^{\prime}}{\partial \Gamma_{1}} \quad \Gamma_{1,}^{1} \Gamma_{1 \mathrm{~L}}^{2}\right) .
\end{aligned}
$$

6.3.3.2 ITreducible case

If S ja irreducible, then we bave to study the integrability of the differential operator
phere

Let

be the map defined $b y r_{t}^{\prime}:=\left\{i_{j}^{\prime}, \partial_{n}, A \mid, \rho_{1}, \rho_{1}-\beta_{4}\right\}$, where
$\hat{T}_{3}\left(D, C_{r}, C_{A}, C_{(A, A}!-r_{3}\left\{B, C_{r}, C_{A}\right)\right.$.

It is maky to sham that the sequence.

$$
S^{4} J^{*} \xrightarrow{n_{4}: P_{4}^{-1}}\left(S^{2} \Gamma^{\prime-} \approx F_{3} \mid+T^{*} \xrightarrow{r_{4}^{\prime}} K_{4}^{6} \longrightarrow 0\right.
$$

with $\mathcal{K}_{1}:=$ Irri f_{4}^{\prime}, is eract.
The nex conditions of compatibnlity for a 3nd order formal solution
 $i=1,2,3$

With the belp of the equations $(6.128),(6.129)$ and $\{6131\}$ the abstructicn can be mituten as

The explicit exprevaian of the corfleients \dot{H}_{2}^{\prime} and $\vec{p}_{i}^{\prime \prime}$ is given in the Appendis (A.11). Let
be the watrix of the coefficieats of the operator $F_{(h, A)}$ and of the equations $j_{5}\left(\bar{r}, P_{4}\right)=0, i=1,2,3$. Vaing a lige of teanoming completely analogous to the ume we bave develofped iv the precedens seclions (cic. fur exiumple tie

 a fowth order solution.

- If rank $\mathrm{N}_{\mathrm{L}}=3$, then a der condition of mimpatibility has to te jntroduced into the syetem.
- 1t ralk $\mathrm{Br}_{1}-3$, then:
(1) if in $_{1}=0, i=1,2.3$, the epray ia non-yariational;
(2) if coe of the $\dot{i d}_{1}, t=1,2,3$ does not vanish then a new 3rd order condition of compatibility has to be introduced in the aystem.
- If rank $N_{1}=J_{\text {, then the spray is nou-rariationad. }}^{\text {the }}$,

The new conditions of compatibility can be witten in the form

$$
\begin{align*}
& p_{2} v_{2} g_{E}\left(v_{2}, h_{7}\right)+q_{1}^{2} v_{\varepsilon}\left(t_{1}, h_{2}\right)+q_{1}^{2} \underline{l_{\varepsilon}}\left(v_{2}, h_{7}\right)=0_{1}
\end{align*}
$$

a) Cuse $\mathrm{r}_{2}=1$ (f)

Let is ataume that $\eta_{2}=0$ abd the tank of the matrix N_{1} is two. In this case the two equations of (6.144) are linearly dependent, and give a nerr relationsbip betreen the terms $\left[\left\{_{f}\left(1,1, h_{2}\right)\right.\right.$ and $\left\{_{f_{E}\left(u_{2}, h_{n}\right)}\right.$ Let us denote it by

$$
\begin{equation*}
q_{1} I_{\varepsilon}\left(u_{1}, h_{2}\right)+g_{2} S_{E}\left(t_{2}, h_{2}\right)-v \tag{array}
\end{equation*}
$$

Accardiug to the Coapletion Leama (L (mma 6.10) we ablain the uevessary and sufficient conditione for S to be pariational.

b) Case $\mathrm{T}_{2} \neq \mathrm{l}$

 giver a new 3rd ordet condition, and therefore wt have to contider the operator

$$
\begin{equation*}
P_{4}^{1} E:=\left\{P_{4}^{d}, P_{8}\right)_{1} \tag{6.146}
\end{equation*}
$$

where $P_{4}: C^{N}\left(T . A^{\prime}\right) \rightarrow C^{N}(T A f)$ denotee the operatar

$$
\begin{equation*}
P_{3} E:=p_{n} v_{2} \Omega_{\varepsilon}\left(n_{2}, h_{2}\right)+v_{1}^{2} \Omega_{\varepsilon}\left(v_{1}, h_{2}\right)+r_{1}^{2} \Omega_{\varepsilon}\left(n_{2}, h_{2}\right) . \tag{}
\end{equation*}
$$

Let us contider the map
defiated by $r_{s}^{d}-\left\{\bar{r}_{4}^{1}, a_{7}^{1} \cdot \rho_{0}^{2}, a_{5}^{3}\right)$, where
$\dot{j}_{1}^{1}\left(B_{1} C_{1}: C_{A}, C_{i 4}, A_{1}, C_{g} j=r_{1}^{1}\left(B, C_{1}, C_{A}, F_{\{1, A}\right)\right.$
$\rho_{4}^{L}\left(B \cdot C_{[}, C_{A}, C_{(h, A)}, C_{R}!=C_{d}!S\right)-r_{h} B i\left(r_{2}, 1_{2}, h_{2}\right)$.

and T_{4}^{1} is dintiond on page 158 Hy a st andand comppuiation one ran chen:k that the sequence

$$
\begin{equation*}
S^{J} T^{*} \xrightarrow{n_{n}: P_{3}^{\prime} \mid}\left\{T^{*} \approx F_{4}!\pi_{i} T^{*} \xrightarrow{T_{l}^{\prime}} K_{5}^{\prime} \longrightarrow 0\right. \tag{0.149}
\end{equation*}
$$

 wrive at

Worenvers, w וng the equations (6.124\}, (G.129), and taking jnte account that $\left[\Gamma_{1 h, A} ; E\right)_{x}=0,\left(P_{V} F\right)_{2}=0$, we can eliminate the 3rd order terms from the expresion of the copditions of compatibitity, which can be written in the form:
$i=1,2,3$. Let us consudes the matrix

$$
N_{2}=\left(\begin{array}{cc}
r_{1}^{l} & r_{2}^{1} \tag{6.1.11}\\
r_{1}^{2} & r_{2}^{1} \\
r_{1}^{1} & r_{y}^{2} \\
s_{2}^{1} & f_{2}^{2}
\end{array}\right)
$$

defined by the roneticieats of the sterand order conditions of compatibiltty (6.150) and (6.144 b). We bave the folloring peasibulities:
(d) If $\mathrm{A}_{1}=0$, then every thurd order solution of the operator P, can be infted into a fourth onder solution;
(2) If rank in. = I, then the equations (8.150) aye equatadent to one of them, twach tue denote

$$
\begin{equation*}
P_{r}:=r_{1} \Omega_{R}\left(v_{1}, h_{1}\right)+r_{n} \Omega_{E}\left[l_{2}, h_{2}!=0 .\right. \tag{6.152}
\end{equation*}
$$

 ruriational (see Lempa e.jj.
lodeed, 1) and 3) tan tasily the thenked by a simple computation. Let us conaider the case, when rank $\mathrm{N}_{\mathrm{j}}=\mathrm{l}$.

If $r_{2}=0$, then there are no regular aecond order ablutions of P_{5} which satirfy the compatiblity conditions (6144 bb and (6.1500°), wo the spray S is non-rariational.

If $\tau_{2} \neq 0$ we must study the iategrability of the syrtem:

$$
\begin{equation*}
\left(P_{s}^{\mathrm{L}}, P_{\mathrm{r}}, \nabla P_{\mathrm{r}}\right) . \tag{6.153}
\end{equation*}
$$

Let

$$
N_{1}:=\left(\begin{array}{cccc}
r_{1} & 0 & \mu_{1} & r_{2} \tag{6.154}\\
0 & r_{2} & \eta_{1} & r_{1} \\
r_{2} & 0 & r_{l}^{1} & r_{2}^{1} \\
r_{1} & r_{2} & \dot{r}_{2}^{2} & r_{2}^{-1} \\
0 & 1 & r_{1} & r_{2}
\end{array}\right)
$$

be the matrax defined by the coef(Fienta of $P_{(n, A)} P_{r}\left(t_{1}\right)$, V $P_{r}\left(w_{2}\right)$ and P_{r}. The conthienter \vec{r}_{1} are given explucuty in the Appendix (A 10)

Since $r_{2} \neq 0$, we bave rank $N_{4} \geq$ ' Obmougly, if rank $N_{4}=4$ then S is ben-rariational, beraube there age po second order regular solutions satisfying the lumpatibilaly rondition.
[f rank $\mathrm{N}_{1}=3$, theo coosidering the tyetem $H_{5}:=\left(P_{3} . P_{r}\right)$, i.e the secopd arder fart of the syatem (6.153), the Completici Lemma (Lemma (b.10) et ur the ueceasyy and uuflient conditiou foy S ta be variational. Therefore we cal atate the following

Therrenent i. 7 Let S be a rurit one atypical spray and suppuse that .if $1 s \mathrm{n}$ nn-diagorialitable and S reducable.
(t) if reank $B_{1}=1$, then S is lacaliy vamatronai;
(2) If rank $s_{1}:=2$ arid
(a) of in - 0 , then S is localiy variational if and ondy if

$$
\left.\left.d+1 N_{w_{1} \cdot w_{2}}=1\right)_{3} \quad N_{2} \neq\right)_{1} \text { and } \Psi_{N_{1} N_{2}}^{\prime}=0 ; z=1,2,
$$

(b) if $\pi_{2} \neq 0$, and
t. ff ratik $N_{2}=0$, then $\$$ is Jacrilly variataorial,
ii. if tank $W_{2}=1$, then 5 as leculity tamationat if atad onsly if
 tit if tank $\Lambda_{1}^{\prime}-2$, then S as non-variatepnal.
(3) If rank $\mathrm{N}_{1}=3$, and
(o) at in $=0$, then S is nen-vinationat,
(h) if mytion and
${ }^{2}$ tank $\mathrm{r}_{2}-1$, then 5 es larally variational if and andy if rank $B_{j}=3, r_{2} \neq\left(1\right.$, ard $\Psi_{T_{1}, r_{2}}^{\prime}=0,1=1,2$.

(i) If ramk $\mathrm{N}_{1}=4$, then is at non-buriationul.

6.4 Rank $\boldsymbol{S}=2$

6.4.1 Typical apruys

ln this section we suppose that the spray has rank 2. Tbje means that
 $\left(j_{1}, A, A^{\prime}: \ldots, A^{(n)} \ldots\right\}$.

Let us return to the study of the operator P_{3}, that is of the syatem

$$
\left\{\begin{array}{r}
w_{F}=0 . \\
i_{\Gamma} f_{E}=0 . \\
i_{\Delta} \|_{E}=0 .
\end{array}\right.
$$

As we have seen (ci. page 90 and 103), a second order formad solution $j_{2}(E) \leq$ of P_{1} in $r \in T M \backslash\{(\varphi)$ can be luted into a third order solution if and only if $i_{\alpha} \cdot f_{f}=0$. If rank $S=2$, thes givea a new obstruction which has to be introduced jato the system. Then we hape to otudy the differential operator

$$
\dot{P}_{4}: \mathcal{C}^{\infty}\left(T H j \longrightarrow \operatorname{Sec}\left(\Gamma_{v}^{+} \mp h^{7} T_{2}^{*} \oplus A^{2} T_{1}^{+} \text {क } h^{2} T_{v}^{+}\right),\right.
$$

defined by $\dot{P}_{A}=\left(P_{A} \cdot P_{A} \cdot \dot{j}_{1}\right.$ where $P_{A^{\prime}}=i_{A} d d_{j}$.
 ergenvector, thet the spray is not varattonal.

