
Three-dimensional topological loops with solvable

multiplication groups

Abstract

We prove that each 3-dimensional connected topological loop L

having a solvable Lie group of dimension ≤ 5 as the multiplication

group of L is centrally nilpotent of class 2. Moreover, we classify the
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have dimension 5. We find also the inner mapping groups of L.
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1. Introduction

The multiplication group Mult(L) of a loop L introduced in [1], [2] connects

the loop with the group theory since for any normal subloop of L there is

a normal subgroup of Mult(L) and conversely to every normal subgroup of

Mult(L) corresponds a normal subloop of L (cf. Lemma 3). Necessary and

sufficient conditions for a group K to be the multiplication group Mult(L)

of a loop L are established in [14]. In this criterion there are two special

transversals A and B with respect to a subgroup S (see Lemma 1) which

results in being the stabilizer of the identity of L in Mult(L) and it is called
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the inner mapping group Inn(L) of L. For finite loops the importance of

Mult(L) and Inn(L) as well as the transversals A and B is documented in

([3], [13] - [16], [19]).

In general the multiplication group Mult(L) for a topological loop L has

infinite dimension. If L has a Lie group as its multiplication group, then the

structure of L as well as that of Mult(L) is strongly restricted. Hence it is

justified to investigate Lie groups which are multiplication groups of L ([4]

- [6], [17]). In this case the criterion in [14] can be effectively used and the

topological loop L is realized as a sharply transitive section in a subgroup

G of Mult(L). This subgroup G is the group topologically generated by the

left translations of L.

If the group Mult(L) of a 2-dimensional topological loop L is a Lie group,

then it is an elementary filiform Lie group Fn with n ≥ 4 ([4]). Classifying

all at most 5-dimensional solvable non-nilpotent Lie groups K which are

multiplication groups Mult(L) of 3-dimensional connected simply connected

topological loops L we see that for the structure of Mult(L) one has more

freedom. Moreover, knowing Mult(L) one can describe the structure of L

and determine the inner mapping group of L.

In Section 3 we give the precise structure of the 3-dimensional simply

connected topological loops L such that the multiplication group Mult(L)

of L is a solvable Lie group and L has a 1-dimensional connected normal

subloop (see Theorem 6). In this paper we prove that for each 3-dimensional
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simply connected topological loop L having a solvable Lie group of dimension

≤ 5 as the multiplication group Mult(L) of L the group Mult(L) is a semidi-

rect product of a group Q ∼= R2 with the group M = Z × Inn(L) ∼= Rn,

n ∈ {2, 3}, where R = Z is a central subgroup of Mult(L). So we show

that none of the 4-dimensional solvable Lie groups as well as none of the

5-dimensional solvable non-nilpotent indecomposable Lie groups are multi-

plication groups of 3-dimensional topological loops L (see Sections 4 and 5).

But there are many loops L having a 4-dimensional solvable Lie group as

the group generated by their left translations (Theorem 10).

To classify the 5-dimensional solvable decomposable Lie groups Mult(L)

of L we have to find special left transversals to a 2-dimensional subgroup

S of Mult(L) such that the core of S in Mult(L) is trivial, S is included

in a normal subgroup M ∼= R3 of Mult(L) with Mult(L)/M ∼= R2 and the

normalizer of S in Mult(L) is the direct product of S and the centre of

Mult(L). The final result of our efforts is the following: If Mult(L) has 1-

dimensional centre, then it is either the group F3×L2 or the group R×L2×

L2, or the direct product R×Σ, where Σ is a 4-dimensional indecomposable

solvable Lie group having 2-dimensional commutator subgroup and at most

one 1-dimensional normal subgroup. If Mult(L) has 2-dimensional centre,

then Mult(L) is either the group F4 × R or the direct product of R2 and

a 3-dimensional Lie group having 2-dimensional commutator subgroup (see

Theorem 18).
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We want to mention that a Lie group need not to be the multiplication

group of a topological loop if its universal covering has this property. We

illustrate this for the direct product Ω of R2 and the group of orientation

preserving motions of the euclidean plane and the universal covering of Ω

(Theorem 18 case 6) and Proposition 19).

As our result did not give any example of a 3-dimensional topological

loop L having an indecomposable solvable Lie group as the multiplication

group of L, further investigations should be focused on this type of groups.

2. Preliminaries

A binary system (L, ·) is called a loop if there exists an element e ∈ L such

that x = e·x = x·e holds for all x ∈ L and the equations a·y = b and x·a = b

have precisely one solution, which we denote by y = a\b and x = b/a. A

loop L is proper if it is not a group.

The left and right translations λa : y 7→ a · y : L × L → L and ρa :

y 7→ y · a : L × L → L, a ∈ L, are bijections of L. The permutation

group Mult(L) generated by all left and right translations of the loop L is

called the multiplication group of L and the stabilizer of e ∈ L in the group

Mult(L) is called the inner mapping group Inn(L) of L.

Let K be a group, let S ≤ K, and let A and B be two left transversals

to S in K. We say that A and B are S-connected if a−1b−1ab ∈ S for

every a ∈ A and b ∈ B. The core CoK(S) of S in K is the largest normal

subgroup of K contained in S. If L is a loop, then Λ(L) = {λa; a ∈ L}
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and R(L) = {ρa; a ∈ L} are Inn(L)-connected transversals in the group

Mult(L), and the core of Inn(L) in Mult(L) is trivial. We often use the

following (see [14], Theorem 4.1 and Proposition 2.7).

Lemma 1. A group K is isomorphic to the multiplication group of a loop

if and only if there exists a subgroup S with CoK(S) = 1 and S-connected

transversals A and B satisfying K = 〈A,B〉.

Lemma 2. Let L be a loop with multiplication group Mult(L) and inner

mapping group Inn(L). Then the normalizer NMult(L)(Inn(L)) is the direct

product Inn(L)×Z(Mult(L)), where Z(Mult(L)) is the centre of the group

Mult(L).

The kernel of a homomorphism α : (L, ·) → (L′, ∗) of a loop L into a loop

L′ is a normal subloop N of L. The centre Z(L) of a loop L consists of all

elements z which satisfy the equations zx ·y = z ·xy, x ·yz = xy ·z, xz ·y =

x · zy, zx = xz for all x, y ∈ L. If we put Z0 = e, Z1 = Z(L) and

Zi/Zi−1 = Z(L/Zi−1), then we obtain a series of normal subloops of L. If

Zn−1 is a proper subloop of L but Zn = L, then L is centrally nilpotent of

class n. The next assertion was proved by Albert in [1], Theorems 3, 4 and

5 and by Bruck in [2], IV.1, Lemma 1.3.

Lemma 3. Let L be a loop with multiplication group Mult(L) and identity

element e.

(i) Let α be a homomorphism of the loop L onto the loop α(L) with kernel

5



N . Then α induces a homomorphism of the group Mult(L) onto the group

Mult(α(L)).

Let M(N) be the set {m ∈Mult(L); xN = m(x)N for all x ∈ L}. Then

M(N) is a normal subgroup of Mult(L) containing the multiplication group

Mult(N) of the loop N and the multiplication group of the factor loop L/N

is isomorphic to Mult(L)/M(N).

(ii) For every normal subgroup N of Mult(L) the orbit N (e) is a normal

subloop of L. Moreover, N ≤M(N (e)).

A loop L is called topological if L is a topological space and the binary

operations (x, y) 7→ x · y, (x, y) 7→ x\y, (x, y) 7→ y/x : L × L → L are

continuous. Let G be a connected Lie group, let H be a subgroup of G.

A continuous section σ : G/H → G is called sharply transitive, if the set

σ(G/H) operates sharply transitively on G/H, which means that for any

xH and yH there exists precisely one z ∈ σ(G/H) with zxH = yH. Every

connected topological loop L having a Lie group G as the group topologically

generated by the left translations of L is obtained on a homogeneous space

G/H, where H is a closed subgroup of G with CoG(H) = 1 and σ : G/H →

G is a continuous sharply transitive section such that σ(H) = 1 ∈ G and the

subset σ(G/H) generates G. The multiplication of L on the manifold G/H is

defined by xH ∗yH = σ(xH)yH and the group G is the group topologically

generated by the left translations of L. Moreover, the subgroup H is the

stabilizer of the identity element e ∈ L in the group G. The following

6



assertion is proved in [9], IX.1.

Lemma 4. For any connected topological loop there is a universal covering

loop. This loop is simply connected.

The elementary filiform Lie group Fn is the simply connected Lie group of

dimension n ≥ 3 such that its Lie algebra has a basis {e1, · · · , en} with

[e1, ei] = ei+1 for 2 ≤ i ≤ n − 1. A 2-dimensional simply connected loop

LF is called an elementary filiform loop if its multiplication group is an

elementary filiform group Fn, n ≥ 4 ([5]).

Homogeneous spaces of solvable Lie groups are called solvmanifolds.

3. Three-dimensional topological loops with

one-dimensional connected normal subloop

Let L be a topological loop on a connected 3-dimensional manifold such that

the group Mult(L) topologically generated by all left and right translations

of L is a Lie group. The loop L is a 3-dimensional homogeneous space

with respect to the transformation group Mult(L) acting transitively and

effectively on L. According to Theorem B and Theorem 1 in [10] the simply

connected spaces S2 × R and S3 are not solvmanifolds. Hence from [8] we

get the following.

Lemma 5. Let L be a 3-dimensional proper connected topological loop such

that its multiplication group Mult(L) is a solvable Lie group. If L is simply

connected, then it is homeomorphic to R3.

7



Assume that the multiplication group Mult(L) of a topological loop L is

solvable. Let K be a minimal non-trivial connected normal subgroup of

Mult(L). Then one has dim K ∈ {1, 2}. By Lemma 3 the orbit K(e) is a

connected normal subloop of L. Since the core CoMult(L)(Inn(L)) is trivial

K(e) 6= {e}. Hence the dimension of K(e) is 1 or 2. Now we deal with the

case that dim K(e) = 1.

Theorem 6. Let L be a 3-dimensional proper connected simply connected

topological loop such that its multiplication group Mult(L) is a solvable Lie

group. If L has a 1-dimensional connected normal subloop N , then N is

isomorphic to the group R and we have the following possibilities:

(a) The factor loop L/N is isomorphic to R2. Then N is contained in the

centre of L and the group Mult(L) is a semidirect product of a group Q ∼= R2

with the abelian group M = Z × Inn(L) ∼= Rm, m ≥ 2, where R = Z ∼= N

is a central subgroup of Mult(L).