Tadeed, if \bar{A} and A^{\prime} bave on comman eikenvetion, then they also have a coowmon horizontal eigenvetior h_{1} and a vertical one $v_{1}=f h_{1}$. Iet h_{2} and $\nu_{2}=, I h_{2}$ be turd that $\left\{\kappa_{1}, i_{1}, K_{2}, r_{2}\right\}$ is an aclapted Jordan batit for \bar{A} and denote bs a_{1}, the components of the matrix of A^{\prime} in this basis, that is.

$$
A^{\prime} h_{2}=a_{t L} z_{1}+c_{a} l_{2} \cdot x_{2}
$$

Of course, $a_{12}=$ i. Note that, aince rank $S=2$, we haye $a_{21} \neq 0$ if \bar{A} is diagooalwable and $a_{11} \quad a_{22} \neq 0$ if A is aot diagoaalisable

Suppore that the spray S is variational and let E be o regular La. grangiad aksociated tu s. Since $i_{A} \cdot \Omega_{k}=9$, we bave

Now $a_{11} f\left(i_{1}, h_{1}\right)=0$ if \bar{A} is diagotalizable and $\left[i_{11}-n_{22}\right)$) $\left[i_{1}, h_{2}\right]=0$ If \dot{A} is aot diagonalizable. Theu $\Omega_{\Delta}\left(v_{1}, h_{1}\right)=0$ in the diagonalizable cast and $\mathrm{It}_{\mathrm{f}}\left(\mathrm{r}_{1}: \mathrm{h}_{2}\right)=0$ in the uur)-diagoualizable case nad thia is excluded icil Lemma (5.1)

Corollary 6.2 Tha typical sprugs of ratek 2 art not varational
 eigeatalue λ la this cave in S and C - Jhate alon found in A_{λ} (c !. Propon
 We have

$$
\begin{aligned}
\bar{A}^{\prime}(h S) & =F\left(A^{\prime} h S+A^{\prime} F h S\right)=F A^{\prime} h S=F \cdot|A S, S|-F . A[(H S, S \mid= \\
& =F \eta|\lambda C, S|+F A(t S S]=\{S \lambda) F C+\lambda F+|C . S|+\mu F A(C, S) .
\end{aligned}
$$

but

$$
[C \cdot S|=|J . S|(S)=\hbar S-\Sigma S=\Lambda S-\mu C .
$$

and sh

$$
\bar{A}^{\prime}\left(L_{L} S ;=(S \lambda) F C-\lambda F \sqrt{ } S+{ }_{i} F A i \hbar S\right)=\{S \lambda ; F C=\{S \lambda j \lambda S .
$$

Thio means that bS is a comman eigenvection for \dot{A} and A. $^{\prime}$, whereby we can tomullude that the spray jo pur-rariational

6.4.2 Atrpical sprays

We will aom consider the casee where the apray S ib atfpical. Using the resulta of the Completion Lemmas (tef. Lemmas 66 and 6 10) we ras if tormulate the pecescary and sutticient conditions for the spray io be winational.
a) is is diagonalizable

Let $\left\{h_{1}, A_{2}, c_{1}, c_{2}\right\}$ be an adapted babis and $A^{\prime} k_{:}=a_{13} z_{1}-a_{22} l_{2}$. The compatiblity coudition which bas to be introduced into the system $\Omega_{3}-0$ 15

Note that a_{12} and a_{21} are aod both teru, becaues rarik $S=2$. The aikuation 13 the one described it the Completina lemetia 5.6 . Thus we cati tate the followiog
Theorem en Let S be un utyptcal sytuty of ratik 2, with jo dagonaiazable. Then S is localdy variational if and onty tf

2) $\emptyset_{\text {-a,_, a, }}^{\prime}=0, i=1,2$,

 $g 2=a_{12}$.
b) $\dot{\lambda}$ is man-dianonalizable

If $\overline{\operatorname{I}}$ is non-diagonalizable, then the computationg and reaults are similar to thore in the diagoualizable case. In a Jordan basis adapted to A^{\prime} the compatibility condition $\mathrm{i}_{4} \cdot \int_{E}=$ it is

$$
\left(a_{: 1}-a_{n}\right) S t_{F}\left(v_{1}, h_{3}\right\}+a_{1 z} n_{\varepsilon}\left\{\left(v_{2}, h_{2}\right)=0 .\right.
$$

Using the Completion Lemma 6.15 we aripe at the following
Theorem 6.9 Lat S be an ntypucai spras of rank 2 and suppose that. A is nom-diagomalizable. Then S is docaldy vareationaliz and only if

1) \bar{A} urtd \dot{A}^{\prime} have no comanon eigetitetctor (i.e. a $18 \neq 0$),
2) $\boldsymbol{\Psi}_{n_{i}, 1 n_{22}, n_{12}}^{\prime}-0 . \quad i=1,2$.
3) $\operatorname{rank}\left(N_{0_{1}-\alpha_{12} x_{15}}\right)=2$,
 and $v_{2}-d_{12}$

Cbapter 7

Euler-Lagrange Systems in the Isotropic Case

In the precious chapter Te gave the complete ctascificalion of the yariaimonal epraye on 2-dimensional manifoids. Despite the fuct that the dimemsion of these manifolds is low, the complete analpaia is complez, as we have Ened In the bighnr dameasjonal cases the suluation ja_{a}, of course, much wore complicated siace the condulisns of untogrability inyolves not only
 the higher order elemente of the graded lie-algebra desocialed to the spray (sec Section 4.2). Therefore it is oot really seasouable to expect a complete
 is arbitrary, unless we consider a particular class nif sfrays.

Natural vextrictions anp be inpaned an the curviture of the naturol iunuection dssociated to the eppay. In then chapter we will cousider joutropic sprays, whose geometrical meaning was explained io Section 3.5: if they are variational, the associated lagrangian has isotiopic curpature. They are amalogous to the geodesir of a Ruemann mandifld mith constant curvature for non quardratic aecond order equatgons.

As in the previous chapter, mandolds and the other objects (teasars,
 bupdle, then it is assumed to be tasylic athay from the wema section.

7.] The flat casp

The simplest case of isotropar spriys if when the semb-basic l-form c in the Danglas tensor (3.33j vanishes, and sn the spray is flat (see Definition
3.28' The followigg theorem is a geaendization to the r-dimencional case of the Thearem I of Douglas.

Theorem 7.1 Etery flat spray 25 Iocady variational on T M: $\{0\}$.
Remark. Tbia Theorew has alse been proved by l.M Anderson and G. Thomson in (AT] using Cartan's Theory of cxterior differential systeme, and recently by M. Crampin, E. Martinez and W. Sarlet in \{SCM| using Hiquier's Theory of partial differential systems. Our sesult bas already bees publiahed is $|\mathrm{Gm}|$.

Proof Recall that a aecond order solution $j_{2}(E)$, of the Eulet-Lagrange uperator P_{1} can be lifted into a thitdorder solution if and ouly if ! ir frc) $=$ 0 , where $\Gamma=\left[J, E \mid\right.$ and $s_{E}=d d . E$ (cf. Paragraph 5.1). Thus we bave to atudy the integrability of the differential operator $P_{2}=\left\{P_{1}, i \mid d d_{j}\right\}$. We have already showed that $P_{2} 3 \mathrm{n}$ regular operator on T / M \{ $\{0\}$, and that
 tontaint regular 2nd arder formal sclutiont [ate Paragrajth 5.2).

On the otber band, the compatibility ceaditions for P_{2} are given by the equations

$$
\begin{aligned}
& \left.{ }_{1} A^{1} \Omega_{E}=0\right)_{1} \\
& { }^{1} \pi^{n} n_{0}=0,
\end{aligned}
$$

(cs Propasition 5.2) New
and

Thut the conditiuns of compatibility are adicited.
Let us aow prove that Γ_{2} is נnvolutive. Let $f_{f} \in S^{2} T^{*}$ be a symmetric

$$
\begin{array}{r}
B(S, J \lambda)-\mathrm{U} . \\
B\left(h, Y_{1}, J Y\right)-B(H Y, J X)=\mathrm{U} .
\end{array}
$$

 witb h_{1}, , h_{n} borizontal and $v_{1}-t h_{1}$, these equatipne are

$$
\begin{align*}
B\left(S, v_{2}\right) & =i_{1} \tag{array}\\
E\left\langle h_{1}, v_{j}\right\}-B\left(h_{j}, v_{1}\right) & =0 . \tag{7.4}
\end{align*}
$$

$$
\operatorname{dim} g_{2} i_{2} \cdot \rho_{2} i=\frac{r_{1}\left(n_{2}+1\right)}{2}+r^{2}
$$

On the other haod, as we have stem in Section 5.2, we have

$$
\left.\operatorname{dim} g_{1} i S_{2}\right]=\frac{41(n t+1 ; i(2 n+] j}{3} .
$$

To give a quasi-regular batib, we will consider the bomogeneous and the nor-homogencous case separatelf Note that the spray is homogeneous if and only if it is harizontal ludeed

$$
I S=[J, S . S=\mid C . S]-S|S . S|=|C . S|
$$

Homoperachs case

 $B \in . S^{2} \Gamma^{+}$and put formard

Nete that

$$
\text { i! } \quad x_{i_{1}}=u_{j 1} \quad \text { and } \quad x_{1}=c_{j}, \quad i, j=1, \ldots, i n .
$$

b) $b_{\text {r. },}-0, i=1, \ldots . n$.
e: $b_{11}=b_{j}, \quad$ i. $,=\mathbf{I} . \ldots, n$.
The relation a! comes from the 时mmerry of B, while the equations $\dot{0}$) and ci conrefpoud to the equations (7.3) and i? i! reapectively. Ab eacy

the basis $\bar{B}=\left\{e_{1}, v_{2}\right\}_{1=1}$. .n There

$$
\kappa_{1}:- \begin{cases}h_{n}-i i_{n} & \text { tor } i=1, \ldots, n-1 \\ k_{n}, \sum_{n=1}^{n} i_{k, 1} & \text { for } 1=n .\end{cases}
$$

We thall pyore 1hat this tatit quatirtegular. Let us denote

Wa have $\bar{c}_{1}=f_{i j}$ for $i . j=1, \ldots, n$, and also

$$
\bar{b}_{i,}- \begin{cases}b_{12}+i \dot{r}_{1,}, & 1, j=1, \ldots n-1 ; \\ c_{1 n}, & j=n ; \\ \sum_{k-i}^{n} i_{r j}, & 1=n\end{cases}
$$

 terag of the contronents $\bar{i}_{i f}$:

$$
\begin{aligned}
& \bar{c}_{1 \pi}=\frac{1}{i} \delta_{2 n} . \quad i<n, \\
& \dot{c}_{10}=\underset{i-2}{1} \mid \bar{b}_{21}=\bar{b}_{1}, \underline{l} . \quad 1 \leq t<1<\pi \\
& \left.\vdots_{11}=\bar{i}_{1,1}-\sum_{k=1} \frac{1}{k-2} i \overline{\bar{u}}_{i k}-\bar{i}_{k, 1}\right) . \quad i<\mu, \\
& \bar{i}_{n n}-\dot{b}_{n n} \sum_{k \mp 11} \frac{1}{k} \dot{b}_{\dot{k} r:} .
\end{aligned}
$$

Thus an elcment $\left[2\right.$ of $g_{2}([\sqrt{3})$ is completely determined by ita components \dot{b}_{4} and $\dot{b}_{1,}$. Taking into accoumt that the matrix ($\left.\dot{a}_{1 j}\right)$ is symmetric, Fie obtain

$$
\operatorname{dim}_{s i}\left(P_{7}\right)_{\mathrm{l}} \quad{ }_{\mathrm{E}}=\frac{i(\mathrm{r}-k)(\mathrm{n}-k+1)}{2}+n(n-k j .
$$

$$
\begin{aligned}
& =\pi^{2}+\frac{n(n+1)}{2}+\sum_{k=1}^{\eta} \frac{(n-d)(n-k+1)}{2}+\sum_{k=1}^{n} \pi(\pi-k)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{dim} g t^{\prime}\left(f_{2}\right)_{1}
\end{aligned}
$$

Nom-hampgeteous case
 $t_{1}=S h_{1}, h_{n}=h S$ such that the vectars d_{1}, fol $1=1, \ldots, x_{0}-1$, are horizontal and the ppuation vS - $\sum_{r=1}^{\prime \prime} \mathrm{F}_{\mathrm{k}}$ holds. In this batit for an element $\mathbb{I f} \in g_{2}\left(\sqrt{2}_{2}\right)$ wt have the following relalaO日s:
a) $a_{i j}=r_{j i}$ and $r_{i j}=r_{1,}$
b) $b_{1 g}-b_{12}$
ri) $b_{n 1}=-\sum_{k-1}^{n} c_{k 1}$
 bj comes from the equation (73), wbile the property i) dopnes from the equation (74), because
 $i=1, \ldots, n$ and denote by $\hat{a}_{1,}, \bar{b}_{3}$ and $\hat{e}_{21}, i, j=1 . \ldots, n$ the components of
B in this basis. We tose $\stackrel{\rightharpoonup}{c}_{i j}=r_{\text {if }}$ nind

$$
\begin{aligned}
& \bar{b}_{2 j}=b_{i j} d i c_{i j 1} \quad \quad i_{1} j=1, \ldots, n \quad 1 . \\
& \hat{B}_{* n}=-\sum_{k=1}^{n} r_{n n}+i e_{L n}: \quad i=l_{2}, \ldots, r-1 \text {, } \\
& \ddot{b}_{n i}=-\sum_{k=1}^{n} c_{k 1}+\pi c_{i n-} \quad i=1 ., i n-1
\end{aligned}
$$

Hepre, *in the hambageneous case, the block $\left(\bar{r}_{1}\right)$ can beerpressed in tet me of the elements of the block $\left(\mathcal{D}_{2}, j\right.$. We arrive at the following rolationa:

$$
\begin{align*}
& \left.\bar{r}_{1}=\frac{1}{i-1} \hat{b}_{2}-\hat{\sigma}_{i n}\right) . \\
& 1 \leq j<i \leq \pi,
\end{align*}
$$

$$
\begin{align*}
& \bar{c}_{n}=\frac{1}{r-1}\left\{\hat{\tilde{n}}_{n}+\sum_{k=1}^{n-1} \frac{1}{2-k}\left(\hat{j}_{n t}-\hat{\tilde{n}}_{k n}\right\} .\right. \tag{7.7}
\end{align*}
$$

Equation (7.5) is ohvinus. To theck (T.6), nate that

$$
\bar{b}_{n 1}=b_{n 1}+r c_{32}=\sum_{t-1 . h \neq 1}^{n-1} c_{22}-c_{k t}-\left(r_{t}-1 i c_{21}\right.
$$

and beace, u5ing (7.5)

$$
\hat{c}_{11}=\frac{n-1}{n-2}\left(\bar{b}_{n 2}-\bar{b}_{r_{r}}\right)-\bar{b}_{n 2}-\sum_{k-1 . k+1}^{n-k} \frac{\left.i \hat{b}_{k 1}-\hat{b}_{1 k}\right\}}{k-?} .
$$

To piove (76) qote that $\bar{b}_{n m}=b_{n n}+11 c_{n n}$, ad

$$
\tilde{B}_{n n}=-\sum_{k=1}^{n} r_{k n}+i \mathrm{Tt}-1_{i i_{n n}}
$$

and thux

$$
c_{n n}-\frac{1}{n-1}\left(\hat{h}_{n=1}+\sum_{k=1}^{n-1} f_{k r 1}\right)=\frac{1}{n-1}\left(\hat{b}_{n n}+\sum_{k=1}^{n-1} \frac{1}{n-k} \hat{b}_{n k}-\hat{h}_{k \cdot 1}\right) .
$$

Non, as in the homogedeous cane, an element B of $y_{2}\left(P_{2}\right)$ is determined by the components of the bloce $\bar{i}_{1,}$ and \bar{b}_{12}, where \bar{u}_{1}, is syrometric, and
therefore wet fud, at in the homogenears cate
and $\operatorname{dim} g 2\left(P_{1}\right), \ldots, v_{1}, . . v_{2}=0$, for $k=1, \ldots$. . Hence the same computation as in the homogenecus case showe that the basie \bar{B} ie quasi-regular. The Theorem is prosed
'I'he romputation of the Cartan characters sbows that the gederal solutiכa dependp an $n+1$ fuactioan mith o variables ${ }^{*}$.

We aluppose in this section that the gpray is isotropic, i.e. $A=\lambda, J+\omega \otimes C$, where co ia a non-zero semi-basic 1 -form.

Note that if L ds a semothapic (1-t) thngor, jte matrix in the natural

$$
L-\left(\begin{array}{cc}
0 & 0 \\
r_{0}^{j} & 1
\end{array}\right),
$$

where : z^{\prime} ' is a local coardinate aystem an M and $\left[\mathrm{s}^{2} . y^{i}\right]$ is an locat coerdd pate syuteru un TM. To give an intrinsic defimition of the Jordan blocky of

 the componenta of L. Now we can formulate the following intrinsic

Deflnition 7.1 A semi-basic (1-1) tentor L thas a corstant algebraic type on ar open set U. if the degrets of the elementary divjoura in the Jordan dexompoantion of i we ropnstant on dr
 Then

(2) If A bas a constant algebraic type on W atid S is rariacionat on

[^4]Proof. Let us denote by Span (X) the line bundle in T apanared by the
 distribution spanned by the rector Eelds $X_{i} \subset \boldsymbol{X}(T \mu)_{r}$ i $-1, \ldots, k$.

Then the horizontal eigeospaces of A are $\mathcal{H}=r^{+\cdots} \gamma^{h}$ and Spint (45) corresponding retpectively to the eigenvalun λ and $\lambda+\infty(S)$ if $\alpha!S)_{x_{0}}-b_{1}$ then $\lambda_{z_{0}}$ bat a multiplicity of $2 n$. Now if $\lambda_{x_{0}}$ is diagonalizable, we bare

Converely, if o $\left(S S_{x_{0}} \neq \mathrm{fi}\right.$ then
and we have a eplitting of $T_{k,}$ into engenpacea corcesponding to the eigenvalute $\lambda_{x_{4}}$ and $\left(\lambda+i s \alpha_{x_{0}}\right)$:

Whith praves that $\dot{A}_{x 0}$ it diagooalieable. Therefore we find (1).
(2) Sinct \bar{A} is an algebraically conatant type on $[$!, either $\bar{\lambda}$ is diago-

 Lagrangian associated to S. The condition of compatibilty $:_{A} f_{E}=0$ (ct .

 But thix is excladed by Lemme (3.1). Thed we have isur lif $\neq 0$. Pinally it is easy to ofe, for erample using local coordinates, that igur $(0)=0$, as 0 在 t.

Let us not anoume that the aptay S ja pariational, and let E be a iegular Lagrangian attociated to .5. The compatibility condition $\dagger_{d}(\mathbb{R}=0$
 at x_{0} - Taking into account that $\oint_{E}(C, S) \neq 0$, if $\left(i_{s} \text { 济 }\right)_{n}=0$ then $\alpha_{x_{11}}-0$ which is excluded, because the apray ia not flat. Then we have:

Corollary 7.1 Let S be a non-fat tsotropte spray with $A-\lambda J+\alpha$ of C. and let A be algebracaly comstanf. Ther if (isa) $=0$, then S ts mat vartational on a perightorhood of z.

In the following we suppese that \dot{A} han an algebraic constant type and is $\alpha \neq 0$ on a neighborhood of $\tau \in \Gamma M$.

As Ne bave seen in Lemma 5 2, a necerpary conditron to lift a becoud order tormal solution $j_{z}(E)_{r}$ of P_{y} into a 3rd crder formal volution is that $\left(i_{A} \eta_{E}\right)_{x}=0$, i.e. $a_{5} \wedge\left(i_{C} \int_{F}\right)_{s}=0$. Then we bave to introduce this equation into the eyptem and consider the differential operator
 Sech ${ }_{u}^{2}$ is deflaed by

$$
P_{A}=i_{A} d d_{J} .
$$

As we will see, the study of the integrability of this syatem mill depend on the degree of non holonamy of the distrobution for spanped by S and C. Tbe firat cane, when D iv intequable, anises if and axly if S is itpical:

Proposition 7.1 Ats isotroptic mutr-fiut spray is typacal if and only if the distrabution D spanned by, 5 ard C is integrable.
fraof. The integrability of f implien that then the spray in typical (f. Propotition 3.6) .

Conversety, let S be an isctropic epray with is $\alpha \neq 0$ and auppose that it 15 typical. Note that $[C . S \mid=S \quad 20 S$. To prove that \mathcal{D} is integrable, we only need to prove that uS and C are linearly dependent. As we bare seen, the eigninalues of $\overline{4}$ are λ and $\lambda+i_{s} \alpha$. The dinerasing of the vertacal eigenspace of $A+$ correaponding to $h 1$ is α is 1 日ut S is typical, that in it is ad eigenveqter of \bar{A}. Thug, by Proposition $3.7,4.5$ and $C=\sqrt{6}=5$ ate eigenvectore cortetpoodiog to the same eigetrualue $\mathfrak{a r} .5$. Now, if $\mathfrak{t S}=0$, then ter and C are linearly dependent; if es $\neq \mathrm{G}$, then $t S$ ia also an eigenvector correaponding to the same eigenvalue as C, berause S and d S
 19 preportional to C

T.2.1 Typicat sproys

 grable, that is S is typical. The following Theorem contains the case of bormgenerous हprays m partirular.

Theorem 7.2 Let S be a non-flat isotropic sprav, with A $-\lambda J+\alpha 6 C$. We suppose that A has an algebrase constant type on 4 sesghborhood of r athe that S is typical. Then S is bacally varational on a neightornood of $上 \in T M$ if arnd oraly if

$$
\begin{align*}
& \text { 2. } \quad \Delta A_{J} c \bar{c}=0 \text {, } \tag{7.8}
\end{align*}
$$

$$
\begin{align*}
& \text { 4. } n A D_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}=0 \text { for tvery } X \in \text { Lier } \Delta \text { : } \tag{7.11}\\
& \text { 4. } n A D_{\mathrm{n} x \mathrm{r}}^{\mathrm{r}}=0 \text { for tvery } X \in \text { ker } \Delta \text { : } \tag{7.10}
\end{align*}
$$

where D is the Berwaid comenection on TM assoctated to the spmas 5.

Proof. First we notice that at any $x \neq T$, 2nd order formal bolution.
lodeed, using the notation introduced on page 87, a aecond order jet
 T.if if and only if it atieties the juequalis (j .1 l), the linear equationt (5.11), (5.12), and the linear equation $\left(P_{A} E\right)_{z}=0$ fthich is

$$
P_{12} A_{h}^{j}=p_{k_{2}} A_{1}^{j} .
$$

 mantinx \bar{A}_{i}^{f} is diagonal, and let i_{s} be a scalar product of T_{j}^{o} io that the
 If $\left(p_{12}\right)$ is the matrix of g_{x} with reapect to the basia $\left\{\frac{g}{T r b^{\prime}}\right\}_{x=1}, n_{1}$ we fiod that (5.10) and (712) are satiefied. Solving the ayatem (5.11), \{5.12) with respect to the pivot terms p_{c} and p_{j}, we arrive at a Jegulax second order

The prooi of the turmal integrability of the aperatar B_{3} infolver $\mathbf{t m o}$ stepes.