(b) The loop L/N is isomorphic either to the non-abelian 2-dimensional

Lie group L2 or to a 2-dimensional elementary filiform loop LF . Then the

group Mult(L) has a normal subgroup S containing Mult(N) ∼= R such that

the factor group Mult(L)/S is isomorphic to the direct product L2 × L2 if

L/N ∼= L2 or to an elementary filiform Lie group Fn, n ≥ 4, if L/N ∼= LF .

Moreover, Mult(L) has dimension at least 5.

Proof. By Lemma 5 the loop L is homeomorphic to R3. The connected

normal subloop N of L is isomorphic to R because the multiplication group
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of N a Lie subgroup of Mult(L) (Theorem 18.18 in [17]). The factor loop

L/N is a 2-dimensional connected loop such that the multiplication group

Mult(L/N) is a factor group of Mult(L) (Lemma 3). The manifold L is

a fibering of R3 over L/N with fibers homeomorphic to R. Hence L/N is

homeomorphic to R2 and therefore it is either a 2-dimensional connected

Lie group or an elementary filiform loop LF (Theorem 1 in [4]).

If the factor loop L/N is the Lie group R2, then by Lemma 3 there exists

a normal subgroup M of Mult(L) such that Mult(L)/M is isomorphic to the

multiplication group of the loop L/N and hence to the group R2. Therefore

the group M is connected and Mult(L)/M operates sharply transitively

on the orbits of N in L. The group M contains the multiplication group

Mult(N) ∼= R of N and leaves every orbit of N in the manifold L invariant.

Every orbit of N is homeomorphic to R. Hence the group M induces on the

orbit N(e) either the sharply transitive group R or the group Ω isomorphic

to the Lie group L2 ([18], Lemma 1.10).

Assume first that the group induced by M on N(e) is Ω ∼= L2. Then

M induces a group isomorphic to Ω on every orbit N(x), x ∈ L. Since

all 1-dimensional connected subgroups of Ω different from the commutator

subgroup are conjugate, the stabilizer Ωe of e ∈ L in Ω would fix on every

orbit N(x) precisely one point. The set of fixed points of Ωe in L coincides

with that of fixed points of the stabilizer Inn(L) of e ∈ L in Mult(L). This

latter is the centre Z of L (see [2], IV.1). Hence the centre Z of L would be
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at least 2-dimensional and we would have L = N · Z. But then L would be

an abelian group which is a contradiction.

Therefore the group M induces on every orbit N(x), x ∈ L, the sharply

transitive group R. The stabilizer M1 of e ∈ L in M fixes every point of

the orbit N(e) = M(e). Hence M1 is a normal subgroup of M . Since the

factor group M/M1 is isomorphic to R the commutator subgroup M ′ of

M is contained in M1 and M ′ is normal in Mult(L). If M ′ were different

from {1}, then Mult(L) would contain the normal subgroup M ′ which has

fixed points. This is a contradiction because the transitive group Mult(L)

acts effectively on L. Hence M is abelian. If M would contain a compact

connected subgroup K 6= {1}, then K would be isomorphic to the group

SO2(R) and it would be a normal subgroup of Mult(L) which has a fixed

point in L. This contradiction yields that M is isomorphic to Rn. Since L

is a proper loop of dimension 3 one has dim Mult(L) ≥ 4 and hence n ≥ 2.

As the inner mapping group Inn(L) has codimension 3 it is the group M1.

Since M1 fixes every element of the loop N(e) the normal subloop N is a

central subgroup of L. The group consisting of the translations by elements

of N is isomorphic to N and it is a central subgroup Z of Mult(L). Then

we have M = Z × Inn(L) and the assertion (a) is proved.

If the factor loop L/N is isomorphic to the Lie group L2, respectively to

an elementary filiform loop LF , then the multiplication group Mult(L/N)

is isomorphic to the direct product L2 × L2, respectively to an elementary
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filiform Lie group Fn, n ≥ 4. Moreover, there exists a normal subgroup S

of Mult(L) containing the group Mult(N) ∼= R (see Lemma 3) such that

Mult(L)/S is isomorphic to the group Mult(L/N) and the assertion (b)

follows.

4. Three-dimensional topological loops with four-dimensional

solvable Lie group as multiplication group do not exist

The following Lemma follows from Theorem 18.18 in [17], Theorem 1 in [4]

and Theorem 6 (a).

Lemma 7. If there exists proper connected topological loop L having a

4-dimensional solvable non-nilpotent Lie group as its multiplication group

Mult(L), then L has dimension 3. Moreover, if L is simply connected and

has a 1-dimensional normal subloop, then Mult(L) is a semidirect product

of R2 with a normal subgroup M ∼= R2 containing a 1-dimensional central

subgroup of Mult(L).

The 4-dimensional indecomposable Lie algebras are listed in [11], § 5. Among

these solvable Lie algebras there are four with 1-dimensional centre: the

filiform Lie algebra g4,1 and the non-nilpotent Lie algebras g4,3, g4,8 with h =

−1, g4,9 with p = 0. Proposition 4.3 in [5] shows that the filiform Lie group

F4 is not the multiplication group of 3-dimensional connected topological

loops. Since the commutator Lie algebra of g4,8 and g4,9 has dimension 3

there is no connected topological loop L having these Lie algebras as the Lie
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algebra of Mult(L) (see Lemma 7 and Theorem 6 (a)).

The commutator Lie algebra of g4,3 has dimension 2. Hence for the

corresponding simply connected Lie groupG it seems to be more natural that

G can be the multiplication group Mult(L) of connected topological loops.

Although, as we will show, there are four classes of 3-dimensional simply

connected topological loops L having G as the group generated by their left

translations (Theorem 10), for any of these loops the multiplication group

Mult(L) has dimension greater than 4 (Corollary 11). For the classification

of these loops L we often use the following lemmata, the first of which is

proved in [5] Lemma 4.2, and the second in [6] Lemma 3.1.

Lemma 8. Let f : (x, y, z) 7→ f(x, y, z) : R3 → R be a continuous func-

tion. The function g : z 7→ z + uf(x0, y0, z) : R → R is bijective for every

x0, y0, u ∈ R if and only if f does not depend on the variable z.

Lemma 9. Let f : R→ R be a continuous function such that for all z1, z2 ∈

R one has f(z2) + e−z2f(z1) = f(z1 + z2). Then we get f(z) = c(1 − e−z),

where c is a real constant.

Theorem 10. Let G be the four-dimensional connected simply connected

solvable Lie group the multiplication of which is represented on R4 by

g(x1, x2, x3, x4)g(y1, y2, y3, y4) = g(x1+y1e
x4 , x2+y2+x4y3, x3+y3, x4+y4).

Let H be a non-normal subgroup of G isomorphic to R. Using suitable
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automorphisms of G we may choose H as one of the following subgroups:

H1 = {g(0, 0, 0, x4);x4 ∈ R}, H2 = {g(0, 0, x3, 0);x3 ∈ R},

H3 = {g(x3, 0, x3, 0);x3 ∈ R}, H4 = {g(x1, x1, 0, 0);x1 ∈ R}.

a) Every continuous sharply transitive section σ : G/H1 → G with the

properties that σ(G/H1) generates G and σ(H1) = 1 is determined by the

map σf : g(x, y, z, 0)H1 7→ g(x, y, z, f(z)), where f : R→ R is a continuous

non-linear function with f(0) = 0. The multiplication of the loop Lf given

by σf can be written as

(x1, y1, z1) ∗ (x2, y2, z2) = (x1 + x2e
f(z1), y1 + y2 + z2f(z1), z1 + z2). (1)

b) Each continuous sharply transitive section σ : G/H2 → G such that

σ(G/H2) generates G and σ(H2) = 1 has the form

σh : g(x, y, 0, z)H2 7→ g(x, y + h(x, z)z, h(x, z), z),

where h : R2 → R is a continuous function with h(0, 0) = 0 such that h does

not fulfil the identities h(x, 0) = 0 and h(0, z) = lz, l ∈ R, simultaneously.

The multiplication of the loop Lh corresponding to σh is determined by

(x1, y1, z1) ∗ (x2, y2, z2) = (x1 + x2e
z1 , y1 + y2 − z2h(x1, z1), z1 + z2). (2)

c) Every continuous sharply transitive section σ : G/H3 → G such that

σ(G/H3) generates G and σ(H3) = 1 is given by the map

σf : g(x, y, 0, z)H3 7→ g(x+ ezf(x, y, z), y + zf(x, y, z), f(x, y, z), z)
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with a continuous function f : R3 → R such that f(0, 0, 0) = 0, f does not

satisfy either the identities

f(x, y, 0) = −x, f(0, 0, z) = C(1− e−z), C ∈ R, (3)

or the identities

f(x, y, 0) = 0, f(0, 0, z) = λz, λ ∈ R, (4)

simultaneously and for all triples (x1, y1, z1) and (x2, y2, z2) ∈ R3 the equa-

tions

y = y2 − y1 + z1f(x, y, z2 − z1), (5)

x = x2 − ez2−z1x1 + ez2(1− e−z1)f(x, y, z2 − z1) (6)

have a unique solution (x, y) ∈ R2. The loop Lf corresponding to σf is

defined by the multiplication

(x1, y1, z1) ∗ (x2, y2, z2) =

(x1 + ez1(x2 + f(x1, y1, z1)(1− ez2)), y1 + y2 − z2f(x1, y1, z1), z1 + z2). (7)

d) Any continuous sharply transitive section σ : G/H4 → G such that

σ(G/H4) generates G and σ(H4) = 1 is determined by the map

σk : g(x, 0, y, z)H4 7→ g(x+ ezk(x, y, z), k(x, y, z), y, z),

where k : R3 → R is a continuous function with k(0, 0, 0) = 0 such that k

does not fulfil the identities given by (3) in case c) simultaneously and such

that for all triples (x1, y1, z1) and (x2, y2, z2) ∈ R3 the equation

x+ ez2k(x, y2 − y1, z2 − z1)[e−z1 − 1] = x2 − x1ez2−z1 + ez2(z2 − z1)y1 (8)
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has a unique solution x ∈ R. The multiplication of the loop Lk corresponding

to σk can be written as

(x1, y1, z1) ∗ (x2, y2, z2) =

(x1 + ez1 [x2 + k(x1, y1, z1)− ez2(z1y2 + k(x1, y1, z1))], y1 + y2, z1 + z2). (9)

Proof. The linear representation of the group G is given in [7], Case 4.3. Let

L be a 3-dimensional connected simply connected topological loop having

G as the group topologically generated by its left translations. Then the

stabilizer H of e ∈ L in G is a 1-dimensional non-normal subgroup of G.