Ster I. First ampatibitity cortatizats.
We bave already computed the aymbol of $P_{\text {A }}$ avid its firss prolongation in Section 6.2. Wie will now compute dimgy $\left(P_{3}\right)$. Let $B \in 5^{3} T^{*}$; since
$g_{3}\left(P_{3} j=g_{3}\left(P_{1}\right) \cap g_{3}\left(P_{r}\right) \cap_{g_{j}}\left(P_{A}\right)\right.$, we have $B \in g_{3}\left(P_{3}\right)$ if and only if

$$
\begin{align*}
(H(X, S, J Y) & =0 \tag{7.13}\\
B(X, \hbar Y, J Z)-B(X, J Z, J Y) & =0 \tag{7.14}\\
B(X, A Y, J Z)-B(X, A Z, J Y) & =0
\end{align*}
$$

 $h_{i_{1}}:=h .5$ (which is a horizont al eigenvector cortefponding to the eigenvalue $\left.\lambda_{1}+i_{\leqslant+1}\right)$, and $i_{i}=, J h_{1}$, for $i=L_{3}, \ldots, \pi$. The equation ($\overline{7}, 13$) yielfts the system.

$$
\begin{align*}
& \left.b i N_{1}, S_{1} v_{2}\right]=0, \tag{7~J}\\
& B\left[1_{i}, S_{1} v_{2}\right]-0_{1}, \tag{717}
\end{align*}
$$

for $i . j=1, \ldots$. i, Thile the equation $\{7.14)$ gireb

$$
\begin{align*}
& B\left(h_{1}, h_{1}, v_{k} j-B\left(r_{1}, h_{k}-v_{j}\right)=0\right. \tag{718}\\
& \left.B i v_{i}, h_{i}, v_{k}\right)=B\left(r_{1}, h_{k}, v_{j} j-b_{1}\right. \tag{719}
\end{align*}
$$

for i. $, k=1, \ldots, t$, and the equation (7.15) girea

$$
\begin{align*}
& \left.B i \beta_{2}, C_{\bullet}!_{\jmath}\right\}=0 \tag{7.20}\\
& B\left(v_{1}, C_{3} v_{\jmath}\right)=0 \tag{7.21}
\end{align*}
$$

for $i=1, \ldots, \pi$, and $j=1, \ldots, n-1$. Since the spray is typacal, there exictio $\mu \in C^{\times}\left\{T A_{1}^{\prime}\right.$, a thal $1: S=\mu t^{2}$. Thua the equation (7.20) ean be exprested Tith the help of the other equations. lndeed, noting that $C=t ', \quad$ and using (7.19), we arrift at

$$
B\left(h_{n}, C \cdot v_{i}!=B\left(b S, C, v_{\jmath}\right)=B\left(C \cdot h S, v_{\jmath}\right)=B\left(C, S, x_{1}\right)-\mu B\left(C, C \cdot v_{1}\right)=0 .\right.
$$

For $\dot{\hat{i}}=1, j, j=1, \ldots, 12-1$ according to (7.17) and $(7.21 j$. Now there are four blocks in the tereser $B: B_{i}=B\left(h_{1}, \lambda_{1}, h_{r}\right) \cdot \sigma_{\gamma}=B\left\{h_{1}, h_{3}, h_{r}, \delta_{1}=\right.$ $B\left(h_{1}, v_{1}-i_{2}\right)$ and $B_{1}=B\left(w_{1}, v_{2}: z_{+} j\right.$. Of course, B_{1} and B_{4} are efmmetric
in the jadices i: j,k, becalue B is symmetric. By (7.13) and (7.19), \boldsymbol{B}_{2} and \mathfrak{B}_{1} are ale sytajattric. Tluw

$$
\operatorname{dimg} g\left(P_{\tau}\right)-4 n(n+1)(n+2)
$$

 equationg which are independent of the equationa (718) and (7.19). Moreoret, each equation of (7.21) is indegendeat of the equations (7.16), (7.17), (7 (B), and (7 19). Heare

$$
\text { Uiris } x_{3}\left(P_{3}\right)=\frac{4 \pi(n: 1)(\pi+2 i}{6}-\left(\frac{2 n!n+1 j}{2}+\frac{\{\pi-1 ; \pi}{2}+(n-1)\right) .
$$

and to

$$
\begin{equation*}
\operatorname{rang} \sigma_{3}\left(P_{3}\right)=\operatorname{dim} b^{3} T^{4}-\operatorname{dita} g_{3}\left(P_{3}\right)=\frac{9 \pi^{3}+9_{L^{2}}{ }^{2}+i \pi d-6}{6} . \tag{7.23}
\end{equation*}
$$

In order to find the conditions of cumpalibility for \int_{5} we consider the maps
defited by
where $X . \xi: 2 \subset T$, and

 and ler $K_{y}=$ In s_{y}. Then the sequence
is ezact.

 defined by ($\mathrm{n}-\mathrm{l}$ j equations and Ker τ_{x} by $(\mathrm{n}-\mathrm{l})^{2}$ equations. Now there equationg are independent and they are almo independent of the equations which define Ker $\mathrm{r}_{2}\left(P_{1}\right)$. Thus
dim Ker $\mathrm{r}_{3}\left(\mathrm{~B}_{3}\right)$ - dum Ker $\mathrm{r}_{2}\left(\mathrm{P}_{2}\right)$

$$
+\operatorname{din}\left(T^{*} \otimes A_{\mu}^{2}\right)-\frac{(n-1)(n-2)}{2}-\left(n-l!-(n-l)^{2}:\right.
$$

and to

$$
\operatorname{dim} K t r T_{s}\left(\Omega_{1}\right)=\frac{\operatorname{cn}^{3}+9 n^{2}+5 n-6}{6}=\operatorname{rang} \sigma_{1}\left(P_{3}\right)
$$

Which showa that the sequence jo exact.
 orter fortatl solution of P_{1} jr can be lifted inta a 3 th order solution if and

 equation (5.18) we bate

$$
r_{1}\left[\nabla\left(\mu_{\xi} E\right)_{x}-\mathrm{r}_{2} \mid F\left[H_{2} E\right)\right]_{x}-\left\{0,0 . i_{R}\left[R_{5}, 0\right\}_{2} .\right.
$$

Yow

$$
3 R=\left\{J_{1} \cdot 4=[\mathcal{L}, h\}+a c C\right]=d_{J} \lambda \lambda J+d J \Delta \otimes C-\infty A J .
$$

50
 surb that

$$
\begin{equation*}
\left\{i_{C} t_{E}\right\}_{x}-n_{E} n_{x} \tag{7.24}
\end{equation*}
$$

So
 and thetefore $\mathrm{r}_{7} \mid \overline{\mathrm{F}}\left(\mathrm{P}_{\mathrm{I}} \mathrm{F}\right)_{\mathrm{I}}=0$, if and only if the condition (7.9) beld
let us now oompute the condition of compatibility given by $\mathrm{f}_{\mathrm{I} . \mathrm{s}: \text { : }}$. We have
so $r_{1}, \ldots, 1$ does not give a new condition: if $d_{J \Omega} \Omega \alpha=0$, then the condition $\left.\tau_{J . A}\right) \quad V\left(F_{3} E\right)_{x}=0$ is вatiafied.
 0. Dote that we have

$$
\overbrace{A}: \nabla_{F}\left(P_{J} E\right)]_{z}=\left(\mathcal{C}_{S_{A}} A_{A} \Omega_{E}-d_{A} P_{1} E_{i_{2}}=\left(a_{A} \cdot \Omega_{E}\right)_{F} .\right.
$$

Since $u S=\mu \mathcal{C}$, we arriva at

$$
\begin{aligned}
A^{\prime} & \left.\left.=\alpha\left[S_{1} A\right] h=v\left(L_{S} \lambda\right) J+\lambda|S, J|-C_{8} O \otimes C+\Delta Z \mid S, C\right]\right) h \\
& =\lambda^{\prime} J+\alpha^{\prime} \otimes C+\alpha\left\langle N S=\lambda^{\prime} J+\left[\alpha^{\prime}+\mu \alpha\right) \otimes C,\right.
\end{aligned}
$$

where we get

$$
\lambda^{\prime}=L_{5} \lambda \quad \text { and } \quad \sigma^{\prime}=h^{*}\left(L_{5} \alpha^{\prime}\right) .
$$

Tbus

$$
i_{A} \cdot S 2=\left(\alpha^{\prime}+\theta(f) \wedge i_{C}\right\}_{E}=\rho_{E}\left(\gamma^{\prime}+\mu \alpha\right) \wedge \alpha=\rho_{E} \alpha^{\prime} \wedge \alpha .
$$

 is satigfied.

Funally let $X, 子 \in \mathcal{H}$. We bave
at ix. Now $\mathrm{fc} \Omega_{\mathrm{E}}(X)_{\mathrm{s}}=0$ bectures $X \in \alpha_{x}^{1}$, then
bence

On the other hand due $=\mathcal{C}_{\mathrm{s}} \mathrm{sl}_{\mathrm{E}}$, so
heare

$$
r_{H}\left[F\left(P_{1} E_{1}^{\prime}\right]_{x}(X, Y)-\sigma_{E}\left\{S_{1}\left[\mathcal{X}, J Y^{\prime} \mid\right\}_{x}\right.\right.
$$

 and $h_{\eta}:=h S$. We bave at $x \in T$ ff:

 where $[X . J Y]$ denotes the componeat of the vector $\left[X, J^{\prime}\right]$ on $\mathrm{C}^{\prime}=\sqrt{ } H_{\text {n }}$ in the basis ti'. 'Therefore

$$
\left.T_{\psi}[\bar{V}(P, E)]_{x}=0 \text { if and only if }\left[X, j^{\prime}\right\}^{-}\right]_{C}=0
$$

by Lemma 7.]. Now, witing the spectend decomporition of i, we can eatily ohtain the projechon an to the engenspare corserpendiag to the eigencalue $\lambda+1$ gar, i.e. The projection on te the dittribution tpanined by ! $!$ and C :

$$
\frac{1}{\lambda+1.5 \alpha-\lambda^{(A)} \quad \lambda\left[i-\frac{1}{i_{5} \sigma}\left(i_{F} \alpha \geqslant O+\alpha 0 h 5\right) .\right.}
$$

Therefore the projectian an to the space epanned by C. is

Thus

$$
\left[X, J Y_{1}^{\prime},=\frac{1}{i_{, ~} r} a(F[X, J Y]) \otimes C .\right.
$$

Let D be the Berwald connection astociatect to S. Takig lato acrount that $X.\} \in \mathcal{K}=a^{\perp} \mathfrak{C} I^{\prime \prime}$ and that $n\{F|X, J Y|)_{s}$ deperds only on the valuet of the rectort X^{\prime} and ${ }^{\prime}$ at x, we beve
far every $\}$ \& \mathcal{H}, which ahows that

So we bove proved that a yegular second ofder formal colution of P_{2} can be lifted anto a ${ }^{3}$ did order formad solutioun if and only if the equatious (7.9)-(7.11) bold la order to prove the Theorem, we only need to prove that P as jnpolutive

STEP $\mathrm{IL} .: S_{1}$ u involutive.
Since $g_{d}\left(P_{j}\right)=g_{x}\left(P_{1}\right) \cap_{g_{2}}\left(\mu^{\prime}\right)^{\prime} \operatorname{lig}_{2}\left(F_{A}^{\prime} i_{1}\right.$, an clement $t \in S^{2} T^{*}$ is found in $g_{2}\left(F_{1}+\right.$ if and only if the equations (7.1), (7.2) and

$$
\begin{equation*}
\text { Eii. } A X \cdot J Y\}-B|A Y, J K\rangle=0 \tag{7.26}
\end{equation*}
$$

 $a_{i j}:=\boldsymbol{B}\left(h_{i}, h_{i}, j_{1 j}:=B_{i}^{(} h_{i}, r_{s}\right)$ and $c_{1 j}:=B\left(t_{i}^{\prime}, r_{1}\right)$, first कe will prove that B ia forund in $g_{2}\left(P_{3}\right)$ if and only if

$$
\begin{cases}c_{r i i}-0_{i} & 1=1, \ldots, r_{1}-\mathbf{I}, ~ \tag{7.27}\\ b_{, i i}=0 . & i=1 \ldots, r_{1}-\mathbf{V}, \\ b_{n n}-i c_{n n} . & \\ b_{1 i}=b_{z i 1} & r_{1, j}=1, \ldots, n .\end{cases}
$$

[ndeed,

- uaing the equation (7.2B) computed on $K=S$ and $Y-t_{i}$ for $i=$ 1. ...n-I we fad

$$
R\left(A_{1} S_{1} v_{1}\right\}-R\left(A k_{1}, C\right)=\dot{q}_{S 1} B\left(v_{m} v_{1}\right)=\left(z_{s} \alpha\right) c_{n 1} .
$$

- If $i<n$, then usiag \{ 7.1 f pe find

$$
\left.b_{n_{1}}=A\left(S \cdot r_{2}\right)-B\left(v_{1} S_{1} v_{1}\right)=B\left(S, L_{1}\right)-\mu B^{\prime} ; v_{n_{1}}, v_{1}\right)=B\left(j_{1}, e_{1}\right)=0 .
$$

- For diris we bave

$$
b_{m n}=B\left(S_{1} C\right)-B\left(r: S, C:=B\left\{S ; v_{n}\right\rangle-\mu B\left(v_{n}: v_{n} j=\mu C_{n n} .\right.\right.
$$

Hed:

$$
\operatorname{dim} g:\left(P a!=\operatorname{dim} S^{2} T^{*}-n-(n-1)-\frac{2(n t-1)}{2}=\frac{3 x^{2}-n+2}{2} .\right.
$$

Let us now consider the basis $\dot{B}=\left\{c_{\mathrm{e}} \cdot \mathrm{v}_{2}\right\}_{1,1-1, \ldots, n}$, where

$$
\begin{aligned}
& \varkappa_{1}=h_{1}+21_{n}, \\
& x_{1}=h_{1}+i i-1!v_{i}, \quad \text { for } \quad i=2, \ldots . i i-I, \\
& e_{n}=h_{n}+\sum_{1-1}^{n} v_{1} .
\end{aligned}
$$

 of H, the block $\left[\bar{b}_{3},\right]$ is

$$
\left[\begin{array}{c}
\lambda_{11} \\
b_{12}+c_{12} \\
\vdots \\
b_{1, n-1}+(n-1) c_{1, n-1} \\
\sum_{1=1}^{n} c_{12}
\end{array}\right.
$$

$$
\left.\begin{array}{cc}
b_{1, n} & \\
b_{2 n-1}+c_{2 . n-1} & b \\
\vdots & \\
c_{n-1, n-1}+\left(n-1 r_{n}\right. & 1 . n \\
\sum_{1-1}^{n} c_{n, n-1} & 0 \\
h_{n-n}
\end{array}\right]
$$

And, of conust. $\bar{r}_{1}-r_{1,}$ Then \bar{r}_{5}, an he expreased in teras of the block ; $\bar{h}_{i j}$) in the following way:

Thetefore the eleweats of $g_{2 i} F_{3}$) are determined by the j_{12} and the b_{2} Thind

$$
\operatorname{dim}\left(r_{2}\left\{P_{3}\right)_{f} \quad \varepsilon_{1}=\frac{1}{2}(r 1-k)(t)^{2}-k+l_{i}^{4}+i m-1\right)(t+k) .
$$

and

$$
\operatorname{dim} g\left\langle\left\{P_{3}\right\}_{r_{1}, r_{1}} v_{1} \quad c_{4}=0,\right.
$$

$$
\begin{aligned}
& \dot{\varepsilon}_{111}=0 \text {, } \\
& 1 \leq 2<\pi ; \\
& \dot{c}_{n \pi}=\dot{b}_{1 \pi} \\
& \bar{c}_{1 j} \cdot \frac{1}{\left\{_{2}-\jmath_{i}^{3}\right.}\left(\dot{b}_{11}-\dot{b}_{21}\right) . \quad 1<3<j<\mathrm{r}_{1} \\
& \left.\bar{c}_{11}=\frac{1}{i(i-1 j} i \dot{b}_{11}-b_{12}\right) \quad i=2 \quad(n-1 i,
\end{aligned}
$$

for $k=1, \ldots, n$, so

$$
\begin{aligned}
& =\frac{3 n^{2}-t+2}{2}+\sum_{k-1}^{7} \frac{(n-k)(n-k+i k}{2}+\sum_{s=1}^{n}(7-1)(n-k) \\
& =\frac{1}{\mathrm{f}}\left(4 n^{3}+3 n^{2}-n+6\right)=\operatorname{dim} g_{y}\left(P_{3}\right) \text {, }
\end{aligned}
$$

wheh shows that P_{3} is involutive. The Theorem is ptoved. U

Note that the Theorem holds for homageaenis and quandiatuc spras.
Taking into account a result of Seenthe (cf. |Sve|) which etate日, that if a bonogeneous (rebp. quadratic) epray in variational, then there exists also a homogeneous (re日p. quadratic) regular associated hagrangian, we can etate:

Theorem 7.3 Let Γ be a hamagentates ireatp. Itintarj coriritction on an aratytical manifold. Lotaliy thete ts a Finsler (retp. Ritmann) stracture with isotropse curvature to that the canotacal /reap. LeviCantal connection is I if and onity if the spray of I is isotroptc, and the Douglas tentot satisfies the ennditions of Theorem 7.2.

7.2.2 Atypirast nyritut

When the spray is atypical, the diettibution D apanned by S and C; jo 5 nod-iategrable (c. Propssition T.1!. This is equigalent to the fact that the distribution \dot{D} apanned by $u S$ and C is 2-dimensional. As we will sec, the study of the atypical cabe greatly depends an the degree of non-holonomy of \dot{D}, that is on the length of the sequence $\dot{D} \subset v^{2} \subset v^{3} \subset$. . Where $\dot{j}^{1}-\dot{D}_{1}$ and $\dot{\mathcal{D}}^{k+1}:=\left\{\dot{\mathcal{D}}^{k}: \dot{\mathrm{D}}^{\mathbf{k}}\right\}$. In this laat section we will study the case where the bolonoms in weak, that is $\dot{D}^{2}=\overline{\mathrm{D}}$, or, in other words, \boldsymbol{P} is incegrable.

We recall tbat if $A=\lambda J+\alpha \mathbb{S} C$ with $i_{g} a=0$, then S is non-yariational (f. Corollary 7 1). Thus pre car aseume that isa $\neq 0$. We shall prope the following

Theorem $7 . d$ Let S be an isotropic atypucal spmay, wath $A=\lambda J+\Delta, ~ A C '$ ated suppose that the distributiort $\overline{\mathrm{D}}=\overline{\mathrm{h}} \mathrm{walifi} \mathrm{C}, \mathrm{L}, 5$! is itrtegrable. Theth S is turiational if and andy if

$$
\begin{aligned}
& 1+\wedge \mathrm{d}_{\boldsymbol{c}}=1 \mathrm{~J} \text {. } \\
& r^{\prime \prime} A u+\frac{2 \pi s a}{\tau_{s} r} d x^{\prime} A a=0 \text {. }
\end{aligned}
$$

whert, for a scalar form jo, we plat formaid

$$
\begin{equation*}
j^{\prime}=\kappa^{-}\left(I_{\vee} u j\right) \tag{7.28}
\end{equation*}
$$

The proof of the theorem will be carried out in 4 steps.

STEF I. thest lift of the second onder solutions of la.
 difted thto a arrid otatr solstion if arid ordy af

$$
\begin{align*}
& \left(x_{A}, \Omega_{B}\right)_{2}=0 ; \\
& \left(0 A d_{J}(\dot{\sigma})_{I}=0\right. \text { : } \tag{729}\\
& \{\Delta A d\lrcorner \Delta\}_{s}^{\prime}=0 \text {. }
\end{align*}
$$

Froof. Wre recall that Ketr $\sigma_{3}\left(P_{3}\right)$ is tefored by the tquatione (7 13) (7.15). that ib_{g} in a adapted base, by the equations (7.18j-(7.21). Kote that the equations (721) are independent of the others, wherems nnmen of the equations (7.20) ase related to the otbers by
for $j=1, \ldots, \pi-l$. Tbus

$$
\begin{aligned}
& \operatorname{dim} \operatorname{Ker} \pi_{s}\left(V_{3}\right)=\text { dim Ker } \sigma_{s}\left(\beta_{2} p-\left[\frac{n(12-1)}{2}+i r-1\right)+\frac{n(\eta \quad 1)}{2}\right]
\end{aligned}
$$

and therefore

$$
\operatorname{rank} \sigma_{3}!P_{3} j=\operatorname{rank} \sigma_{3}\left(P_{2} j+\left(\mathrm{n}^{2}-1\right) .\right.
$$

Let

$$
\left(T^{*} \& T_{v}^{*}\right)\left(T^{*} \phi A^{\prime} T_{0}^{\prime}\right) \in\left(T^{*} \omega \Lambda_{u}^{\prime} \downarrow \xrightarrow{r_{3}} K_{2} \oplus A^{2} T_{1}^{\prime} \oplus A^{\prime} T_{0}^{\prime} \in \lambda^{*} T_{v}^{\prime}\right.
$$

$$
\begin{aligned}
& \tau_{A^{\prime}}\left(B_{S}, B_{\Gamma}, B_{\alpha} \| X, Y\right)=B_{A}(E, X, Y)-\left(B_{S i}\left(A X, Y^{\prime} j-B_{M i} i A^{\prime}, X\right)\right\},
\end{aligned}
$$

We will prove that the sequente
is exact, wherd $K_{y}:=1 \mathrm{~m} \mathrm{r}_{3}$.
It is easy to show that Imoj $\langle\mathrm{Pg}\} \subset$ Ker T_{a}. On the other hand, the equations $r_{A}=0, \eta_{\lambda, A}=\left(1\right.$, and $\eta_{h, ~}, ~=0$ yield

$$
\dot{i} n-1 \dot{l}+\frac{1}{3} i n-1 j(j x-2)+\frac{1}{i}(n-1)(n-2)
$$

equations which art independed of the syatem $r_{2}=0$.
Indeed, let us consider an adapted base $\bar{B}=\left\{h_{\mathrm{L}}-v_{j}\right\}$ with $h_{1} \in \mathcal{H}$ for $i=1 . \ldots, n-1, h_{11} ;=h S$ and $i,=S h$,

1) Taking $X=h_{r}$ and $Y=h_{\mathrm{E}}$ un the equation $\mathrm{T}_{A^{\prime}}=1$) we obtan in $-1 j$ new equations initrpendent of the systems $T_{2}=\mathcal{O}$. There is an ather indepen. debt equation of $r_{2}=\left(0\right.$: if $X, Y \in \mu_{r}$, then $B_{A}(S, X, Y)=0$, since $B_{A} \in$
 0 is related to the equatione $\mathrm{fr}=0$ and then to $\tau_{2}=0$, because
iz) On the otber have, once again using the fact that $.\left.f\right|_{\mathcal{N}_{\mathrm{s}}}=\lambda . J$, the
 respect to the cyatem $r_{2}=0$. It gites independent equationa when it is computed on the fectors S, h and h, with $1 \leq i<j<n$, and chen

 of the argumentsis S, and the other two vectore are h_{2}, h_{2} for $\rfloor \leq i<j<n$ Therefore $\tau_{|n, \lambda|}=0$ give日 $\frac{1}{7}(n-1)(s i-2)$ new equations.

Note that these equations are independent, because the $\{+1-1\}$ comper

 respectively $i<1, i, j=1, \ldots, n-1$. Therefore

$$
\begin{aligned}
& \text { dim Liet } r_{1}=\operatorname{dim} \text { Ker } \dot{\tau}_{2}-[i n-I)+\left(n-1 i j \pi_{2}-7 i\right]
\end{aligned}
$$

wheh proves that the erquence is exact.

We can cowpute the conditions of compatibility for P_{2}. Let \bar{v} be an arbitrary linear connection on $T M$ and $j_{2}(E)$, a 2 nd order regular formal polution of μ_{s} at τ. $\dot{j}_{2}(E)_{s}$ can be lifted into a Srd onder colutron if and ony

 that

$$
\begin{equation*}
p_{1} l_{y}=\left[\dot{c}_{-} \cdot \Omega_{E}\right]_{x} \tag{7.30}
\end{equation*}
$$

Let te compute now the compatibility conditiona. Wre have:

- (isf section 7.2.1)

$$
\begin{align*}
& \left.\left.=\left[h \cdot\left[h . S^{\prime}\right]\right]+|h, F|+\mid h, J^{\prime}\right) \stackrel{e U}{=}-\mid R . S\right]+F R-R R F=R^{\prime} . \tag{4.31}
\end{align*}
$$

Thus

Noम A - $\lambda \mathrm{J}+\alpha \hat{O} \mathrm{C}$, so

and theu

$$
\begin{align*}
& \left.\left.\left.-\rho_{1}[i d\lrcorner \sigma\right)^{\prime} \wedge \alpha+\{d . r)^{\prime}\right) \wedge \alpha^{\prime}\right]=\rho_{1}(d \rho a \wedge \alpha\}^{r} \tag{7.33}
\end{align*}
$$

Thus

Note that

$$
\begin{equation*}
A^{\prime}-x^{\prime} x+\mathrm{z}^{\prime} \otimes x+a \theta \operatorname{vi} . \tag{7.34}
\end{equation*}
$$

Tlus

$$
i_{A} \cdot f_{t}=a^{\prime} A i_{C} f_{t}+s A i_{s} s q_{t}
$$

Therefore the coadition $\dot{i}_{\boldsymbol{\prime}}$ fr $=0$ je equivalent to the equation

Since, by hyperthesa, w' is ast propostional to C, this condition is a nex equation on $j_{2}(E)_{x}$ whan we will introduce inta the system.
 and

$$
A^{\prime}=\alpha \otimes r S+\dot{I}^{\prime} \delta C
$$

We have

$$
\bar{A}^{\prime}=A^{\prime}+i_{1} A+\mu_{2}, N
$$

With $\mu_{1}=\frac{i_{1} t^{\prime}}{15 \alpha}$ and $\mu_{2}=\frac{6 a^{\prime}}{150^{\circ}} \lambda-\lambda^{\prime}$. So the equation $i_{A} \cdot \lambda_{E}=0$ jo equivalent to $i_{A} \cdot \Omega_{E}=\hat{n}$.