As the Lie algebra g of G has a basis {e1, e2, e3, e4} with [e1, e4] = e1,

[e3, e4] = e2, the subgroup exp te2, t ∈ R, is the centre of G, the subgroup

exp(te2 + se1), t, s ∈ R, is the commutator subgroup of G. Hence the

automorphism group of g consists of the following linear mappings ϕ(e1) =

ae1, ϕ(e2) = be2, ϕ(e3) = ke2 + be3, ϕ(e4) = l1e1 + l2e2 + l3e3 + e4, with

ab 6= 0, k, l1, l2, l3 ∈ R. Since Re1 and Re2 are ideals of g the subalgebra h of

H does not contain e1, e2. Hence H is a subgroup exp t(αe1+βe2+γe3+δe4)

with t ∈ R such that γ2 + δ2 = 1 or αβ 6= 0. Then a suitable automorphism

of G corresponding to an automorphism ϕ of g maps H onto one of the

following subgroups

H1 = exp te4, H2 = exp te3, H3 = exp t(e3 + e1), H4 = exp t(e1 + e2).

Every connected topological proper loop L having G as the group topologi-

cally generated by its left translations and H as the stabilizer of e ∈ L in G
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is determined by a continuous sharply transitive section σ : G/H → G with

the properties that σ(H) = 1 ∈ G and σ(G/H) generates G.

First we assume that H = H1 = {g(0, 0, 0, k); k ∈ R}. Since all elements

of G have a unique decomposition as g(x, y, z, 0)g(0, 0, 0, k), any continuous

function f : R3 → R; (x, y, z) 7→ f(x, y, z) determines a continuous section

σ : G/H1 → G given by

σ : g(x, y, z, 0)H1 7→ g(x, y, z, 0)g(0, 0, 0, f(x, y, z)) = g(x, y, z, f(x, y, z)).

The section σ is sharply transitive if and only if for any triple (x1, y1, z1),

(x2, y2, z2) ∈ R3 there exists precisely one triple (x, y, z) ∈ R3 such that

g(x, y, z, f(x, y, z))g(x1, y1, z1, 0) = g(x2, y2, z2, 0)g(0, 0, 0, t)

for a suitable t ∈ R. This provides the following equations z = z2 − z1,

t = f(x, y, z2 − z1),

y = y2 − y1 − z1f(x, y, z2 − z1), (10)

x = x2 − x1ef(x,y,z2−z1). (11)

For x1 = 0 equation (11) yields that x = x2 and equation (10) has a unique

solution for y if and only if the function g : y 7→ y + z1f(x0, y, z0) : R → R

is bijective for every x0 = x2, z0 = z2 − z1 and z1 ∈ R. This is the case

precisely if the function f(x, y, z) = f(x, z) does not depend on the variable

y (Lemma 8). Using this, equations (10) and (11) are reduced to

y = y2 − y1 − z1f(x, z2 − z1), (12)
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x = x2 − x1ef(x,z2−z1). (13)

Applying Lemma 8 for the function ef(x,z) : R2 → R we obtain that equation

(13) has a unique solution for x precisely if the function f(x, z) = f(z) does

not depend on x. Since in this case equation (12) has a unique solution

y = y2−y1−z1f(z2−z1) each continuous function f : R→ R with f(0) = 0

defines a loop Lf . This loop is proper if σ(G/H1) generates G. The set

σ(G/H1) = {g(x, y, z, f(z));x, y, z ∈ R} contains the commutator subgroup

G′ = {g(x, y, 0, 0);x, y ∈ R} and the set F = {g(0, 0, z, f(z)); z ∈ R}. We

have G′ ∩ F = {1}. Therefore σ(G/H1) does not generate G if the set

FG′/G′ is a one-parameter subgroup of G/G′. As

g(R,R, z1, f(z1))g(R,R, z2, f(z2)) = g(R,R, z1 + z2, f(z1) + f(z2))

this is the case precisely if f(z) = lz, l ∈ R. Hence for every non-linear

function f there is a topological proper loop Lf .

In the coordinate system (x, y, z) 7→ g(x, y, z, 0)H1 the multiplication of Lf

is determined if we apply σ(g(x1, y1, z1, 0)H1) = g(x1, y1, z1, f(z1)) to the

left coset g(x2, y2, z2, 0)H1 and find in the image coset the element of G

which lies in the set {g(x, y, z, 0)H1; x, y, z ∈ R}. A direct computation

yields multiplication (1) and assertion a) is proved.

A similar consideration as in the previous case yields that for H = H2 =

{g(0, 0, k, 0); k ∈ R} an arbitrary continuous section σ2 : G/H2 → G may
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be given by σ2 : g(x, y, 0, z)H2 7→

g(x, y, 0, z)g(0, 0, h(x, y, z), 0) = g(x, y + zh(x, y, z), h(x, y, z), z), (14)

for H = H3 = {g(t, 0, t, 0); t ∈ R} a continuous section σ3 : G/H3 → G can

be given by

σ3 : g(x, y, 0, z)H3 7→ g(x, y, 0, z)g(f(x, y, z), 0, f(x, y, z), 0) =

g(x+ ezf(x, y, z), y + zf(x, y, z), f(x, y, z), z), (15)

and for H = H4 = {g(t, t, 0, 0); t ∈ R} a continuous section σ4 : G/H4 → G

may be given by

σ4 : g(x, 0, y, z)H4 7→ g(x, 0, y, z)g(k(x, y, z), k(x, y, z), 0, 0) =

g(x+ ezk(x, y, z), k(x, y, z), y, z), (16)

where h : R3 → R, f : R3 → R, k : R3 → R are continuous functions.

These sections σi, i = 2, 3, 4, have the property σi(H) = 1 ∈ G precisely if

h(0, 0, 0) = f(0, 0, 0) = k(0, 0, 0) = 0.

The set σi(G/Hi) given by (14), (15), (16) acts sharply transitively on G/Hi

if and only if for i = 2 the equation

g(x, y + zh(x, y, z), h(x, y, z), z)g(x1, y1, 0, z1) = g(x2, y2, 0, z2)g(0, 0, t, 0),

(17)

for i = 3 the equation

g(x+ ezf(x, y, z), y + zf(x, y, z), f(x, y, z), z)g(x1, y1, 0, z1) =
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g(x2, y2, 0, z2)g(t, 0, t, 0), (18)

for i = 4 the equation

g(x+ ezk(x, y, z), k(x, y, z), y, z)g(x1, 0, y1, z1) = g(x2, 0, y2, z2)g(t, t, 0, 0)

(19)

has a unique solution (x, y, z) ∈ R3 with a suitable t ∈ R for any given triple

(x1, y1, z1), (x2, y2, z2) ∈ R3. Equation (17) is equivalent to the following

z = z2 − z1, t = h(x, y, z2 − z1), x = x2 − ez2−z1x1 and

0 = y − y2 + y1 − z1h(x2 − ez2−z1x1, y, z2 − z1).

This last equation has a unique solution for y precisely if the function

h(x, y, z) = h(x, z) does not depend on the variable y (cf. Lemma 8). Equa-

tion (18) yields z = z2 − z1, t = f(x, y, z2 − z1) and that equations (5), (6)

in assertion c) have a unique solution (x, y) ∈ R2. Moreover, equation (19)

gives z = z2 − z1, y = y2 − y1, t = y1(z2 − z1) + k(x, y2 − y1, z2 − z1) and

that equation (8) in assertion d) has a unique solution x ∈ R.

Now we investigate under which circumstances the set σi(G/Hi), i = 2, 3, 4,

generates the group G.

The set σ2(G/H2) = {g(x, y + zh(x, z), h(x, z), z);x, y, z ∈ R} contains

the subgroup K2 = {g(x, y, h(x, 0), 0); x, y ∈ R} and the subset F2 =

{g(0, zh(0, z), h(0, z), z); z ∈ R}. The set σ3(G/H3) given by (15) includes

the subgroup K3 = {g(x+ f(x, y, 0), y, f(x, y, 0), 0); x, y ∈ R}, and the sub-

set F3 = {g(ezf(0, 0, z), zf(0, 0, z), f(0, 0, z), z); z ∈ R}. The set σ4(G/H4)
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given by (16) contains the subgroupK4 = {g(x+k(x, y, 0), k(x, y, 0), y, 0); x,

y ∈ R} and the subset F4 = {g(ezk(0, 0, z), k(0, 0, z), 0, z); z ∈ R}. As for

all these cases we have Ki ∩ Fi = {1} the set σi(G/Hi), i = 2, 3, 4, does

not generate G if the group Ki has dimension 2, for all h ∈ Fi one has

h−1Kih = Ki and FiKi/Ki is a one-parameter subgroup of G/Ki.

First we consider the pair (K2, F2). The group K2 has dimension 2 if the

subgroup {g(x, 0, h(x, 0), 0);x ∈ R} is a one-parameter subgroup. This is the

case precisely if h(x, 0) = bx, b ∈ R. For h = g(0, zh(0, z), h(0, z), z) ∈ F2,

z 6= 0 we get h−1g(x, y, bx, 0)h = g(xe−z, y − bzx, bx, 0) is an element of K2

if and only if b = 0. Then the group K2 coincides with the commutator

subgroup G′ of G. The set (F2G
′)/G′ is a one-parameter subgroup precisely

if h(0, z) = lz, l ∈ R. Therefore any function h : R2 → R, which does not

satisfy the identities h(x, 0) = 0 and h(0, z) = lz, l ∈ R, simultaneously

determines a proper topological loop Lh. A direct computation yields that

the multiplication of Lh corresponding to the section σ2 in the coordinate

system (x, y, z) 7→ g(x, y, 0, z)H2 is given by (2). This proves assertion b).

Now we deal with the pair (K3, F3). The group K3 has dimension 2 if and

only if f(x, y, 0) = cx+ dy, c, d ∈ R. For h ∈ F3 with z 6= 0 we have

h−1g(x+cx+dy, y, cx+dy, 0)h = g([(c+1)x+dy]e−z, y−z(cx+dy), cx+dy, 0).

Hence h−1K3h = K3 if and only if one has either c = −1, d = 0 or c = d = 0.

In the first case K3 is the normal subgroup G̃ = {g(0, y,−x, 0); x, y ∈ R}
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of G, in the second case K3 = G′. Since

g(ez1f(0, 0, z1),R,R, z1)g(ez2f(0, 0, z2),R,R, z2) =

g(ez1+z2f(0, 0, z2) + ez1f(0, 0, z1),R,R, z1 + z2)

the set F3G̃/G̃ is a one-parameter subgroup of G/G̃ if and only if for all z1,

z2 ∈ R the identity f(0, 0, z2) + e−z2f(0, 0, z1) = f(0, 0, z1 + z2) holds. By

Lemma 9 we obtain f(0, 0, z) = C(1 − e−z) with C ∈ R. The set F3G
′/G′

is a one-parameter subgroup of G/G′ if and only if one has f(0, 0, z) = λz

for some λ ∈ R. The set σ3(G/H3) does not generate G if the function

f(x, y, z) satisfies either the identities given by (3) or the identities given

by (4) in assertion c). A direct computation yields that the multiplication

of the loop Lf corresponding to the section σ3 in the coordinate system

(x, y, z) 7→ g(x, y, 0, z)H3 is given by (7) and the assertion c) is proved.

Finally we consider the pair (K4, F4). The group K4 has dimension 2 if and

only if k(x, y, 0) = ax+ by, a, b ∈ R. For h ∈ F4, z 6= 0 we have

h−1g(x+ ax+ by, ax+ by, y, 0)h = g([(a+ 1)x+ by]e−z,−zy+ ax+ by, y, 0).

Hence we obtain h−1K4h = K4 if and only if a = −1 and b = 0. Then the

group K4 coincides with the group G̃ introduced in the previous case. Hence

the same consideration as there proves that the set σ4(G/H4) does not gener-

ate G if the function k(x, y, z) satisfies the identities given by (3). A direct

computation gives that in the coordinate system (x, y, z) 7→g(x, 0, y, z)H4
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the multiplication of the loop Lk is given by (9) and the assertion d) is

proved.

Corollary 11. There is no connected topological loop L such that the mul-

tiplication group of L is locally isomorphic to the group G in Theorem 10.

Proof. By Lemmata 4, 7, 5 we may assume that L is homeomorphic to

R3. Every Lie group locally isomorphic to the group G in Theorem 10

has a 1-dimensional centre Z. The orbit Z(e) is a 1-dimensional normal

subloop of L isomorphic to R (see Lemma 3). Hence the multiplication

group of L is the simply connected group G (cf. Lemma 7) and the normal

subgroup M ∼= R2 of G given in Theorem 6 (a) is the commutator subgroup

G′ = {exp(te1 + ue2); t, u ∈ R} of G. Moreover, the inner mapping group

Inn(L) of L is a 1-dimensional non-normal subgroup of G′. Hence Inn(L)

must be the subgroup H4 (see Theorem 10). The normalizer of H4 in G

is the group N = {exp(t1e1 + t2e2 + t3e3); ti ∈ R}. As the direct product

Z × Inn(L) = G′ we have a contradiction to Lemma 2.

Now we treat 4-dimensional solvable Lie groups which are direct products.

Proposition 12. There exists no connected topological loop L such that the

multiplication group of L is a 4-dimensional solvable Lie group which is the

direct product of proper connected Lie groups.

Proof. By Lemmata 4, 7 and 5 we may assume that the loop L is homeo-

morphic to R3. Every 4-dimensional solvable decomposable Lie group has a
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1-dimensional normal subgroup N . As the orbit N(e) is a 1-dimensional nor-

mal subloop of L it follows from Lemma 7 that the group Mult(L) is simply

connected and its centre has dimension ≥ 1. Hence Mult(L) has the form

C×S, where C is the group R and S is a 3-dimensional simply connected Lie

group. The orbit C(e) is a 1-dimensional central subgroup of L isomorphic

to R (see Theorem 11 in [1]). By Theorem 6 (a) there is a 2-dimensional

normal subgroup M containing the group C ∼= R and the commutator sub-

group Mult(L)′ = S′ of Mult(L). Hence one has dim Mult(L)′ = 1. Then

Mult(L) is isomorphic either to G1 = R2 × L2 or to G2 = R × F3, where

F3 is the 3-dimensional filiform Lie group. Proposition 5.1 (i) in [5] shows

that the group G2 is not the multiplication group of a topological loop L

homeomorphic to R3.

Now we suppose that the group Mult(L) is the group G1 which is given on

R4 by the multiplication

g(x1, x2, x3, x4)g(y1, y2, y3, y4) = g(x1 + y1, x2 + y2, x3 + y3, y4 + x4e
y3).

Then the centre Z of G1 is the group Z = {g(x, y, 0, 0), x, y ∈ R} and

the commutator subgroup of G1 is the group G′1 = {g(0, 0, 0, z), z ∈ R}.

By Theorem 11 in [1] the orbit Z(e) is the centre of L isomorphic to R2.

Since the multiplication group Mult(L/Z(e)) of the factor loop L/Z(e) is

a factor group of G1 (see Lemma 3) we get L/Z(e) is the group R (see

Theorem 18.18 in [17]). Hence there is a normal subgroup P of G1 such

that Z is a subgroup of P and the factor group G1/P is isomorphic to
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the group Mult(L/Z(e)) ∼= R (Lemma 3). Then one has G′1 < P and

therefore P = Z×G′1. As G1/P acts sharply transitively on the orbits Z(x),

x ∈ L, the inner mapping group Inn(L) of the loop L is a 1-dimensional

subgroup of P with CoG1(Inn(L)) = 1. The Lie algebra g1 of G1 has

a basis {e1, e2, e3, e4} with [e4, e3] = e4. Hence the Lie algebra p of P

is given by p = 〈e1, e2, e4〉 and we may choose Inn(L) as the subgroup

exp t(e4 + ae1 + be2), t ∈ R, with a 6= 0 or b 6= 0. Each automorphism ϕ

of g1 has the form ϕ(e1) = k1e1 + k2e2, ϕ(e2) = l1e1 + l2e2, ϕ(e4) = ne4,

ϕ(e3) = a1e1 +a2e2 +a3e4 + e3 such that (k1l2− l1k2)n 6= 0, ki, li, n, aj ∈ R,

i = 1, 2, j = 1, 2, 3. Then we can change Inn(L) by an automorphism of G1

such that Inn(L) = {exp t(e4 + e1), t ∈ R} = {g(u, 0, 0, u), u ∈ R}.

According to Lemma 1 the group G1 is isomorphic to the multiplication

group Mult(L) of a topological proper loop L having the subgroup Inn(L)

as its inner mapping group precisely if there are two left transversals A and B

to Inn(L) in G1 such that {a−1b−1ab; a ∈ A, b ∈ B} is contained in Inn(L)

and the set {A,B} generates the group G1. Arbitrary left transversals to

the group Inn(L) in G1 are: A = {g(x, y, z, f(x, y, z));x, y, z ∈ R} and

B = {g(k, l,m, h(k, l,m)); k, l,m ∈ R}, where f : R3 → R, h : R3 → R are

continuous functions with f(0, 0, 0) = h(0, 0, 0) = 0. The products a−1b−1ab

with a ∈ A and b ∈ B are elements of Inn(L) if and only if the equation

h(k, l,m)(1− ez) = f(x, y, z)(1− em) holds for all x, y, z, k, l,m ∈ R. Since

the left hand side of the last equation does not depend on the variables x and
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y and the right hand side is independent of k, l we have h(k, l,m) = h(m),

f(x, y, z) = f(z) and it follows that h(m)
1−em = f(z)

1−ez = k, where k is a real

constant. Then both sets A and B consist of the centre Z of G1 and the

one-parameter subgroup F = {g(0, 0, z, k(1−ez)), z ∈ R} with Z ∩F = {1}.

Hence {A,B} does not generate the group G1. This contradiction proves

the assertion.

Proposition 13. A 4-dimensional connected Lie group having no normal

subgroup of dimension 1 cannot be the multiplication group of a connected

topological proper loop L.

Proof. We may suppose that L is homeomorphic to R3 (see Lemmata 4,

7 and 5). Any 4-dimensional connected Lie group having no 1-dimensional

normal subgroup is locally isomorphic to the group G given in Case 4.12 of

[7]. The Lie algebra g of G is given by [e1, e3] = e1, [e2, e3] = e2, [e1, e4] =

−e2, [e2, e4] = e1 (see g4,10 in [11]).

The commutator subgroup G′ of G is the 2-dimensional abelian normal

subgroup G′ = {g(x, y, 0, 0), x, y ∈ R}. The orbit G′(e) is a connected

normal subloop of L with dimension 1 or 2. As G has discrete centre one

has dimG′(e) = 2 (see Lemma 7). The multiplication group of the subloop

G′(e) is a subgroup of G (see Lemma 3). Then G′(e) is isomorphic to R2

because none of the groups Mult(L2) = L2×L2 and Mult(LF ) = Fn, n ≥ 4,

are contained in G. As the multiplication group of the factor loop L/G′(e) is

a factor group of Mult(L) the loop L/G′(e) is isomorphic to R (see Theorem
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18.18 in [17]). Then there is a normal subgroup K of G such that G/K is

isomorphic to the multiplication group Mult(L/G′(e)) ∼= R (cf. Lemma 3).

Therefore the group K has dimension 3, it contains the subgroup G′ and

leaves every orbit G′(x), x ∈ L, in L invariant. Hence the Lie algebra k of K

has one of the following forms: k1 = 〈e1, e2, e4+le3〉, l ∈ R, k2 = 〈e1, e2, e3〉.

The Lie group K1 of k1 has no 1-dimensional normal subgroup. For this

reason K1 cannot induce on the orbit G′(e) a 2-dimensional group. Any

1-dimensional normal subgroup S of the Lie group K2 of k2 is contained in

the commutator subgroup K ′2 = G′. Hence K2/S is isomorphic to L2. As

G′ acts sharply transitively on G′(e), for every element s ∈ S \ {1} one has

s(e) 6= e and K2 cannot induce on the orbit G′(e) a 2-dimensional group.

Hence the group induced by Ki, i = 1, 2, on the orbit G′(e) is isomorphic

to Ki. Then Ki induces a group isomorphic to Ki on every orbit G′(x),

x ∈ L. The same consideration as for the group Ω ∼= L2 discussed in the

proof of Theorem 6 (a) is valid for the groups Ki, i = 1, 2. Therefore the

centre of L would be at least 1-dimensional and we have a contradiction to

the fact that G has discrete centre.

5. Five-dimensional solvable indecomposable Lie groups

There are 39 classes of 5-dimensional solvable indecomposable Lie algebras

([12]). Among them precisely the Lie algebras g5,1 to g5,6 are nilpotent.