Now we must study the integrability of the diferential operator
where

$$
s_{\sigma, \alpha^{\prime}}^{2}:=\left\{\theta \subset \mathrm{i}^{2} \Gamma_{v}^{*}\left|\nexists \theta, \theta^{\prime} \in \mathrm{H}_{\mathrm{z}}^{*}: \theta-\alpha \wedge \theta\right| \dot{a}^{\prime} A \dot{\theta}^{\prime}\right\}
$$

and

STEM If Pirst lift af the second arder solutions of P_{4}
 TM \{作, then

$$
\left[o \Delta \Delta r^{\prime}\right]_{\geq} \neq 0 .
$$

Indeed, if S is variatonalal and F. s a regular Lagrangian ussociated to $S_{\text {, then }} E$ fatisfite the condition uf tumpatibulity of P_{y}. $\left.i_{A}{ }^{\prime}\right\}_{E}=0$. Now $A^{\prime}=\lambda_{,} J-\alpha^{r} \propto N_{0}+\alpha \otimes v S$, во

$$
0=i_{\mu} \cdot f_{\varepsilon}=\alpha^{\prime} A_{1}, f l+i A_{2,5}[2 .
$$

 beace to $i^{\prime} \Omega_{r}$, that is soGig ia proportional to i_{s} Dut this $1 s$ excluded by bypothesis

From now on we shall suppose tha: a Aa' $f \mathrm{U}$
The foliowing Lemma highlighta the tole of the graded lie algeteria, As;

[^5]Lemma 7.3 Let S te aft atypical wotroptc sproy. A zfod orver soduLion $\left(f_{2} E\right)_{c}$ at $x \neq 0$ of P_{1} can be difted into a ari arder setution if and urity tif

$$
\begin{align*}
& i_{H} \mathrm{O}_{\underline{L}}=0_{1} \\
& i_{A} \cdot \hat{O}_{E}=0_{1} \\
& i_{H} \Omega_{s}=0 \text {, } \\
& \left.\dot{i}_{1} \cdot \dot{A} \cdot\right|^{\Omega_{E}}=0, \tag{7.39}\\
& i_{\mid x, i \cdot 1} I_{5}=0, \\
& i_{\dot{A}} \cdot \Omega_{F}=0, \\
& \left.\Delta c\right|_{x}=0_{1}
\end{align*}
$$

where D denates the Berwadd connecton

 and

$$
\begin{equation*}
\left.B\left(X, \bar{A}^{\prime}\right\}_{1}^{\prime}, \sqrt{Z}\right)-B\left(X^{\prime}, \bar{A}^{\prime} Z: \sqrt{\prime}\right)=11 \tag{7.4t}
\end{equation*}
$$

X. $\because, Z \in T$ Let ия set

$$
\mathcal{H}_{o, \varkappa^{\prime}}:=\left[\dot{\alpha}^{\prime}\right]^{\perp} \text { त } \mathcal{H}_{\alpha}
$$

the equation (7.40) gives the followiog ayatem:

Where $1=1, \ldots, r_{1}$, and $j=2 \ldots, r-1$. [f j nol difficult to verify that among, thete equaliond only
for $+=1, \ldots, \mathrm{fI}$, and $\dot{j}-2 \ldots$, it $-1,1 \leq \mathrm{j}$, are independeyt of the syuiean (i.13) - iT.15) it follons that

$$
\begin{equation*}
\left.\operatorname{rank} \sigma_{1}\left(F_{4}\right)=\operatorname{rank} \sigma_{1}!F_{s}\right)+\frac{1}{2}(n-1)\left(r_{4}-2\right) \tag{7.4}
\end{equation*}
$$

and

$$
\begin{aligned}
& \text { its(t) } B\left(h_{i}, N S, 1_{j}\right)=0, \\
& i_{s}(t) B\left(h_{1}, v, S_{1}, 1\right)+\left(i_{n}, d^{\prime}\right) B\left(d_{1}, C_{1} C^{*}\right)=0 \text {. }
\end{aligned}
$$

for $\boldsymbol{N}^{\prime}, Y, Z \leftarrow T, Y \in \mathcal{H}_{r}$ and $\mathcal{F} \in \mathcal{H}_{n} \dot{\beta}$.
We shall prove that tbe sequente
where $K_{4}:-\mathrm{Im}_{4}$, is cract.
[t casy to check that In $o_{s}\left(P_{i} j \subset K e r r_{4}\right.$. On the other band a computation of the numbrer of the equationg of $\tau_{4}=0$ independent of the equatione of 打 $=0$ grocs:

 or $Z=\hbar_{1}$, and $+1-2$ equationa for $X=h_{1}, 1<2<n_{1} Y^{*}=h_{1}$ and $Z=S$
(2) ${ }^{\top}|, \dot{i}, \dot{A}|=0$ gives u ew equations only for $K=\kappa_{1}, \gamma=S$ and $Z=h_{1}$ $1<i<\pi ;$ then it givea $2-2$ пет equations.
(3) $\mathrm{r}_{\boldsymbol{i}},=0$ gives nevenuations ondy when one of the vectors ig found in
 rectors are S and h_{1} it again gipe日 one aes equation.
(4) In areme to find the mumber of equations given by the ri, i $=1,2,3$, qate that we bsve, modulo $x_{3}=[J$
 gives $\frac{t}{2}(n-2)(n-1 j+2!+1-2)$ net equations.

It is not difficidt te theck that these equations ave undependent, so we arrive at

$$
\begin{aligned}
& =r \text { rank } \sigma_{3}\left\{P_{3}\right\}+\frac{1}{2}\left(n^{2}-r 1+4\right)=\operatorname{rank} \sigma_{3}\left(P_{4}\right) \text {. }
\end{aligned}
$$

whirb proves that the eequence is exact.

Now we can compute the marpalikility conditions fay P_{4}. Let $\overline{7}$ be a linear

 and brace $i_{A} \mathcal{A}_{E}-0$, bold at τ. Let us compute $\left|r_{4} \nabla_{(}\left(\Omega_{4} E\right)\right|_{z}=(1$:

(3)

Nom: $-\frac{1}{2} \cdot \sqrt{\prime} \mathrm{I}=\mathrm{F}=\mathrm{D}$, and sn. by (1.37), we arrive at

$$
\left.\left.h \cdot A^{\prime}\right]-h \cdot A^{\prime}\right]^{r}-\left[h^{r} \cdot A \mid+\sqrt{2} \bar{A} E \cdot A-A r^{r}\right.
$$

50

Let us final consider the term $\dot{\mathrm{t}}_{\mathrm{i}}$ A) h_{x}. We have

90
and thus
(1)

$$
\begin{aligned}
& =\left.\dot{E}_{\mid A \cdot} \cdot A \cdot\right|^{\left[I_{E T}\right.}
\end{aligned}
$$

but

$$
\left.\left(\dot{A}^{\prime}\right)^{\prime}=\mid S_{1} A^{\prime}\right] \stackrel{\left[r^{\prime a n}\right)}{=}\left[S . A^{\prime}\left|+\left(L_{55 \beta_{1}}\right) A+\mu_{1}\right| S, A\right]+\Sigma_{S} \mu_{2} d+\mu_{2}\left[S_{1}, J^{\prime}\right] .
$$

$$
\left.r_{A^{\prime \prime}} \mid \overrightarrow{V^{\prime}}\left(P_{A} E^{\prime}\right)\right]_{x}=i_{A^{\prime \prime}} S_{E_{x}}
$$

(d) In order to compute the obatructions gizen by $\eta_{1}, 1=1,2,3$, let us take $X \in \mathcal{H}, Y \in \mathcal{F}_{\mathrm{od}}$. and $Z \in T$. We have at \mathbf{x} :

$$
\begin{aligned}
& =n\left(S^{\prime}\right) \dot{a}^{\prime}\left(h_{1}\right) X\left\{i_{C}\{(Y)]-t_{C}\left[\{ \}^{\prime}\right)\right]=0 .
\end{aligned}
$$

$$
\begin{aligned}
& -\alpha(S) J X \omega_{E}(Y)=\alpha(S)\left(J X \cap(u S, Y)+Y \Omega_{\varepsilon}(C, X)\right. \\
& \left.+J X f(v S, Y)+w_{E}(J X, Y)\right\}-\Omega_{E}(S,|S X, Y|\} \\
& \mathrm{r}_{\mathrm{N}} \nabla\left(P_{1} E\right)=\hat{o}^{\prime}\left(h_{1}\right) \sqrt{ } Z\left(\eta_{A} \Omega_{E}(S, Y)\right)-\sigma(S)+Z_{i_{A}}\left(\Omega\left(h_{1}, V\right)\right)=
\end{aligned}
$$

AE we alteady computed iq section 7.2 , we find

$$
\left.r_{2} \cdot \nabla\left(P_{4} E\right)\right|_{z}=0 \text { of and only if }\left(D_{n} x \Delta \sim\right)_{z}=0 \forall X \in \operatorname{Ker}(a .
$$

STBP III: Rxpression of the compatibility canditions (T.99) in terme of the spray

We shall now prove that the canditions (7.39) can be exprented id termof the spray without the 2nd order aolution (only in thin thue epery 2nd urder polution can be lifted into a 3rd order aolution.!

Let $\alpha(E)_{x}$ be a 2 nd order volution of P_{4} at x. Since $\left\{i_{A} f_{E}\right\}_{z}=0$, there exiots $\rho_{2} \mathrm{E}$ Fif such that

$$
\begin{equation*}
\left.\left\{i_{v}, 1\right\}_{\varepsilon}\right\}_{x}=\rho_{1} \dot{\dot{\alpha}}_{x}^{\prime}+\rho_{2} \sigma_{x} \tag{7.42}
\end{equation*}
$$

Thercfoce wis also haye

$$
\left(\hat{i}_{1,5}\left[t_{E}\right)_{T}=o_{1} a_{T}^{\prime}+\hat{j}_{2} \alpha_{T},\right.
$$

* As We bave alreadp ahowed (aet page 18T), the condation indt= - 0 נs equralent to $a_{x} A(d, a)_{x}=0$, and $i_{F}\left\{l_{x}=0\right.$ is equazalent to $\{a \wedge d, a\}_{x}^{\prime}-0$
- From (7.34) we bave

Thus, at \mathbf{x}.

$$
\begin{aligned}
& -\rho_{l}\left(\alpha^{\prime \prime} N a+\frac{2 \mu_{2}}{\rho_{l}} \sigma^{\prime} \wedge A\right)
\end{aligned}
$$

This expressing shame khat it S is varintinati, then

$$
\begin{equation*}
\therefore \wedge a^{\prime} \wedge x^{\prime \prime}=d \tag{7.45}
\end{equation*}
$$

 st that $\left(r^{\prime \prime}=a_{r}-b_{r} r^{\prime}\right.$. We obtain at 5 :

$$
2_{1}^{\prime \prime} i_{E}=\rho_{1}\left(\alpha^{\prime \prime} A \alpha+\frac{2 \mu_{2}}{\rho_{L}} \alpha^{\prime} A \alpha_{0}\right)=\rho_{1}\left(\phi+2 \frac{\rho_{7}}{\rho_{1}}\right) \sigma^{\prime} \wedge \theta .
$$