The non-nilpotent Lie algebras have at most a 1-dimensional centre. In

this section we prove that there does not exist 3-dimensional connected
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topological loop L such that the Lie algebra of the group Mult(L) of L is a

5-dimensional solvable non-nilpotent indecomposable Lie algebra.

Proposition 14. There exists no 3-dimensional connected topological proper

loop L such that the Lie algebra of its multiplication group is a 5-dimensional

solvable indecomposable Lie algebra with trivial centre.

Proof. We may assume that L is homeomorphic to R3 (see Lemmata 4 and

5). In [12] the 5-dimensional solvable indecomposable Lie algebras g with

trivial centre are the Lie algebras g5,7, g5,9, the Lie algebras g5,11 to g5,13,

the Lie algebras g5,16 to g5,18, g5,21, g5,23, g5,24, g5,27, the Lie algebras g5,31

to g5,37, the Lie algebras g5,19, g5,20 and g5,28 in the case of that α 6= −1,

g5,15 in the case of that γ 6= 0, g5,25 in the case of that β 6= 0, p 6= 0, g5,26 in

the case of that p 6= 0, g5,30 in the case of that h 6= −2.

All Lie algebras g from this list with exceptions of the Lie algebras g5,17,

g5,18 and g5,33 have the 1-dimensional ideal n1 = 〈e1〉 such that the factor

algebras g/n1 are not isomorphic to the Lie algebras of the groups L2×L2 or

F4. As the centre of g is trivial these Lie algebras cannot be the Lie algebras

of the multiplication groups of 3-dimensional topological loops (Theorem 6).

The Lie algebra g5,33 is defined by [e1, e4] = e1, [e3, e4] = βe3, [e2, e5] = e2,

[e3, e5] = γe3, where γ2 +β2 6= 0. The factor algebra g5,33/〈e1〉, respectively

g5,33/〈e2〉 is isomorphic to the Lie algebra of L2 × L2 precisely if γ = 0,

respectively β = 0. But for γ = β = 0 the Lie algebra g5,33 is decomposable.

Hence it remains to investigate the Lie algebras g5,17 and g5,18 which have no
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1-dimensional ideal. We denote by G the Lie group of the Lie algebra g5,17,

respectively of g5,18 and assume that G is the multiplication group Mult(L)

of L. In both cases we consider the normal subgroup N = {exp(t1e1 +

t2e2); ti ∈ R, i = 1, 2} of G.

First we suppose that the orbit N(e) is a one-dimensional connected normal

subloop of L. By Lemma 3 the group G has a connected normal subgroup M

containing the group N such that the factor group G/M is isomorphic to the

multiplication group of the factor loop L/N(e). Since dimM ≥ dimN = 2

the dimension of G/M is ≤ 3. Hence by Theorem 6 the factor group G/M

would be isomorphic to R2. As G has discrete centre we have a contradiction

to Theorem 6 (a).

Therefore N(e) is a two-dimensional connected normal subloop of L. The

multiplication group Mult(N(e)) of N(e) is a subgroup of Mult(L) = G.

As none of the groups Mult(L2) = L2 × L2 and Mult(LF ) = Fn, n ≥ 4,

are subgroups of G the normal subloop N(e) is isomorphic to the group

R2. The multiplication group of the factor loop L/N(e) is isomorphic to

R (see Theorem 18.18 in [17]). There exists a normal subgroup K of G

such that the factor group G/K is isomorphic to Mult(L/N(e)) ∼= R (see

Lemma 3). Hence K contains the commutator subgroup G′ of G. Since

dimK = dimG′ = 4 the group K coincides with the abelian group G′.

Hence K induces on the orbit N(e) the group R2. The stabilizer Ke of

e ∈ L in K fixes every point on the orbit N(e) = K(e). The inner mapping
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group Inn(L) of L is the group Ke. Hence N(e) would be a 1-dimensional

central subgroup of L which contradicts the fact that G has discrete centre

and the assertion follows.

Proposition 15. Let L be a connected simply connected topological proper

loop of dimension 3 such that the Lie algebra of its multiplication group is

a 5-dimensional solvable non-nilpotent indecomposable Lie algebra having

a 1-dimensional centre. Then for the pair (g,m) of the Lie algebras of the

multiplication group Mult(L) of L and the abelian normal subgroup M given

in Theorem 6 (a) one of the following cases can occur:

(a) The Lie algebra g1 is defined by [e2, e3] = e1, [e2, e5] = e3, [e4, e5] = e4

and m1 = g1
′.

(b) The Lie algebra g2 is defined by [e2, e4] = e1, [e1, e5] = e1, [e2, e5] = e2,

[e4, e5] = e3 and m2 = g2
′.

(c) The Lie algebra g3 is defined by [e1, e4] = e1, [e2, e5] = e2, [e4, e5] = e3

and m3 = g3
′.

(d) The Lie algebra g4 is defined by [e1, e4] = e1, [e2, e4] = e2, [e1, e5] = −e2,

[e2, e5] = e1, [e4, e5] = e3 and m4 = g4
′.

Proof. By Lemma 5 the loop L is homeomorphic to R3. According to

[12] the 5-dimensional solvable non-nilpotent indecomposable Lie algebras g

with 1-dimensional centre ζ are the Lie algebras g5,8, g5,10, g5,14, g5,22, g5,29,

g5,38, g5,39, the Lie algebras g5,19, g5,20 and g5,28 in the case of that α = −1,

g5,15 in the case of that γ = 0, g5,25 in the case of that β 6= 0, p = 0, g5,26
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in the case of that p = 0, ε = ±1 and g5,30 in the case of that h = −2. If

g is the Lie algebra of the multiplication group Mult(L) of L, then the Lie

group Z = exp ζ is the centre of Mult(L) and the orbit Z(e), where e is the

identity element of L, is the 1-dimensional centre of L (see Theorem 11 in

[1]). If Mult(L) does not belong to the Lie algebra g5,38, then the factor

algebras g/ζ are different from the Lie algebras of the Lie groups L2×L2 or

F4. Therefore the factor loop L/Z(e) is isomorphic to R2 (cf. Theorem 6).

The Lie algebra g5,38 is defined by [e1, e4] = e1, [e2, e5] = e2, [e4, e5] = e3.

As S = {exp(te1); t ∈ R} is a connected normal subgroup of the Lie group

of g5,38 the orbit S(e) is a 1-dimensional connected normal subloop of L.

The factor algebra g5,38/〈e1〉 is also different from the Lie algebras of the

groups L2 × L2 and F4 and the factor loop L/S(e) is again isomorphic to

R2. Hence the Lie algebra g of Mult(L) has a 3-dimensional abelian ideal

m such that m contains the commutator ideal g′ of g (cf. Theorem 6 (a)).

The commutator ideal of the Lie algebras g5,19, g5,25, g5,28 and g5,30 has

dimension 4. The commutator ideal of the Lie algebras g5,20 and g5,26 is

non-abelian. Hence these Lie algebras cannot be the Lie algebras of the

multiplication groups of 3-dimensional topological loops.

For the Lie algebras g5,8, g5,10, g5,14 and g5,15 the commutator ideal

g′ of g is isomorphic to R3 and contains the centre of g. Hence one has

m = g′. If g is the Lie algebra of the multiplication group of L, then the Lie

algebra inn(L) of the inner mapping group Inn(L) of L is a 2-dimensional
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subalgebra of m containing no ideal 6= 0 of g (see Theorem 6 (a)). The

direct sum of the centre ζ of g and the Lie algebra inn(L) coincides with m.

The Lie algebra n of the normalizer of Inn(L) in the Lie group of g is the 4-

dimensional abelian nilradical rad = 〈e1, e2, e3, e4〉 of g. This contradiction

to Lemma 2 yields that only the Lie algebras g5,22, g5,29, g5,38 and g5,39

can occur as the Lie algebras of the multiplication groups Mult(L) of 3-

dimensional topological loops L. The Lie algebra g5,29 in [12] is isomorphic

to the Lie algebra given in assertion (b). The ideal m of these Lie algebras

is the commutator ideal and the assertion is proved.

Now we exclude the Lie algebras in cases (a) to (d) of Proposition 15.

Proposition 16. There does not exist 3-dimensional connected topological

proper loop L such that the Lie algebra g of the multiplication group of L is

one of the Lie algebras listed in cases (a) to (d) of Proposition 15.

Proof. By Lemmata 4 and 5 we may assume that L is homeomorphic to R3.

The linear representation of the Lie group Gi of gi is: For i = 1

g(x1, y1, z1, q1, w1)g(x2, y2, z2, q2, w2) =

g(x1 + w1y2 +
w2
1z2
2

+ x2, y1 + w1z2 + y2, z1 + z2, q1 + ez1q2, w1 + w2)

for i = 2

g(q1, x1, y1, z1, w1)g(q2, x2, y2, z2, w2) =

g(q1 + ew1q2 + x1z2, x1 + ew1x2, y1 + w1z2 + y2, z1 + z2, w1 + w2)
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for i = 3

g(q1, x1, y1, z1, w1)g(q2, x2, y2, z2, w2) =

g(q1 + ez1q2, x1 + ew1x2, y1 + w1z2 + y2, z1 + z2, w1 + w2).

For i = 4 the group G4 is the linear group of matrices

g(x, y, q, w, z) =



1 x y −w q

0 ew cos z ew sin z 0 0

0 −ew sin z ew cos z 0 0

0 0 0 1 z

0 0 0 0 1


, x, y, q, w, z ∈ R


(cf. Cases 5.22, 5.29, 5.38, 5.39 in [7]). First we determine which subgroups

of the group Gi can occur as the inner mapping group Inn(L)i of L. By

Theorem 6 (a) the Lie algebra inn(L)i of the inner mapping group Inn(L)i

of L is a 2-dimensional subalgebra of the commutator ideal mi = gi
′ given

in Proposition 15 such that inn(L)i does not contain any ideal 6= {0} of gi.