Since $y_{1} \neq 0, i_{A}=f_{x_{x}}=0$ if and andy if

$$
\begin{equation*}
b+2 \frac{p_{2}}{\rho_{1}}=0 \tag{7.46}
\end{equation*}
$$

If tisc and tisfk denote the romponeats of $\mathrm{S}_{\mathrm{S}} \mathrm{S}$ in the spliting $T_{v}=$ $S_{\text {San }}(C) \oplus J^{\prime} \mathcal{H}$ then we have
becaule $\left.\boldsymbol{i r}\right|_{\mathrm{x}}=0$. On the ofber hand

$$
i_{1} s\left\{(S)=\mu_{1} s_{s} \hat{r}^{\prime}+y_{r} s_{s} s=\mu_{2} i_{s} u\right.
$$

by (7.42). Thus

$$
\xi_{C}^{U S}=\frac{\rho_{1}}{\rho_{1}} .
$$

and therefere $\phi=-2 \xi_{c}^{5}$. Siace $s_{c}^{s}=\frac{a(F, s)}{c \mid s!}$. the condition of compatibility ian $\mathrm{fl}=0$ ja oquivalent to

$$
\begin{equation*}
\sigma^{\prime \prime} A \sigma+\frac{2 a_{s, S r}}{i_{s} \alpha} \sigma^{\prime} A \sigma=0 . \tag{7.48}
\end{equation*}
$$

- From (7.36) we have

$$
\begin{aligned}
& {\left[J_{1} A^{\prime}\right]=\left\{J, A A^{\prime \prime}\right]+d \mu_{1} A . J A+\omega_{1}[J, A]+\left\{d_{3} \mu_{2}\right\} \wedge J+d \mu_{2} A J^{2}} \\
& \left.+\mu_{2}\left|J_{V} J\right|-\mid J . A^{\prime}\right]+\left(d_{j} \omega_{1}\right)^{\prime} \wedge A+\mu_{1}|J . A|+\left(d_{s} \mu_{2}\right) \lambda J_{1}
\end{aligned}
$$

thas
and then
 if $\left(d_{j} \alpha \wedge \alpha\right)_{x}=0$.

- Let us now consider the condition $i_{k} \cdot \hat{\lambda}_{E}=1$). We have

But

$$
r[S, v S]=m \mid h S, S=\{, h, S \mid i S\}=v\left[h, S \mid(h S)-A(S)=\left(\lambda+i_{S} \alpha\right) C .\right.
$$

and

$$
v[S, C]=v i(-\Gamma(S)]=v(-k . S+1: S)-v S
$$

beace

Therefore we thape at 5 :

Using (7.30) and (7.43) we arrive at

On the other hand from (7.47) we bape

$$
\frac{\bar{p}_{2}}{\rho_{1}}=\frac{i_{F S S} C r i_{S} \alpha^{\prime}}{i_{S} \beta}
$$

So the condition $i_{R^{\prime \prime}} \hat{\Omega}_{\varepsilon}-0$ is equivalent ia
 we find that

Now the conditann $\dot{i}_{R}{ }^{\prime \prime} \hat{R}_{E}=015$ equivalent to

$$
\begin{equation*}
d j a A\left(a^{\prime \prime}+2 \frac{t^{2}+5 k-15 r k^{\prime}}{i_{s} a} a^{\prime}\right)=0, \tag{7.50}
\end{equation*}
$$

Which, taking into account (7.48), can be expressed bp the equation

$$
\begin{equation*}
z_{2} a^{\prime}\left\{d_{s} r A \Delta s^{\prime}\right\}=0 . \tag{7.51}
\end{equation*}
$$

- Tbe lati caudition of interrability is given by the equation $\left.i_{\mid h, A}\right|^{5 t_{5}}=0$.

Takng into accourt the equatious (7.30) and (7.42), this exptetsion war jshes if and anly if

Thete computations show that all the otstructions can be exproseed witbaut the serond srder solution $j_{2}(E)_{x}$ except the last one Howerer, it the disstribution spanered by $u S$ and C is integnable, then this condition cart be expreaced uniquely in terms of the mpray ladeed, in this cage there exisi λ_{1} and λ_{2} guch that $\left|v S, C^{\prime}\right|=\lambda_{1} C^{\prime}+\lambda_{2} v S$. hence

$$
i_{\mid \times S, G} \Omega_{E}=\left(\lambda_{1} i_{1}+\lambda_{i} \mathcal{A}_{2}\right)_{\mathrm{L}}+\lambda_{2} \mathrm{~m}_{1} \sigma^{\prime} .
$$

But

$$
\mu_{: 1, \alpha}=T^{\wedge} \cap a^{\perp} \Pi \alpha^{\prime \perp} .
$$

and thus $\left.\alpha\right|_{i \hbar} \equiv 0$ and $\left.\alpha^{\prime}\right|_{\mathcal{K}} \equiv 0$. So

$$
\dot{\mathrm{i}}_{2} \cdot \mathrm{~s}, \Gamma \mid \mathrm{S}_{\mathrm{B}}(X)=0
$$

becauce $X \in \mathcal{H}_{\text {wu }}$. Therefare

$$
\begin{aligned}
& { }^{\prime}\left|A^{\prime} \cdot A^{\prime}\right| \nabla\left(P_{4} E\right)\left(X, S_{1} h_{1}\right)
\end{aligned}
$$

Do the other band we bave

$$
\left.\left\{\lambda_{1}\left(L_{v} s a\right)-\lambda_{2} \frac{\dot{\mu}_{7}}{\rho_{1}} L_{C} n\right\}+\lambda_{2}\left(C_{1} s r^{\prime}\right)\right)\left.\right|_{n_{0}}=n_{1}
$$

that is

Thus we have the following reault.

If the dattribution spenned by $v S$ attd C is integrable, then alt the condations of tompatabilety for D_{1} gaver by (7. Y9) sam be enpressed with the help of the spray S

Step [V: Invotutanty of P_{4}

 equation"

 because S sa not typical, (and ao us is not proportional to C.), and that

a) $\boldsymbol{k}_{1} \in T^{6} \cap \mathrm{a}^{\prime}$ for $\dot{t}=1, \ldots, 7-1$,
b) $k_{1,2-1}:=F\left(1: S_{f 1}\right\}$;
c) $\delta_{i_{1}}:=h S$,
d] $v_{:}=J h_{1}$.

 $i, j=1 . \ldots, \mathrm{rl}$, we have the following telations bet teeta the components.

Indetd,
(t) Since is $\alpha \neq 0$, we obtain frim (7.52c) computed on $X=S$ and $\boldsymbol{Y}=h_{1}, \mathrm{i}=1, \ldots . . n-1$.

$$
B\left(A S_{,} v_{1}\right)-B\left(A K_{1}, C\right) \stackrel{S=A}{=} \varepsilon(S) \cdot B\left(t_{n}-v_{y}\right) \stackrel{i \pi 52}{=}{ }^{r 1} 0 .
$$

(2) $\operatorname{lf} i<\pi \quad l$.

$$
\left.c_{n-i, n-1}=t(t) S_{\left(v_{n-1}\right)}\right)=\frac{i_{h_{1}} \alpha_{1}^{\prime}}{i_{s^{\prime 2}}} R(C, C)=\varepsilon_{\mathrm{nn}} .
$$

(4) If: $<n-1$, then using (7.52.a) and aleo (7.53.b) we find

$$
=-A\left(\mathrm{r}: S_{s}, x_{n-1}\right)=-\frac{1, a^{\prime}}{i s^{x} x} B(C, C)
$$

(6) Using the equations $\mathbf{7} 52$ a) and ($7.53, \mathrm{~b}$) we bind

If followe that

$$
\text { dint } g_{2}\left\{P_{4}\right\}=\frac{1}{2}\left\{3 n^{x}-3 n+4\right) .
$$

Let us now roakider the base $\overline{\mathcal{B}}=\left\{s_{i}, v_{i}\right\} i=1, \ldots$, where

$$
\begin{aligned}
& c_{2} \quad=h_{1}+i x_{1} \quad \text { for } i-2, \ldots, r \quad d_{1}
\end{aligned}
$$

We will show that \bar{B} is quapi-reguiar. Putting farmand $\bar{a}_{1}=B\left(\varepsilon_{1}, \varepsilon_{y}\right)$,
 terme of the componeats b_{3}, and r_{3} :

On the other band

$$
\begin{aligned}
& \dot{a}_{1,} \quad=\dot{\mathbf{a}}_{j 1} . \quad \rightarrow<j \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \dot{h}_{\mathrm{ol}}-\mathrm{D}_{1} \quad 2 \leq 2 \leq r \text {; } \\
& \dot{\sigma}_{n 1} \quad=0, \quad 1 \leq i \varepsilon_{-}^{\circ} \\
& \bar{c}_{\mathrm{Ln}} \quad=0, \quad \quad \mathrm{~L} \leq i<\mathrm{n}: \\
& \dot{r}_{2, A-1}=B_{1} \quad 1 \leq i \leq n: \\
& c_{n-2, r,-2}=b_{n-1, n-2}-i_{n-2, n-1} .
\end{aligned}
$$

$$
\begin{aligned}
& \dot{r}_{n+1}=\dot{h}_{1-1} \\
& \dot{i}_{i} \quad-\frac{1}{i-j)}\left(\dot{b}_{11}-\dot{b}_{11}\right), \quad \quad 1 \leq i<j \leq n-2:
\end{aligned}
$$

Therefore an alement $\left.5 \in g_{2}\{f\}\right\}$ js determined by the following Ere coms pronent:

$$
\begin{aligned}
& \dot{i}_{1}, \quad \text { i. } j=1, \ldots . i, \quad i \leq j,
\end{aligned}
$$

$$
\begin{aligned}
& \bar{c}_{\text {ii }} \quad 1=1, \ldots, 7-3:
\end{aligned}
$$

blocks of \dot{b} are given by:
and
where ve minte only the fire parmeters explicitly, antl "e" dencter the determined components. Now

and

$$
\text { dida gyf } \left.P_{4}\right)_{\text {ra... en.v: }} \quad r_{4}=\left\{\begin{array}{ccc}
n-(k+3 j, & \text { for } & k=1 \ldots . . n-3, \\
0, & \text { far } & k=\pi-2 . n-1, n_{1}
\end{array}\right.
$$

以

$$
\begin{aligned}
& =\frac{3 \lambda^{2}-3+1}{2}+\sum_{k=1}^{n} \frac{(n-k)(n-k+1)}{2}+\sum_{k=2}^{n}(\pi-(k+2))(n-1) \\
& \left.+2(n-2)+n(n-3)+\frac{1}{2}(n-2)(\pi-3)=\frac{1}{6}\left(4 n^{3}-1\right) t+6\right) \\
& =\operatorname{dim} g \pm\left(P_{A}\right) \text {. }
\end{aligned}
$$

which sbous that the base bas quasi-regular. Theorem 7.4 is proved.