As 〈e1〉 is the centre of g1 and 〈e4〉 is an ideal of g1 we may choose the

Lie algebra inn(L)1 as follows inn(L)1 = 〈e3 + a1e1, e4 + a2e1〉, a1, a2 ∈ R,

a2 6= 0. The automorphism group of g1 consists of the following mappings

α(e1) = c2e1, α(e2) = b1e1 + ce2 + b3e3, α(e3) = cf3e1 + ce3, α(e4) = de4,

α(e5) = f1e1 + f3e3 + f4e4 + e5, where cd 6= 0, b1, b3, f1, f3, f4 ∈ R. Using

an automorphism of G1 we may assume that

Inn(L)1 = {exp(te3 + u(e1 + e4)), t, u ∈ R} = {g(u, t, 0, u, 0), t, u ∈ R}.
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The centre of the Lie algebras gi, i = 2, 3, 4, is 〈e3〉. Moreover, 〈e1〉,

respectively 〈e1〉 and 〈e2〉, respectively 〈e1, e2〉 are ideals of g2, respec-

tively g3, respectively g4. Hence we may choose inn(L)i, i = 2, 3, 4,

in the following way inn(L)i = 〈e1 + k1e3, e2 + k2e3〉, k1, k2 ∈ R, such

that for i = 2 one has k1 6= 0, for i = 3 we get k1k2 6= 0 and for

i = 4 at least one of the real parameters k1, k2 is different from 0. For

k1k2 6= 0 the automorphism α(e1) = k1e1, α(e2) = k2e2, α(e3) = e3,

α(e4) = e4, α(e5) = e5 of gi, i = 2, 3, 4, maps the Lie algebra inn(L)i

onto inn(L)2,1 = inn(L)3 = inn(L)4,1 = 〈e1 + e3, e2 + e3〉. For k2 = 0 the

automorphism γ(e1) = k1e1, γ(e2) = e2, γ(e3) = e3, γ(e4) = e4, γ(e5) = e5

maps the subalgebra inn(L)i onto inn(L)2,2 = inn(L)4,3 = 〈e1+e3, e2〉. For

k1 = 0 the automorphism β(e1) = e1, β(e2) = k2e2, β(e3) = e3, β(e4) = e4,

β(e5) = e5 maps inn(L)i onto inn(L)4,2 = 〈e1, e2 + e3〉. The corresponding

Lie groups are Inn(L)2,1 = Inn(L)3 = Inn(L)4,1 = {g(t1, t2, t1+t2, 0, 0), ti ∈

R, i = 1, 2}, Inn(L)2,2 = Inn(L)4,3 = {g(t1, t2, t1, 0, 0), ti ∈ R, i = 1, 2},

Inn(L)4,2 = {g(t1, t2, t2, 0, 0), ti ∈ R, i = 1, 2}.

Arbitrary left transversals to the group Inn(L)i of Gi are: For i = 1

A1 = {g(k, f1(k, l,m), l, f2(k, l,m),m), k, l,m ∈ R},

B1 = {g(u, g1(u, v, w), v, g2(u, v, w), w), u, v, w ∈ R},

for i = 2, 3, 4

A = {g(k1(k, l,m), k2(k, l,m), k, l,m), k, l,m ∈ R}
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B = {g(h1(u, v, w), h2(u, v, w), u, v, w), u, v, w ∈ R},

where fi(k, l,m) : R3 → R, ki(k, l,m) : R3 → R, gi(u, v, w) : R3 → R,

hi(u, v, w) : R3 → R, i = 1, 2, are continuous functions with fi(0, 0, 0) =

ki(0, 0, 0) = gi(0, 0, 0) = hi(0, 0, 0) = 0. We prove that none of the groups

Gi, i = 1, 2, 3, 4, satisfies the condition that for all a ∈ Ai and b ∈ Bi one

has a−1b−1ab ∈ Inn(L)i. It means that the groups Gi, i = 1, 2, 3, 4, are not

multiplication groups of L (cf. Lemma 1).

The products a−1b−1ab with a = g(0, f1(0, 0,m), 0, f2(0, 0,m),m) ∈ A1 and

b = g(0, g1(0, v, 0), v, g2(0, v, 0), 0) ∈ B1 are elements of Inn(L)1 if and only

if the equation

f2(0, 0,m) = m
g1(0, v, 0)ev

(1− ev)
− m2vev

2(1− ev)
(20)

is satisfied for all m, v ∈ R. Since the left hand side of (20) depends only on

the variable m for all v ∈ R \ {0} the function v 7→ vev

(1−ev) must be constant

which is a contradiction.

The products a−1b−1ab with a = g(k1(0, 0,m), k2(0, 0,m), 0, 0,m) ∈ A,

b = g(h1(0, v, 0), h2(0, v, 0), 0, v, 0) ∈ B are contained in Inn(L)3, respec-

tively in Inn(L)4,i, i = 1, 2, 3, if and only if the equation

m = k1(0, 0,m)
e−v − 1

v
+
h2(0, v, 0)

v
(1− e−m), (21)

respectively for i = 1 the equation

−m = k1(0, 0,m)
1− ev

v
+k2(0, 0,m)

1− ev

v
+
h2(0, v, 0)

v
(cosm−sinm−1)+
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h1(0, v, 0)

v
(cosm+ sinm− 1), (22)

respectively for i = 2

−m = k2(0, 0,m)
1− ev

v
+
h1(0, v, 0)

v
sinm+

h2(0, v, 0)

v
(cosm− 1), (23)

respectively for i = 3

−m = k1(0, 0,m)
1− ev

v
+
h1(0, v, 0)

v
(cosm− 1)− h2(0, v, 0)

v
sinm (24)

holds for all m, v ∈ R. Since the left hand side of these equations depends

only on the variable m and the function v 7→ 1−eεv
v , where ε = 1 or −1, is

not constant we get kj(0, 0,m) = 0 and hj(0, v, 0) = cjv, with cj ∈ R, j =

1, 2. Then equation (21), respectively (22), respectively (23), respectively

(24) yields that for all m ∈ R the identity m = c2(1 − e−m), respectively

−m = c1(cosm + sinm − 1) + c2(cosm − sinm − 1), respectively −m =

c1 sinm+c2(cosm−1), respectively −m = c1(cosm−1)−c2 sinm is satisfied

which is a contradiction.

The products a−1b−1ab with a = g(k1(0, 0,m), k2(0, 0,m), 0, 0,m) ∈ A,

b = g(h1(0, v, w), h2(0, v, w), 0, v, w) ∈ B are contained in Inn(L)2,1, respec-

tively in Inn(L)2,2 if and only if the equation

mv = (25)

h1(0, v, w) + h2(0, v, w)

ew
(1− 1

em
)+
k1(0, 0,m)

em
(

1

ew
−1)+

k2(0, 0,m)

em
(
1 + v

ew
−1),

respectively

mv =
h1(0, v, w)

ew
(1− 1

em
) +

k1(0, 0,m)

em
(

1

ew
− 1) +

vk2(0, 0,m)

em+w
(26)

35



is satisfied for all m, v,w ∈ R. For v = 0 equation (25), respectively (26)

gives h1(0,0,w)+h2(0,0,w)
1−ew = k1(0,0,m)+k2(0,0,m)

1−em = d, respectively h1(0,0,w)
1−ew =

k1(0,0,m)
1−em = d for a suitable constant d ∈ R. If w = 0, then equation (25),

respectively (26) yields

v =
h1(0, v, 0) + h2(0, v, 0)

mem
(em − 1) +

k2(0, 0,m)

mem
v, (27)

respectively

v =
h1(0, v, 0)

mem
(em − 1) +

k2(0, 0,m)

mem
v. (28)

As the function g : m 7→ em−1
emm is not constant the right hand side of equation

(27), respectively (28) is equal to v precisely if h1(0, v, 0) = −h2(0, v, 0)

and k2(0, 0,m) = mem, respectively h1(0, v, 0) = 0 and k2(0, 0,m) = mem.

Putting k1(0, 0,m) = d(1 − em) − k2(0, 0,m), k2(0, 0,m) = mem into (25)

and k1(0, 0,m) = d(1− em), k2(0, 0,m) = mem into (26) we have

v(ew − 1) =
em − 1

mem
[h1(0, v, w) + h2(0, v, w)− d(1− ew)], (29)

respectively

v(ew − 1) =
em − 1

mem
[h1(0, v, w)− d(1− ew)]. (30)

Since the left hand side of equations (29) and (30) depends only on the

variables v and w and the function m 7→ em−1
mem is not constant we get

h1(0, v, w) + h2(0, v, w) = d(1 − ew) in equation (29) and h1(0, v, w) =

d(1 − ew) in equation (30). But then in both cases one has v(ew − 1) = 0

for all v, w ∈ R which is a contradiction.
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6. Three-dimensional topological loops having five-dimensional

solvable decomposable Lie groups as their multiplication groups

We classify all 5-dimensional connected solvable Lie groups which are direct

products of proper connected subgroups and which are multiplication groups

of 3-dimensional connected simply connected topological loops L. Moreover,

we determine the inner mapping groups of L.

Proposition 17. Let L be a connected simply connected topological proper

loop of dimension 3 such that its multiplication group Mult(L) is a 5-

dimensional solvable Lie group which is the direct product of connected sub-

groups. Then L contains a central subgroup C ∼= R such that the factor loop

L/C ∼= R2. Moreover:

(I) If the centre of the group Mult(L) has dimension 1, then for the pair

(mult(L),m) of the Lie algebras of Mult(L) and the normal subgroup M

in Theorem 6 (a) one of the following cases occurs:

(a) The group Mult(L)1 is the group F3 × L2. The Lie algebra mult(L)1

is defined by [e1, e2] = e3, [e4, e5] = e4 and m1 = 〈e2, e3, e4〉.

(b) The group Mult(L)2 is the group L2×L2×R. The Lie algebra mult(L)2

is defined by [e1, e2] = e1, [e3, e4] = e3, [e5, ei] = 0 for all i = 1, · · · , 4, and

m2 = 〈e1, e3, e5〉.

(c) The Lie algebra mult(L)3 is defined by [e2, e3] = e1, [e1, e4] = e1,

[e2, e4] = e2, [e5, ei] = 0 for all i = 1, · · · , 4, and m3 = 〈e1, e2, e5〉.

(d) The Lie algebra mult(L)4 is defined by [e1, e3] = e1, [e2, e3] = e2,
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[e1, e4] = −e2, [e2, e4] = e1, [e5, ei] = 0 for all i = 1, · · · , 4, and m4 =

〈e1, e2, e5〉.

(II) If Mult(L) has 2-dimensional centre, then it is either the group F4×R

or the direct product of the group R2 and a 3-dimensional solvable Lie group

S having 2-dimensional commutator subgroup. In the second case the Lie

algebra mult(L) is the direct sum 〈e1, e2, e3〉 ⊕ 〈e4, e5〉, where 〈e1, e2, e3〉 is

the Lie algebra of S. The Lie algebra m has one of the following forms:

mII,1 = 〈e1, e2, e4〉, mII,2 = 〈e1, e2, e5 + ke4〉, k ∈ R.

Proof. The loop L is homeomorphic to R3 (see Lemma 5). We assume that

the multiplication group Mult(L) of L is a 5-dimensional decomposable

solvable Lie group. Then for Mult(L) we have the following possibilities:

L2×R3, L2×L2×R, L2×S, R2×S, R×K, where S is a 3-dimensional and

K is a 4-dimensional solvable indecomposable Lie group. All of these Lie

groups have a normal subgroup N ∼= R such that Mult(L)/N is isomorphic

neither to L2×L2 nor to F4. Then the factor loop L/N(e) is isomorphic to

R2 (see Theorem 6), the group N(e) is central in L and the first assertion is

proved. Moreover, Mult(L) is simply connected because it is a semidirect

product of R2 with a normal subgroup M ∼= R3 such that M contains a

1-dimensional central subgroup of Mult(L) (cf. Theorem 6 (a)).

Since L is not associative, the centre Z of Mult(L) has dimension 1 or

2. If dim Z = 1, then Mult(L) is either the group F3 × L2 or the direct

product K × Z, where Z is the group R and K is a 4-dimensional solvable
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Lie group with discrete centre.

If Mult(L) = F3×L2, then its Lie algebra mult(L) is given by [e1, e2] =

e3, [e4, e5] = e4. The commutator ideal mult(L)′ = 〈e3, e4〉 contains the

centre 〈e3〉 of mult(L). Since all 2-dimensional subalgebras of the Lie alge-

bra f3 of F3 containing the centre of f3 can be mapped under an element of

Aut(f3) onto the subalgebra 〈e2, e3〉 we may assume that the Lie algebra m

of M has the form as in case (a) of assertion (I).

If Mult(L) = K×Z, then Mult(L) has a normal subgroup M ∼= R3 such

that M contains the commutator subgroup Mult(L)′ = K ′ and the centre Z

of Mult(L). Since there is no 4-dimensional solvable Lie group with discrete

centre and 1-dimensional commutator subgroup, the dimension of K ′ must

be 2. Hence the Lie algebra k of K is one of the following: the Lie algebra

of L2 × L2 or g4,8 with h = 0 or g4,10 in [11], § 5. If k is the Lie algebra

of L2 × L2, then we get case (b) in assertion (I). If k is the Lie algebra g4,8

with h = 0, then we obtain case (c) of assertion (I). If k is the Lie algebra

g4,10, then we have case (d) in assertion (I).

Now we assume that Mult(L) has a 2-dimensional centre. If Mult(L) is

nilpotent, then it is the group F4 × R and Proposition 5.1 of [5] proves the

assertion. If Mult(L) is not nilpotent, then it is either the direct product

K × N , where N ∼= R and K is a 4-dimensional solvable non-nilpotent

indecomposable Lie group with 1-dimensional centre, or the direct product

S × R, where R ∼= R2 and S is a 3-dimensional solvable Lie group with
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discrete centre.

If Mult(L) = K × N , then the orbit N(e) is a 1-dimensional central

subgroup of L with L/N(e) ∼= R2. Hence Mult(L) has a normal subgroup

M ∼= R3 containing N and the commutator subgroup Mult(L)′ = K ′ of

Mult(L). Among the 4-dimensional solvable non-nilpotent Lie algebras only

the Lie algebra g4,3 has a 1-dimensional centre and an abelian commutator

subalgebra (cf. § 5 of [11]). If k is the Lie algebra g4,3, then the Lie algebra

mult(L) of Mult(L) is defined by [e1, e4] = e1, [e3, e4] = e2, [e5, ei] = 0 for

all i = 1, · · · , 4, and the Lie algebra m of M has the form 〈e1, e2, e5〉. The

inner mapping group Inn(L) of L is a 2-dimensional connected subgroup of

M such that CoMult(L)(Inn(L)) = 1. As 〈e2, e5〉 is the centre of mult(L)

the Lie algebra inn(L) of Inn(L) has the form inn(L) = 〈e2 + a1e1, e5 +

a2e1〉 with a1a2 6= 0. Then the Lie algebra 〈e1, e2, e3, e5〉 of the normalizer

NMult(L)(Inn(L)) is different from the Lie algebra 〈e1, e2, e5〉 of Z×Inn(L).

This contradiction to Lemma 2 excludes the Lie algebra g4,3.

If Mult(L) = S × R, then the commutator ideal i = 〈e1, e2〉 of the

Lie algebra s = 〈e1, e2, e3〉 of S is commutative (see [11], § 4). Let N be

a 1-dimensional subgroup of the centre R = exp{ae4 + be5, a, b ∈ R} of

Mult(L). The Lie algebra n of N has one of the following forms: n1 = 〈e4〉,

n2 = 〈e5 + ke4〉, k ∈ R. As the Lie algebra m of the normal subgroup

M ∼= R3 is the direct sum i⊕n, the form of m is given in assertion (II).

Theorem 18. Let L be a connected simply connected topological proper loop
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of dimension 3 such that its multiplication group is a 5-dimensional solvable

non-nilpotent Lie group which is the direct product of proper connected sub-

groups. Then the following Lie groups are the multiplication groups Mult(L)

and the following subgroups are the inner mapping groups Inn(L) of L:

1) Mult(L)1 is the Lie group F3 × L2 the multiplication of which is given

by g(x1, x2, x3, x4, x5)g(y1, y2, y3, y4, y5) =

g(x1 + y1, x2 + y2, x3 + y3 − x1y2, y4 + x4e
y5 , x5 + y5).

Inn(L)1 is the following subgroup {g(0, t, k, k, 0); t, k ∈ R}.

2) Mult(L)2 is the Lie group L2×L2×R which is represented on R5 by the

multiplication g(x1, x2, x3, x4, x5)g(y1, y2, y3, y4, y5) =

g(y1 + x1e
y2 , x2 + y2, y3 + x3e

y4 , x4 + y4, x5 + y5).

Inn(L)2 is the following subgroup {g(t, 0, k, 0, t+ k); t, k ∈ R}.

3) The multiplication of the group Mult(L)3 is defined by

g(z1, y1, x1, w1, q1)g(z2, y2, x2, w2, q2) =

g(z1 + ew1z2 − x1ew1y2, y1 + ew1y2, x1 + x2, w1 + w2, q1 + q2).

Inn(L)3 is one of the following groups: Inn(L)3,1 = {g(z, y, 0, 0, z); z, y ∈

R}, Inn(L)3,2 = {g(z, y, 0, 0, z + y); z, y ∈ R}.
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4) The multiplication group Mult(L)4 is the group of matrices
g(x, y, w, z, u) =



1 x y u

0 ew cos z ew sin z 0

0 −ew sin z ew cos z 0

0 0 0 1


, x, y, w, z, u ∈ R


(see Case 4.12 in [7]). Moreover, Inn(L)4 is one of the following sub-

groups: Inn(L)4,1 = Inn(L)3,1, Inn(L)4,2 = {g(x, y, 0, 0, y);x, y ∈ R}

Inn(L)4,3 = Inn(L)3,2.

5) The multiplication group Mult(L)5 is the direct product of R2 and the

connected Lie group of dimension 3 having precisely one 1-dimensional nor-

mal subgroup. The multiplication of Mult(L)5 is given by

g(x1, x2, x3, x4, x5)g(y1, y2, y3, y4, y5) =

g(y1 + x1e
y3 , y2 + x2e

y3 + x1y3e
y3 , x3 + y3, x4 + y4, x5 + y5).

Inn(L)5 is the following subgroup {g(x, y, 0, y, 0);x, y ∈ R}.

6) The elements of the multiplication group Mult(L)6 can be written in the

following form

g(x, y, z, u, v) =



1 x y u v

0 eaz cos z eaz sin z 0 0

0 −eaz sin z eaz cos z 0 0

0 0 0 1 0

0 0 0 0 1


, x, y, z, u, v ∈ R, a > 0.
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Inn(L)6 is one of the subgroups: Inn(L)6,1 = {g(x, y, 0, x+ y, 0);x, y ∈ R},

Inn(L)6,2 = {g(x, y, 0, x, 0);x, y ∈ R}, Inn(L)6,3 = Inn(L)5.

7) Mult(L)7 is the direct product of R2 and the connected Lie group of di-

mension 3 having precisely two 1-dimensional normal subgroups. The group

Mult(L)7 is represented on R5 by the following multiplication

g(x1, x2, x3, x4, x5)g(y1, y2, y3, y4, y5) =

g(y1 + x1e
ay3 , y2 + x2e

by3 , x3 + y3, x4 + y4, x5 + y5), (31)

with fixed but different numbers a, b ∈ R\{0}.

8) Mult(L)8 is the direct product of R2 and the connected Lie group of

dimension 3 having infinitely many 1-dimensional normal subgroups. The

multiplication of Mult(L)8 is given by (31) with a = b ∈ R\{0}.

The inner mapping group Inn(L)i, i = 7, 8, is the group Inn(L)6,1.

Proof. By Lemma 5 the loop L is homeomorphic to R3. For i = 1, 2, 3, 4, the

Lie algebras mult(L)i of the groups Mult(L)i and the ideals mi of mult(L)i

are given in Proposition 17, (I) cases (a) to (d). The Lie algebra inn(L)i

of the inner mapping group Inn(L)i of L is a 2-dimensional subalgebra of

mi containing no ideal 6= {0} of mult(L)i, i = 1, 2, 3, 4. For i = 1 the Lie

algebra inn(L) has the form inn(L)b1,b2 = 〈e2 + b1e3, e4 + b2e3〉, b1, b2 ∈ R,

b2 6= 0. The automorphism β(e1) = e1, β(e2) = e2 − b1e3, β(e3) = e3,

β(e4) = b2e4, β(e5) = e5 maps inn(L)b1,b2 onto inn(L)1 = 〈e2, e4 + e3〉. The

corresponding group Inn(L)1 is given in assertion 1).
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As 〈e5〉 is the centre of mult(L)2 the Lie algebra inn(L)2 has the form

inn(L)a1,a2 = 〈e1 + a1e5, e3 + a2e5〉, a1, a2 ∈ R with a1a2 6= 0. Using

the automorphism α(e1) = a1e1, α(e2) = e2, α(e3) = a2e3, α(e4) = e4,

α(e5) = e5 of mult(L)2 the Lie algebra inn(L)a1,a2 is reduced to inn(L)2 =

〈e1 + e5, e3 + e5〉. The corresponding group Inn(L)2 is given in assertion 2).

As 〈e5〉 is the centre and 〈e1, e2〉 is the commutator ideal of mult(L)i for i =

3, 4, we can write inn(L)i in the form inn(L)k1,k2 = 〈e1+k1e5, e2+k2e5〉, k1,

k2 ∈ R. For i = 3 one has k1 6= 0 and for i = 4 at least one of the parameters

k1, k2 is different from 0. Similarly to the automorphism α of mult(L)2 we

can find suitable automorphisms of mult(L)i, i = 3, 4, which map the Lie

algebra inn(L)k1,0 onto inn(L)3,1 = inn(L)4,1 = 〈e1+e5, e2〉, the Lie algebra

inn(L)0,k2 onto inn(L)4,2 = 〈e1, e2 + e5〉 and the Lie algebra inn(L)k1,k2 ,

k1k2 6= 0, onto inn(L)3,2 = inn(L)4,3 = 〈e1+e5, e2+e5〉. The corresponding

Lie groups are the groups Inn(L)3,1 = Inn(L)4,1, Inn(L)3,2 = Inn(L)4,3,

Inn(L)4,2 given in assertions 3) and 4).

The sets A1 = {g(x, ez−1, y, 0, z);x, y, z ∈ R} and B1 = {g(n, 0, l,−n,m); l,

m, n ∈ R} are Inn(L)1-connected left transversals in Mult(L)1. The sets

A2 = {g(2 − ex2 − ex4 , x2, 0, x4, x5 + 2 − ex2 − ex4);x2, x4, x5 ∈ R} and

B2 = {g(1 − ey2 , y2, 1 − ey2 , y4, y5); y2, y4, y5 ∈ R} are Inn(L)2-connected

transversals in Mult(L)2. The sets A3 = {g((ew − 1)(x + 2) − x, 1 −

ew, x, w, q);x,w, q ∈ R} and B3 = {g((2 − el)k, el − 1, k, l,m); k, l,m ∈ R},

respectively the sets B3 and C3 = {g(x(ew − 2), 1− ew, x, w, q);x,w, q ∈ R}
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are Inn(L)3,1-, respectively Inn(L)3,2-connected transversals in Mult(L)3.

The set A4 = B4 = {g(1 − eu cos v,−eu sin v, u, v, w);u, v, w ∈ R} is a left

transversal to the subgroups Inn(L)4,i for every i = 1, 2, 3 in Mult(L)4.

Moreover, the sets {Ai, Bi} for all i = 1, 2, 3, 4 as well as {B3, C3} generate

the group Mult(L)i. This proves assertions 1) to 4) (cf. Lemma 1).

The Lie algebra mult(L)5 of the group Mult(L)5 in assertion 5) is defined

by [e1, e3] = pe1 − e2, [e2, e3] = e1 + pe2, [e4, ei] = [e5, ei] = [e4, e5] = 0,

i = 1, 2, 3, p > 0 (see g3,5 in [11], § 4). The Lie algebra mult(L)6 of the

group Mult(L)6 in assertion 6) is given by [e2, e3] = e2, [e1, e3] = e1 + e2,

[e1, e2] = [e4, e5] = [e4, ei] = [e5, ei] = 0, i = 1, 2, 3 (see [17], Lemma 23.16).

The Lie algebra mult(L)7 of the group Mult(L)7 in assertion 7) is defined

by [e1, e3] = ae1, [e2, e3] = be2, [e1, e2] = [e4, ei] = [e5, ei] = [e4, e5] = 0,

i = 1, 2, 3, where a 6= b ∈ R\{0}. For a = b we get the Lie algebra mult(L)8

of the group Mult(L)8 in assertion 8) (see [17], Section 23.1).

For i = 5, 6, 7, 8, the Lie algebra inn(L)i of the inner mapping group Inn(L)i

of L is a 2-dimensional subalgebra of mII,j , j = 1, 2, given in Proposition 17

(II) containing no ideal 6= 0 of mult(L)i. The Lie algebra inn(L)i has one

of the following forms: inn(L)a1,a2 = 〈e1 + a1e4, e2 + a2e4〉, a1, a2 ∈ R and

inn(L)b1,b2 = 〈e1 + b1(e5 + ke4), e2 + b2(e5 + ke4)〉, b1, b2, k ∈ R, such that

for i = 5 one has a2b2 6= 0, for i = 6 at least one of the parameters a1, a2,

respectively b1, b2 is different from 0, for i = 7, 8, one has a1a2b1b2 6= 0.

For i = 5 using the automorphism α(e1) = e1+ a1
a2
e2, α(e2) = e2, α(e3) = e3,
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α(e4) = 1
a2
e4, α(e5) = e5, respectively β(e1) = e1 + b1

b2
e2, β(e2) = e2,

β(e3) = e3, β(e4) = e4 + e5, β(e5) =
(

1
b2
− k
)
e4 − ke5 of mult(L)5

we can change inn(L)a1,a2 , respectively inn(L)b1,b2 onto the Lie algebra

inn(L)5 = 〈e1, e2 + e4〉.

For i = 6, 7, 8 the automorphism γ(e1) = a1e1, γ(e2) = a2e2, γ(e3) = e3,

γ(e4) = e4, γ(e5) = e5, respectively δ(e1) = b1e1, δ(e2) = b2e2, δ(e3) = e3,

δ(e4) = e4 + e5, δ(e5) = (1 − k)e4 − ke5 of mult(L)i maps the Lie al-

gebra inn(L)a1,a2 , respectively inn(L)b1,b2 onto inn(L)6,1 = inn(L)7 =

inn(L)8 = 〈e1+e4, e2+e4〉. The automorphism γ, respectively δ of mult(L)6

with a2 = 1 = b2 maps the Lie algebra inn(L)a1,0, respectively inn(L)b1,0

onto inn(L)6,2 = 〈e1 + e4, e2〉. The automorphism γ, respectively δ of

mult(L)6 with a1 = 1 = b1 maps inn(L)0,a2 , respectively inn(L)0,b2 onto

inn(L)6,3 = inn(L)5. The corresponding Lie groups Inn(L)5 = Inn(L)6,3,

Inn(L)6,2, Inn(L)6,1 = Inn(L)7 = Inn(L)8 are given in assertions 5) to 8).

The sets A5 = {g(0, 1− ek1(1 + k1), k1, k2 + 1− ek1(1 + k1), k3); ki ∈ R, i =

1, 2, 3} and B5 = {g(1− el1 , 1− el1 , l1, l2, l3); li ∈ R, i = 1, 2, 3} are Inn(L)5-

connected transversals in Mult(L)5.

The set A6 = B6 = {g(1+eak1(sin k1−cos k1), 1−eak1(sin k1+cos k1), k1, k2,

k3); ki ∈ R} is for every i = 1, 2, 3, a left transversal to Inn(L)6,i in

Mult(L)6. The set A7 = B7 = {g(2−ebk1−eak1 , 2−ebk1−eak1 , k1, k2, k3); ki ∈

R, i = 1, 2, 3} is a left transversal to Inn(L)7 in Mult(L)7. The set A8 =

B8 = {g(1−eak1−k1, k1, k1, k2, k3); ki ∈ R, i = 1, 2, 3} is a left transversal to
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Inn(L)8 in Mult(L)8. Since Lemma 1 is satisfied for all these transversals,

assertions 5) to 8) is proved.

By the previous theorem only a classification of connected simply connected

5-dimensional solvable Lie groups which are the multiplication groups of

connected topological loops L with dimension 3 is given. The next proposi-

tion shows that Lie groups which cannot be the multiplication groups of L

can have universal coverings which are multiplication groups of L.

Proposition 19. The direct product G of R2 and the connected component

of the euclidean motion group of R2 cannot be the multiplication group of a

3-dimensional topological loop L.

Proof. The group G is represented in case 6) of Theorem 18 such that

a = 0. The subgroups of G which can occur as the inner mapping group

of L are also listed in case 6) of Theorem 18. Arbitrary left transversals to

Inn(L)6,i, i = 1, 2, 3, are A = {g(f1(k1, k2, k3), f2(k1, k2, k3), k1, k2, k3); ki ∈

R} and B = {g(h1(l1, l2, l3), h2(l1, l2, l3), l1, l2, l3); li ∈ R} such that for the

continuous functions fj(k1, k2, k3) : R3 → R, hj(l1, l2, l3) : R3 → R, j = 1, 2,

one has fj(0, 0, 0) = hj(0, 0, 0) = 0. The set {a−1b−1ab, a ∈ A, b ∈ B} is

contained in Inn(L)6,i if and only if for i = 1

h1(l1, l2, l3)(1− cos k1 − sin k1) + h2(l1, l2, l3)(1 + sin k1 − cos k1) =

f1(k1, k2, k3)(1− cos l1 − sin l1) + f2(k1, k2, k3)(1 + sin l1 − cos l1) (32)
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for i = 2

h1(l1, l2, l3)(1− cos k1) + h2(l1, l2, l3) sin k1 =

f1(k1, k2, k3)(1− cos l1) + f2(k1, k2, k3) sin l1 (33)

for i = 3

h2(l1, l2, l3)(1− cos k1)− h1(l1, l2, l3) sin k1 =

f2(k1, k2, k3)(1− cos l1)− f1(k1, k2, k3) sin l1 (34)

holds for all k1, k2, k3, l1, l2, l3 ∈ R. As the right hand side of equations

(32), (33) and (34) does not depend on the variables l2, l3 and the left hand

side of (32), (33) and (34) is independent of k2, k3 we get hj(l1, l2, l3) =

hj(l1) and fj(k1, k2, k3) = fj(k1) for all j = 1, 2. In this case the function

hj(l1), respectively fj(k1), j = 1, 2, has the form a1,j(1− cos l1) + a2,j sin l1,

respectively b1,j(1− cos k1) + b2,j sin k1, where a1,j , a2,j , b1,j , b2,j ∈ R. Then

the set A ∪ B does not generate G. This contradiction to Lemma 1 yields

the assertion.

Acknowledgment

This paper was supported by the Hungarian Scientific Research Fund

(OTKA) Grant PD 77392, by the EEA and Norway Grants (Zoltán Magyary

Higher Education Public Foundation) and by the János Bolyai Research

Fellowship.

48



References

[1] Albert, A. A. (1943). Quasigroups I. Trans. Amer. Math. Soc. 54:507-

519.

[2] Bruck, R. H. (1958). A Survey of Binary Systems. Berlin-Göttingen-

Heidelberg: Springer-Verlag.
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