Appendix A

Formulae

A.t Formulas of the Fröticher-Nijenhuis Theory

aj $\quad i_{x} d_{K}=-d_{k} i_{x}+f_{F} \cdot x-i: k, x \mid$.
bj $\quad i_{X} L_{Y}-L_{Y}{ }_{i x}+{ }^{i} \mid x \cdot r i$.

d) $\left.1_{M^{d} d_{L}}=d_{L}\right]_{c}+d_{L A} \quad x_{(\mu, L)}$.

b) $|X, N K|-[X, N i] K+N X, K \mid$.
e) $\mid K, L] \times N=[\kappa N, L]-K[N, L]+[L N, K|-L| N, K]$.
d] $\left.\frac{1}{2}\left[\AA, R^{-}\right]|(X, Y)=| K, K, K\right\} \mid+K^{2}\left(X, G^{\prime} \mid\right.$

$$
-K|K X, Y|-K \mid X . K \xi_{j}^{-3}
$$

$$
\text { e) } \begin{aligned}
{[K, N \mid(X, Y)} & =\sqrt{ } K X, N Y]+[K X, K Y]-K i, N, N Y] \\
& -K[N X, Y]-N \mid X, K Y]-N[K X, Y] \\
& +K N|X, Y|+N K[X, Y] .
\end{aligned}
$$

aj $i_{k} X=i_{\xi} i_{\delta}-i_{\mu} i_{X}$
b) $i_{K} i_{L}-i_{L} i_{N}=i_{\mathcal{L}}-i_{K L}$,
c) $i_{K} x_{X}=\dot{f}_{X} i_{K}+(-1)^{i_{i}} i_{i} x$.
(4) $i_{\omega \in N} \pi=\vdots i_{N} \pi$.

 w. $\pi \in \operatorname{li}^{\prime} M$, then
a! $\left.\left.\mid K, f K]-\mid K_{x} f\right) K+f \mid X, K\right]$

d) $|K, y I|=\left(d_{N} y^{\prime}\right) A L-d_{M} N K E+g|K, L|$
E) $\mid f K, y L]=f(d \in g \wedge L-d g \wedge K L j$

$$
+g\left(d_{\mathrm{J}} f \wedge K-d f \wedge \in \mathbb{K}\right)+f g[K \cdot L!
$$

$f![N, \omega \wedge K]=\left(L_{X} \omega\right) \wedge K+\omega \wedge[K, K$,

A. 2 Hormulae for Chapter 5

$$
\begin{align*}
& \left.+\left(h_{1} k_{1}\right)\right\}+\xi_{i 2}^{i} k_{7}^{j}-k_{1 j} \mu_{h_{1}}^{2} q_{h_{1}}^{\left(S . v_{1}\right)} . \tag{A.2}
\end{align*}
$$

$$
\begin{aligned}
& +\left(l_{i} k_{1}\right)+k_{1} \lambda_{L_{2}}^{\prime} .
\end{aligned}
$$

$$
\begin{align*}
& r_{1}^{*}=k_{1}^{\prime}-\left(\frac{x_{1}^{\prime}}{x_{1}}\right) \boldsymbol{k}_{1}, \quad i=1,2, \\
& {r_{2}^{2}}_{2}^{2} k_{\underline{i}}^{\prime}-\left(\frac{x_{1}^{i}}{x_{1}}\right) k_{3} \quad i=1,2, \\
& c_{1}^{L^{2}}-u_{i_{2}}^{1}-\left(\frac{k_{L_{7}}^{\prime}}{x_{L_{1}}}\right) k_{i_{2}}^{1} . \quad i=1,2, \\
& c_{2}^{\prime+2}=b_{4_{7}}^{\prime}-\left(\frac{x_{4_{1}}^{\prime}}{x_{x_{7}}}\right) r_{4_{7}}^{\hat{c}} . \quad 1=1,2 . \tag{array}\\
& c_{1}^{3}=d_{i_{2}}^{3}-\left(\frac{b_{1}}{x_{1}}\right) F_{1}-\left(\frac{x_{i_{2}}^{5}}{x_{k_{2}}}\right) F_{i_{1}}^{1} \\
& c_{z}^{3}=b_{4_{x}}^{3}-\binom{b_{1}}{x_{\cdot}} d_{2}-\binom{x_{2_{2}}^{3}}{x_{r_{2}}} \lambda_{x_{2}}
\end{align*}
$$

$$
\begin{aligned}
& +\xi_{\nu_{1}}^{5} x_{i_{ \pm}}^{+\lambda}-k_{r_{1}}^{1}\left(\mu_{i_{2}} \varepsilon_{\mu_{1}}^{S}+\xi_{i_{2}}^{S}\right)_{1}
\end{aligned}
$$

$$
\begin{aligned}
& +i i_{1} k_{k_{j} j}^{2} j+k_{k_{j}}^{2} k_{T_{1}}^{\prime},
\end{aligned}
$$

$$
\begin{aligned}
& \mu=-\frac{\xi_{13}^{5}}{\xi_{k}^{5}},
\end{aligned}
$$

$$
\begin{align*}
& v_{1}=-\left(\frac{\epsilon_{i_{2}}^{\sigma} v_{1}}{\xi_{n_{2}}^{k}}+\frac{\xi_{v_{1}}^{v}}{\xi_{k_{1}}}\right)_{1} \tag{A5}
\end{align*}
$$

$$
\begin{aligned}
& r_{l}=2\left(\varepsilon_{k_{2}}\left|v_{1} \cdot b_{1}\right|_{\nu_{1}}+\xi_{k_{2}}^{i v_{1} \cdot t_{1} \mid}\right)
\end{aligned}
$$

$$
\begin{align*}
& -v_{1} \xi_{i_{1}}^{\left(v_{1}, x_{1}\right)}+h_{1} \xi_{2_{2}}^{\left.\mid v_{2} v_{1}\right)}-h_{1} \xi_{n_{1}}^{\left|v_{1}, h_{1}\right|}-h_{1} \xi_{h_{2}}^{\left|b_{1}, L_{2}\right|} \mid \eta_{h_{1}}^{1}\left(2 \xi_{h_{2}}^{\left|h_{1} \cdot v_{2}\right|}\right. \tag{+}
\end{align*}
$$

$$
\begin{align*}
& n_{v_{1}}^{2}=E_{n_{2}}^{\left|n_{1}, n_{1}\right|} \text {, }
\end{align*}
$$

$$
\begin{aligned}
& r_{h_{1}}^{\lambda_{1}}=\varepsilon_{v_{2}}^{\left|n_{1}-1\right|} \text {. }
\end{aligned}
$$

$$
\begin{align*}
& \Pi_{h_{2}}^{\prime}=\xi_{1}^{\mid n_{1}=1}+\xi_{r_{7}}^{\operatorname{lin}_{2} *_{2} \mid}-\xi_{k_{1}}^{\left|n_{2} n_{1}\right|} . \tag{A.9}\\
& T_{i_{2}}=\xi_{l_{7}}^{\| n_{1}, r=1}-\xi_{n_{x}}^{\left|n_{2} n_{1}\right|} .
\end{align*}
$$

$$
\begin{align*}
& \dot{r}_{1}^{3}=\left(11, r_{1}\right) . \tag{A.1D}\\
& \dot{r}_{2}^{\prime}=\left(r_{1} r_{2}\right) \text {, }
\end{align*}
$$

$$
\begin{aligned}
& r_{1}^{\gamma}=h_{2}: p_{2}+p_{2} V_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{p^{2}}=\left\{\dot{h}_{1} p_{2}\right\}+N_{1} p_{n_{1}}^{2}+p_{2}\left(v_{1}^{3}+p_{n_{2}}^{\hat{2}}\right\}
\end{aligned}
$$

This page is intentionally left blank

Bibliography

 Afrit Hioth Pleght 24, 14 (186B)
 atpron", Arch Math Erers (24), c 4, (1005), 181-202

 4731
 C., 32, (19E0), 153-178.

 475.

 57 (1959), 3, 239-254.

 inverse prablew af the calculus af wariations", Jru. prod. Lo (1991), 2452(5)
|Cou| Dollolar. .I., 'Splutian ta the inverse prablets af the calculus of varia-

Gorms ${ }^{4}$, Proc. Kon. Ned Akad. A, 59, (1956), 338-359.
|Ga| Cxsgui, J., "Formill letegrabalaty of cyatems of partad daferential equàtions', Spnerger, fent. Notes in Phys. 225. 21-36.
 matrit, Parls, (19A9)

 Sup. Path, (1) (1颙), 117-444.
 Fruraer, 22 (1) (1972), 287-334, 杖 (3) 291-338.

 Ann. Int. Founer, \& \{ \{1 (1999), 1984-1421.
 and Appi. Math. Hartel Decker, Wew-Yotk, 1DJ, (1985), 48T-51d
[KI] Kusiw, J, Wo variational eeconq arder differential equationa: porymemial case", Diff Geom. Appi Proc. Conf Atg 2;-2b, Sulengr Urity. Opara (1999) 149-459.
'Kr] Krupkowh. O. "The geofatty of ordibary miational equatiopa", Jecture

 kial symems'. Amerr. J. Nath. 79 (1957), 1-47.
3M1 MACRI, P., Morosi, C., "A geometrical characinrization of untegrabin

 Séminaire Bourdakn, (196E-67), Expraé No. 329, 13 pp .

 Theste, Vpiverity Pzul Sabatine \{a@97).
 meca. U'ทוv. Tumisarra, 33, (1591).

 bridge, Mana., (1964).

 Valtars, Pqu2, (JH10).
"Ru] Juwd, H., "The Diferenkial Seametry of Finsler Spaces", Sprarger Ver!ag, (1958)
|Sal Sarlest, W., "The Helmbilts conditions revitited A fiew appoth to the

[3CM] Skrlbt, W., Crukdpon, M., Mhrtwas, B. "Thbe integrability coadiliona
 diferenkial equationc", Acta Appi. Sath., 54 (1998), no. 3. 233-273.
 (1955), 197-278
 tivan", Bulf Amer. Matt. Soc., 100 (1969), 1 $79-239$.
 Sect, Math 35 (1992), t03-107.
|Swe| Swnpary, Wr.J. "The f-Paincar maturate", Pacyfic J. Math., 20, (1967), 659-570.

 Applicatuens" Sfarcer Decker, New. York, (1985), 497-510.
 E56, 5pminger- Vedagr, Nex-York, (l9\&6), 22-4日
 Diff. Gecm. ants Appi 5\{1955), 153-17D.
|YI] Vinogindov, A M., "The e-spectral sequenk, hagrangain kronalinu aud

Index

2lmoet-complax structure, 53, banks,

- allapted, 59,
- quadi-regular. 12,

Betwald canpection, 55,
Biancbu idedtatres, 55.
ranonical TeItical field, d4
curlan

- character, 23.
- Tett, L3.
sommutator, 30,
sonnestion, 47,
- assocjated to a lagrangian, 62 ,
- homrgeneals, 47,
- liusar, ${ }^{7}, 47$,
<onstant alpebraic 1ype, 173 .
curwalure, 55_{1},
- isolrcpoc. 67,
rexatiabt derivative, 49,
delloction, 46,
torivation
 trpe di., 33,
- type i, 31,

Dauglar teunor, 57.
Euler-Lagtange

- equation, 61,
- Exm, Al),
- aperator, 68,
focmal intoprability, 9, 23.
fotmally iotegrabis PDE, 9,
ceodenic, \&S,
hamogenety, 45,
ividectur
- curvature, 积,
- sptay, 69.

Lagraggian, 60,

- tagular. A0,
lapear cannectrop, 7_{1}
locally دotegrable PDE, 1_{1}
metric,
- asaccisted ta a Lagrangiar, 60,
- Figaler, 60,
pull length vector. 82 ,
partial differential equaitien (PDEj, 7 ,
- asavilated to a PDO. B,
partad differential oparatior (PDO), 6,
- limear, 7,
- regular, 23,
paralle] rector field, 49,
psth of a triay, 45
pateatial, 46
projectiva
- lotizontal, 4日,
- vertjcal. 48,
prrinongation
- of the mprobal, 14,
, ts allor,

reducible
- tisk phthition, 120,
- apray, 120, 153.
astiond <urviturt
. of a Lagraggian, 65.

of a Elemann space. A6,
Femi-baxir form, 42.
Span, 174,
spraj. 43,
- asocizited id a compection, 54.
- anociatod to a Lagrangan, ol.
- flat, 67 ,
- horrogeneous, 45.
- inotropsc, 69
- Jocally varjational, 63,
- teprical, 58.
- quadratic, 4i.
- variationd, 63,
aslution
- of a PDR 7.
- of a PDO, g.
- Lith order. \$1

Spetacis ssmplex, 25,
nymbol

- s a $\mathrm{PDO}, \mathrm{JO}$,
- involutive, 12 ,
tegswan, 48,
totsion.
- ad Lonanction, 51,
- of a PDE, 13 ,
- weak, 51,
, atroog, 51,
woftucal
- Ehicomor phanm, 43.
- projuctian, 43,
varialional
- Trultiplies. \% \%
- apray. 63.

[^0]:

[^1]:

[^2]: *it can be zbeciced mucb more easuly in the diffecentable cast be:ng the Fribubint Thnorem. Our proot is then noi hang rase than an exaeple which clarifite lise illerhan
 Theorem

[^3]:
 un 'f'M'.

[^4]:

[^5]:

