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Introduction

�The study of convex sets is a branch of geometry, analysis and linear algebra
that has numerous connections with other areas of mathematics and serves
to unify many apperantly diverse mathematical phenomena� (Victor Klee).

The systematic study of convex sets is a relatively young theory. The
�rst monograph [10] was published by Bonnesen and Frenchel in 1934. In
the middle of the 20th century lots of useful applications of convex sets were
discovered. According to the importance of these applications convexity is a
prosperous subject up to this day. In what follows we collect some basic facts
from the theory in di�erent levels. The area of the material is the classical
Euclidean space of dimension n. It is broad enough to include many of
important applications. On the other hand this setting allows us to simplify
many of the proofs.

The �rst chapter is divided into six sections 1.1-1.6. From 1.1 to 1.3
we summarize the elements of the linear algebra, topology, a�ne and con-
vex sets to prepare the classical theorems of convex geometry. These are
discussed in chapter 2 (Carathéodory's theorem) and chapter 3 (Radon's
lemma and Helly's theorem). Re�nements and generalizations such as the
colorful Carathéodory's theorem due to I. Bárány [4] are also considered. The
problem of separating and supporting hyperplanes can be found in chapter
7 to prepare the classical structure theorem of convex polyhedra (chapter 9)

Figure 1: Victor Klee, 1925-2007.
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in the space of dimension three (vertices, edges, facets). The introductory
level can be represented by the following diagram:

sections 1.1, 1.2 and 1.3 −→ chapter 2 −→ chapter 3
↓

chapter 7 −→ chapter 9.

The mathematical prerequisites for the study of this level are linear algebra
and basic point-set topology. Generalizations and applications can be found
in chapters 4, 5, 6 and 8. Applications in the art gallery geometry are pre-
sented by Krasnosselsky's theorem (chapter 5) [37]. To illustrate that the
study of convex sets has numerous connections with other areas of math-
ematics we tend to present some surprising applications such as a�ne [44]
and convex [3] separations between functions (section 4.3). As a recent trend
of the research we also refer to the problem of separation by members of a
given linear interpolation family [46]. The common tool of these applica-
tions is the classical Helly's theorem and the proofs re�ect the geometric
feature of the problem. Kirchberger's theorem (chapter 8) [37] has a nice
application in the approximation theory: how to �nd the best a�ne approx-
imation for a given �nite set of points. Another intensively studied area of
the research is the generalization of the classical results for star-shaped sets
(chapter 6). Among others the literature contains a star-shaped version of
Krein-Milman's theorem [40] and Helly type theorems for intersections of
star-shaped sets [15], [16] and [9]. Although Minkowski geometry is a very
natural attached theory to convex sets it is only partially discussed in chap-
ter 7 (section 7.3). It also appears in some applications (section 10.2). For
lack of space another important parts of the theory are also missing. For
example the study of inequalities concerning volumes of compact convex sets
appears only as a subsection 4.2.1 or in connection with X-ray functions (sec-
tion 10.3). Such kind of illustrative materials present new starting points for
those interested in modern aspects of geometry [7]. Nowadays they are self-
supporting branches of geometry together with basic monographs such as
[53], [26] and [52]. The advanced course can be represented by the following
diagram:

sections 1.1, 1.2 and 1.3 −→ chapter 2 −→ chapter 3
↓ ↓

chapter 7 −→ chapter 9 chapter 4 −→ chapter 6
↓ ↓

chapter 8 chapter 5.

To take more steps forward we need some basic facts about metric prop-
erties of the space of convex compact sets and the foundations of the theory
of convex functions (the natural domains for these functions are convex sets).
We summarize them in the �rst chapter from 1.4 to 1.6. Chapters 10 and 11
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present some special topics related to the convexity: Erd®s-Vincze's theorem
[24] and the theory of generalized conics.

chapter 10 ←− chapter 1 −→ chapter 11
↓

chapter 12.

The object of the generalized conics' theory (chapter 10) is the investiga-
tion of subsets in the space all of whose points have the same average distance
from the set of foci. The "average" can be realized in several ways from clas-
sical (discrete) means to integration over the set of foci. In a signi�cant part
of typical situations the common feature of functions measuring the average
distance is the convexity. They also satisfy a kind of growth condition. These
properties imply that the (lower) level sets are compact convex subsets in
the space bounded by compact convex hypersurfaces. They are called gen-
eralized conics. The most important discrete cases are polyellipses with the
classical arithmetic mean to calculate the average Euclidean distance from
the elements of a �nite point-set and lemniscates (with the classical geomet-
ric mean to calculate the average Euclidean distance from the elements of a
�nite point-set). Lemniscates in the plane play a central role in the theory of
approximation in the sense that polynomial approximations of holomorphic
functions can be interpreted as approximations of curves with lemniscates.
In terms of algebra we speak about the roots of polynomials (in terms of
geometry we speak about the focuses of lemniscates). Endre Vázsonyi posed
the problem whether the polyellipses (as the additive version of lemniscates)
have the same approximating property by increasing the number of the foci
or not. The answer is negative as a theorem due to P. Erd®s and I. Vincze
states. The proof can be found in chapter 11. In the literature we can �nd
many generalizations of conics [47] and [30]. Computational di�culties are
also signi�cant in the theory. For the case of polyellipses see [23]. To com-
pute the integral of the Euclidean distance along a curve to a given point is
impossible in general. In case of a circle in the space we immediately have
elliptic integrals. Nevertheless the best (recent) results [2] and [49] on elliptic
integrals and Gaussian hypergeometric function allow us to develop a kind
of theory of circular (generalized) conics [56], see also [57]. This is a partial
motivation why to substitute the Euclidean distance with a more computable
way of measuring the distance between the points in the space. Interesting
applications in geometric tomography were found by measuring the average
taxicab distance of points to a given subset. This is closely related to the
coordinate X-ray functions (up to a multiplicative constant) which are typi-
cal sources of information about unknown bodies [26]. Beyond the (parallel
or point) X-rays, projections and sections of sets we can also refer to the so-
called angle function. The notion was introduced by J. Kincses [33] together
with the problem of determination.
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The last chapter is devoted to Radström's embedding theorem [48]. The
theorem states that the collection of convex compact sets can be considered
as a (convex) cone in an in�nitely dimensional normed space, see also [17].
It is a natural idea to apply the calculus to volume, X-rays, angle functions
etc. as mappings de�ned on the cone of convex compact sets. In many
important particular cases we have nice properties. For example the Brunn-
Minkowski inequality (for the concavity of the nth root of the n-dimensional
Lebesgue measure) implies that the volume belongs to the class of quasi-
concave functions having convex (upper) level sets. Another example (for
coordinate X-rays) can be found in [58]. The last chapter of this material
presents a new starting point of the investigation too.



Chapter 1

Elements

1.1 Linear Algebra

In what follows

En =
{

(v1, . . . , vn) | v1, . . . , vn ∈ R
}

(1.1)

is the standard real coordinate space of dimension n equipped with the canon-
ical inner product

〈v, w〉 := v1w1 + . . .+ vnwn, (1.2)

where
v = (v1, . . . , vn) and w = (w1, . . . , wn).

The elements of the coordinate space are called both vectors and points
denoted by the symbols of the Latin alphabet in general. Especially we refer
to the context for both terminology and notations. We speak about the norm

‖v‖ :=
√
〈v, v〉 =

√
(v1)2 + . . .+ (vn)2 (1.3)

of vectors but the distance

d(p, q) := ‖p− q‖ =
√

(p1 − q1)2 + . . .+ (pn − qn)2 (1.4)

between points. Mathematical objects labelled by indices will appear as v(1),
..., v(k) in text mode. The notation refers to the one-to-one correspondence
between the set of indices and the set of objects labelled by them. Otherwise
(in displayed mathematical formulas) we use

v1, . . . , vk (1.5)

as usual. Let v and w be non-zero vectors in the coordinate space of dimen-
sion n and consider the auxiliary funtion

f(t) := 〈v + tw, v + tw〉 (1.6)

7
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as t runs through the set of real numbers. Using the basic properties of
the inner product it can be easily seen that the function 1.6 is a quadratic
polynomial. Since the inner product is positive de�nite its discriminant must
be less or equal than zero which leads to the so-called Cauchy-Buniakowsky-
Schwartz inequality

|〈v, w〉| ≤ ‖v‖ · ‖w‖. (1.7)

The angle between non-zero vectors v and w can be de�ned as

6 (v, w) := arccos
< v,w >

‖v‖ · ‖w‖
(1.8)

in the usual way. According to inequality 1.7 the absolute value of the ratio
between the inner product and the product of the norms must be less or
equal than one. The system 1.5

(i) generates the vector space if each vector w can be written as the linear
combination

µ1v1 + . . .+ µkvk = w.

(ii) is linearly independent if

λ1v1 + . . . λkvk = 0

implies that all of the coe�cients are zero: λ(1)= ... =λ(k)=0.

Otherwise it is linearly dependent. Geometrically, the linear dependence
means that we have a non-trivial polygonal chain with parallel sides to the
vectors in the given system. Minimal generating systems (equivalently: max-
imal linearly independent systems) are called bases in the vector space. The
common number of the members in minimal generating systems (maximal
linearly independent systems) is the dimension of the space. In this case each
vector has exactly one expression as the linear combination of the members
of the given system. The coe�cients are called coordinates (with respect to
the given basis). The canonical basis consists of the vectors

ei = (0, . . . , 0, 1, 0, . . . , 0), (1.9)

where the number 1 stands at the ith position and i=1, 2, ..., n. Recall that
a non-empty subset in the space is a linear subspace if it is closed under the
vector addition and the scalar multiplication. Especially, the dimension of
the subspace

L(v1, . . . , vk) (1.10)

consisting of all linear combinations of the vectors in the argument is the
rank of the system. It is clear that the rank is less or equal than k. Suppose
that the vectors

w1 = w1
1v1 + . . .+ wn1 vn,
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w2 = w1
2v1 + . . .+ wn2 vn,

.

.

.

wk = w1
kv1 + . . .+ wnkvn

are given in terms of the coordinates with respect to a basis

v1, . . . , vn. (1.11)

To decide the linear dependence (or independence) we have the following
standard methods:

(i) The vanishing of a linear combination of the vectors

w1, . . . , wk (1.12)

can be written as a system of linear equations

w1
1 w1

2 . . w1
k

w2
1 w2

2 . . w2
k

. . . . .

. . . . .

. . . . .
wn1 wn2 . . wnk


n×k



λ1

λ2

.

.

.
λk


=



0
0
.
.
.
0


for the unknown coe�cients

λ1, . . . , λk. (1.13)

(ii) If the coordinates of the given vectors form the rows (or columns)
of a matrix we can determine its rank which is just the same as the
dimension of the generated subspace. If it is less than k then the
system is linearly dependent. Otherwise (in case of rank k) the system
is linearly independent.

(iii) In case of a square matrix we can calculate the determinant of the
matrix for checking the linear dependence (the determinant vanishes)
or independence (the determinant is di�erent from zero). Especially
any linearly independent (or generating) system containing exactly n
vectors forms a basis in the coordinate space of dimension n.
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1.2 Topology

Let r be a positive real number. The open ball around the point p with
radius r is de�ned as the set of points all of whose distance from p is less
than r. A subset U in the space is open if for any point p in U is contained
together with an open ball around p. In other words p is an interior point.
A subset is closed if its complement is open. It can be easily seen that

(T1) both the empty set and the entire space are open (and, at the same
time, they are closed).

(T2) the union of the elements of an arbitrary family of open subsets is open.

(T3) the intersection of �nitely many open subsets is open.

In general the family of subsets satisfying conditions (T1)-(T3) is called
topology. The members of the topology are the open subsets. The topology
has a countable basis if there exists a countable collection

U1, U2, . . . , Un, Un+1, . . . (1.14)

of open subsets such that for any open subset can be written as the union of
the elements of some subcollection. It is just the second axiom of countability
and the space equipped with a topology having a countable basis is called
second-countable space.

Example The Euclidean space of dimension n is a second countable space
because the collection of open balls having centers with rational coordinates
and positive rational numbers as radiuses forms a basis for the usual topology.

An open cover of a subset A is a family of open subsets containing A
in the union of its elements. The subset A is compact if every open cover
contains a �nite subcover. It is known (see Heine-Borel theorem) that the
compactness is equivalent to the boundedness and closedness in the real
coordinate spaces. A subset is bounded if it is contained in an open ball
around the origin with a �nite radius.

De�nition The closure of a subset A in a topological space is the intersec-
tion of closed subsets containing A. The interior of A is the union of open
subsets contained in A.

Theorem 1.2.1 (Lindelöf, Ernst Leonard) Every open cover in a second-
countable space contains a countable subcover.
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Figure 1.1: Ernst Leonard Lindelöf, 1870-1945.

Proof Consider an arbitrary open cover of the subset A in a second-countable
topological space:

A ⊂
⋃
γ∈Γ

Vγ =
⋃
γ∈Γ

⋃
i∈Iγ

Ui

 , (1.15)

where U(1), ..., U(m), ... is a basis of the topology and

Vγ =
⋃
i∈Iγ

Ui, where Iγ ⊂ N. (1.16)

If I is the union of I(γ) as γ runs through the set Γ then it is a countable set
of indices. Equation 1.15 shows that A is a subset in the union of U(i)'s as
i runs through the set I. Since for any i there exists γ(i) such that U(i) is a
subset in V(γ(i)) we have that

A ⊂
⋃
i∈I

Vγi

and the subcollection
Vγ1 , Vγ2 , . . . ,

is a countable open subcover for the subset A as was to be proved.

1.3 A�ne and convex sets

De�nition The linear combination

λ1v1 + . . .+ λkvk (1.17)

is a�ne if the sum of the coe�cients is just one:

λ1 + . . .+ λn = 1. (1.18)

Convex combinations are a�ne combinations with non-negative coe�cients.
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The a�ne combination of vectors commutates with translations in the
sense that the a�ne combination of the translated vectors is the translate
(with the same vector) of the a�ne combination (with the same coe�cients):

(λ1v1 + . . .+ λkvk) + v = λ1(v1 + v) + . . .+ λk(vk + v)

because of 1.18. In a similar way a�ne transformations preserve the a�ne
combinations of the elements.

De�nition The set l(p,q) consisting of the elements of the form

p+ λ(q − p), where λ ∈ R (1.19)

is the a�ne line joining the points p and q. The set s(p,q) consisting of the
elements of the form

p+ λ(q − p), where 0 ≤ λ ≤ 1 (1.20)

is the segment joining the points p and q.

Remark A�ne lines/segments are the set of all a�ne/convex combinations
of two elements in the space.

De�nition A subset in the space is called a�ne or convex if it contains all
the a�ne lines or segments joining its points.

Remark It will be convenient to consider the empty-set and singletons, i.e.
subsets containing at most one element as both a�ne and convex sets.

Proposition 1.3.1 A subset is a�ne if and only if it contains all of the
a�ne combinations of its elements.

Proof The statement is trivial for subsets containing at most one element.
Otherwise if a subset A contains all of the a�ne combinations of its elements
then, especially, it contains the points of any a�ne line joining them. Con-
versely let A be an a�ne set. The proof is based on a simple induction by the
number of the elements in the a�ne combination. The case of k=1 is trivial.
If k=2 then we can use directly the de�nition of the a�ne set. Suppose that
the statement is true for a�ne combinations containing at most k - 1 vectors
and consider the a�ne combination

v := λ1v1 + . . .+ λkvk

of the elements
v1, . . . , vk ∈ A.
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Because at least one of the coe�cients must be di�erent from 1 we can write,
for example, that

v = (1− λk)
(

λ1

1− λk
v1 + . . .+

λk−1

1− λk
vk−1

)
+ λkvk

where

w :=
λ1

1− λk
v1 + . . .+

λk−1

1− λk
vk−1

is in A because of the inductive hypothesis and

v = (1− λk)w + λkvk

is an expression for v as an a�ne combination of two elements from the a�ne
set A. Therefore v is in A as was to be proved.

Proposition 1.3.2 A subset is convex if and only if it contains all of the
convex combinations of its elements.

Proof The statement is trivial for subsets containing at most one element.
Otherwise if a subset K contains all of the convex combinations of its ele-
ments then, especially, it contains the points of any segment joining them.
Conversely let K be a convex set. The proof is based on a simple induction
by the number of the elements in the convex combination. The case of k=1
is trivial. If k=2 then we can use directly the de�nition of the convex set.
Suppose that the statement is true for convex combinations containing at
most k - 1 vectors and consider the convex combination

v := λ1v1 + . . .+ λkvk

of the elements
v1, . . . , vk ∈ K.

Because at least one of the coe�cients must be di�erent from 1 we can write,
for example, that

v = (1− λk)
(

λ1

1− λk
v1 + . . .+

λk−1

1− λk
vk−1

)
+ λkvk,

where

w :=
λ1

1− λk
v1 + . . .+

λk−1

1− λk
vk−1

is in K because of the inductive hypothesis and

v = (1− λk)w + λkvk

is an expression for v as a convex combination of two elements from the
convex set K. Therefore v is in K as was to be proved.
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Consider the collection of all linear combinations of the elements from H.
It is called the linear hull (c.f. generated subspace) of the subset H. From
the elements of the linear algebra it is well-known that the linear hull is a
linear subspace. In what follows we present the corresponding results in case
of the a�ne and convex hulls.

De�nition The a�ne hull/a�ne envelope a� H is the collection of all a�ne
combinations of the elements from H.

Theorem 1.3.3 The a�ne hull is an a�ne set.

Proof Let

p = λ1v1 + . . .+ λkvk and q = µ1w1 + . . .+ µlwl

be two elements from a� H. Any point z=(1 - λ)p+λq of the a�ne line
joining p and q is the a�ne combination of the elements

v1, . . . , vk, w1, . . . , wl

in H because

z = (1− λ)λ1v1 + . . .+ (1− λ)λkvk + λµ1w1 + . . .+ λµlwl

and the sum of the new coe�cients is just one:

(1− λ)λ1 + . . .+ (1− λ)λk + λµ1 + . . .+ λµl = (1− λ) + λ = 1.

Thereore z is in a� H as was to be proved.

De�nition The convex hull/convex envelope conv H is the collection of all
convex combinations of the elements from H.

Theorem 1.3.4 The convex hull is a convex set.

Proof Let

p = λ1v1 + . . .+ λkvk and q = µ1w1 + . . .+ µlwl

be two elements from conv H. Any point z=(1 - λ)p+λq of the segment
joining p and q is the convex combination of the elements

v1, . . . , vk, w1, . . . , wl

in H because

z = (1− λ)λ1v1 + . . .+ (1− λ)λkvk + λµ1w1 + . . .+ λµlwl

and the sum of the new (non-negative) coe�cients is just one:

(1− λ)λ1 + . . .+ (1− λ)λk + λµ1 + . . .+ λµl = (1− λ) + λ = 1.

Thereore z is in conv H as was to be proved.
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Excercise 1.3.5 Prove that the intersection of a�ne/convex subsets is a�-
ne/convex.

Corollary 1.3.6 The a�ne hull a� H is just the intersection of a�ne sets
containing H.

Corollary 1.3.7 The convex hull conv H is just the intersection of convex
sets containing H.

Theorem 1.3.8 (Characterization of a�ne sets). Each non-empty a�ne
set A can be written into the form A=p+L, where p is an arbitrary point in
A and L is a uniquely determined linear subspace.

Proof Since A is non-empty choose a point p in A and let us de�ne the
translated set L= - p+A. The origin belongs to L because p is in A. We
are going to prove that L is closed under the vector addition and the scalar
multiplication which implies that it is a linear subspace. Let v(1), ..., v(k)
be elements in L, i.e.

v1 = −p+ w1, . . . , vk = −p+ wk

for some elements w(1), ..., w(k) from A. Then

v = λ1v1 + . . .+ λkvk = −(λ1 + . . .+ λk)p+ λ1w1 + . . .+ λkwk =

= −p+

(
1− (λ1 + . . .+ λk)

)
p+ λ1w1 + . . .+ λkwk = −p+ w

and v is in L because w is the a�ne combination of the elements p, w(1), ...,
w(k) from the a�ne set A. To clarify that L is uniquely determined suppose
that p+M=q+L for some points p, q and linear subspaces M, L. Translate
with the additive inverse of p it follows that M=q - p+L. Since the origin
must be an element of each linear subspace (especially M) we have that the
di�erence vector of p and q is also in L. Here L is a linear subspace which is
closed under the vector addition and thus

M = q − p+ L = L

as was to be proved.

According to the previous theorem non-empty a�ne sets are often called
a�ne subspaces on the model of the linear subspaces.

De�nition The dimension of a non-empty a�ne set is just the dimension
of the associated linear subspace. In case of a subset H the dimension is
de�ned as the dimension of its a�n hull. The empty-set is of dimension - 1.
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1.4 Operations with sets

De�nition The sum of non-empty sets A and B is de�ned as the set

A+B := {v + w | v ∈ A and w ∈ B}, where A, B ⊂ En.

In case of translated linear subspaces (a�ne sets) the symbol + has been
used in the same sense. The product of a set and a real number is

λA = {λv | v ∈ A}.

From the viewpoint of geometry the scalar multiplication is a central
similarity (with the origin as the center), the addition is the union of images
of A under translations with the elements of B (and vice versa):

A+B =
⋃
w∈B

w +A =
⋃
v∈A

v +B. (1.21)

This means that the scalar multiplication obviously preserves the convexity.

Theorem 1.4.1 The sum of convex sets is convex.

Proof If one of the terms is a singleton then the statement is trivial because
the translation preserves the convexity. Otherwise let

z1 = v1 + w1 and z2 = v2 + w2

be two elements of the set A+B, where

vi ∈ A and wi ∈ B (i = 1, 2).

Then
λz1 + (1− λ)z2 = λv1 + (1− λ)v2 + λw1 + (1− λ)w2.

Because of the convexity

λv1 + (1− λ)v2 ∈ A and λw1 + (1− λ)w2 ∈ B.

Therefore
λz1 + (1− λ)z2 ∈ A+B

as was to be proved.

Proposition 1.4.2 Addition and scalar multiplication of sets have the fol-
lowing properties:

(A+B) + C = A+ (B + C), (1.22)

A+B = B +A. (1.23)
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We also have the following distributivity-like property:

λ(A+B) = λA+ λB. (1.24)

If A is convex and the scalars have a common sign then

(λ1 + λ2)A = λ1A+ λ2A. (1.25)

Finally
(λ1λ2)A = λ1(λ2A) (1.26)

and
1 ·A = A. (1.27)

Proof Properties 1.22, 1.23, 1.24, 1.26 and 1.27 are trivial in the sense that
they are direct consequences of the addition and the scalar multiplication
of vectors. If one of the scalars is zero then property 1.25 is also obvious.
Consider the case of positive scalars to prove one of the non-trivial cases (the
case of negative scalars is similar). Suppose that

z = (λ1 + λ2)v

for some element v in A. Then

z = λ1v + λ2v ∈ λ1A+ λ2A

showing that the inclusion

(λ1 + λ2)A ⊂ λ1A+ λ2A (1.28)

holds without any extra condition. Conversely if

z ∈ λ1A+ λ2A

then we can write z into the form

z = λ1v1 + λ2v2,

where the right hand side involves not necessarily the same elements from
A. Then we have that

1

λ1 + λ2
z =

λ1

λ1 + λ2
v1 +

λ2

λ1 + λ2
v2.

The right hand side is a convex combination of elements from a convex set.
Therefore

1

λ1 + λ2
z ∈ A

and property 1.26 says that

z ∈ (λ1 + λ2)A

as was to be proved.
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Proposition 1.4.3 (Cancellation law, �rst version) If A, B and C are non-
empty sets such that B is closed and convex, C is bounded then

A+ C ⊂ B + C

implies that
A ⊂ B.

Proof Consider an element a in A and choose a point c(1) in C. Because of
our hypothesis there exist

b1 ∈ B and c2 ∈ C such that a+ c1 = b1 + c2.

Similarly
a+ c2 = b2 + c3

for some elements b(2) in B and c(3) in C. In the kth step we have that

a+ ck = bk + ck+1. (1.29)

Taking the sum of equations 1.29 as k runs from 1 to n we have that

na = b1 + . . .+ bn + cn+1

and, consequently,

a =
b1 + . . .+ bn

n
+
cn+1

n
.

Since C is bounded
lim
n→∞

cn+1

n
= 0

and thus

a = lim
n→∞

b1 + . . .+ bn
n

,

where the right hand side involves a sequence of convex combinations of
elements in B. Therefore the sequence runs in B (convexity) and its limit
belongs to B because of the closedness.

Corollary 1.4.4 (Cancellation law, second version) If A, B and C are non-
empty sets such that A and B are closed and convex, C is bounded then

A+ C = B + C

implies that A=B.

Remark The collection of non-empty compact convex sets forms a cancella-
tive semigroup with respect to the set-addition.
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Figure 1.2: Felix Hausdor�, 1868-1942.

1.5 The Hausdor� distance

De�nition Let A be a non-empty compact set in the space. The parallel
body P(A, λ) to A with radius λ > 0 is A+λD, where D denotes the closed
unit ball around the origin.

Lemma 1.5.1 The parallel bodies of a non-empty compact set A are com-
pact.

Proof The boundedness is clear. To prove that A+λD is closed choose a
point p in the complement. This means that for any point a in A the distance
between p and a is greater than λ. Using excercise 1.7.31 (iii) it follows that

d(p,A) := min
a∈A

d(p, a) > λ (1.30)

and the same holds for the elements of an open neighbourhood of p with a
su�ciently small radius. Therefore the complement of the parallel body is
open and, consequently, the parallel body is closed.

De�nition The Hausdor� distance between two non-empty compact sets A
and B in the space is de�ned as

h(A,B) = inf{λ > 0 | A ⊂ B + λD and B ⊂ A+ λD}

Remark According to the compactness the set of positive reals satisfying

A ⊂ B + λD and B ⊂ A+ λD

is non-empty and

A ⊂ B + h(A,B)D and B ⊂ A+ h(A,B)D
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Proposition 1.5.2 The Hausdor� distance is a metric on the collection of
non-empty compact subsets in the space, i.e. it is positive de�nite

h(A,B) ≥ 0 and h(A,B) = 0 if and only if A = B,

symmetric
h(A,B) = h(B,A)

and satis�es the triangle inequality

h(A,C) ≤ h(A,B) + h(B,C).

Proof The non-negativity of the Hausdor� distance is trivial. To prove
the non-trivial part of the positive de�niteness suppose that we have two
di�erent sets A and B such that there exists a point p from A which is not
in B. Especially B is closed which means that its complement is open. The
point p is contained in the complement of B together with an open ball
centered at p with radius λ. Therefore

0 < λ < d(p,B) ≤ h(A,B). (1.31)

By contraposition
h(A,B) = 0 ⇒ A ⊂ B.

Changing the role of A and B we have that h(A,B)=0 implies that A=B.
The symmetry is trivial. To prove the triangle inequality observe that

C ⊂ B + h(B,C)D ⊂ A+ h(A,B)D + h(B,C)D

and thus

C ⊂ A+

(
h(A,B) + h(B,C)

)
D.

On the other hand

A ⊂ B + h(A,B)D ⊂ C + h(B,C)D + h(A,B)D

and thus

A ⊂ C +

(
h(A,B) + h(B,C)

)
D.

Therefore
h(A,C) ≤ h(A,B) + h(B,C)

as was to be proved.

Proposition 1.5.3 (The minimax characterization) Let A and B be non-
empty compact sets and

λ1 := max
a∈A

d(a,B) := max
a∈A

(
min
b∈B

d(a, b)

)
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Figure 1.3: The minimax characterization.

and

λ2 := max
b∈B

d(b, A) := max
b∈B

(
min
a∈A

d(a, b)

)
.

Then
h(A,B) = max {λ1, λ2} .

Proof Since A is contained in the parallel body of B with radius h(A,B) it
follows that

d(a,B) ≤ h(A,B)

for any a in A. Taking the maximum as a runs through the points of A we
have that λ(1) is less or equal than h(A,B). So is λ(2) by changing the role
of A and B:

λ := max {λ1, λ2} ≤ h(A,B).

From the de�nition of λ it follows that A is a subset in B+λD and B is a
subset in A+λD. Therefore

max{λ1, λ2} =: λ ≥ h(A,B).

Finally λ=h(A,B) as was to be proved.

Theorem 1.5.4 The space of non-empty compact subsets in the coordinate
space of dimension n equipped with the Hausdor� metric is a complete metric
space.

Proof Let A(1), A(2), ..., A(m), ... be a Cauchy sequence with respect to
the Hausdor� metric. The �rst observation is that it is uniformly bounded,
i.e. there exists a solid sphere containing all the elements of the sequence. To
prove the existence of such a body let ε > 0 be a given positive real number.
Then there exists a natural number N such that

h(Am, AN+1) < ε (m > N).
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Figure 1.4: The minimax characterization.

This means that A(m) is a subset of the parallel body of A(N+1) with radius
ε. On the other hand we can take the maximal distance among the missing
�nitely many elements A(1), ..., A(N) of the sequence from A(N+1). If

d := max{ε, h(Ai, AN+1) | i = 1, . . . , N}

then all the elements of the sequence is contained in any solid sphere G
containing the parallel body P(A(N+1),d). As a second step let B(k) be
the closure of the union

Ak ∪Ak+1 ∪ . . . .
It is clear that B(k)'s are non-empty compact subsets in the space (com-
pactness is clear because of Heine-Borel's theorem via uniform boundedness)
and they form a decreasing nested sequence, i.e. B(k+1) is a subset in B(k).
Therefore1

B := B1 ∩B2 ∩ . . . Bk ∩ . . . 6= ∅.
Moreover B is compact. We prove that B(k) tends to B with respect to the
Hausdor� metric. Since

Bk ⊃ Bk+1 ⊃ B
we have

h(Bk, B) ≥ h(Bk+1, B).

This means that the sequence of the Hausdor� distances is monotone de-
creasing and bounded from below. Therefore it is convergent and the limit
is just the in�mum as k runs through the natural numbers. Suppose, in con-
trary, that the in�mum is strictly positive. Then we can choose an element
p(k) of the corresponding B(k) such that

d(pk, B) ≥ r > 0

1In opposite case the complements of B(k)'s form an open cover of the space, especially,
they form an open cover of B(1). Choosing a �nite subcover and taking the complement
again we have that the intersection of a �nite subfamily of sets B(k)'s is in the complement
of B(1). At the same time it is a subset in B(1) which is obviously a contradiction.
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for any natural number k. Taking a convergent subsequence with the limit
point p it follows that

d(p,B) ≥ r > 0.

But p must be in B because B(k) is a decreasing nested sequence of compact
sets and thus p must be in B(k) for any natural number k. This is obviously
a contradiction. By the de�nition A(k) is a subset in B(k) which implies
(together with the previous convergence B(k) �> B) that A(k) is a subset
of the parallel body to B with radius ε provided that k is great enough. To
prove the converse relationship we use that A(k) is a Cauchy sequence. This
means that if k is great enough then

h(Aj , Ak) < ε (j ≥ k > N)

and, consequently,

B ⊂ Bk = the closure of ∪∞j=k Aj ⊂ P (Ak, ε)

because the set on the right hand side is compact (especially closed) and
contains each member of the union: recall the minimality property of the
closure of a set. therefore Ak → B.

Using that central similarities are circle-preserving transformations the
property

λh(A,B) = h(λA, λB) (λ ≥ 0) (1.32)

is trivial without any extra condition. The following proposition shows that
the Hausdor� distance also has a natural behavior under �translations� in
case of non-empty compact convex sets.

Proposition 1.5.5 (Invariance under �translations�.) If A, B and C are
non-empty compact convex sets in the space then

h(A+ C,B + C) = h(A,B).

Proof For the sake of simplicity let

λ = h(A,B) and µ = h(A+ C,B + C).

Since
A ⊂ B + λD and B ⊂ A+ λD

it follows that

A+ C ⊂ B + C + λD and B + C ⊂ A+ C + λD

showing that
h(A+ C,B + C) ≤ h(A,B).
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Figure 1.5: The epigraph of a function.

Conversely

A+ C ⊂ B + C + µD and B + C ⊂ A+ C + µD

which implies by the �rst version of the cancellation law 1.4.3 that

A ⊂ B + µD and B ⊂ A+ µD

showing that
h(A,B) ≤ h(A+ C,B + C).

Therefore
h(A+ C,B + C) = h(A,B)

as was to be proved.

1.6 Convex functions

In what follows let K be a non-empty open convex subset in the coordinate
space of dimension n and consider a function

f :K → R. (1.33)

De�nition The function f is convex if for any points p and q in K

f((1− λ)p+ λq) ≤ (1− λ)f(p) + λf(q), (1.34)

where λ is in [0,1]. The function f is concave if - f is convex.

The geometric meaning of equation 1.34 is that chords joining the points
on the graph are above it. This can be expressed in terms of the so-called
epigraph as the following theorem shows.
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Proposition 1.6.1 The function f is convex if and only if its epigraph

epi f = {(p, t) | p ∈ K and t ≥ f(p)} ⊂ En+1

is a convex subset in the coordinate space of dimension n+1.

Proof Let f be a convex function and suppose that (p,t) and (q,s) are in epi
f. Then

(1− λ)(p, t) + λ(q, s) = ((1− λ)p+ λq, (1− λ)t+ λs),

where v:=(1 - λ)p+λq is in K because of its convexity and the scalar "coor-
dinate" satis�es the inequalities

(1− λ)t+ λs ≥ (1− λ)f(p) + λf(q) ≥ f(v)

because of the convexity of the function. Therefore epi f is convex (as a set).
Conversely, if epi f is a convex set then the chords joining its boundary points
are "above" the graph of f and inequality 1.34 follows immediately.

Proposition 1.6.2 (Jensen, Johan) The function f is convex if and only if

f(λ1v1 + . . .+ λkvk) ≤ λ1f(v1) + . . .+ λkf(vk) (1.35)

for any convex combination of elements from K.

Proof Inequality 1.35 gives the de�nition of convex functions under the
special choice k=2. Conversely, if a function is convex then inequality 1.35 is
satis�ed in case of k=2 because of the de�nition of convex functions (if k=1
then there is nothing to prove). For convex combinations involving more
than two terms the proof is based on a simple induction. Suppose that 1.35
is true for convex combinations containing at most k - 1 vectors and consider
the convex combination

v := λ1v1 + . . .+ λkvk

of the elements v(1), ..., v(k) in K. Because at least one of the coe�cients
must be di�erent from 1 we can write, for example, that

v = (1− λk)
(

λ1

1− λk
v1 + . . .+

λk−1

1− λk
vk−1

)
+ λkvk,

where

w :=
λ1

1− λk
v1 + . . .+

λk−1

1− λk
vk−1

is in K because of its convexity and

v = (1− λk)w + λkvk.
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Figure 1.6: Johan Jensen, 1859-1925.

Then
f(v) ≤ (1− λk)f(w) + λkf(vk) (1.36)

and, by the inductive hypothesis,

f(w) ≤ λ1

1− λk
f(v1) + . . .+

λk−1

1− λk
f(vk−1). (1.37)

Relations 1.36 and 1.37 give that

f(v) ≤ λ1f(v1) + . . .+ λk−1f(vk−1) + λkf(vk)

as was to be proved.

Proposition 1.6.3 Let K be a non-empty open convex set. If the function

f :K → R

is convex then it is continuous at any point in K.

Proof Let p in K be a given point (recall that K is a non-empty open convex
subset). Without loss of generality we can suppose that p is just the origin 0.
As the �rst step we are going to prove that f is locally bounded. Consider
an open box R of dimension n centered at the origin in K. Since the elements
in R can be expressed as a convex combination of the vertices

v1, . . . , vm (m = 2n)

we have that for any v in R

f(v) ≤ λ1f(v1) + . . .+ λmf(vm) ≤M(λ1 + . . .+ λm) = M,

where
M := max{f(v1), . . . , f(vm)}.
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Figure 1.7: The proof of Proposition 1.6.3.

On the other hand

0 =
1

2
v +

1

2
(−v),

where - v is in R because the origin is the center of the box. Using the upper
bound M and the convexity of the function

f(0) ≤ 1

2
f(v) +

1

2
f(−v) ≤ 1

2
f(v) +

1

2
M

and, consequently,
m := 2f(0)−M ≤ f(v)

is a lower bound. Therefore

|f(v)| ≤ C := max{|m|, |M |} (v ∈ R).

In the second step we claim that f is locally Lipschitzian. Consider an
open ball B centered at p with radius r such that 2B is contained in the box
R. Then for each q in B we have a point z not in B but in R such that

q ∈ s(p, z) and s(−z, z) ⊂ R.

Explicitly
q = (1− λ)p+ λz,

where

λ =
||q − p||
||z − p||

is the simple ratio among the points. Using the convexity of the function we
have that

f(q) ≤ (1− λ)f(p) + λf(z)

and, consequently,

f(q)− f(p)

||q − p||
≤ f(z)− f(p)

||z − p||
≤ 2C

||z − p||
≤ 2C

r
(1.38)
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Figure 1.8: Rudolf Lipschitz, 1832-1903.

because z is not in B but z is in R. Therefore

f(q)− f(p) ≤ 2C

r
||q − p||. (1.39)

Using the same argumentation as above for the triplet q, p and u:= - z we
have that

f(p)− f(q)

||p− q||
≤ f(u)− f(q)

||u− q||
(1.40)

and, consequently,
f(q)− f(u)

||u− q||
≤ f(q)− f(p)

||p− q||
.

The last equation allows us to present a lower estimation

−2C

r
≤ − 2C

||u− q||
≤ f(q)− f(u)

||u− q||
≤ f(q)− f(p)

||p− q||
. (1.41)

Therefore

−2C

r
||p− q|| ≤ f(q)− f(p). (1.42)

Inequalities 1.39 and 1.42 say that

|f(q)− f(p)| ≤ 2C

r
||p− q||,

i.e. the function is locally Lipschitzian and, consequently, it is continuous at
p as was to be proved.

Inequalities 1.38 and 1.42 imply more than the continuity: the existence
of the one-sided directional derivatives

D+
v f(p) = lim

t→0+

f(p+ tv)− f(p)

t
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Figure 1.9: Discontinuity on the boundary of the domain.

at each point into each direction. Indeed, consider the function

h(t) :=
f(p+ tv)− f(p)

t
(0 < t < r)

de�ned on a su�ciently small open interval. Using the notation q=p+tv
inequality 1.42 says that h is bounded from below. Taking t < s and z=p+sv
1.38 shows that h is monotone increasing. Therefore its in�mum M*=inf h
exists and

lim
t→0+

f(p+ tv)− f(p)

t
= M∗.

For further regularity properties of convex functions see Lebesgue's theorem
and [8]. Figure 1.9 shows why it is important for the point p to be in the
interior of the domain.

De�nition The element w is called a subgradient of the function f at the
point p in K if the inequality

〈w, q − p〉 ≤ f(q)− f(p) (1.43)

holds for any point q in K. The subdi�erential of the function f is the set of
its subgradients.

For the geometric description of a subgradient vector write inequality
1.43 into the form

〈(w,−1), (q, f(q))− (p, f(p))〉 ≤ 0

to express that the graph of the function must be entirely above the hyper-
plane

〈(w,−1), (x, t)− (p, f(p))〉 = 0 (1.44)
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Figure 1.10: The subgradient vector.

passing through the point (p, f(p)) in the coordinate space of dimension n+1.
The vector (w, - 1) plays the role of the normal vector to the hyperplane
1.44.

The subgradient involves a global property whereas the derivative has
a local character. Nevertheless the convexity of the function allows us to
describe the set of subgradients locally in terms of the directional derivative.

Proposition 1.6.4 (Local characterization.) Let K be a non-empty open
convex set and consider a convex function

f :K → R.

The element w is a subgradient at the point p in K if and only if the inequality

〈w, v〉 ≤ D+
v f(p)

holds for any element v in the coordinate space.

Proof Suppose that w is a subgradient of the function f at the point p and
let us choose the point q in the special form

q := p+ tv,

where v is a nonzero vector and t is a positive real number which is small
enough for q to be in K. Then the relation

〈w, v〉 ≤ f(p+ tv)− f(p)

t

follows immediately from the de�nition of the subgradient. Therefore

〈w, v〉 ≤ lim
t→0+

f(p+ tv)− f(p)

t
= D+

v f(p).
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In order to see the converse statement let q be an arbitrary point in K and
consider the line segment

c(t) := (1− t)p+ tq = p+ tv

joining p and q. Since the function is convex, the formula

f (c(t)) ≤ (1− t)f(p) + tf(q)

holds for any parameter t between 0 and 1. Therefore

D+
v f(p) = (f ◦ c)′(0) = lim

t→0+

f (c(t))− f (c(0))

t
≤

lim
t→0+

(1− t)f(p) + tf(q)− f(p)

t
= f(q)− f(p).

This means that
〈w, q − p〉 = 〈w, v〉 ≤ D+

v f(p)

implies that
〈w, q − p〉 ≤ f(q)− f(p)

as was to be proved.

Corollary 1.6.5 Let K be a non-empty open convex set and consider a con-
vex function

f :K → R.

The following conditions are equivalent:

i The point p in K is a global minimizer.

ii The zero vector 0 belongs to the subdi�erential of f at p.

iii For any element v
0 ≤ D+

v f(p).

Proof If p is a global minimizer then for any q in K

0 ≤ f(q)− f(p)

showing that 0 is one of the subgradient at p. If 0 is one of the subgradient
at p then, by de�nition

0 = 〈0, q − p〉 ≤ f(q)− f(p)

and we have that p is a global minimizer. The equivalence of (ii) and (iii)
is a direct consequence of the local characterization Proposition 1.6.4 of the
subgradient vectors.
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Figure 1.11: The zero vector as a subgradient.

De�nition Suppose that
f :K → R

is di�erentiable at the point p. The gradient vector is de�ned in terms of
the usual partial derivatives:

grad fp := (D1f(p), . . . , Dnf(p)).

Actually it is a special notation for the Jacobian matrix at the point p.

For the sake of simplicity we restrict ourselves to the coordinate plane to
present the geometric characterization of the gradient vector. We will use
the standard symbols x and y for the coordinates of the points in the plane.
Let U be a non-empty open subset and consider a (not necessarily convex)
function

f :U → R.

Suppose that f is continuously di�erentiable, i.e. it is di�erentiable every-
where and the partial derivatives are continuous. Let p be a point in U
with a non-zero gradient vector. This means, for example, that the partial
derivative with respect to the second coordinate at p is di�erent from zero:

D2f(p) 6= 0.

Let us de�ne the mapping

Φ:U → E2, (x, y) 7→ Φ(x, y) = (x, f(x, y)).

The Jacobian

det J = det

(
1 0

D1f D2f

)
= D2f

is di�erent from zero at p.
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Figure 1.12: The inverse mapping theorem.

Using the inverse mapping theorem we have an inverse function de�ned
on an open neighbourhoof Φ(V) of Φ(p). We are going to give a local pa-
rameterization for the level curve

f(x, y) = c0 (1.45)

passing through the point p. Let r be a su�ciently small positive real number
such that

v(t) ⊂ Φ(V ), where v(t) = (xp + t, c0)

is a parametrization of the horizontal segment passing through Φ(p) and t
is between r and - r. Then

w(t) := Φ−1(v(t))

is just a local parametrization of the level curve 1.45 because

f(w(t)) = the second coordinate of Φ(w(t)) =

the second coordinate of v(t) = c0.

Therefore
0 = (f ◦ w)′ = w′1D1f(w) + w′2D2f(w) (1.46)

which means that the gradient vector �eld along the level curves is orthogonal
to the tangent lines represented by the derivative vector w'.

Remark In case of higher dimensional spaces the gradient vectors are or-
thogonal to the tangent hyperplanes of the level hypersurfaces.

1.7 Excercises

Excercise 1.7.1 Find the parameter t for the system

v1 = (1, 2, 3), v2 = (−1, 0, 2), v3 = (2, 1, t)
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Figure 1.13: The gradient vector.

to be linearly dependent. Prove that in case of t=1 the system is linearly
independent and �nd the coordinates of

v = (1, 8,−2)

with respect to the basis

v1 = (1, 2, 3), v2 = (−1, 0, 2), v3 = (2, 1, 1).

Excercise 1.7.2 Find the inverse of the matrix 1 −1 2
2 0 1
3 2 1

 .
How the inverse matrix is related to the coordinate transformation?

Excercise 1.7.3 Find the parameters t and s for the system

v1 = (1, 2, 3), v2 = (−1, t, 2), v3 = (2, 1, s)

to be linearly dependent. What is the locus of points with coordinates t and
s in the plane.

Excercise 1.7.4 Find the rank of the systems

v1 = (2,−1, 2), v2 = (1, 2,−3), v3 = (3,−4, 7).

v1 = (−2, 3, 4), v2 = (3,−4, 5), v3 = (3, 3,−3).

v1 = (1,−2, 3), v2 = (−4, 5, 6), v3 = (7, 8,−9).
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Excercise 1.7.5 Find the rank of the systems

v1 = (1, 0, 0,−1), v2 = (2, 1, 1, 0), v3 = (1, 1, 1, 1),

v4 = (1, 2, 3, 4), v5 = (0, 1, 2, 3).

v1 = (1, 2, 2,−1), v2 = (2, 3, 2, 5), v3 = (−1, 4, 3,−1),

v4 = (2, 9, 3, 5).

v1 = (−3, 1, 5, 3, 2), v2 = (2, 3, 0, 1, 0), v3 = (1, 2, 3, 2, 1),

v4 = (3,−5,−1,−3,−1), v5 = (3, 0, 1, 0, 0).

Excercise 1.7.6 Find the inverse of the matrix 1 2 3
1 3 −2
2 4 7


and solve the equation 1 2 3

1 3 −2
2 4 7

X =

 4 7 1
−14 8 −5

11 14 3

 .
To calculate the distance between a point and a linear (or a�ne) sub-

space2 H in the Euclidean space one typically needs the orthogonal com-
plement to H. Especially systems consisting of pairwise orthogonal non-zero
vectors play a distinguished role in Euclidean geometry (see Gram-Schmidt's
process of orthogonalization). The following excercises refer to some special
tools and process in the coordinate space of dimension three. Problems in
higher dimensional spaces will be also formulated.

Excercise 1.7.7 Calculate the vectorial product of the elements

v1 = (2,−1, 2), v2 = (1, 2,−3)

in the coordinate space of dimension three. Is the resulting vector perpen-
dicular to the terms of the product? How to express its length in terms of
lengths of the given vectors and the angle between them? What about the
orientation of the system

v1, v2, v3 = v1 × v2?

Excercise 1.7.8 Calculate the mixed product of the elements

v1 = (2,−1, 2), v2 = (1, 2,−3), v3 = (3,−4, 7).

2A�ne subspaces mean translates of linear subspaces, see also section 1.3
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Excercise 1.7.9 Calculate the distance between the point

p = (−2,−4, 3)

and the plane
2x− y + 3z = 1.

Excercise 1.7.10 Calculate the distance between the point

p = (5,−12,−4)

and the line
x− 7

5
=
y + 2

−4
= z − 1.

Excercise 1.7.11 Calculate the distance between the lines

x+ 7

3
=
y + 4

4
=
z + 3

−2

and
x− 21

6
=
y + 5

−4
= 2− z.

Excercise 1.7.12 Calculate the distance between the point

p = (4, 2,−5, 1)

and the a�ne subspace given by the system of equations

2x1 − 2x2 + x3 + 2x4 = 9,

2x1 − 4x2 + 2x3 + 3x4 = 12.

Excercise 1.7.13 Calculate the distance between the point

p = (4,−1, 3, 7)

and the a�ne subspace given by the system of equations

3x1 + 2x2 + 2x4 = −5,

3x1 + 4x2 + 3x3 + x4 = −1,

x1 − x3 + x4 = −3.

Excercise 1.7.14 Prove that the formal determinant of the matrix
e1 e2 e3 e4

3 2 0 2
3 4 3 1
1 0 −1 1

 ,
where the �rst row contains the members of the canonical basis 1.9 gives a
vector perpendicular to every element of the system

v1 = (3, 2, 0, 2), v2 = (3, 4, 3, 1), v3 = (1, 0,−1, 1).
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Excercise 1.7.15 Use the standard Gram-Schmidt process to transform the
system

v1 = (1,−2, 2), v2 = (−1, 0,−1), v3 = (5,−3,−7)

into an orthogonal system of vectors. How to compute the coordinates of

v = (6,−1, 4)

with respect to a basis consisting of pairwise orthogonal unit vectors.

Excercise 1.7.16 Use the standard Gram-Schmidt process to transform the
following systems into orthogonal ones in the generated linear subspaces.

v1 = (0, 1, 0, 1), v2 = (−2, 3, 0, 1), v3 = (1, 1, 1, 5).

v1 = (1, 1, 1, 1), v2 = (3, 3,−1,−1), v3 = (−2, 0, 6, 8).

Find the missing vectors to give orthogonal bases in the coordinate space of
dimension four.

Although vector spaces of the same �nite dimension are isomorphic some-
times they have lots of di�erent features relative to the standard coordinate
space of dimension n. To �nish this section we formulate some excercises
related to vector spaces of di�erent objects to illustrate how the presented
technics and methods work in strange situations.

Excercise 1.7.17 Prove that the set of square matrices of order n forms a
Euclidean vector space with respect to the inner product

〈A,B〉 = trace ATB,

where the operator T refers to the transpose of the matrix.

Excercise 1.7.18 Prove that the set of polynomials of order at most n forms
a Euclidean vector space with respect to the inner product

〈P,Q〉 =

∫ 1

−1
P (x)Q(x) dx.

Use the standard Gram-Schmidt process to transform the system of monomi-
als

1, x, x2, . . . , xn

into an orthogonal system of polynomials; see Legendre polynomials.

Excercise 1.7.19 Prove that for every Euclidean vector space v and w are
perpendicular to each other if and only if

‖v + w‖2 = ‖v‖2 + ‖w‖2. (1.47)
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Figure 1.14: Legendre polynomials up to order four.

Hint. Formula 1.47 is just the generalization of the classical Pythagorean
theorem (and its converse).

Excercise 1.7.20 Prove that for every Euclidean vector space the elements
v and w have the same length if and only if the sum of the given vectors is
perpendicular to the di�erence vector.

Hint. The diameters of a rhombus are perpendicular to each other.
One of the most important relationships in Euclidean vector spaces is

the so-called parallelogram-law

‖v + w‖2 + ‖v − w‖2

2
= ‖v‖2 + ‖w‖2.

It can be easily derived from the characteristic properties of the inner prod-
uct: additivity and homogeneity in each of the variables, symmetry and
positive de�niteness. Actually it is a necessary and su�cient condition for
the existence of an inner product corresponding to a given norm. Recall
that the norm provides an adequate way to measure the length of vectors
in the space. This means non-negativity and positive de�niteness, abso-
lute homogeneity and subadditivity (in an equivalent terminology: triangle
inequality).

Excercise 1.7.21 Using the parallelogram law prove that the norm

‖z‖ := max{|v1|, |v2|, . . . , |vn|}

does not come from any inner product. What about the so-called taxicab
norm

‖v‖ := |v1|+ |v2|+ . . .+ |vn|? (1.48)
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Using the associated distance function

d1(p, q) = |p1 − q1|+ |p2 − q2| (1.49)

in the coordinate plane sketch the "ellipse"

d1((x, y), (1, 0)) + d1((x, y), (−1, 0)) = 1

and �nd its perimeter.

Hint. The equation of the ellipse is

|x− 1|+ |y|+ |x+ 1|+ |y| = 4

with perimeter 12 (with respect to the associated distance function 1.49).

Excercise 1.7.22 Prove or disprove the following statements:

i The intersection of open/closed subsets is open/closed.

ii The union of closed subsets is closed.

iii The intersection of compact subsets is compact.

Excercise 1.7.23 Prove that for any subset A in a topological space the
collection of sets of the form

V = U ∩A, (1.50)

where U is open in the embedding space forms a topology for A.

Hint. The set A equipped with the so-called relative topology 1.50 is
called a subspace of the embedding topological space.

Excercise 1.7.24 Let A be a subset all of whose convergent sequences tend
to an element in A. Prove that A is closed. Prove the converse of the state-
ment in case of subsets in the real coordinate space of dimension n.

The following excercise contains the topological characterization of the
continuity of a mapping

f :En → Em (1.51)

at the point p of its domain. For the sake of simplicity let q:=f(p) be the
image of p under f.

Excercise 1.7.25 Prove that the mapping 1.51 is continuous at p if and
only if for every open neighbourhood V around q there exists an open neigh-
bourhood U around p such that f(U) is a subset in V.
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Hint. Suppose that the topological characterization is true and let p(k)
be a sequence tending to p. If r is an arbitrary positive real number and V is
the open ball around f(p) with radius r then, by our assumption, there exists
an open neighbourhood U around p such that f(U) is a subset in V. Since p
is an interior point of U it follows that p(k) is in U provided that k is great
enough. Therefore f(p(k)) is in V showing that f(p(k)) tends to f(p). To
prove the converse of the statement let V be an open neighbourhood around
q and suppose in contrary that for any integer k the open ball U(k) around p
with radius (1/k) contains an element f(p(k)) which is not in V. To present
the contradiction it is enough to consider the limit of f(p(k)) as k tends to
the in�nity.

Excercise 1.7.26 Prove that the mapping 1.51 is continuous if and only
if for every open set in the coordinate space of dimension m the pre-image
under the mapping f is an open set in the coordinate space of dimension n.

Excercise 1.7.27 How the pre-image/image of the union of subsets A and
B is related to the union of pre-images/images of A and B.

Excercise 1.7.28 How the pre-image/image of the intersection of subsets
A and B is related to the intersection of pre-images/images of A and B.

De�nition The �nal topology (the strong topology with respect to f) of the
coordinate space of dimension m is de�ned by the collection of subsets for
which the pre-images under the mapping 1.51 are open in the usual sense.
The initial topology (the weak topology with respect to f) of the coordinate
space of dimension n is de�ned by the collection of subsets for which the
images under the mapping 1.51 are open in the usual sense.

Excercise 1.7.29 Prove that both the �nal and the initial topology satisfy
conditions T1, T2 and T3.

Excercise 1.7.30 Prove or disprove the following statements:

i the image of an open set under a continuous mapping is open,

ii the pre-image of a closed set under a continuous mapping is closed,

iii the image of a compact set under a continuous mapping is compact.

Excercise 1.7.31 Let A be a compact subset in the real coordinate space of
dimension n. Prove that

i A is closed and bounded.

ii Every sequence in A has a convergent subsequence.
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iii Every continuous function on A attains both its minimum and its max-
imum.

Excercise 1.7.32 How the closure/interior of the intersection of A and B
is related to the intersection of the closures/interiors of A and B.

Excercise 1.7.33 How the closure/interior of the union of A and B is re-
lated to the union of the closures/interiors of A and B.

Excercise 1.7.34 Prove that both the interior and the closure of a convex
set are convex.

Excercise 1.7.35 Find the convex hull of three not collinear points in the
space.

Excercise 1.7.36 Find the convex hulls of the following subsets in the plane:

y = x2, y = x2 and x ≥ 0, y =
1

x
and x ≥ 1

2
.

Hint. See epigraphs of functions; proposition 1.6.1.

Excercise 1.7.37 Find the convex hull of the set y=sin x in the plane.

Excercise 1.7.38 Find the convex hulls of the following subsets in the plane:

y = x3, y = x5, y = x7, ...

Hint. In case of the cubic function prove that any point (x,y) in the plane
can be written as

(x, y) =
1

3
(x1, x

3
1) +

2

3
(x2, x

3
2),

i.e. as a trisection of a segment joining two points on the graph. (Use the
fundamental theorem of algebra to prove that a real polynomial of order
three always has a real root).

Excercise 1.7.39 Find the equation of the a�ne hull of the elements

p1 = (1, 2, 3), p2 = (−1, 0, 2), p3 = (2, 1, 1).

Hint. To �nd the equation of the a�ne hull choose the point p(1) as the
"origin" and consider the linear subspace L spanned by the position vectors

p2 − p1, p3 − p1

with respect to p(1). It can be easily checked that the orthogonal complement
is generated by

v = (p2 − p1)× (p3 − p1) = (3,−5, 4)
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and the equation of the a�ne hull is just

3x− 5y + 4z = 3 · (1)− 5 · (2) + 4 · (3) = 5.

The right hand side is created in the only possible way to provide p(1) as
the element of the a�ne hull.

Excercise 1.7.40 Find the equation of the a�ne hull of the elements

p1 = (1,−1, 2,−1), p2 = (2,−1, 2, 0), p3 = (1, 0, 2, 0), p4 = (1, 0, 3, 1).

Excercise 1.7.41 Find the dimension of the a�ne hull of the elements

p1 = (1, 0, 2, 1), p2 = (2, 1, 2, 3), p3 = (0, 1,−2, 1), p4 = (−1, 0,−2,−1).

Excercise 1.7.42 Find the dimension of the a�ne hull of the elements

p1 = (1, 2, 3), p2 = (0, 1,−1), p3 = (1, 0, 2), p4 = (−2, 1, 3).

Excercise 1.7.43 Prove that if A and B are a�ne sets with a non-empty
intersection then

dim(A ∪B) = dimA+ dimB − dim(A ∩B).

What about the dimension of the union of disjoint a�ne subsets?

Hint. The formula for the dimension of the union of intersecting a�ne
subsets is just the same as the usual one for linear subspaces. But the
condition of a non-empty intersection is important as the case of parallel
lines in the coordinate space of dimension three shows. Here is the only big
di�erence between a�ne and linear subspaces: two linear subspaces always
meet in the origin of the space. The translation part varies the possible
positions of an a�ne subspace relative to another one (see e.g. parallelism).

Excercise 1.7.44 Find the sets

A+B, (A+B) + C and A+ (B + C),

where A, B and C are the segments joining the points

(0, 0) and (2, 0), (0, 0) and (0, 2), (0, 0) and (2, 2)

in the plane, respectively.

Excercise 1.7.45 Find the sum of the sets A and D, where A is the segment
joining the points

(0, 0) and (2, 0)

and D is the unit disk centered at the origin, cf. the de�nition of parallel
bodies 1.5.
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Figure 1.15: Addition of sets.

Figure 1.16: Addition of sets.

Figure 1.17: Addition of sets.
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Figure 1.18: Addition of sets.

Figure 1.19: Addition of sets.

Excercise 1.7.46 Find the sum of the sets A and B, where

A = conv {(1, 2), (3, 2), (3, 4), (1, 4)}

and B is the closed unit disk given by the inequality

(x− 5)2 + (y − 1)2 ≤ 1.

Excercise 1.7.47 Why distributivity-like property 1.25 is not true in gen-
eral?

Excercise 1.7.48 Prove the subbaditivity

conv(A+B) ⊂ convA+ convB (1.52)

and the homogenity
conv(λA) = λ convA (1.53)

of the conv - operator.
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Excercise 1.7.49 Why the cancellation laws are false in general?

Hint. Let C be the unit disk centered at the origin and consider its
boundary B. Since B+C is the union of unit disks centered at the points of
B we have that B+C=2C (the disk centered at the origin with radius 2). If
A={0} then A+C is obviously a subset in 2C=B+C but 0 is not in B.

Excercise 1.7.50 Find the parallel body of a point, a segment and a poly-
gonal chain in the plane, see �gure 1.17.

Excercise 1.7.51 Prove that

P (P (A, λ), µ) ⊂ P (A, λ+ µ).

What about the converse of the statement?

Excercise 1.7.52 Prove that if A is a non-empty compact convex set then

P (P (A, λ), µ) = P (A, λ+ µ).

Excercise 1.7.53 Express the Hausdor� distance between closed disks in
the plane in terms of the radius and the distance between the centers.

Excercise 1.7.54 Let

A = [−1, 2]× [2, 3], B = [1, 2]× [−1,−1]

and C be the closed unit disk given by the inequality

(x+ 1)2 + (y + 1)2 ≤ 1.

Calculate the Hausdor� distances among the given subsets in the coordinate
plane.

Excercise 1.7.55 Prove that any two of the segments forming the sides of
a square in the plane have the same Hausdor� distance.

Excercise 1.7.56 Prove that the operator conv is Lipschitzian, i.e.

h(convA, convB) ≤ h(A,B). (1.54)

Hint. Since
A ⊂ B + h(A,B)D

it follows from the subadditivity 1.52 and the homogenity 1.53 that

convA ⊂ convB + h(A,B)conv D = convB + h(A,B)D.

In a similar way

convB ⊂ convA+ h(A,B)conv D = convA+ h(A,B)D

proving equation 1.54.
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Excercise 1.7.57 Prove that the collection of non-empty convex compact
subsets is a closed set in the metric space of non-empty compact sets equipped
with the Hausdor� metric, i.e. the limit of a convergent sequence of compact
convex subsets is convex.

Hint. Use the Lipschitzian property 1.54 to prove that if A(k) tends to
B then conv A(k) tends to conv B.

Excercise 1.7.58 Find examples to present the strict inequality

h(convA, convB) < h(A,B) (1.55)

Excercise 1.7.59 Prove that Hausdor� metrics related to di�erent compact
convex "unit" bodies containing the origin in their interiors are equivalent to
each other.

Excercise 1.7.60 Prove that equality holds in 1.34 for any real number λ
if and only if

g := f − f(0)

is a linear functional.

Excercise 1.7.61 Prove that the set of convex functions with a common
domain forms a convex cone, i.e. it is closed under the addition of functions
and the multiplication with non-negative scalars.

Excercise 1.7.62 Prove that the lower level sets de�ned by the inequality

f(p) ≤ constant

are convex in case of a convex function. Prove that the upper level sets
de�ned by the inequality

f(p) ≥ constant

are convex in case of a concave function. What about the converse state-
ments?

Hint. Consider revolution surfaces as graphs of functions to illustrate
that convex (lower) level sets do not guarantee the convexity in the sense of
1.34 (functions with convex lower level sets are called quasi-convex).

Excercise 1.7.63 Find the convex functions in the following list:

f(x) = 2x−3, f(x) = 2(x−1)2 +6, f(x) = x3, f(x) = tanx, f(x) = ex.

How the convexity of invertible continuous functions with one variable and
their inverses are related?
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Hint. Using Bolzano's theorem prove that invertible continuous functions
are strictly monotone. How the convexity of a strictly monotone increasing
function and its inverse are related?

Excercise 1.7.64 Find the convex functions in the following list:

f(x, y) = ex
2+y2 , f(x, y) = 2(x−1)2 +6(y+3)2, f(x, y) = (x−y)3 +y2−4,

f(x, y) = xy + 1, where x > 0 and y > 0,

f(x, y) = tan(x2 + y2), where x2 + y2 <
π

2
.

Excercise 1.7.65 Find the parameters a and b for the function

f(x) =

{
x2 if x ≤ 1

ax+ b otherwise

to be convex on the entire real line.

Excercise 1.7.66 Let

g: [0, 1]→ R with initial value g(0) = 0

be a convex function. Prove that

f(t) :=
g(t)

t

is non-decreasing.

Excercise 1.7.67 Prove that the subgradient vectors form a convex set.

Excercise 1.7.68 Find the subgradient vectors of the function

f(x, y) =


x+ y if x ≥ 0 and y ≥ 0

−2x+ y if x < 0 and y ≥ 0
−2x− y if x < 0 and y > 0

x− y if x ≥ 0 and y > 0

at the origin.

Hint. If w is a subgradient vector at the origin then, by de�nition,

w1x+ w2y ≤ x+ y (0 ≤ x, 0 ≤ y)

in the �rst quadrant of the coordinate plane. Therefore

0 ≤ (1− w1)x+ (1− w2)y
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which means that (1 - w(1),1 - w(2)) must be also in the �rst quadrant.
Therefore

w1 ≤ 1, w2 ≤ 1.

Using the same technic in the further quadrants of the plane we have that
the subgradient vectors form the set

conv {(1, 1), (−2, 1), (−2,−1), (1,−1)}.

Excercise 1.7.69 Prove that the minimizers of a convex function form a
convex set.

De�nition The function f is strictly convex if

f(λp+ (1− λ)q) < λf(p) + (1− λ)f(q)

for any di�erent points p, q and real number 0<λ<1. In other words equality
in 1.34 can be realized only in trivial ways: either p=q or λ=0 or 1.

Excercise 1.7.70 Prove that a strictly convex function has at most one min-
imizer.

In the theory of convex functions there are several methods to generate
new convex functions from given ones (operations). The following examples
are devoted to illustrate some of them.

De�nition Let f(1), ..., f(m) be given real-valued functions on the same
domain in the coordinate space of dimension n. By taking the pointwise
maxima we de�ne the max function as follows:

g(p) = max{f1(p), . . . , fm(p)}.

Especially,
(f ∨ h)(p) = max{f(p), h(p)}.

Excercise 1.7.71 Prove that the max-function of convex functions is con-
vex.

Using the sum of (strict) epigraphs as convex sets in the coordinate space
of dimension n+1 we can create a new (strict) epigraph together with a
new function. It will be convex because the sum of convex sets is convex.
This leads to the notion of in�mal convolution of convex functions (see also
conjugation).

Excercise 1.7.72 Find the analytic description of the in�mal convolution
of convex functions.
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Figure 1.20: The max-function.

Hint. In case of real functions

(f ∗ g)(x) = inf
y
f(x− y) + g(y)

Excercise 1.7.73 Find the gradient vectors of the following functions

f(x, y) = x3ln y + 2y2x+ 5,

f(x, y, z) =
z

xz + y
,

f(x, y) := x2 + 2y2 − x− 2y − 1.

Excercise 1.7.74 Find the equation of the tangent lines to the following
plane curves at the given points:

x2

16
+

y2

12
= 1 and p = (2,−3),

x2

5
− y2

4
= 1 and p = (5,−4).

Excercise 1.7.75 Find the equation of the tangent line to the following
plane curve at the given point:

y2 = 18x and p = (2,−6).



Chapter 2

Carathéodory's theorem

In section 1.3 of the previous chapter we de�ned the a�ne and the convex hull
of a set as the collection of a�ne and convex combinations of the elements.
The structure theorem 1.3.8 of a�ne sets allows us to generate the a�ne
hull with the help of foundations of classical linear algebra: the problem is
how to determine the associated linear subspace of the a�ne hull. Let H be
an arbitrary non-empty subset in the coordinate plane. Theorem 1.3.8 says
that the a�ne hull a� H can be written into the form p+L, where p is in H
and L is a uniquely determined linear subspace. Let p in H be an arbitrary
point and consider a maximal linearly independent system of vectors

v1 = −p+ w1, v2 = −p+ w2, . . . , vk = −p+ wk, (2.1)

where w(1), ..., w(k) are in H. Elements in 2.1 can be interpreted as position
vectors of w's with respect to the base point p. Suppose that the orthogonal
complement N to the generated linear subspace of 2.1 is spanned by

zk+1, . . . , zn. (2.2)

The element w belongs to the a�ne hull of H if and only if the position
vector w - p is orthogonal to all the vectors z(k+1), ..., z(n). Therefore we
have n - k equations

〈w − p, zk+1〉 = 0, . . . , 〈w − p, zn〉 = 0 (2.3)

to characterize the a�ne hull of H. The linear independence of the sys-
tem 2.1 is equivalent to the a�nely independence of p, w(1), ..., w(k). As
another way to prepare (and motivate) the central notion of a�nely inde-
pendence/dependence in the forthcoming sections suppose that

λ1v1 + . . .+ λkvk = λk+1vk+1 + . . .+ λmvm,

where both sides of the equation involve combinations of the same type (a�ne
or convex). For the de�niteness consider the case of a�ne combinations:

λ1 + . . .+ λk = 1 and λk+1 + . . .+ λm = 1.

50
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We have

λ1v1 + . . .+ λkvk + (−λk+1)vk+1 + . . .+ (−λm)vm = 0,

i.e. the system
v1, . . . , vk, vk+1, . . . , vm

is linearly dependent in such a way that the sum of the coe�cients is equal
to zero.

2.1 A�nely dependence and independence

De�nition The system
v1, . . . , vk (2.4)

of vectors is a�nely dependent if the zero vector can be expressed as a non-
trivial linear combination

λ1v1 + . . .+ λkvk = 0 (2.5)

such that the sum of the coe�cients is zero:

λ1 + . . .+ λk = 0. (2.6)

The system is a�nely independent if it is not a�nely dependent.

Remark A�ne dependence involves the linear dependence of the system
together with an additional requirement 2.6 for the coe�cients.

Corollary 2.1.1 The system 2.4 is a�nely dependent if and only if

(v1, 1), . . . , (vk, 1)

is linearly dependent in the coordinate space of dimension n+1.

Proof The existence of a non-trivial scalar k-tuple solving equations 2.5 and
2.6 implies that

λ1(v1, 1) + . . .+ λk(vk, 1) = (0, 0) (2.7)

and vice versa.

Corollary 2.1.2 Systems containing at least n+2 vectors are a�nely de-
pendent.

Proposition 2.1.3 The system 2.4 is a�nely independent if and only if for
any index i the position vectors

v1 − vi, . . . , vi−1 − vi, vi+1 − vi, . . . , vk − vi (2.8)

are linearly independent.
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Figure 2.1: Constantin Carathéodory, 1873-1950.

Proof Observe that linear combinations of the position vectors 2.8 mean
combinations of 2.4 such that the sum of the coe�cients is zero and vice
versa.

Remark The a�ne dependence means that we have a non-trivial polygonal
chain with sides parallel to the position vectors from one of the elements to
the others in the given system (lasso).

Corollary 2.1.4 The system

v1, . . . , vk, vk+1 (2.9)

is a�nely independent if and only if the a�ne hull is of dimension k.

Corollary 2.1.5 Suppose that the system 2.9 is a�nely independent. Then
any point p of the a�ne hull has a unique representation as an a�ne com-
bination of the elements 2.9. The coe�cients in this combination are called
the a�ne coordinates of the point p with respect to 2.9.

2.2 Carathéodory's theorem

The following theorem belongs to the foundations of the theory of convex
sets. It was �rst proved by Constantin Carathéodory in 1907. In section 1.3
of the previous chapter the convex hull conv H was de�ned as the collection of
convex combinations of the elements from H but we have no any restriction on
the number of points of H required to make the combination. Carathéodory's
theorem gives a precise answer to the question how to generate the convex
hull without unnecessarily repetitions: the number of points of H in the
convex combination never has to be more than n+1.

Theorem 2.2.1 (Carathéodory, Constantin). The convex hull is just the
set of convex combinations of a�nely independent elements.
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Proof Let
v = λ1v1 + . . .+ λkvk

be a convex combination and suppose that the system v(1), ..., v(k) is a�nely
dependent. To reduce the number of elements in the convex combination
consider the set

4 := {(x1, . . . , xk) | x1 + . . .+ xk = 1, x1 ≥ 0, . . . , xk ≥ 0 } (2.10)

in the coordinate space of dimension k. The point

λ := (λ1, . . . , λk)

is one of its elements. By the a�ne dependence there exists a non-trivial
solution of the following system of equations:

µ1v1 + . . .+ µkvk = 0

and
µ1 + . . .+ µk = 0.

Therefore
µ := (µ1, . . . , µk)

is a non-zero vector parallel to the hyperplane (the a�n hull) of 2.10. Let
us start from λ into the direction represented by µ and go as far as we leave
2.10. In terms of the linear algebra choose a non-negative scalar t such that

ν := λ+ tµ

is on the relative boundary1 of 2.10. This element involves new coe�cients for
a convex combination of vectors v(1), ..., v(k) and one of the new coe�cients
must be zero because of the boundary-condition. Moreover

ν1v1 + . . .+ νkvk = λ1v1 + . . .+ λkvk + t(µ1v1 + . . .+ µkvk) =

λ1v1 + . . .+ λkvk = v.

The process can be repeated as far as the system of vectors in the convex
combination is a�nely dependent.

Theorem 2.2.2 The convex hull of a compact set is compact.

Proof Using Carathéodory's theorem the convex hull of the set H in the
coordinate space of dimension n is just the image of the set

4×H × . . .×H
1The relative boundary of 2.10 means its boundary in its a�ne hull.
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Figure 2.2: Carathéodory's theorem.

under the mapping

φ(λ1, . . . , λn, λn+1, v1, . . . , vn, vn+1) := λ1v1 + . . .+ λnvn + λn+1vn+1,

where

4 := {(x1, . . . , xn+1) | x1 + . . .+ xn+1 = 1, x1 ≥ 0, . . . , xn+1 ≥ 0 }.

The Cartesian product of compact sets is obviously compact. So is the
convex hull because of the continuity of the mapping Φ.

De�nition The convex hull of an a�nely independent system of vectors 2.9
is called a simplex of dimension k. The elements of 2.9 are the vertices of
the simplex.

It can be easily seen that each point p from the convex hull of a simplex
has a unique representation as a convex combination of the vertices. The
coe�cients in this combination are called the barycentric coordinates of the
point p. The element

v0 =
1

k + 1
v1 + . . .+

1

k + 1
vk+1 (2.11)

is called the centroid of the simplex.

Corollary 2.2.3 A point p is in conv H if and only if p is in a simplex with
vertices from H.

Corollary 2.2.4 The convex hull of a set H in the plane can be considered
as the union of convex hulls of at most three points belonging to H. The
convex hull of a set H in the space of dimension three can be considered as
the union of convex hulls of at most four points belonging to H.
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2.3 The colorful Carathéodory's theorem

In this section we present a generalization of Carathéodory's theorem due
to Imre Bárány [4]. The result was published in 1982 together with further
generalizations and applications (see e.g. the cone-version of Carathéodory's
theorem and applications to convex functions).

Theorem 2.3.1 Let
H1, . . . ,Hn+1

be non-empty subsets in the coordinate space of dimension n and suppose
that

p ∈ convH1 ∩ convH2 ∩ . . . ∩ convHn+1.

Then there exists elements

v1 ∈ H1, . . . , vn+1 ∈ Hn+1 (2.12)

such that p is in the convex hull of

v1, . . . , vn+1.

Proof Since p is a common element of the convex hulls of the subsets we can
suppose, by the classical version of Carathéodory's theorem, that each subset
is �nite (we can substitute the subset with one of its simplices containing
the element p if necessary). Consider the convex hulls of the form

C(v1, . . . , vn+1) := conv{v1, . . . , vn+1} (2.13)

as each argument runs through the (�nitely many) elements of the corre-
sponding subset. Since there are only �nitely many convex hulls of type 2.13
we can suppose that

C := C(v1, . . . , vn+1)

is as close to p as possible. If p is in C then the proof is �nished. Suppose
that p is not in C and consider a point q in C as close to p as possible. Let D
be the open ball centered at p with radius r=d(p,q). The interior of D and C
is obviously disjoint; see �gure 2.3. Consider now the tangent hyperplane to
the ball at q. Because of the convexity C and the open half-space containing
p must be also disjoint.

In what follows we claim that q can be expressed as a convex combination
of at most n elements from v(1), ..., v(n+1). If it is an a�nely dependent
system then the statement is obvious (see Carathéodory's theorem for the
reduction of the number of members in the convex combination). Otherwise
q can not be in the interior of C because it is the closest point to p from
C. Therefore at least one of the elements from v(1), ..., v(n+1) must have
a zero coe�cient in the convex combination presenting q. Suppose that the



CHAPTER 2. CARATHÉODORY'S THEOREM 56

Figure 2.3: Separation: the proof of 2.3.1.

�rst element is missing. Then it can be substituted with any element of
the �rst subset in such a way that the distance between p and the modi�ed
convex hull C' is the same as the (minimal) distance between p and C. The
last question is how to substitute this element to present a contradiction.
Because p is especially in the convex hull of the �rst subset we can �nd an
element

v′1 ∈ convH1

in the same open half-space as p. Such a substitution obviously decreases
the distance between p and C' as �gure 2.3 shows. This contradicts to the
minimality condition.

Remark Image that the points of H(i) have color i. The theorem asserts
the existence of the colorful covering simplex

S = {v1, . . . , vn+1}

for the point p. The �colorful� means �containing all colors� [5]. If

H1 = H2 = ... = Hn+1 = H

then we have the classical version of Carathéodory's theorem.

2.4 Excercises

Excercise 2.4.1 Check the a�ne dependence/independence of the system

v1 = (1, 2, 3), v2 = (0, 1,−1), v3 = (1, 0, 2), v4 = (−2, 1, 3).

Excercise 2.4.2 Prove or disprove the following statements:

i Linearly independent systems are a�nely independent.
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ii A�nely independent systems are linearly independent.

iii Linearly dependent systems are a�nely dependent.

iv A�nely dependent systems are linearly dependent.

Excercise 2.4.3 Check the a�ne dependence/independence of the system

v1 = (2, 0,−1), v2 = (1, 1, 2), v3 = (0,−1, 1), v4 = (−1, 0, 0).

Excercise 2.4.4 Check the a�ne dependence/independence of the following
systems of vectors.

v1 = (1, 0, 0,−1), v2 = (2, 1, 1, 0), v3 = (1, 1, 1, 1),

v4 = (1, 2, 3, 4), v5 = (0, 1, 2, 3).

v1 = (1, 2, 2,−1), v2 = (2, 3, 2, 5), v3 = (−1, 4, 3,−1),

v4 = (2, 9, 3, 5).

v1 = (−3, 1, 5, 3, 2), v2 = (2, 3, 0, 1, 0), v3 = (1, 2, 3, 2, 1),

v4 = (3,−5,−1,−3,−1), v5 = (3, 0, 1, 0, 0).

Excercise 2.4.5 Find the a�ne coordinates of

(2, 1), (1, 1), (1, 1/3) and (1, 0)

in the coordinate plane with respect to

v1 = (2, 0), v2 = (0, 5), v3 = (−1, 1). (2.14)

Using a�ne coordinates how to characterize points in the interior, points on
the boundary or points outside of conv 2.14.

Excercise 2.4.6 Prove that

v1 = (1,−1, 2,−1), v2 = (2,−1, 2, 0), v3 = (1, 0, 2, 0),

v4 = (1, 0, 3, 1), v5 = (−1, 1, 0, 1)

are a�nely independent and �nd the a�ne coordinates of the origin in the
coordinate space of dimension four.

Excercise 2.4.7 Consider the vector

v =
1

2
v1 +

1

4
v2 +

1

6
v3 +

1

12
v4,

where
v1 = (1, 0), v2 = (1, 3), v3 = (4, 3), v4 = (4, 0).

Use the procedure in the proof of Carathéodory's theorem 2.2.1 to reduce the
number of the members in the convex combination as far as possible.
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Excercise 2.4.8 Consider the vector

v =
1

5
v1 +

1

5
v2 +

1

5
v3 +

1

5
v4 +

1

5
v5,

where

v1 = (1, 1), v2 = (4, 1), v3 = (5, 2), v4 = (2, 3), v5 = (2, 2).

Use the procedure in the proof of Carathéodory's theorem 2.2.1 to reduce the
number of the members in the convex combination as far as possible.

Excercise 2.4.9 Consider the vector

v =
1

10
v1 +

3

20
v2 +

1

4
v3 +

1

5
v4 +

2

25
v5 +

11

50
v6,

where

v1 = (2, 0,−1), v2 = (1, 1, 2), v3 = (0,−1, 1), v4 = (−1, 0, 0),

v5 = (1, 0, 1), v6 = (0,−3, 3).

Use the procedure in the proof of Carathéodory's theorem 2.2.1 to reduce the
number of the members in the convex combination as far as possible.

Excercise 2.4.10 Consider the vector

v =
1

24
v1 +

1

12
v2 +

1

8
v3 +

5

12
v4 +

1

3
v5,

where

v1 = (2, 0,−1), v2 = (1, 1, 2), v3 = (0,−1, 1), v4 = (−1, 0, 0),

v5 = (1, 0, 1).

Use the procedure in the proof of Carathéodory's theorem 2.2.1 to reduce the
number of the members in the convex combination as far as possible.



Chapter 3

Helly's theorem

Helly's theorem gives a criteria to provide the existence of common elements
in each member of a family of convex sets in the space. The one-dimensional
version is that if we have a �nite collection of intervals and any two of
them have a common point then all of them have a common point. For an
alternative formulation image that each interval represents the time that a
guest spends at a party. The existence of the common point of each pair of
the intervals corresponds to the moment when two guests welcome to each
other. It is clear that if x denotes the guest who is the �rst to leave the
party at the moment t(0) then there is no any guest who arrives after t(0)
otherwise such a guest can not welcome to x. On the other hand there is no
any guest to leave the party before t(0) because x is the �rst. Therefore t(0)
is a moment when all the guests are at the party at.

3.1 Radon's lemma

Lemma 3.1.1 (Radon, Johann). Let D be the set consisting of the elements

v1, . . . , vk

in the coordinate space of dimension n. If k is at least n+2 then D can be
partitioned into two disjoint subsets such that their convex hulls intersect
each other, i.e.

D = D1 ∪D2 and D1 ∩D2 = ∅

but
convD1 ∩ convD2 6= ∅.

Proof Since k is at least n+2 the elements in D are a�nely dependent, i.e.
we have a non-trivial k-tuple of scalar multipliers such that

λ1v1 + . . .+ λkvk = 0 (3.1)

59
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Figure 3.1: Johann Radon, 1887-1956.

and λ(1)+ ...+λ(k)=0. Because the sum of the coe�cients is zero there must
be numbers with di�erent signs among them. For the sake of de�niteness
suppose that

λ1 ≥ 0, . . . , λl ≥ 0 and λl+1 < 0, . . . , λk < 0.

Let
λ := λ1 + . . .+ λl = −(λl+1 + . . .+ λk) > 0

Then, by 3.1

v :=
1

λ
(λ1v1 + . . .+ λkvk) = − 1

λ
(λl+1vl+1 + . . . λkvk)

and the element v is contained in the convex hulls of both

D1 := {v1, . . . , vl} and D2 := {vl+1, . . . , vk}

as was to be proved.

3.2 Tverberg's theorem

In this section we discuss a generalization of Radon's lemma. The theorem
was �rst proved in 1966 by Helge Arnulf Tverberg. We present a proof due to
Karanbir Sarkaria (Combinatorics and more, http://gilkalai.wordpress.com)
based on the colorful Carathéodory's theorem 2.3.1.

Theorem 3.2.1 Let D be the set consisting of the elements

v1, . . . , vm

in the coordinate space of dimension n. If m is at least

(r − 1)(n+ 1) + 1
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then D can be partitioned into r pairwise disjoint subsets such that their
convex hulls intersect each other.

Proof Without loss of generality we can suppose that

m = (r − 1)(n+ 1) + 1.

Consider the vectors v(1), ..., v(m) as the elements in the coordinate space
of dimension n+1 by adding a new coordinate to each vector in such a way
that the sum of the coordinates is just one. Let us choose a collection of
vectors w(1), ..., w(r) in the coordinate space of dimension r - 1 such that

w1 + . . .+ wr = 0 (3.2)

is the only linear relation among them up to a non-zero multiplicative con-
stant and de�ne the tensorial product

vi ⊗ wj

as a matrix 

v1
iw

1
j v1

iw
2
j . . v1

iw
r−1
j

v2
iw

1
j v2

iw
2
j . . v2

iw
r−1
j

. . . . .

. . . . .

. . . . .

vn+1
i w1

j vn+1
i w2

j . . vn+1
i wr−1

j


(n+1)×(r−1)

.

It can be considered as an element in the coordinate space of dimension
d=(n+1)(r - 1). Let

H1 = {v1 ⊗ wj | j = 1, ..., r},

H2 = {v2 ⊗ wj | j = 1, ..., r},

.

.

.

Hm = {vm ⊗ wj | j = 1, ..., r}.

It can be easily seen that

0 =
r∑
j=1

vi ⊗ wj = vi ⊗
( r∑
j=1

wj

)
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and, consequently, the origin is just the center lying in the convex hulls of
H(i)'s. Since m=d+1 the colorful Charathéodory theorem says that

0 =
m∑
k=1

λkhk, (3.3)

where h(k) is in H(k) for any index k. The partition is realized in the
following way:

D1 = {vk | hk = vk ⊗ w1},

D2 = {vk | hk = vk ⊗ w2},

.

.

.

Dr = {vk | hk = vk ⊗ wr}.

We can obviously write equation 3.3 into the form

0 =
∑
vk∈D1

λkvk ⊗ w1 + . . .+
∑
vk∈Dr

λkvk ⊗ wr. (3.4)

If we consider equation 3.4 as a system of equations for the rows of the
matrices we have, for example, that

0 =

( ∑
vk∈D1

λkv
1
k

)
w1 + . . .+

( ∑
vk∈Dr

λkv
1
k

)
wr. (3.5)

In a similar way (for the second row)

0 =

( ∑
vk∈D1

λkv
2
k

)
w1 + . . .+

( ∑
vk∈Dr

λkv
2
k

)
wr (3.6)

and so on. This means by equation 3.2 that

vj :=
∑
vk∈D1

λkv
j
k =

∑
vk∈D2

λkv
j
k = . . . =

∑
vk∈Dr

λkv
j
k (3.7)

for any indices j=1, ..., n+1. Therefore

v :=
∑
vk∈D1

λkvk =
∑
vk∈D2

λkvk = . . . =
∑
vk∈Dr

λkvk. (3.8)

Since the sums of the coordinates of the elements v(1), ..., v(m) are one we
have that1

v1 + . . .+ vn+1 =: λ =
∑
vk∈D1

λk =
∑
vk∈D2

λk = . . . =
∑
vk∈Dr

λk.

1Taking the sum of the coordinates is a linear operator and thus the sum of the coor-
dinates in a linear combination is the linear combination of the sum of the coordinates.
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Figure 3.2: A partition into three disjoint subsets.

On the other hand

1 =
∑
vk∈D1

λk +
∑
vk∈D2

λk + . . .+
∑
vk∈Dr

λk

and, consequently, λ=1/r. Finally

rv :=
∑
vk∈D1

(rλk)vk =
∑
vk∈D2

(rλk)vk = . . . =
∑
vk∈Dr

(rλk)vk, (3.9)

where (for example)

∑
vk∈D1

(rλk) = r
∑
vk∈D1

(λk) = r
1

r
= 1.

Therefore rv is in all the convex hulls conv D(1), conv D(2), ..., conv D(r)
as was to be proved.

Excercise 3.2.2 Use the technic of Sarkaria's proof to �nd the partition of
the elements

v1 = (1, 1), v2 = (2, 4), v3 = (4, 6), v4 = (6, 4), v5 = (5, 1),

v6 = (7,−1), v7 = (3,−1)

in the coordinate plane into three disjoint subsets.

Hint. First of all note that n=2, r=3 and m=7. Consider the vectors
v(1), ..., v(7) as the elements in the coordinate space of dimension 3 by
adding a new coordinate to each vector in such a way that the sum of the
coordinates is just one:

v1 = (1, 1,−1), v2 = (2, 4,−5), v3 = (4, 6,−9), v4 = (6, 4,−9),
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v5 = (5, 1,−5), v6 = (7,−1,−5), v7 = (3,−1,−1).

On the other hand let

w1 = (1, 0), w2 = (0, 1), w3 = (−1,−1).

We have that

v1 ⊗ w1 =

 1 0
1 0
−1 0

 , v1 ⊗ w2 =

 0 1
0 1
0 −1

 , v1 ⊗ w3 =

 −1 −1
−1 −1

1 1


are the elements in H(1). In a similar way

v2 ⊗ w1 =

 2 0
4 0
−5 0

 , v2 ⊗ w2 =

 0 2
0 4
0 −5

 , v2 ⊗ w3 =

 −2 −2
−4 −4

5 5

 ,

v3 ⊗ w1 =

 4 0
6 0
−9 0

 , v3 ⊗ w2 =

 0 4
0 6
0 −9

 , v3 ⊗ w3 =

 −4 −4
−6 −6

9 9

 ,

v4 ⊗ w1 =

 6 0
4 0
−9 0

 , v4 ⊗ w2 =

 0 6
0 4
0 −9

 , v4 ⊗ w3 =

 −6 −6
−4 −4

9 9

 ,

v5 ⊗ w1 =

 5 0
1 0
−5 0

 , v5 ⊗ w2 =

 0 5
0 1
0 −5

 , v5 ⊗ w3 =

 −5 −5
−1 −1

5 5

 ,

v6 ⊗ w1 =

 7 0
−1 0
−5 0

 , v6 ⊗ w2 =

 0 7
0 −1
0 −5

 , v6 ⊗ w3 =

 −7 −7
1 1
5 5

 ,

v7 ⊗ w1 =

 3 0
−1 0
−1 0

 , v7 ⊗ w2 =

 0 3
0 −1
0 −1

 , v7 ⊗ w3 =

 −3 −3
1 1
1 1


are the elements in H(2), ..., H(7), respectively. Observe that

0 =
5

24
v1 ⊗ w1 +

1

18
v2 ⊗ w3 +

5

54
v3 ⊗ w1 +

1

6
v4 ⊗ w2 +

5

18
v5 ⊗ w3+

4

27
v6 ⊗ w1 +

1

6
v7 ⊗ w2

and the partition is

D1 = {v1, v3, v6}, D2 = {v4, v7}, D3 = {v2, v5}.
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Figure 3.3: Eduard Helly, 1884-1943.

3.3 Helly's theorem

Theorem 3.3.1 (E. Helly, 1913). Let B be the collection consisting of con-
vex subsets

B1, . . . , Bk

in the coordinate space of dimension n. If k is at least n+1 and every sub-
family of n+1 sets in B has a non-empty intersection then the family of all
sets in B has a non-empty intersection.

Proof The proof is based on a simple induction. If k=n+1 then the state-
ment is trivial. Suppose that it is true in case of k > n+1 and consider the
family consisting of convex subsets

B1, . . . , Bk, Bk+1. (3.10)

We can apply the inductive hypothesis to the reduced family

B̂1, B2, . . . , Bk+1,

where the hat - operator deletes its argument. The reduced family obviously
heritages the property of non-empty intersections for its subfamilies because
they are subfamilies of the extended collection 3.10 too. Then we have an
element

v1 ∈ B̂1 ∩B2 ∩ . . . ∩Bk+1.

In a similar way

v2 ∈ B1 ∩ B̂2 ∩B3 ∩ . . . ∩Bk+1, . . . , vk+1 = B1 ∩B2 ∩ . . . ∩ B̂k+1.

Let D be the set consisting of the elements v(1), ..., v(k+1) and use Radon's
lemma 3.1.1 to give a partition D=D(1) U D(2) such that the convex hulls
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Figure 3.4: Helly's theorem 3.3.1.

of the sets D(1) and D(2) have a non-empty intersection. For the sake of
simplicity suppose that

D1 = {v1, . . . , vl} and D2 = {vl+1, . . . , vk+1};

if v is a common element of the convex hulls then we have that

v ∈ convD1 = conv{v1, . . . , vl} ⊂ Bl+1 ∩ . . . Bk+1

and
v ∈ convD2 = conv{vl+1, . . . , vk+1} ⊂ B1 ∩ . . . ∩Bl.

Therefore v is in the intersection of the sets 3.10 as was to be proved.

The �gure illustrates that the sets in Helly's theorem must all be convex.
On the other hand if we omit the requirement of �niteness the theorem
becomes false as we can see for example in case of the family consisting of
the convex sets

Bk =]0,
1

k
[×]0,

1

k
[ (k = 1, 2, . . .)

in the coordinate plane with

∩∞k=1Bk = ∅.

The Helly number n+1 cannot be reduced in general: every two sides of a
triangle have a point in common, but all the sides do not. The following
result due to Victor Klee [36] involves some information about the size of
the intersection.

Theorem 3.3.2 (Klee, Victor) Let B be the collection consisting of convex
subsets

B1, . . . , Bk
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in the coordinate space of dimension n and suppose that K is a non-empty
subset. If k is at least n+1 and for every subfamily of n+1 sets in B there ex-
ists a translate of K contained in all n+1 of them then there exists a translate
of K contained in all the members of B.

Proof Consider a new collection A of subsets

Ai = {p ∈ En | p+K ⊂ Bi}, (3.11)

where i=1, ..., k. We are going to prove that A satis�es the conditions of
the original Helly's theorem 3.3.1. For the sake of de�niteness consider two
points p and q belonging to the �rst member A(1) of the family 3.11:

p+K ⊂ B1 and q +K ⊂ B1. (3.12)

Let λ be a real number between 0 and 1. If v is an element from the set

λp+ (1− λ)q +K

then it can be written into the form

v = λp+ (1− λ)q + w = λ(p+ w) + (1− λ)(q + w)

for some w in K. By our hypothesis 3.12

p+ w ∈ B1 and q + w ∈ B1

together with their convex combination v. Therefore

λp+ (1− λ)q ∈ A1

(condition of the convexity). Since for every subfamily of n+1 sets in B
there exists a translate of K contained in all n+1 of them, every subfamily
of n+1 sets in A has a non-empty intersection. Helly's theorem implies that
the family of all sets in A has a non-empty intersection. If p* is one of the
common elements then p*+K is contained in all the members of B.

The following theorem gives a Helly-type answer to the question how to
cover subsets in the space by translates of a given convex set. It will be
applied in section 4.2.

Theorem 3.3.3 (Klee, Victor) Let B be the collection consisting of convex
subsets

B1, . . . , Bk

in the coordinate space of dimension n and suppose that K is a non-empty
convex subset. If k is at least n+1 and for every subfamily of n+1 sets in B
there exists a translate of K containing all n+1 of them then there exists a
translate of K containing all the members of B.
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Proof Consider a new collection A of subsets

Ai = {p ∈ En | Bi ⊂ p+K}, (3.13)

where i=1, ..., k. We are going to prove that A satis�es the conditions of
the original Helly's theorem 3.3.1. For the sake of de�niteness consider two
points p and q belonging to the �rst member A(1) of the family 3.13:

B1 ⊂ p+K and B1 ⊂ q +K. (3.14)

If b(1) is in B(1) then, by our hypothesis 3.14,

b1 = p+ w and b1 = q + z

for some elements w and z in K. Let λ be a real number between 0 and 1.
Then

b1 = λb1 + (1− λ)b1 = λp+ (1− λ)q + λw + (1− λ)z

and the convex combination of w and z is in K because of the convexity.
Therefore

b1 ∈ λp+ (1− λ)q +K

and
λp+ (1− λ)q ∈ A1

(condition of the convexity). Since for every subfamily of n+1 sets in B
there exists a translate of K containing all n+1 of them, every subfamily of
n+1 sets in A has a non-empty intersection. Helly's theorem implies that
the family of all sets in A has a non-empty intersection. If p* is one of the
common elements then p*+K contains all the members of B.

In what follows we present some results to illustrate typical applications
of Helly's theorem.

Corollary 3.3.4 Let F be a �nite set of points in the coordinate plane. If
each triangle formed by the points of F can be covered by a disk with radius
r, then F can be covered by a disk with radius r.

Proof Let B be the collection consisting of the closed disks

B1, . . . , Bk (3.15)

around the points in F with radius r. Because each triangle formed by the
points in F can be covered by a disk with radius r we have a point (the center
of the covering disk) having distances from the vertices of the triangle less
than or equal to r. Therefore it is a common point of three corresponding
disks from the collection B. Using Helly's theorem it follows that the family
3.15 has a non-empty intersection. If p* is one of the common elements of
B(1), ..., B(k) then the disk around p* with radius r obviously covers the
elements of F.
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Corollary 3.3.5 (H. Jung). Let F be a �nite set of points in the coordinate
plane with diameter

d := max{d(p, q) | p, q ∈ F} and r := d/
√

3.

Then F can be covered by a disk with radius r.

Proof Because of the previous corollary it is enough to prove that each
triangle formed by the points in F can be covered by a disk with radius r. If
the points are collinear (degenerate triangles) or they form an obtuse/right
triangle then covering disk(s) with radius d/2 can be found. Therefore we
discuss only the case of acute triangles. It can be easily seen that there is
an angle γ having at least π/3 radian in the measure. Then the radius R of
the circumscribed circle can be estimated as

2R =
the opposite side

sin γ
≤ d

sin(π/3)
⇒ R ≤ d√

3

because the sine function is strictly increasing in the �rst quadrant.

Remark Note that the upper bound in Jung's theorem is attained in case
of a regular triangle.

Corollary 3.3.6 Let F be a �nite set containing m points in the coordinate
plane. If d is the diameter and

δ := min{d(p, q) | p 6= q and p, q ∈ F}

is the minimal distance among the points of F then

d ≥
√

3

2
(
√
m− 1)δ, (3.16)

i.e. the ratio between the longest and the shortest distances can be estimated
from below by the square root of the number of elements.

Proof Consider the disks D(1), ..., D(m) around the points of F with radius
δ/2. Since the interiors of the disks are pairwise disjoint the area of their
union is

A

(
m⋃
i=1

Di

)
= m(δ/2)2π. (3.17)

Using Jung's theorem 3.3.5 the union of D(1), ..., D(m) can be covered by a
disk with radius

R =
(
d/
√

3
)

+ (δ/2) ⇒ m (δ/2)2 π ≤ R2π.

From the last inequality we have 3.16 immediately.

Corollary 3.3.7 The minimal distance tends to zero under increasing the
number of points in a bounded box.
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3.4 Excercises

Excercise 3.4.1 Let D be the set consisting of the elements

v1 = (1, 0), v2 = (1, 3), v3 = (4, 3), v4 = (4, 0)

in the coordinate plane. Find a Radon's partition for D.

Excercise 3.4.2 Let D be the set consisting of the elements

v1 = (1, 1), v2 = (4, 1), v3 = (5, 2), v4 = (2, 3), v5 = (2, 2)

in the coordinate plane. Find a Radon's partition for D.

Excercise 3.4.3 Let D be the set consisting of the elements

v1 = (2, 0,−1), v2 = (1, 1, 2), v3 = (0,−1, 1), v4 = (−1, 0, 0),

v5 = (1, 0, 1), v6 = (0,−3, 3)

in the coordinate space of dimension 3. Find a Radon's partition for D.

Excercise 3.4.4 Prove the one-dimensional version of Helly's theorem.

Hint. Use that real numbers form an Archimedean complete totally or-
dered �eld.

Excercise 3.4.5 Let B be the collection consisting of convex subsets

B1, . . . , Bk

in the coordinate space of dimension n. Prove that if k is at least n and
every subfamily of n sets in B has a non-empty intersection then the family
of all sets in B has a common transversal parallel to any given 1-dimensional
a�ne subspace/line in the space.

Hint. Let a 1-dimensional a�ne subspace be given and consider its or-
thogonal complement of dimension n - 1. Use Helly's original theorem 3.3.1
to �nd a common point for the projected sets.

Excercise 3.4.6 How to generalize Corollary 3.3.4 to the coordinate space
of dimension n?

Excercise 3.4.7 Why Corollary 3.3.4 is a special case of Klee's second the-
orem?

Excercise 3.4.8 How to generalize Jung's theorem 3.3.5 to the coordinate
space of dimension three?

Excercise 3.4.9 How to generalize inequality 3.16 to the coordinate space
of dimension three?



Chapter 4

Generalizations and

Applications

Helly's theorem can be extended to in�nite collections of convex sets but not
without some additional restrictions as we shall see.

4.1 Helly's theorem: generalizations and applica-

tions

Theorem 4.1.1 (The countable version) Let B be the collection consisting
of the sequence

B1, . . . , Bk, . . .

of compact convex sets in the coordinate space of dimension n. If every
subfamily of n+1 sets in B has a non-empty intersection then the family of
all sets in B has a non-empty intersection.

Proof Using the original version 3.3.1 of Helly's theorem we can produce a
sequence

p1 ∈ B1 ∩ . . . ∩Bn+1, . . . , pm ∈ B1 ∩ . . . ∩Bn+m, . . .

Because of the compactness we can choose a convergent subsequence with
the limit point p*. It is obviously a common point in all the members in B
because if the index of the elements in the subsequence is large enough then
the sequence runs in the corresponding compact set from B.

Theorem 4.1.2 (The general version). Let B be the family of compact con-
vex sets in the coordinate space of dimension n and suppose that B contains
at least n+1 members. If every subfamily of n+1 sets in B has a non-empty
intersection then the family of all sets in B has a non-empty intersection.

71
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Proof Suppose, in contrary, that the intersection of the members in B is the
empty-set. Then the union of their complement is just an open cover of the
space. By Lindelöf theorem 1.2.1 we can choose a countable subcover and,
consequently, the intersection of the corresponding members from B must be
also empty. This contradicts to the countable version 4.1.1.

In what follows we adopt the results in chapter 3 to the general version
4.1.2 of Helly's theorem together with some new applications.

Theorem 4.1.3 (Klee, Victor) Let B be the family of compact convex sets
in the coordinate space of dimension n and suppose that B contains at least
n+1 member. If K is a non-empty subset and for every subfamily of n+1
sets in B there exists a translate of K contained in all n+1 of them then there
exists a translate of K contained in all the members of B.

Proof Consider a new collection A of subsets

Aγ = {p ∈ En | p+K ⊂ Bγ}, (4.1)

where γ runs through the index set Γ. We are going to prove that A satis�es
the conditions in the general version 4.1.2 of Helly's theorem. For the sake
of de�niteness consider two points p and q belonging to the member A(γ) of
the family 4.1:

p+K ⊂ Bγ and q +K ⊂ Bγ . (4.2)

Let λ be a real number between 0 and 1. If v is an element from the set

λp+ (1− λ)q +K

then it can be written into the form

v = λp+ (1− λ)q + w = λ(p+ w) + (1− λ)(q + w)

for some w in K. By our hypothesis 4.2

p+ w ∈ Bγ and q + w ∈ Bγ

together with their convex combination v. Therefore

λp+ (1− λ)q ∈ Aγ

(condition of the convexity). On the other hand suppose that the sequence
p(m) in A(γ) tends to the limit p. Then for any k in K

lim
m→∞

pm + k = p+ k ∈ Bγ

because p(m)+k is in B(γ) and B(γ) is compact (especially closed). This
means that p+K is a subset in B(γ), i.e. p is in A(γ) (condition of closedness).
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Finally K is bounded because compact (especially bounded) subsets contain
translates of K. So is each member of A. Since for every subfamily of n+1
sets in B there exists a translate of K contained in all n+1 of them, every
subfamily of n+1 sets in A has a non-empty intersection. The general version
4.1.2 of Helly's theorem implies that the family of all sets in A has a non-
empty intersection. If p* is one of the common elements then p*+K is
contained in all the members of B.

Theorem 4.1.4 (Klee, Victor) Let B be the family of compact convex sets in
the coordinate space of dimension n and suppose that B contains at least n+1
member. If K is a non-empty compact convex set and for every subfamily of
n+1 sets in B there exists a translate of K containing all n+1 of them then
there exists a translate of K containing all the members of B.

Proof Consider a new collection A of subsets

Aγ = {p ∈ En | Bγ ⊂ p+K}, (4.3)

where γ runs through the index set Γ. We are going to prove that A satis�es
the conditions in the general version 4.1.2 of Helly's theorem. For the sake
of de�niteness consider two points p and q belonging to the member A(γ) of
the family 4.3:

Bγ ⊂ p+K and Bγ ⊂ q +K. (4.4)

If b(γ) is in B(γ) then, by our hypothesis 4.4,

bγ = p+ w and bγ = q + z

for some elements w and z in K. Let λ be a real number between 0 and 1.
Then

bγ = λbγ + (1− λ)bγ = λp+ (1− λ)q + λw + (1− λ)z

and the convex combination of w and z is in K because of the convexity.
Therefore

bγ ∈ λp+ (1− λ)q +K

and
λp+ (1− λ)q ∈ Aγ

(condition of the convexity). On the other hand suppose that the sequence
p(m) in A(γ) tends to the limit p. By the de�nition of A(γ) any element
b(γ) in B(γ) can be written into the form

bγ = pm + vm

for a sequence v(m) of elements in K. Since K is compact (especially closed)

lim
m→∞

(bγ − pm) = bγ − p = lim
m→∞

vm ∈ K
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and, consequently,
Bγ ⊂ p+K ⇒ p ∈ Aγ

(condition of closedness). Finally K is bounded and its translates with el-
ements from A(γ) must cover a compact (especially bounded) subset B(γ).
This means that A(γ) must be bounded. Since for every subfamily of n+1
sets in B there exists a translate of K containing all n+1 of them, every
subfamily of n+1 sets in A has a non-empty intersection. The general ver-
sion 4.1.2 of Helly's theorem implies that the family of all sets in A has a
non-empty intersection. If p* is one of the common elements then p*+K
contains all the members of B.

Finally we present a Helly-type theorem without any condition of com-
pactness for the member of the family of sets. In order to motivate the result
discuss the following outline how to prove the general version of Helly's the-
orem:

i conditions (compactness, convexity, non-empty intersection of every
subfamily containing n+1 members) �> countable version of Helly's
theorem,

ii indirect argumentation involving Lindelöf's theorem �> contradiction
to the countable version.

In order to avoid compactness in the conditions the following result use the
countable version directly as a requirement.

Theorem 4.1.5 Let B be the family of closed subsets in the coordinate space
of dimension n and suppose that every countable subfamily of B has a non-
empty intersection. Then the family of all the members in B has a non-empty
intersection.

Closedness can be substituted with convexity as well.

Theorem 4.1.6 (Klee, Victor) Let B be the family of convex subsets in the
coordinate space of dimension n and suppose that every countable subfamily
of B has a non-empty intersection. Then the family of all the members in B
has a non-empty intersection.

For the proof of a more general theorem see chapter 6, see also [35].

Theorem 4.1.7 Let B be the family of closed convex sets in the coordinate
space of dimension n and suppose that B contains at least n+1 members. If
one of them is compact and every subfamily of n+1 sets in B has a non-empty
intersection then the family of all sets in B has a non-empty intersection.
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Figure 4.1: The Reuleaux triangle.

Proof Let K be the distinguished compact element of the family and apply
the general version to the collection

K ∩Bγ (γ ∈ Γ).

All the new sets are compact and every subfamily of n+1 sets in the new
collection has a non-empty intersection because of the �nite version of Helly's
theorem. Therefore the general version 4.1.2 implies that all sets in B has a
non-empty intersection.

4.2 Universal covers and approximately central sym-

metry

De�nition A compact subset K in the coordinate plane is a universal cover
if any compact convex subset having diameter one can be covered by a con-
gruent copy of K.

The problem of �nding the smallest universal cover of a given class of ob-
jects is very natural and important. Here we illustrate only the cases of disks
(as an excercise) and squares because they are directly in the competence of
Helly's theorem.

De�nition Consider an equilateral triangle in the coordinate plane. The
Reuleaux triangle is formed by three circular arcs lying on the sides of the
triangle with centers running through the vertices.

The problem we are going to discuss here is how a square can be rotated
around the Reuleaux triangle?
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Figure 4.2: Tangent lines.

Let
A(−1, 0), B(1, 0) and C(0,

√
3)

be the vertices of the regular triangle (the common length of the sides is 2)
and consider the one-parameter family

x sin t− y cos t = c(t) (4.5)

of lines, where c(t)=sin t - 2 is given in such a way that the line at t is tangent
to the arc AC of the circle centered at B with radius 2. The one-parameter
family of lines parallel to 4.5 through the point B is

x sin t− y cos t = sin t.

In a similar way
x cos t+ y sin t = c(t) (4.6)

is the one-parameter family of lines, where

c(t) =
√

3 sin t− 2

is given in such a way that the line at t is tangent to the arc AB of the circle
centered at C with radius 2. Lines 4.5 and 4.6 give adjacent sides of the
circumscribed square around the Reuleaux triangle when the parameter is
between 60 and 90; see �gure 4.2. The corresponding vertex1 moves along
the path K(t) with coordinate functions

K1(t) = sin t(sin t− 2) + cos t(
√

3 sin t− 2),

1If t is less than 60 then the vertex is the foot of the perpendicular line from A to
the corresponding tangent line 4.5. As they are rotating into the clockwise direction the
path of the vertex will be the pedal curve of the arc AC with respect to A. In other words
the lower line is not tangential to the full circle belonging to the lower arc AB under the
critical value of the parameter.
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Figure 4.3: The curve T(t) with a full period: the limacon.

K2(t) = sin t(
√

3 sin t− 2)− cos t(sin t− 2).

The opposite vertex moves along M(t) with coordinate functions

M1(t) = sin2 t+
√

3 sin t cos t,

M2(t) =
√

3 sin2 t− sin t cos t.

Finally (the missing vertices)

L(t) = M(t)− 2(cos t, sin t), N(t) = K(t) + 2(cos t, sin t)

and the motion of the center can be described as

T (t) =
1

2
(K(t) +M(t))

with coordinate functions

T 1(t) = sin2 t− sin t+
√

3 sin t cos t− cos t,

T 2(t) =
√

3 sin2 t− sin t− sin t cos t+ cos t,

where t is between 60 and 90 degree's (a routine calculation shows that T(60)
and T(90) can be seen under the angle of measure 120 degree from the center
of the triangle). If R is the rotation about the center of the triangle with
magnitude +120 then the center of the circumscribed squares moves along
the path

T ∪R(T ) ∪R−1(T );

the �gure 4.3 shows the curve T(t) with a full period t=0 ... 360. An
animation can be available at zeus.nyf.hu/ kovacsz/Csaba.
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Remark Conversely the Reuleaux triangle can be rotated through 360 de-
gree inside a square although the center of the rotation moves along an
excentric path.

Theorem 4.2.1 The smallest universal cover among squares in the coordi-
nate plane is the square having sides of length one.

Proof Let K be a square having sides of lenght one and consider a compact
convex set F with diameter 1 in the coordinate plane. In the sense of theorem
4.1.4 it is enough to prove that for any three points in F there exists a
translate of K covering them. Let p(1), p(2) and p(3) be three points in F.
Since its diameter is one there exists a Reuleaux triangle constructed from
an equilateral triangle with sides of length one such that it contains p(1),
p(2) and p(3). But such a shape can be rotated through 360 degree in a
square of side 1. This means that there exists a translate of K covering the
Reuleaux triangle (together with p(1), p(2) and p(3)) independently of its
orientation. Therefore 4.1.4 says that there exists a translate of K covering
F. To cover a disk of diameter one we obviously need a square having sides
of length at least one.

Theorem 4.2.2 Let K be a two-dimensional compact convex subset in the
plane. There exists a point in the interior of K such that it belongs to the
middle part of the trisection of any chord passing through this point.

Proof Consider a triangle ∆ formed by the boundary points of K and use
central similarities from the vertices of the triangle with ratio 2/3. The
barycenter of ∆ is a common point of the images of K under the three
similarities. Using the general version 4.1.2 of Helly's theorem there exists
a point p* in the intersection of the images of K under the similarities as
the center runs through the boundary of K. If a chord contains this common
point then we can use the central similarities relative to the endpoints of
such a chord with ratio 2/3 to prove that p* must be in the middle part of
the trisection.

4.2.1 The Brunn-Minkowski inequality

The most famous problem related to universal covers was posed by H. Lebes-
gue: what is the minimum area that a universal cover in the coordinate plane
can have? This is related to a whole class of extremum problems wherein
one quantity is to be minimized or maximized subject to certain restraining
conditions. The best known of all the extremum problems is the classical
isoperimetric problem; which simple closed curve of given perimeter encloses
the greatest area? It is not hard to prove that among all rectangles of
perimeter 1 the square has the greatest area. Likewise among triangles of
perimeter 1 the equilateral triangle has the greatest area. In general the
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answer is again the most symmetrical shape, which in this case is the circle.
Rigorous proofs are hard to �nd. In what follows we present a theoretical
way of the solution via the Brunn-Minkowski inequality for convex bodies
in the space. It is not at all unreasonable to expect that a solution to the
isoperimetric problem is a convex body. If we accept, for the moment, an
intuitive notion of the area and perimeter of a non-convex set then the convex
hull of this set has expectedly a shorter perimeter and a larger area.

De�nition Convex bodies mean compact convex sets with non-empty inte-
riors in the coordinate space.

Theorem 4.2.3 (Brunn-Minkowski inequality) For convex bodies in the co-
ordinate space of dimension n we have

V (K + L)1/n ≥ V (K)1/n + V (L)1/n, (4.7)

where V refers to the volume of the bodies.

Proof In what follows we sketch the steps of the proof due to W. Blaschke;
for more details and historical remarks see [27]. It is based on the so-called
Steiner symmetrization process. Let u be a unit vector in the space. The
Steiner symmetral S(u)K of K in the direction u is a convex body obtained
from K by sliding each of its chords parallel to u so that they are bisected
by its orthogonal complement. By Cavaliéri's principle K and S(u)K have
the same area. On the other hand the Steiner symmetral of the sum K+L
contains the sum of the Steiner symmetrals in any given direction. Therefore

V (K + L) = V (Su(K + L)) ≥ V (SuK + SuL). (4.8)

Let B be the unit ball centered at the origin. One can also prove that there
is a sequence of directions u(m) such that the iteration

Km := SumKm−1, K0 := K

tends to the Euclidean ball r(K)B with respect to the Hausdor� metric. It
is clear that the constant r(K) is just the nth root of the ratio between the
volumes of K and B. Since r(K)B+r(L)B=(r(K)+r(L))B we have that

V (K + L) ≥ V (rKB + rLB) = (rK + rL)nV (B) (4.9)

which is just the Brunn-Minkowski inequality 4.7 as was to be proved.

Minkowski's de�nition of the surface area A(K) of a convex body is

A(K) := lim
ε→0+

V (K + εB)− V (K)

ε
. (4.10)
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Excercise 4.2.4 Compute the surface area of a square in the plane by Min-
kowski's de�nition.

Remark Let K be a convex body in the plane bounded by a smooth curve
c. Since tangent lines of c are working as supporting hyperplanes it follows
that c+εn is the parameterization of the boundary of K+εB, where n is the
outer pointing unit normal vector �eld along c. Under the choice of the
arclenght parameter into the counterclockwise direction

c = (x, y), n = (y′,−x′) and n′ = κsc
′, where κs = x′y′′ − y′x′′;

see section 11.2 for the elements of di�erential geometry. We have

V (K + εB) =
1

2

∫ P

0
det(c+ εn, c′ + εn′) =

1

2

∫ P

0
(1 + κsε) det(c+ εn, c′),

where P is the arclength of c. Therefore

A(K) =
1

2

∫ P

0
det(n, c′) + κs det(c, c′).

Since n and c' are orthogonal unit vectors det(n, c')=1. On the other hand

κs det(c, c′) = det(c,n′) = det

(
x y′′

y −x′′

)
= −(xx′′ + yy′′).

Using the rule of partial integration and the periodocity of the curve c it
follows that

A(K) =
1

2

∫ P

0
1 + (x′)2 + (y′)2 =

1

2

∫ P

0
1 + 1 = P

because of the arclenght parameter.

Excercise 4.2.5 Prove that the ratio between the surface area and the vol-
ume of the unit ball is just the dimension of the space.

The last step of the derivation of the isoperimetric inequality for convex
bodies is

A(K) := lim
ε→0+

V (K + εB)− V (K)

ε

≥ lim
ε→0+

(
V (K)1/n + εV (B)1/n

)n
− V (K)

ε
= nV (K)(n−1)/nV (B)1/n

which implies by the ratio A(B) : V(B)=n, that(
V (K)

V (B)

)1/n

≤
(
A(K)

A(B)

)1/(n−1)

. (4.11)

Remark Equality holds in the isoperimetric inequality 4.11 if and only if K
is a ball. For the Brunn-Minkowski inequality and its relatives see [27], see
also [52]. A nice presentation of a di�erential geometric proof in the plane
can be found in [51].
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4.3 A sandwich theorem

Theorem 4.3.1 Let B be a family of parallel compact segments with dif-
ferent supporting lines in the coordinate plane such that any three segments
have a common transversal line. Then there exists a line transversal to all
the members of B.

Proof Without loss of generality we can suppose that all the segments par-
allel to the second coordinate axis labelled by y. Consider such a segment
with endpoints (a,r) and (a,s), where r < s and let

y = mx+ b (4.12)

be a line intersecting this segment. Then the common point has the second
coordinate ma+b. Therefore

r ≤ ma+ b ≤ s

showing that
−ma+ r ≤ b ≤ −ma+ s. (4.13)

Let us de�ne the parallel lines

y = −ax+ r and y = −ax+ s (4.14)

corresponding to the endpoints of the segment and consider the point p with
coordinates (m,b) corresponding to the line 4.12. Inequalities 4.13 shows that
p is an element of the band bounded by the parallel lines 4.14. Therefore
we can reformulate our condition in the following way: we have a collection
of bands such that any three bands have a common point. The goal is
to prove that all of them have a common point. Since the segments have
di�erent supporting lines it is easy to create a compact convex set K in the
family we are interested in. Actually the intersection of �nitely many not
parallel bands is a convex polygon as the intersection of �nitely many closed
half-planes, see chapter 9. Then the corresponding version 4.1.7 of Helly's
theorem implies the existence of the common point of the bands and we also
have a line intersecting all segments in B.

Remark Theorem 4.3.1 plays an important role in the theory of approxi-
mation of continuous functions with polynomials. In what follows we show
another application resulting in a sandwich theorem [44]. The result presents
necessary and su�cient conditions under which the graphs of two functions
can be separated by a straight line (functions having lines as graphs are
called a�ne functions).
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Theorem 4.3.2 (K. Nikodem and Sz. Wasowicz) Let f and g be real func-
tions de�ned on a real interval I. There exists an a�ne function h satisfying
the inequalities

f ≤ h ≤ g
if and only if

f(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y) (4.15)

and
g(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y) (4.16)

hold for any x, y from I and λ between 0 and 1.

Proof Since a�ne functions preserve the a�ne (especially convex) combi-
nations of the elements it is obvious that if an a�ne function h is between
f and g then conditions 4.15 and 4.16 are also satis�ed for any x, y from I
and λ between 0 and 1.

Figure 4.4: The proof of the sandwich theorem.

To prove the converse of the statement �rst of all note that f(x) is less or
equal than g(x). It can be easily seen by substitution λ=1. Consider now the
set of segments with endpoints (x, f(x)) and (x, g(x)) as x runs through the
elements of the interval I. These are parallel compact segments with di�erent
supporting lines in the coordinate plane. To �nish the proof we are going to
show that this collection of segments satis�es the condition of the previous
theorem. Let x(1) < x(2) < x(3) be three di�erent points in I and consider
the coe�cient λ such that x(2)=λ x(1)+(1 - λ)x(3). Using the notations

yi = f(xi) and zi = g(xi), where i = 1, 2, 3

condition 4.15 says that (x(2),y(2)) is under the line of (x(1),z(1)) and
(x(3),z(3)). At the same time, by condition 4.16, (x(2),z(2)) is above the
line of (x(1),y(1)) and (x(3),y(3)). These conditions obviously guarantee the
existence of a common transversal to the segments at x(1), x(2) and x(3),
respectively. Finally the previous theorem shows the existence of a common
transversal to all the segments as well. This is just the graph of an a�ne
function h between f and g as was to be proved.
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Corollary 4.3.3 If a convex function majorizes a concave one then there
exists an a�ne function between them.

Remark Necessary and su�cient conditions for the existence of separation
by members of a given linear interpolation family can be found in [46]: the
proof is also based on Helly's theorem.

4.4 Excercises

Excercise 4.4.1 Prove the one-dimensional version of Helly's theorem for
an arbitrary collection of compact intervals.

Hint. Use that real numbers form an Archimedean complete totally or-
dered �eld.

Excercise 4.4.2 Let B be the family of compact convex sets in the coordinate
space of dimension n and suppose that B contains at least n members. Prove
that if every subfamily of n sets in B has a non-empty intersection then
the family of all sets in B has a common transversal parallel to any given
1-dimensional a�ne subspace/line in the space.

Hint. Let an 1-dimensional a�ne subspace be given and consider its
orthogonal complement of dimension n - 1. Use the general version 4.1.2 of
Helly's theorem to �nd a common point for the projected sets.

Excercise 4.4.3 Prove theorem 4.1.5.

Excercise 4.4.4 Prove the general version of Jung's theorem 3.3.5 to �nd
the smallest radius for a universal covering disk in the plane.

Excercise 4.4.5 Calculate the perimeter and the area of a Reuleaux triangle
in terms of the side of the equilateral triangle.

Excercise 4.4.6 Find the measure of the interior angle at the corners of
the Reuleaux triangle.

Excercise 4.4.7 Prove that Reuleaux triangles are complete in the sense
that no points from their complements can be added to them without increas-
ing the diameter.

Excercise 4.4.8 How to generalize theorem 4.2.2 to the coordinate space of
dimension three?



Chapter 5

Krasnosselsky's art gallery

theorem

5.1 Krasnosselsky's art gallery theorem

One of the interesting applications of the general version 4.1.2 of Helly's
theorem is the art gallery theorem of M. A. Krasnosselsky (1946). The
theorem belongs to the basis of art gallery geometry. It formulates a criteria
of viewing all the paintings in the gallery without changing position (this is
the case of n=2).

De�nition Let D be a non-empty subset in the coordinate space of dimen-
sion n and consider the points p and q in D. The point q is said to be visible1

from p if D contains the segment s(p,q). The set D is star-shaped relative
to a point p in D if all the points of D are visible from p. The kernel of D is
the collection of those points in D with respect to which D is star-shaped.

Theorem 5.1.1 (M. A. Krasnosselsky) Let D be a non-empty compact sub-
set in the coordinate space of dimension n and suppose that D contains at
least n+1 points. If for every n+1 points in D there exists a point in D from
which they are visible then there exists a point in D from which all the points
of D are visible, i.e. D is star-shaped.

Proof Let p be a point in D and consider the set of points in D which are
visible from p:

Bp := {q ∈ D | s(p, q) ⊂ D}. (5.1)

First of all we prove that the family of conv B(p)'s (as p runs through the
points of D) satis�es the conditions in the general version 4.1.2 of Helly's
theorem. To prove that they are compact sets it is enough to check that
they are closed because

convBp ⊂ convD,
1Hungarian translation: p meg�gyelési pontja q-nak

84
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where conv D is compact in the sense of theorem 2.2.2. Let q* be the limit of
the convergent sequence q(i) from conv B(p). Using Carathéodory's theorem
2.2.1 for each index i we can write that

qi = λ1iv1i + . . .+ λn+1ivn+1i, (5.2)

where the right hand side involves a convex combination of elements in B(p).
The coe�cients obviously form bounded sequences and the sequences

v1i, . . . , vn+1i (5.3)

are also bounded because they run in the compact set D. Therefore we can
choose uniformly labelled convergent subsequences in a successive way. If

λ∗1, v
∗
1, λ

∗
2, v

∗
2, . . . , λ

∗
n+1, v

∗
n+1,

are their limits then

q∗ = λ∗1v
∗
1 + . . .+ λ∗n+1v

∗
n+1,

where the right hand side involves a convex combination of elements from
B(p). Indeed,

λ∗1 + . . .+ λ∗n+1 = 1 and λ∗1 ≥ 0, . . . , λ∗n+1 ≥ 0

are trivial because the members of the corresponding sequences also satisfy
these relations. We should also check that the elements v*(1), ..., v*(n+1)
are in B(p). Suppose in contrary that v*(1) is not in B(p) which means
that the segment s(v*(1), p) contains an element q in the complement of
D. But D is compact (especially closed) and, consequently, there is an open
ball around q which is disjoint from D. This ball hides the point p from the
elements of a neighbourhood around the endpoint v*(1) which contradicts to
the fact that v*(1) is a limit of elements which are visible from p. Therefore
q* is in conv B(p) showing that it is a closed subset. Moreover, as a closed
subset of conv D, the convex hull of B(p) is also compact. Since for every
n+1 points in D there exists a point in D from which they are visible, the
general version 4.1.2 of Helly's theorem implies the existence of a common
point of the convex hulls of sets in 5.1. Let u be one of the common elements,
i.e. u is in conv B(p) for any p in D. To complete the proof we should see
that u is also in the intersection of sets in 5.1 (without conv - operator) as p
runs through the points of D. Suppose, in contrary, that u is not in B(p) (for
some p), i.e. the segment s(p,u) contains an element v in the complement of
D. The distance

d(v,D) := min{d(v, q) | q ∈ D}
between v and the compact set D must be strictly positive. Let v(0) be the
closest point of D to v along the segment s(p,v) and let z in s(v(0),v) be such
a point that

d(v0, z) < d(v,D). (5.4)
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Figure 5.1: The proof of Krasnosselsky's theorem.

Finally, let z(0) and p(0) be the points where the distance d(s(z,v), D) is
attained at:

d(z0, p0) = d(s(z, v), D) := min{d(w, q) | w ∈ s(z, v), q ∈ D}.

Since p(0) is the closest point of D to z(0) we have that

d(z0, D) = d(z0, p0) = d(s(z, v), D) ≤ d(z, v0) < d(v,D)

because of 5.4. This means that z(0) and v are di�erent. On the other
hand a simple nearest-point-type argumentation (see e.g. theorem 2.3.1 or
section 7.1) shows that the hyperplane H(0) perpendicular to the segment
s(z(0),p(0)) at p(0) separates z(0) and the points in B(p(0)) (the set of points
in D which are visible from p(0)). Therefore the convex hull of B(p(0))
(together with the point u) and z(0) are also separated. In terms of the
internal angles of the triangle spanned by p(0), z(0) and u

the angle at p0 ≥ 90◦ ⇒ the angle at z0 < 90◦.

Since z(0) and v are di�erent we have a point on

s(z0, v) ⊂ s(z, v)

which is closer to p(0) than z(0). This contradicts to the choice of z(0).

5.2 Excercises

Excercise 5.2.1 Prove that the kernel of D is convex.

Excercise 5.2.2 Find the kernels of the following shapes in the plane.

Excercise 5.2.3 Prove that the points

p0, z0 and u

in the proof of Krasnosselsky's theorem is not collinear.
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Figure 5.2: Kernels of sets in the plane.

Figure 5.3: The kernel as a singleton.

Hint. In case of collinear points we have that p(0)=v(0) and z=z(0).
Therefore H(0) separates the convex hull of B(p(0)) and u which is obviously
a contradiction.



Chapter 6

Intersections of star-shaped

sets

A recent trend in convex geometry is to investigate intersections of sets under
a weaker condition than convexity. In 2001 N. A. Bobylev [9] provided a star-
shaped set analogue of Helly's theorem. Especially Bobylev proved that if
we have a family B of compact sets in the coordinate space of dimension n
and every n+1 (not necessarily di�erent) members of B have a star-shaped
intersection then the intersection of all elements in B is star-shaped. The
star-shaped set analogue of Klee's theorem 4.1.6 is true as well. In fact the
result due to Marilyn Breen [15] states that the associated intersection is non-
empty, star-shaped and its kernel is at least k-dimensional for an appropriate
choice of k between 0 and n.

6.1 Intersections of star-shaped sets

Theorem 6.1.1 Consider a collection B of sets in the coordinate space of
dimension n and let

0 ≤ k ≤ n

be a �xed integer. If every countable subfamily containing not necessarily
di�erent members of B has a star-shaped intersection whose kernel is at least
k-dimensional then the intersection of all the members in B is a star-shaped
set whose kernel is at least k-dimensional.

The proof is actually an induction on the dimension of the embedding
space. In case of the coordinate line of dimension n=1 any star-shaped set
is convex and, by Klee's theorem 4.1.6, the intersection of all the members
in B is non-empty and convex (especially star-shaped). If the intersection
contains at least two di�erent points then it is of dimension 1 and the proof
is �nished independently of the values k=0 or 1. Suppose now that the

88
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intersection is a singleton:

∩γ∈ΓBγ = {x} (6.1)

(for the sake of simplicity countable subfamilies will be labelled by natural
numbers as usual to avoid double superscripts). We are going to prove that
there exists a sequence of the members in B whose intersection reduces to a
single point too. According to 6.1 for any natural number m there exists a
set B(m) in B such that

x+
1

m
/∈ Bm.

In a similar way let B(- m) be a set in B such that

x− 1

m
/∈ B−m.

By our assumption the intersection

∞⋂
m=1

(B−m ∩Bm) (6.2)

is star-shaped (especially convex) which means that it must be reduced to
a singleton. Otherwise we have a segment in 6.2 containing x together with
points having arbitrarily small rational distance 1/m from x which is a con-
tradiction. Suppose that the statement is true for the coordinate space of
dimension at most n - 1. By the help of the inductive hypothesis one can
prove the following lemma which is the key step in the proof of theorem
6.1.1.

Lemma 6.1.2 Under conditions of theorem 6.1.1 the intersection of all the
members in B is non-empty and it contains a k-dimensional convex subset.

Using 6.1.2 the proof of theorem 6.1.1 can be �nished as follows. Let

V =
⋂
γ∈Γ

Bγ

be the intersection of all the members in B. We should check that V is star-
shaped and its kernel is at least k-dimensional. Consider a new collection

Mγ = {p ∈ Bγ | s(p, v) ⊂ Bγ for all v ∈ V }. (6.3)

M(γ) contains the points of B(γ) from which any point in V can be visi-
ble. Consider a countable subfamily M(1), ..., M(m), ... together with the
associated sets B(1), ..., B(m), ... and let

K =
∞⋂
i=1

Bi and M =
∞⋂
i=1

Mi
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be the intersections of the corresponding countable family of sets. Choose a
point p in Ker K. Since V is a subset in K

s(p, v) ⊂ K ⊂ Bi

for any element v in V and i=1, 2, ... Therefore p is in M. Especially M is a
subset in K. This means that any element of M is visible from p, i.e.

Ker K ⊂ Ker M. (6.4)

Relation 6.4 says that we can apply lemma 6.1.2 to the collection 6.3:⋂
γ∈Γ

Mγ 6= ∅

and the intersection contains an at least k-dimensional convex subset. To
�nish the proof observe that ⋂

γ∈Γ

Mγ = Ker V (6.5)

because the left hand side contains just the points of V from which any
point in V can be visible, cf. 6.3. Therefore V is a star-shaped set and
Ker V contains an at least k-dimensional convex subset. The proof of the
key lemma 6.1.2 is based on the inductive hypothesis. Two di�erent cases
should be considered.

I. First case. Suppose that for some countable subfamily B(1), ...,
B(m), ... the intersection K of the sets is at most of dimension n - 1. Then
the maximal dimension of a convex subset M in K is also less than the
dimension of the embedding space. Let B(1), ..., B(m), ... be chosen in such
a way that the following minimax condition is satis�ed: the maximum of
the dimension of convex subsets in the intersection is as small as possible.
This means that if we can inscribe a τ -dimensional convex subset into K as
that of maximal dimension, then the intersection of any countable subfamily
contains an at least τ -dimensional convex subset.

Lemma 6.1.3 If the family

B1, B2, . . . , Bm, . . .

satis�es the minimax condition then

Ker K ⊂ a� M,

where M is a convex subset of maximal dimension in K.

Proof Suppose, in contrary, that we have a point p in Ker K which is not
in the a�ne hull of M. Then the convex hull of the union of M and p would
be a greater dimensional convex subset in K than M.
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Figure 6.1: A convex subset of maximal dimension in K.

Conditions for M are

M1 M is convex,

M2 M is a subset in K,

M3 M is of dimension τ .

Consider the intersection of the a�ne hulls of M as it runs through the
subsets satisfying M1, M2 and M3. We have by lemma 6.1.3 that

Ker K ⊂
⋂
M

a� M = H,

where H is an a�ne subspace of dimension at most τ . Suppose that the
dimension of the a�ne subspace H associated with the countable family B(1),
..., B(m), ... satisfying the minimax condition is as great as possible. Choose
an arbitrary countable subfamily B*(1), ..., B*(m), ... with intersection K*
and let

B1, . . . , Bm, . . . , B
∗
1 , . . . , B

∗
m, . . . (6.6)

be the union of the subfamilies with intersection

T = K ∩K∗.

Recall that T contains a convex subset of dimension at least τ but T is a
subset in K. Therefore 6.6 also satis�es the minimax condition. Thus

dimL ≤ dimH

for the dimension of the associated a�ne subspace

L =
⋂
M ′

a� M ′,

where M' is a τ -dimensional convex subset in T. Especially, M' is a subset
in K. Therefore

H ⊂ L
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showing that H=L, i.e. the associated a�ne subspaces coincide because of
the maximality condition for the dimension of H. On the other hand lemma
6.1.3 implies again that Ker T is a subset in L and, consequently,

Ker T ⊂ H.

Finally we apply the inductive hypothesis to the family of sets

Bγ ∩K ∩H (6.7)

in the coordinate space of dimension at most τ . The intersection of sets in
6.7 is contained in the intersection of all the members in B together with its
k-dimensional kernel which is a convex set.

II. Second case. Suppose that for every countable subfamily has an
n-dimensional intersection and let

P = {G | G = ∩∞m=1Bm}

be the collection of intersections of countable subfamilies. It can be easily
seen that ⋂

G∈P
G =

⋂
γ∈Γ

Bγ (6.8)

and for any countable subfamily

G1, ..., Gm, ... (6.9)

we have a corresponding countable subfamily

B1
1 , . . . , B

1
m, . . . , B

2
1 , . . . , B

2
m, . . . , B

j
1, . . . , B

j
m, . . . , (6.10)

where

Gj =
∞⋂
m=1

Bj
m

for any index j. The intersection of 6.9 is just that of 6.10. Therefore
the intersection of 6.9 has a non-empty interior and the same is true for
the intersection of the closures of sets in 6.9. Let T be the intersection of
the closures of sets in P (cf. theorem 4.1.5). Since the complement of T is
expressed as the union of open subsets we can choose, by Lindelöf's theorem,
a countable subcover. Taking the complement again T can be expressed as
the intersection of a countable subfamily (say 6.9) of the closures:

T =
m⋂
j=1

the closure of Gj =
⋂
G∈P

the closure of G.

Since the interior of T is non-empty it contains an open ball D in its interior.
If D is a subset of the intersection of sets without closure operator the proof is
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Figure 6.2: A segment.

Figure 6.3: A triangle.

�nished. Otherwise suppose that p is a point in D such that p is not in G(1)
(but p is in the closure of G(1)). Since G(1) is represented as a countable
intersection of sets from B we can suppose that p is not in B(1) for some set
in B. Consider a countable subfamily B(1), ..., B(m), ... of subsets in B. The
intersection

K =
∞⋂
i=1

Bi (6.11)

is a star-shaped set. Let z(1) be a point of Ker K. Since p is not in B(1)
we have that p is not in K and the ray emanating from p into the opposite
direction relative to z(1) does not contain points from K because they would
be visible from z(1) together with p. Recall that p is an interior point of the
intersection of the closures of sets in P and thus it is an interior point of the
closure of K (belonging to P). So we have a segment S(1) on the line of p
and z(1) such that it has no common points with K but it is in the interior
of the closure of K. If the kernel of K is a subset of a� S(1) we are ready.
Otherwise we can construct a two-dimensional triangle S(2) such that it is
in the interior of the closure of K but there are no common points with K.
If the kernel of K is a subset of a� S(2) we are ready. Otherwise repeat the
process to construct a tetrahedron S(3) such that it has no common points
with K but it is in the interior of the closure of K. Repeat the algorithm as
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Figure 6.4: A tetrahedron.

far as possible we can construct a j-dimensional simplex S(j) such that it has
no common points with K but it is in the interior of the closure of K. By the
constructing process,

dimSj = dimKer K ≥ k.

Let τ be the number of the maximal dimension of sets in D which are disjoint
from K. Then τ is greater than or equal to k but it must be less than n. It
is clear because in case of τ=n there would be an n-dimensional simplex S
which is disjoint from K (i.e. the interior points of S could not be limits of
sequences in K) but S is a subset of the closure of K. Therefore

k ≤ τ ≤ n− 1.

Suppose that the collection B(1), ..., B(m), ... has the greatest possible value
of τ and consider the family of sets

Bγ ∩K ∩H, (6.12)

where H is the a�ne hull of S(τ). Using the inductive hypothesis, the inter-
section ⋂

γ∈Γ

Bγ ∩K ∩H

is a star-shaped set with kernel of dimension at least k and the proof is
�nished.

6.2 Excercises

Excercise 6.2.1 Prove that the star-shaped and convex sets of the coordi-
nate line of dimension 1 coincide.

Excercise 6.2.2 Prove the one-dimensional version of Klee's theorem 4.1.6.

Excercise 6.2.3 Prove that we can apply the inductive hypothesis to the
family 6.7.
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Figure 6.5: Excercise 6.2.5.

Hint. Taking a countable subfamily

B∗1 ∩K ∩H, . . . , B∗m ∩K ∩H, . . . (6.13)

we have that the intersection of the members in 6.13 is
∞⋂
m=1

B∗m ∩K ∩H = T ∩H,

where T is the intersection of the countable family

B1, . . . , Bm, . . . , B
∗
1 , . . . , B

∗
m, . . . .

Because of our assumptions T is a star-shaped set and its kernel is contained
in H. This means that the intersection of T and H is also a star-shaped set
and

Ker T ⊂ Ker (T ∩H).

Therefore
dimKer (T ∩H) ≥ dimKer T ≥ k

and we can use the inductive hypothesis as mentioned above.

Excercise 6.2.4 Prove that we can apply the inductive hypothesis to the
family 6.12.

Let k be an arbitrary natural number and

Tk := {(x, y) | x ≥ 0, k ≥ y ≥ 0} ∪ {(x, y) | x ≥ k, y ≥ k}. (6.14)

Excercise 6.2.5 Prove that every �nite subfamily of 6.14 has a star-shaped
intersection whose kernel is of dimension two but the intersection of all the
sets is not star-shaped.

Let k be an arbitrary natural number and

Dk :=

(
conv{a, b, ck} \ s(a, b)

)
∪ {a, b}, (6.15)

where
a = (−1, 0), b = (1, 0) and ck = (0, 1/k).
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Figure 6.6: Excercise 6.2.5.

Figure 6.7: The intersection of T(1) and T(2) (left). The kernel (right).

Figure 6.8: Excercise 6.2.6.
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Excercise 6.2.6 Prove that every �nite subfamily of 6.15 has a star-shaped
intersection whose kernel is of dimension two but the intersection of all the
sets is not star-shaped.

Hint. Especially
∞⋂
k=1

Dk = {a, b}.

Remark The excercise illustrates that the condition for the countable sub-
families in theorem 6.1.1 could not be weakened to a �nite version.



Chapter 7

Separating and supporting

hyperplanes

The result on the existence of separating hyperplane between two compact
sets can be considered as a geometric version of Hahn-Banach's theorem on
linear functionals. Its �rst form is an extension theorem since the property
required of the functional is that it extends a given functional (de�ned on a
subspace) without increasing the norm. The second form is a separation the-
orem because the property required of the hyperplane is that it separates two
given convex sets. The connection, of course, is that a (closed) hyperplane
is a translate of the kernel of a continuous linear functional. In �nite dimen-
sional spaces one can follow a simpli�ed "more linear and less topological"
way to develop the theory [55]. Using the classical setting of the coordinate
spaces the most adequate approach is to rely not only on the basic topology
and the linear structure of the space but also on the Euclidean geometry via
orthogonal complements and nearest-point-type argumentations as follows.

7.1 Separating and supporting hyperplanes

In the sense of the structure theorem 1.3.8 each non-empty a�ne set A can
be written into the form p+L, where p is an arbitrary element in A and L is
a uniquely determined linear subspace.

De�nition A�ne sets of dimension n - 1 in the n-dimensional coordinate
space are called hyperplanes.

Since the co-dimension of the associated linear subspace of a hyperplane
is just one its orthogonal complement can be generated by a non-zero vector
n which is unique up to a non-zero scalar multiplier. It is clear that the
point q is in the hyperplane if and only if the position vector q - p (with
respect to p) is orthogonal to n, i.e.

〈q − p,n〉 = 0. (7.1)

98
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Figure 7.1: The nearest-point-type argumentation.

We have two further possible cases corresponding to the inequalities

〈q − p,n〉 > 0 or 〈q − p,n〉 < 0. (7.2)

The points of the space which are not in the hyperplane 7.1 are in exactly one
of the so-called (open) half-spaces determined by the relations 7.2. It can be
easily seen that they are non-empty disjoint convex subsets in the coordinate
space. Their closures (the open half-spaces together with the hyperplane)
are called closed half-spaces. If we substitute n with its additive inverse then
the relations characterizing the half-spaces come into each other but they do
not change as pointsets. The sides of a hyperplane mean the half-spaces
determined by the hyperplane.

De�nition The subsets D and E in the coordinate space of dimension n
are called separated by the hyperplane L if they are in di�erent sides of L.
Strictly separation means that the subsets are in di�erent open sides of the
hyperplane.

The nearest-point-type argumentation. Let p be a point in the
coordinate space of dimension n and consider a compact convex set K in the
space such that p is not in K. By a standard compactness argumentation it
follows that there exists a point q in K where the distance

d(p,K) := inf
v∈K

d(p, v)

is attained at. Consider now the vector n:=p - q. If L is the orthogonal
complement to n then the standard conclusion is that the hyperplane q+L
separates p and K. To prove this observation suppose, in contrary, that K
has a point z in the open half-space containing p. The segment s(z,q) is in K
because of the convexity and it must intersect the interior of the Thales ball
around the diameter s(p,q). Therefore we have a point in K which is closer



CHAPTER 7. SEPARATING AND SUPPORTING HYPERPLANES 100

to p than q. This is a contradiction as �gure 7.1 shows. In what follows we
shall use this kind of argumentation in more general cases by substituting p
with a compact convex set.

Theorem 7.1.1 Let D and E be compact subsets in the coordinate space of
dimension n. They are strictly separated if and only if their convex hulls are
disjoint.

Proof If the sets are strictly separated then their convex hulls must be
disjoint because they are contained in di�erent open half-spaces determined
by the separating hyperplane. To prove the converse statement �rst of all
recall that the convex hull of a compact set is also compact 2.2.2. Suppose
that the convex hulls are disjoint and consider the distance

d(convD, convE) = inf{d(v, w) | v ∈ convD and w ∈ convE}

between them. By a standard compactness argument it follows that there
are points p in conv D and q in conv E such that

d(convD, convE) = d(p, q).

Let n be the di�erence vector of the points where the minimal distance
is attained at and consider the linear subspace L which is orthogonal to n.
Using a standard nearest-point-type argumentation it can be easily seen that
the open band determined by the hyperplanes p+L and q+L is disjoint from
both conv D and conv E. Therefore the hyperplane bisecting the band strictly
separates the sets conv D and conv E together with D and E, respectively.

De�nition We say that a hyperplane bounds a set D if D is contained in
one of the half spaces. If the hyperplane H bounding D has a common point
p with the set D then H is said to support D at the point p.

Theorem 7.1.2 (The existence theorem of supporting hyperplanes) Let K
be a closed convex subset in the coordinate space of dimension n. Then for
any boundary point p in K there exists a hyperplane supporting K at p.

Proof If dim K < n then any hyperplane containing K is a supporting
hyperplane at each point of K. In what follows we are going to construct
supporting hyperplanes passing through the boundary points of K. The proof
is actually an inductive process on the dimension of the embedding space.
The case of the coordinate plane. Let K be a closed convex subset
of dimension 2 in the coordinate plane and suppose that the origin is one
of the boundary points by translating K if necessary. Consider the central
projection of K through the origin to the unit circle. The image of K is a
connected arc belonging to a central angle with measure at most π because
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Figure 7.2: The case of the coordinate plane.

Figure 7.3: The orthogonal projection.

of the convexity of K. Therefore there exists a diagonal of the circle which
bounds this arc together with the set K. The case of higher dimensional

coordinate spaces. Let p be an arbitrary boundary point and consider a
hyperplane H of dimension n - 1 passing through p in the coordinate space
of dimension n. If H supports K then there is nothing to prove. Otherwise
let K' be the intersection of H and K. It is a closed convex subset of maximal
dimension1 in H as the coordinate space of dimension n - 1. Taking the
supporting hyperplane at p in H to the intersection K' we have a hyperplane
H' of dimension n - 2. Let P' be the orthogonal complement to H'. Then P'
is of dimension two. Consider the orthogonal projection π(K) in P'. Since
H' is a supporting hyperplane to K' in H the point π(p) supports π(K') in
the common line l of H and P'. Therefore π(p) is on the boundary of the
projected set π(K) as well and we can consider the supporting line l' in P'
to the set π(K) at π(p). The corresponding supporting hyperplane to K at
p is just the a�ne hull of the union of H' and l'.

Theorem 7.1.3 (The converse of the existence theorem.) Let K be a closed
n-dimensional set in the coordinate space of dimension n. If for any boundary
point p of K there exits a supporting hyperplane passing through p then K is
convex.

1If H would bound the interior of K then it would support K at the same time. The
existence of interior points in both sides of H causes an (n - 1)-dimensional intersection.
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Figure 7.4: The supporting hyperplane.

Proof If K is just the coordinate space of dimension n then we have nothing
to prove. Therefore we can suppose that there exists an element v which is
not in K. Let w be in the interior of K and suppose that p is its boundary
point on the segment s(v,w). Since w is contained in K together with an
open neighbourhood we have that the supporting hyperplane at p does not
contain w and, consequently, the hyperplane strictly separates the endpoints
v and w. At the same time v and the set K are separated. We have just
proved that if v is not in K then there exists a supporting hyperplane of K
such that v and K are separated. In fact the opposite half space to that
containing K contains v in its interior. Let Ω be the intersection of closed
half spaces containing K. It is clear that K is a subset of Ω and the equality
of K and Ω follows from the fact that each point v in the complement of K is
in the complement of Ω. Therefore Ω is a subset of K. But the intersection
of closed half spaces is convex. So is K as was to be proved.

Remark The theorem can be considered as an external characterization of
convexity of sets. Another possibility of such a characterization is to prove
that if a closed subset satis�es the nearest-point property then it is convex,
see also excercise 7.4.2.

Corollary 7.1.4 Let K be a closed n-dimensional set in the coordinate space
of dimension n. K is convex if and only if for any boundary point p of K
there exits a supporting hyperplane passing through p.

7.2 Krein-Milman's theorem

The theorem belongs to the basis of the theory of convex sets. The presented
version for convex sets in the �nite dimensional coordinate space was proved
by H. Minkowski. The generalization of this result to in�nite dimensional
topological vector spaces involves an additional closure operator too. It is
due to Krein and Milman (1940).
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Figure 7.5: Hermann Minkowski, 1864-1909.

De�nition Let K be a convex subset in the space. The point p in K is
called an extreme point if the punctured set K - {p} is also convex. Ext K
denotes the set of the extreme points or, in an equivalent terminology, the
pro�le of K.

Remark We have some simple examples for extreme points like the end-
points of segments. Another type of examples are related to convex closed
domains in the plane bounded by smooth curves with curvature having no
zeros. In this case all of the boundary points are extreme points.

Theorem 7.2.1 (Krein-Milman) If K is a non-empty compact convex set
then it is the convex hull of its extreme points, i.e.

K := conv ext K.

Proof Let K be a non-empty compact convex set in the coordinate space of
dimension n. The inclusion

conv ext K ⊂ K

is trivial and, consequently, it is enough to prove that each element q in K
can be expressed as a convex combination of extreme points of K. We use an
induction on the dimension of the space. If n=1 then K is a closed bounded
interval with the endpoints as extreme points. Therefore q can be obviously
expressed as a convex combination of them. Suppose that the statement is
true for the coordinate spaces of dimension at most n - 1. If q is an extreme
point then the proof is �nished. Otherwise K can not be punctured at q
without loosing the convexity. Therefore there exists a segment

s(v1, v2) ⊂ K

such that
q ∈ s(v1, v2) but q 6= vi (i = 1, 2).
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Using that K is compact we can suppose that both endpoints of this segment
are on the boundary of K. Consider the supporting hyperplanes

H1 := v1 + L1 and H2 := v2 + L2.

Then
Ki = Hi ∩K (i = 1, 2) (7.3)

are convex compact sets of dimension

dim Hi ∩K ≤ n− 1 (i = 1, 2).

By the inductive hypothesis each endpoint of the segment can be expressed
as a convex combination of the extreme points of 7.3. To �nish the proof
we are going to prove that the extreme points of the intersections 7.3 are
extreme points of the set K as well. If (for example) i=1 and z is an extreme
point of the set

H1 ∩K (7.4)

then segments containing z in their relative interiors could not run in the
hyperplane because z is an extreme point of 7.4. But they could not intersect
the hyperplane because it is a supporting hyperplane for K. Therefore we
have no such a segment and z is an extreme point of K as was to be proved.

Corollary 7.2.2 The set of extreme points of a compact convex set is non-
empty.

Remark An alternative argumentation: let K be a compact convex set and
consider the point where the norm function attains its maximum at (the
furthest point of K from the origin). We can easily prove that it must be an
extreme point of K, see also excercise 7.4.7.

7.3 Support functions and Minkowski functionals

In this section we consider two convex functions which are closely related to
the geometry of convex sets. Because their applications are limited in this
material most of the basic properties will be left as an excercise.

7.3.1 Minkowski functionals

De�nition A compact set in the coordinate space of dimension n is called
a body if it is the closure of its interior.
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De�nition Let K be a convex body containing the origin in its interior.
The Minkowski functional induced by K is de�ned as

l(v) := inf{t | v ∈ tK}, (7.5)

where t > 0. Minkowski spaces are �nite dimensional real vector spaces
equipped with a Minkowski functional.

It can be easily seen that the Minkowski functional is positively 1-homo-
geneous and subadditive: for any positive real number t

l(tv) = tl(v) and l(v + w) ≤ l(v) + l(w).

Subadditivity together with positively homogenity imply convexity as well.
The symmetry of K with respect to the origin is equivalent to the absolute
homogenity (or reversibility)

l(v) = l(−v) (7.6)

(cf. properties of a norm in the space). In the preamble to his fourth problem
presented at the International Mathematical Congress in Paris (1900) Hilbert
suggested the examination of geometries standing next to Euclidean one in
the sense that they satisfy much of Euclidean's axioms except some (tipically
one) of them. In the classical non-Euclidean geometry the axiom taking to
fail is the famous parallel postulate. Another type of geometry standing next
to Euclidean one is the geometry of normed spaces (Minkowski spaces). The
crucial test is not the parallelism but the congruence via the group of linear
isometries. In his pioneering work on the geometry of numbers Minkowski
realized that the best way for the investigation of normed spaces (Minkowski
spaces) is to consider the unit sphere or the unit ball. Conversely, if we have
a compact convex subset K containing the origin in its interior then the
functional 7.5 measures the length of vectors in an adequate way. Moreover
the distance function d with respect to l can be also introduced in the usual
way as lengths of di�erence vectors. Geometrically the length is a simple
ratio in the sense that

l(v) = l∗(v) : l∗(v∗),

where l* is an arbitrary function (norm) measuring the lenght of vectors and
v* is the boundary point of K corresponding to the ray from the origin into
the given direction v. The functional l was �rst de�ned by H. Minkowski
to provide a method of obtaining a norm together with a topology in very
general linear spaces.

De�nition By a linear isometry with respect to the Minkowski functional
l we mean a linear transformation (invertible linear map) preserving the
Minkowskian lenght of vectors.
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The study of isometries or distance-preserving mappings of a Minkow-
ski space is greatly simpli�ed by a celebrated theorem due to Mazur and
Ulam [53] for normed spaces or Minkowski spaces with reversible Minkowski
functionals. The theorem states that any surjective isometry can be written
as the composition of an invertible linear map and a translation. The linear
part is, of course, automatically a linear isometry of the space. Therefore
a general Minkowski space does not admit isometries of many types onto
itself. In general translations, the identity map and the central symmetry
with respect to the origin are the only examples.

Remark The converse of the problem of isometries seems to be also im-
portant: how to �nd an invariant convex body under a given subgroup of
invertible linear transformations? The problem will be discussed in chapter
10.

7.3.2 Support functions

De�nition Let S be a non-empty convex set. The support function of S is
an extended real-valued function de�ned as

h(v) = sup
p∈S
〈v, p〉. (7.7)

The domain of an extended real-valued function is the set of points where
the function has �nite values at.

Extended real valued functions admit the positive or negative in�nity
as values. The set of extended real numbers has an ordering extending the
natural ordering on the set of reals. Therefore the sup-operator can not
cause any confusion in the de�nition of the support function. To clarify the
geometric meaning of the support functions associated with convex sets we
need the notion of polar sets.

De�nition Let L be a non-empty subset in the coordinate space of dimen-
sion n. The polar set L* is de�ned as

L∗ := {n ∈ En | ∀ p ∈ L : 〈n, p〉 ≤ 1}.

Remark In case of a singleton the polar set is just the space itself if the
origin is the only element of L. Otherwise if p is the only element in L but
di�erent from the origin then the characteristic property of the elements in
L* is equivalent to the inequality

〈n− p

‖p‖2
, p〉 ≤ 0

which gives a closed half-space. It can be easily seen that the bounding
hyperplane is orthogonal to p.
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In the sense of Riesz representation theorem each linear functional in the
dual space can be expressed as

f(p) = 〈n, p〉,

where n is a uniquely determined vector belongig to f. Conversely the right
hand side of the formula de�nes a linear functional. Using the identi�cation
between f and n the polar set L* can be identi�ed with the set of all linear
functionals having supremum at most one on L.

Theorem 7.3.1 Let K be a compact convex body containing the origin in
its interior. The support function of K is equal to the Minkowski functional
of the polar set K*.

Proof Since K is compact the domain of the support function is the coor-
dinate space of dimension n. On the other hand the origin in the interior
of K implies that the support function is a positive de�nite (positively 1-
homogeneous and convex) function. The equivalence

h(v) ≤ 1 ⇔ 〈v, p〉 ≤ 1 (p ∈ K)

is also obvious. Therefore the unit ball with respect to the support function
is just the polar set of K.

To justify the name "support" we present the following theorem.

Theorem 7.3.2 Let K be a compact convex set and consider a non-zero
element v in the coordinate space of dimension n. The hyperplane H

〈x, v〉 = h(v)

supports K at the point where the supremum 7.7 is attained at.

Proof The hyperplane H bounds K because for any element p in K

〈p, v〉 ≤ h(v) = sup
p∈K
〈v, p〉.

On the other hand the point where the supremum 7.7 is attained at is a
common point of H and K.

Remark The distance of H from the origin is just

d(0, H) =

∣∣∣∣h( v

‖v‖

) ∣∣∣∣. (7.8)
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7.3.3 Radon planes

Keeping in mind Hilbert's motivations why to investigate the geometry of
normed spaces (Minkowski spaces) we illustrate one more problem which
is closely related to the basic notions of Euclidean geometry: orthogonal-
ity/normality [45], see also [53]. It is very important to see that the way
of measuring angles between vectors in a Minkowski space is a non-trivial
problem. In what follows we sketch a way to introduce the notion of orthog-
onal vectors. Sometimes they are called normal to each other provided that
the role of the vectors is symmetric.

De�nition Taking two unit vectors v and w in a Minkowski plane we say
that v is normal to w if the line passing through v into the direction w
supports the unit disk at v.

De�nition The Radon plane is such a Minkowski plane for which normality
is symmetric. The unit circles of Radon planes are called Radon curves.

For the characterization of Radon curves and examples see the corre-
sponding list of excercises.

7.4 Excercises

Excercise 7.4.1 Generalize the nearest-point-type argumentation by substi-
tuting p with a closed convex subset in the coordinate space of dimension
n.

Excercise 7.4.2 Prove that if K is a closed convex set then for any point q
in the space there exists a uniquely determined point in K which is the nearest
point of K to q. In other words closed convex sets satisfy the nearest-point
property with respect to the Euclidean distance.

Excercise 7.4.3 Find a convex set such that it does not satisfy the nearest-
point property with respect to the taxicab norm.

Excercise 7.4.4 Find the extreme points of the convex hull of the points

(0, 0), (0, 1), (1, 2), (2, 3), (3, 3), (3, 0), (2, 1)

in the coordinate plane.

Excercise 7.4.5 Prove that for any compact convex set in the coordinate
plane the pro�le is a closed set.

Excercise 7.4.6 Find an example for a compact convex set in the coordinate
space of dimension three such that the pro�le is not closed.
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Hint. Divide a cylinder into two parts by a plane containing the axis.

Excercise 7.4.7 Prove that the maximum of a continuous convex function
on a compact convex set is attained at one of its extreme points.

Hint. Suppose, in contrary, that the statement is false and represent the
elements as convex combinations of some extreme points. The convexity of
the function gives an upper bound for the values of the function in terms of
the values at the extreme points.

Excercise 7.4.8 Find the set of extreme points of a closed half-space.

Excercise 7.4.9 Let K be a closed convex subset in the coordinate space of
dimension n and suppose that the hyperplane H supports K at the point p.
Prove that p is an extreme point of the intersection of K and H if and only
if it is an extreme point of K.

Excercise 7.4.10 Prove that the Minkowski functional is positively 1-ho-
mogeneous and subadditive: for any positive real number t

l(tv) = tl(v) and l(v + w) ≤ l(v) + l(w).

Excercise 7.4.11 Prove that each norm is just the Minkowski functional
induced by the unit ball.

Excercise 7.4.12 Find the Minkowski functional l induced by the convex
hull of the points

(1, 0), (0, 1), (−1, 0), (0,−1);

see the taxicab norm 1.48.

Excercise 7.4.13 Find the Minkowski functional l induced by the convex
hull of the points

(1, 1), (−1, 1), (−1,−1), (1,−1);

see the maximum norm.

Excercise 7.4.14 Find the Minkowski functional induced by an ellipse cen-
tered at the origin. How to deduce l as a norm coming from an inner product?

Excercise 7.4.15 Find a symmetric convex body K such that the induced
Minkowski space has the minimal set of isometries.

Excercise 7.4.16 Find the Minkowski functional associated to the closed
disk

(x− 1)2 + (y − 1)2 ≤ 4

and prove that the re�ection about the line joining the origin and the center
of the disk is a linear isometry of the Minkowski space.
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Excercise 7.4.17 Prove that the domain of the support function is convex.

Excercise 7.4.18 Prove that the support function is a positively 1-homoge-
neous convex function on its domain.

Excercise 7.4.19 Find the polar set of the convex hull of the points

(1, 2), (2,−1), (−3,−1)

in the coordinate plane.

Excercise 7.4.20 Find the polar set of the convex hull of the points

(1, 1), (−1, 1), (−1,−1), (1,−1)

in the coordinate plane.

Excercise 7.4.21 Find the polar sets of disks and ellipses centered at the
origin in the coordinate plane.

Excercise 7.4.22 Find the polar set of a tetrahedron in the coordinate space
of dimension three.

Excercise 7.4.23 Find the polar set of the cube with vertices

(1, 1, 1), (1, 1,−1), (−1, 1, 1), (−1, 1,−1), (−1,−1, 1),

(−1,−1,−1), (1,−1, 1), (1,−1,−1)

in the coordinate space of dimension three.

Excercise 7.4.24 Find the polar set of the octahedron with vertices

(1, 0, 0), (0, 1, 0), (−1, 0, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)

in the coordinate space of dimension three.

Excercise 7.4.25 Prove that the polar set is a closed convex set containing
the origin.

Hint. For the basic properties of polar sets see chapter 9.

Excercise 7.4.26 Find the support function of the convex hull of the points

(1, 2), (2,−1), (−3,−1)

in the coordinate plane.
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Excercise 7.4.27 Find the support function of the convex hull of the points

(1, 1), (−1, 1), (−1,−1), (1,−1)

in the coordinate plane.

Excercise 7.4.28 Find the support functions of disks and ellipses centered
at the origin in the coordinate plane.

Excercise 7.4.29 Find an example to illustrate that the normality in Min-
kowski planes is not a symmetric relation in general.

Hint. Consider squares (see the taxicab norm or the maximum norm) or
regular octagons in the plane.

Excercise 7.4.30 Prove that ellipses and regular hexagons are Radon curves.

Excercise 7.4.31 Prove that the polar of a Radon curve is also a Radon
curve.

A di�erentiable curve
c: [a, b]→ E2

is parameterized by Minkowskian arclength if its derivatives have unit length
with respect to the Minkowski functional at each parameter s, i.e. l(c'(s))=1.
Let c be a twice-di�erentiable parametrization of the unit circle of a Minkowski
plane by Minkowski arclength.

Excercise 7.4.32 Prove that c is a Radon curve if and only if the Wronskian

s→ det(c(s), c′(s))

is constant.

Hint. Using the Minkowskian arclenght parametrization c'(s)=c(t(s)).
The Radon curve property requires that c'(t(s)) is parallel to c(s). By dif-
ferentiation we have that c�(s) is parallel to c(s) which is equivalent to the
vanishing of the derivative of the Wronskian determinant.

Excercise 7.4.33 Prove that for any Radon-curve c the line joining the
origin and c(s) sweeps out equal areas during equal intervals of time.

Hint. Use that

A(t) =
1

2

∫ t

a
s→ det(c(s), c′(s)) ds

gives the area swept out from a to t; see Kepler's second law of planetary
motions.



Chapter 8

Kirchberger's separation

theorem

Kirchberger's theorem (1902) gives a combinatorial criteria for the existence
of a separating hyperplane between compact sets in the space. To prove the
theorem we need the notion of extreme points of a convex set and Krein-
Milman's theorem related to the convex hull of the extreme points.

8.1 Kirchberger's separation theorem

Let K be a convex subset in the space. Recall that the point p in K is called
an extreme point if the punctured set K - {p} is also convex. Krein-Milman's
theorem 7.2.1 states that each compact convex set K is the convex hull of
its extreme points.

De�nition Let D be a subset of the coordinate space of dimension n. The
point q has the k-point simplicial property1 with respect to D if there exists
a simplex spanned by the elements p(1), ..., p(r) such that r is at most k and
q is in the convex hull of p(1), ..., p(r).

Remark In what follows D(k) denotes the elements of the convex hull hav-
ing the k-point simplicial property with respect to D.

Lemma 8.1.1 Let D and E be compact subsets in the coordinate space of
dimension n such that

convD ∩ convE 6= ∅.
If v is an extreme point of the intersection of the convex hulls, i and j are
the smallest integers such that

v ∈ Di ∩ Ej

then i+j is at most n+2.

1Hungarian translation: k pontra feszíthet®.

112
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Figure 8.1: The proof of Lemma 8.1.1.

Figure 8.2: A contradiction.

Proof According to Carathéodory's theorem 2.2.1 we have that

convD = Dn+1 and convE = En+1.

Therefore
i ≤ n+ 1 and j ≤ n+ 1. (8.1)

If (for example) i=1 then inequalities 8.1 say that

i+ j = 1 + j ≤ 1 + n+ 1 = n+ 2

and the situation is similar in case of j=1. In what follows suppose that both
i and j have values at least 2. Since v is in D(i) we have a simplex spanned
by some elements p(1), ..., p(i) such that v is in their convex hull. Using
that i cannot be reduced we have that there are no vanishing coe�cients in
the convex combination presenting v.

Therefore v can be included in a ball Γ(D) of dimension i - 1 in conv D;
especially the inclusion is in the a�ne hull of p(1), ..., p(i). Similarly, there
exists a ball Γ(E) of dimension j - 1 in conv E such that Γ(E) contains v.
But v is an extremal point of the intersection of the convex hulls.
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Figure 8.3: Possible intersections.

This means that the intersection of the balls must be a singleton con-
taining only v and, consequently,

n ≥ dim ΓD ∪ ΓE = dim ΓD + dim ΓE = i− 1 + j − 1 = i+ j − 2

showing that
i+ j ≤ n+ 2

as was to be proved.

Theorem 8.1.2 (Kirchberger, Paul). Let D and E be compact sets in the
coordinate space of dimension n. They can be strictly separated by a hyper-
plane if and only if for each subset T of at most n+2 elements in D U E the
sets

T ∩D and T ∩ E

can be strictly separated by a hyperplane.

Proof If D and E can be strictly separated by a hyperplane then of course
their subsets can be strictly separated. Suppose that D and E can not be
strictly separated and, consequently, their convex hulls have a non-empty
intersection. If v is an extreme point of the intersection of the convex hulls
then, by the previous lemma,

v ∈ Di ∩ Ej ,

where i+j is at most n+2. For the sake of de�niteness suppose that

v ∈ conv {p1, . . . , pi} ∩ conv{q1, . . . , qj}

for some elements p(1), ..., p(i) in D and q(1), ..., q(j) in E. Taking the set

T := {p1, . . . , pi, q1, . . . , qj}

the intersections
T ∩D and T ∩ E
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can not be strictly separated. By contraposition it follows that if for each
subset T of at most n+2 elements in D U E the sets

T ∩D and T ∩ E

can be strictly separated by a hyperplane then D and E can be strictly
separated.

Kirchberger's theorem has a great signi�cance in the solution of the prob-
lem how to decide the separability of �nite point-sets. If we want to inves-
tigate directly the intersection of the convex hulls whether they are disjoint
or not we should solve the equation∑

vi∈D
λivi =

∑
wj∈E

µjwj

under the additional conditions∑
λi = 1 and

∑
µj = 1.

Therefore we have m+k unknown parameters in a system of linear equations
containing n+2 members, where m and k are the numbers of elements of the
sets D and E, n is the dimension of the space (the number of coordinates). In
case of m+k � n+2 it seems to be very hard to solve because of the enormous
amount of free parameters. Kirchberger's theorem provides a method to
divide the solution of the problem into several but elementary parts: after
choosing elements v(1), ..., v(m') in D and w(1), ..., w(k') in E, respectively,
the problem is reduced to the solution of the system

m′∑
i=1

λivi =
k′∑
j=1

µjwj ,
∑

λi = 1 and
∑

µj = 1.

Here m'+k' is at most n+2 (the number of equations).

8.2 Separation by spherical surfaces

In what follows we reformulate Kirchberger's theorem for spherical separa-
tion by the help of the stereographic projection.

De�nition The sets D and E in the coordinate space of dimension n is
strictly separated by a sphere G if one of the following statements holds:

i all the points of A are inside and all the points of B are outside of G,

ii all the points of B are inside and all the points of A are outside of G.
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Figure 8.4: The stereographic projection (the �rst version).

The method to transfer the separation by hyperplanes into a spherical
separation is based on the stereographic projection. It is a widely used
process in cartography as a way to make a �at map of the earth. Because
the earth is spherical, any map must distort shapes or sizes to some degree.
The rule for stereographic projection has a nice geometric description. Think
of the earth as a sphere sitting on the plane of the paper. (The south pole
touches the paper.) Now imagine a light bulb at the north pole p which shines
through the sphere. Each point on the sphere has a "shadow" to determine
its own place on the map. The south pole works as the center point of the
map. Latitudes appear as circles around the center (longitudes appear as
lines passing through the center of the map). Objects near the south pole
are not stretched very much but the equator is twice as big on the map as
on the sphere. The north pole gets sent o� to in�nity. Because the sphere
and the plane appear in many areas of mathematics and its applications, so
does the stereographic projection. It plays an important role in diverse �elds
including complex analysis, cartography, geology, and photography. In some
applications (see complex analysis) the image of the north pole is taken at the
in�nity. In terms of a pure topological language the sphere is homeomorphic
to the one point compacti�cation of the plane. The stereographic projection
has the following important properties:

i it is conformal (it preserves the angle at which curves cross each other)

ii it is a circle preserving map (lines in the plane are considered circles
with in�nite radius).

Circles on a sphere come from intersections with (hyper)planes. If the
plane contains the pole p of the projection then the image of the circle will
be a line which can be also considered as a circle with in�nite radius. It is
typical in the applications. Sometimes the projection is taken with respect to
the plane H passing through the equator of the sphere. Since the projections
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Figure 8.5: The stereographic projection (the second version).

on di�erent (but parallel) planes can be transfer into each other by a central
similarity through the point p they share the properties (i) and (ii). In
what follows we use the projection onto the plane of the equator together
with an analytical description to enjoy all the advantages of a dimension-free
approach.

Analytic description. Let S be the unit sphere centered at the origin
in the coordinate space of dimension n+1. The points on S will be denoted
by pairs of the form (v,s), where v is in the coordinate plane H spanned by
the �rst n canonical basis vectors and s is a real number between - 1 and
1. Let p=(0,1) be the point of the projection ("north pole"). The condition
for the intersection of the line passing through (v,s) and p with H is the
vanishing of the last coordinate of a point on the parametric line

(0, 1) + t

(
(v, s)− (0, 1)

)
= (v′, 0)

as t runs through the real numbers. Therefore

1 + ts− t = 0⇒ t =
1

1− s
and, consequently,

v′ =
1

1− s
v.

Its inverse works formally as

v′ 7→
(

(1− s)v′, s
)
,

where s can be expressed by taking the norm of the vectors v and v':

‖v′‖ =
1

(1− s)
‖v‖ =

1

(1− s)
√

1− s2

because the element (v, s) has unit length. Therefore

‖v′‖2 =
1 + s

1− s
⇒ s =

‖v′‖2 − 1

‖v′‖2 + 1
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and, consequently, the inverse transformation can be given as

v′ 7→ 2

1 + ‖v′‖2
(
v′,
‖v′‖2 − 1

2

)
.

Especially,

(x, y) 7→ 2

1 + x2 + y2

(
x, y,

x2 + y2 − 1

2

)
.

Excercise 8.2.1 Prove that

d

(
(0, 1), (v, s)

)
· d
(

(0, 1), (v′, 0)

)
= 2.

Hint. Recall that

‖v‖2 + s2 = 1 and v′ =
1

1− s
v.

The result says that the stereographic projection is actually the restric-
tion of an inversion with center p. Therefore the properties (i) and (ii) of the
stereographic projection can be concluded from the corresponding properties
of the inversion. The advantage of proving the properties for inversions is
that we can use the standard calculus and linear algebra without adaptation
to (hyper)surfaces.

Excercise 8.2.2 Prove that the Jacobian matrix of the inversion is propor-
tional of the unit matrix at each point of the space except the center.

Remark In the sense of the previous excercise the inversion is conformal
because the angles are de�ned in terms of tangent objects. In order to see the
conformal property of the stereographic projection in the classical case we
can use the following more elementary argumentation: consider the tangent
(hyper)plane H' to the sphere at p. H' is parallel to the (hyper)plane H of
the equator and, consequently, for any line l in H we have a parallel line l'
in H' by intersecting H' with the plane P spanned by l and the pole p of the
projection. The common part of P and S is a circle C'. It is clear that l' is
tangential to C' and, consequently, the angle between two (intersecting) lines
in the plane H is the same as the angle between their inverse circles (which
is just the angle between their tangent lines passing through the common
point p).

Excercise 8.2.3 Prove that the stereographic projection is a circle/sphere
preserving map.

Hint. Spheres of H and S can be considered as intersections with spheres
or hyperplanes, respectively. Therefore it is enough to prove that the inver-
sion is a sphere-preserving map.
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Figure 8.6: A counterexample.

Theorem 8.2.4 Let D and E be compact sets in the coordinate space of
dimension n. They can be strictly separated by a sphere if and only if for
each subset T of at most n+3 elements in D U E the sets

T ∩D and T ∩ E

can be strictly separated by a sphere.

Proof Consider the coordinate space of dimension n as a hyperplane

En ⊂ En+1

in the space of dimension n+1 and let D' and E' be the inverse images of
the given sets under the stereographic projection of the unit sphere in the
embedding space. The original version of Kirchberger's theorem 8.1.2 says
that D' and E' can be strictly separated by a hyperplane L (of dimension n) in
the embedding space. Since it is a strict separation we can suppose, without
loss of the generality, that the separating hyperplane does not contain the
pole of the projection. Therefore the image of the intersection of L and
S under the projection is a (non-degenerate) sphere G in the coordinate
hyperplane of dimension n. G separates D and E as was to be proved.

The �gure shows that the number n+3 can not be reduced. Although
we have �ve circles to separate the points belonging to di�erent letters in all
the quadruples

A1 = {p1, p2, p3, q1}, A2 = {p1, p2, p3, q2}, A3 = {p1, p2, q1, q2},

A4 = {p1, p3, q1, q2}, A5 = {p2, p3, q1, q2},

the sets D={p(1), p(2), p(3)} and E={q(1), q(2)} can not be separated by
circles.
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Figure 8.7: The best a�ne approximation.

8.3 The best a�ne approximation

Another application of Kirchberger's original theorem is the solution of the
problem how to �nd the best a�ne approximation for a �nite collection F
of given points. Geometrically we want to �nd a hyperplane as "close" to F
as possible. Functions with one variables. Let r > 2 di�erent points be
given in the coordinate plane:

(x1, y1), . . . , (xr, yr). (8.2)

The problem is to �nd an a�ne function f(x)=ax+b for which the largest
error

δ(f) := max{|f(x1)− y1|, . . . , |f(xr)− yr|} (8.3)

is as small as possible. The �gure illustrates two approximations of 8.2 with
r=5. The negative slope gives a better approximation with respect to 8.3.

The solution of the problem. Let f be a given a�ne function and
consider the sets

A := {xi | f(xi) = yi + δ(f)} and B := {xi | f(xi) = yi − δ(f)}.

If
convA ∩ convB = ∅

then A and B can be strictly separated by a zero-dimensional hyperplane,
i.e. a point x(0) in the coordinate axis2. If we rotate the graph of the
function around the point (x(0), f(x(0)) with a su�ciently small angle we
have a better approximation as the �gure shows: for the function f (having
a positive slope)

A = x5 and B = {x2, x3}
2It is clear that one of the sets A and B is non-empty; if (for example) A is the empty

set the separation means the choice of a point not in the convex hull of B.
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and, consequently,
convA ∩ convB = ∅.

The rotation of the graph around the point (x(0), f(x(0))) with a su�ciently
small angle into the clockwise direction reduces the absolute value of the
di�erence at the points of both A and B. It should be su�ciently small
because the rotation may in fact increase the di�erence (with absolute value
less than δ) at other points of the domain. Therefore if f is one of the best
approximations of 8.2 with respect to 8.3 then

convA ∩ convB 6= ∅.

To prove the converse statement consider a function f in such a way that the
convex hulls of the sets A and B intersect each other. Suppose, in contrary,
that f' is a better approximation than f. Then the graph of f' must be lower
than the graph of f at each point of A. Especially the same must be true
at each point of conv A. On the other hand the graph of f' must be higher
than the graph of f at each point of B. Especially the same must be true
at each point of conv B. This obviously gives a contradiction to the non-
empty intersection of the convex hulls. We have just proved that f is the
best approximation if and only if the convex hulls of the sets A and B have
a non-empty intersection. Therefore A and B can not be strictly separated
which is equivalent, by Kirchberger's separation theorem, to the condition
that we have a subset T of A U B containing at most three points such that
the sets

T ∩A and T ∩B

can not be strictly separated. In other words the solutions of the original
problem involving r given points are the solutions of the reduced problems
involving some three points among the given ones: choose a collection of
three points containing T. For the sake of simplicity consider the triplet

(x1, y1), (x2, y2), (x3, y3) (8.4)

ordered in such a way that x(1)<x(2)<x(3). Then we have the following two
possibilities:

A = {x1, x3} and B = {x2}

or
B = {x1, x3} and A = {x2}.

Therefore one of the systems of linear equations

y1 + δ = ax1 + b,

y2 − δ = ax2 + b,

y3 + δ = ax3 + b
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or
y1 − δ = ax1 + b,

y2 + δ = ax2 + b,

y3 − δ = ax3 + b

depending on the ordering of the second coordinates should be solved. Geo-
metrically we need a mid-line in the triangle formed by the points (x(i),y(i)),
where i=1, 2, 3. After calculating the best approximation for each triplet we
can explicitly determine the errors with respect to the full system of points
8.2 to choose the best one.

Functions with two variables. Let r > 3 di�erent points be given in
the coordinate space of dimension three:

(x1, y1, z1), . . . , (xr, yr, zr). (8.5)

The problem is to �nd an a�ne function

f(x, y) = ax+ by + c

for which the largest error

δ(f) := max{|f(x1, y1)− z1|, . . . , |f(xr, yr)− zr|} (8.6)

is as small as possible. The solution of the problem. Let f be a given
a�ne function and consider the sets:

A := {(xi, yi) | f(xi, yi) = zi+δ(f)} and B := {(xi, yi) | f(xi, yi) = zi−δ(f)}.

If
convA ∩ convB = ∅

then A and B can be strictly separated by a line l in the coordinate plane
(x,y). It can be considered as the orthogonal projection of the line

l′ = {(x, y, f(x, y)) | (x, y) ∈ l}

in the space (especially in the graph of the a�ne function f). Rotating the
graph of f around the line l' with a su�ciently small angle we can decrease
the (common) error at the points of both A and B. This results in a better
approximation than f in a similar way as above. Therefore if f is one of the
best approximations of 8.5 with respect to 8.6 then

convA ∩ convB 6= ∅.

To prove the converse statement consider a function f in such a way that the
convex hulls of the sets A and B intersect each other. Suppose, in contrary,
that f' is a better approximation than f. Then the graph of f' must be lower
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than the graph of f at each point of A. Especially the same must be true
at each point of conv A. On the other hand the graph of f' must be higher
than the graph of f at each point of B. Especially the same must be true
at each point of conv B. This obviously gives a contradiction to the non-
empty intersection of the convex hulls. We have just proved that f is the
best approximation if and only if the convex hulls of the sets A and B have
a non-empty intersection. Therefore A and B can not be strictly separated
which is equivalent, by Kirchberger's separation theorem, to the condition
that we have a subset T of A U B containing at most four points such that
the sets

T ∩A and T ∩B
can not be strictly separated. In other words the solutions of the original
problem involving r given points are the solutions of the reduced problems
involving some four points among the given ones: choose a collection of four
points containing T.

8.4 Excercises

Excercise 8.4.1 Let D be the set of vertices of a square in the coordinate
plane. Find the sets

D1, D2 and D3.

Excercise 8.4.2 Find an example to show that the Kirchberger number n+2
can not be reduced.

Hint. The pairs of points on the diagonals of a square can not be sepa-
rated by a line but any three of them can be strictly separated.

Excercise 8.4.3 Prove or disprove that the sets

D = {(1,−2)} and E = {(4, 1), (−1, 1), (0,−1)}

can be separated by a line in the coordinate plane. Find the equation of the
separating line if exists.

Excercise 8.4.4 Prove or disprove that the sets

D = {(1,−2), (−3, 1)} and E = {(4, 1), (−1, 1)}

can be separated by a line in the coordinate plane. Find the equation of the
separating line if exists.

Excercise 8.4.5 Prove or disprove that the sets

D = {(1,−2), (−3, 1)} and E = {(4, 1), (−1, 1), (0,−1)}

can be separated by a line in the coordinate plane. Find the equation of the
separating line if exists.
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Excercise 8.4.6 Prove or disprove that the sets

D = {(−1, 1, 1), (1, 1,−1), (1,−1, 1), (0, 0, 3)}

and
E = {(1, 2, 5), (1,−2, 3)}

can be separated by a plane in the coordinate space of dimension three. Find
the equation of the separating plane if exists.

Excercise 8.4.7 Find the error for the best a�ne approximation to each
subset of three points in

(1, 1), (2, 3), (3, 2), (4, 3).

Find the best a�ne approximation to all the points.

Excercise 8.4.8 Find the best a�ne approximation of the set of points

(1, 1, 1), (2, 3,−1), (3,−2, 1), (−1, 1, 2).

Excercise 8.4.9 How to generalize the best approximation problem and the
solution to the coordinate space of dimension n?



Chapter 9

Convex polytopes and

polyhedra

9.1 Vertices, edges, faces

De�nition The convex hull of �nitely many points in the space is called a
convex polytope. Two-dimensional convex polytopes in the plane are convex
polygons. Three-dimensional convex polytopes in the coordinate space of
dimension three are convex polyhedra.

Remark Simplices (see section 2.2) are convex polytopes.

Proposition 9.1.1 Convex polytopes have �nitely many extreme points called
vertices.

Proof Let K:=conv {q(1), ..., q(m)} be a convex polytope and suppose that
K has an extreme point q not among the points

q1, . . . , qm. (9.1)

Then each element of 9.1 belongs to the punctured set K - {q} which is convex
because of our hypothesis. Therefore the smallest convex set containing the
points 9.1 is K - {q} which is a contradiction.

According to Krein-Milman's theorem 7.2.1 the following corollary is ob-
vious.

Corollary 9.1.2 Each convex polytope is the convex hull of its vertices.

Theorem 9.1.3 Non-empty compact intersections of �nitely many closed
half-spaces are convex polytopes.

125
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Proof Let
F1, . . . , Fm (9.2)

be closed half-spaces bounded by the hyperplanes

A1, . . . Am, (9.3)

respectively. We will use an induction on the dimension of the embedding
coordinate space to prove that the (convex) set

K :=
m⋂
i=1

Fi

has �nitely many extreme points. In case of n=1 it is obvious because
the convex compact sets are the closed bounded intervals which are convex
polytopes. Suppose that the statement is true in the coordinate spaces of
dimension at most n - 1. If

K ⊂ En

and v is an extreme point of K then v must be on the boundary of K.
Otherwise we can consider an open ball around v and the convexity hurts
by cancelling this point from K. Therefore v must be one of the hyperplanes
9.3 which means that

ext K ⊂ ext (K ∩A1) ∪ . . . ∪ ext (K ∩Am).

By our hypothesis sets on the right hand side contain only �nitely many
points. So does ext K. Using Krein-Milman's theorem 7.2.1 we have that K
is a convex polytope as a convex hull of �nitely many points in the space.

Let L be a non-empty subset in the coordinate space of dimension n. The
polar set of L is de�ned as

L∗ := {n ∈ En | ∀ p ∈ L : 〈n, p〉 ≤ 1}.

For polar sets (excercises and comments) see also subsection 7.3.2.

Lemma 9.1.4 The polar set of a non-empty set L is a closed convex set
containing the origin. Moreover

(L1 ∪ L2)∗ = L∗1 ∩ L∗2, (9.4)

L1 ⊂ L2 ⇒ L∗2 ⊂ L∗1 (9.5)

∀ λ > 0 : (λL)∗ =
1

λ
L∗. (9.6)

If K is a closed convex set containing the origin then

(K∗)∗ = K (9.7)
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Proof The only property which does not follow directly from the de�nition
of the polar set is 9.7. Let (for a moment) L=K* be the polar set of K. If p
is in K then for all element n in L

〈p,n〉 ≤ 1

which means, by de�nition, that p is in L*=(K*)* as well. Therefore K is a
subset in L*. To prove the converse suppose that q is not in K and consider a
hyperplane H such that q is strictly separated from K by H. The hyperplane
is given by an equation of the form

a1x1 + a2x2 + . . .+ anxn = 1. (9.8)

Using the notation
n := (a1, . . . , an)

for the normal vector of the hyperplane we can write equation 9.8 in a more
compact form of the Hesse equation

〈n, x〉 = 1. (9.9)

Since the origin is in K the inequality

〈n, x〉 < 1 (9.10)

determines the half-space containing K. Therefore each element p in K satis-
�es inequality 9.10. This means that n is in L. At the same time we have that
the inner product of n and q must be greater than 1 because the hyperplane
9.9 strictly separates q and K. So we have that q is not in L*=(K*)*. The
argumentation shows that the complement of K is a subset of the comple-
ment of L* and, consequently, L* is a subset of K. Therefore L*=K as was
to be proved.

Theorem 9.1.5 Each n-dimensional convex polytope in the coordinate space
of dimension n is the intersection of �nitely many closed half-spaces.

Proof Let K:=conv {q(1), ..., q(m)} be a convex polytope of dimension n.
Taking a translate of K if necessary we can suppose that the origin is in the
interior of K without loss of generality. Consider the polar set L=K*. In
the �rst step we are going to show that L is the intersection of the closed
half-spaces

Fi := {n ∈ En | 〈n, qi〉 ≤ 1},

i=1, ..., m. From the de�nition of the polar set the inclusion

L ⊂
m⋂
i=1

Fi
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is obvious. On the other hand for any convex combination

q = λ1q1 + . . .+ λmqm

relations
〈n, q1〉 ≤ 1, . . . , 〈n, qm〉 ≤ 1

imply that

〈n, q〉 = λ1〈n, q1〉+ . . .+ λm〈n, qm〉 ≤ λ1 + . . .+ λm = 1

proving the converse of the inclusion. The polar set has just been presented
as the intersection of �nitely many closed half spaces. In the second step we
are going to prove that the polar set is compact. According to the previous
lemma it is enough to prove the boundedness. By our assumption the origin
is in the interior of K together with an open ball B centered at 0 with a
su�ciently small radius r. Then, by 9.5, L is a subset in B* which means
that L is bounded. Therefore it is a non-empty (the origin always belongs to
the polar set) compact intersection of �nitely many closed half-spaces which
implies, by theorem 9.1.3, that it is a convex polytope: L=conv {q*(1), ...,
q*(m*)}. Repeating the argumentation in the �rst step with L instead of K
we have that L* is the intersection of the half-spaces

F ∗i := {n∗ ∈ En | 〈n∗, q∗i 〉 ≤ 1},

where i=1, ..., m*. Finally L*=(K*)*=K according to the duality property
9.7.

Theorem 9.1.6 (The structure theorem of convex polytopes) Let P be an
n-dimensional convex polytope in the coordinate space of dimension n and
consider a minimal representation of P as the intersection of �nitely many
closed half-spaces, i.e. suppose that none of them can be cancelled among
the half-spaces. Such a minimal representation is unique up to the order of
the half-spaces and the intersections of the bounding hyperplanes with P are
convex polytopes of dimension n - 1.

De�nition The intersections of the n-dimensional convex polytope P with
the bounding hyperplanes in the minimal representation are called (n - 1)
- dimensional faces or facets of the polytope. We can introduce inductively
the notion of k - dimensional faces. Especially the one-dimensional faces
are called edges and the 0 - dimensional faces are referred as vertices of the
polytope.

9.2 Euler's and Descartes theorem

Euler's theorem can be considered as the �rst obstruction of building convex
polyhedra. It contains a famous relationship among the numbers of vertices,
edges and facets.
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Figure 9.1: Leonard Euler, 1707-1783.

Theorem 9.2.1 (Euler, Leonard) The numbers v, e and f of vertices, edges
and facets of a convex polyhedron are related by Euler's formula

v − e+ f = 2. (9.11)

Proof The a�ne hull (plane) of any facet divides the space into two half-
spaces such that the polyhedron is entirely contained in exactly one of them.
This half-space will be called positive. After choosing a facet F consider a
point c in the negative half-space with respect to F in such a way that c is
contained in the positive half-spaces with respect to the facets except the
distinguished one. Use a central projection through c to present a connected
�nite graph in the plane of F by the projections of the vertices and edges of
the polyhedron. This graph has v vertices, e edges and the projections of
the facets except the distinguished one appear as convex polygons without
common interior points. The number of these convex polygons is just f -
1. Consider the complement of F in the plane instead of the missing facet.
Thus we have a partition of the plane of F into f domains without common
interior points. Take the next steps. Steps of �rst type. If we have a
circle in the graph delete one of its edges. The output is a connected graph
(the missing edge is avoidable along the complement "arc" of the circle)
with the same number of vertices. The number of domains in the partition
decreases together with the number of edges. Therefore their di�erence and,
consequently, the Euler characteristic 9.11 remains invariant. Repeat steps of
�rst type as far as possible. Steps of second type. If we have no circles in
the graph then there must be vertices of degree 1 (such a vertex can be found
as the starting or the endpoint of the longest walk in the graph). Delete a
vertex of degree 1 together with the corresponding edge. The output is a
connected graph because the connectedness does not re�ect to vertices with
only one way to reach. The numbers of vertices and edges are reduced in
this way but their di�erence and, consequently, the Euler characteristic 9.11
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remains invariant. Repeat steps of second type as far as possible. The end
of the algorithm is a graph containing only one vertex without edges and we
have only one domain in the partition of the plane of F. Therefore v - e+f=1
- 0+1=2 as was to be stated.

Remark The higher dimensional Euler-formula is

n−1∑
k=0

(−1)kfk = 1− (−1)n, (9.12)

where n is the dimension of the space and f(k) denotes the number of k-
dimensional facets (k=0, ..., n - 1).

Excercise 9.2.2 Find all convex polyhedra with f=5.

Hint. Since the total sum of the facets is �ve we have only p triangular
and q rectangular facets, where p+q=5. We have that

2e = 3p+ 4q

and the possible values are p=2 and q=3 (a triangular based prism) or p=4
and q=1 (a rectangular based pyramid).

Excercise 9.2.3 Find all convex polyhedra with f=6.

De�nition The defect of a vertex V of a convex polyhedron is 2π minus the
sum of the angles at the corners of the facets at V.

The second obstruction of building convex polyhedra is that each defect
must be positive. Another result related to the defects of a convex polyhedra
is Descartes's theorem. It will be applied to the characterization of regular
polyhedra.

Theorem 9.2.4 (Descartes, René) The sum of the defects of vertices of a
convex polyhedra is just 4π.

Proof Let f(m) be the number of convex m - gons among the facets of the
polyhedra. Since the sum of the measures of the internal angles is (m - 2)π
we have that the sum of the defects is

2πv −
∑
m

(m− 2)πf(m) = 2π

(
v −

∑
m

mf(m)

2
+
∑
m

f(m)

)
,

where
f =

∑
m

f(m)
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Figure 9.2: René Descartes, 1596-1650.

and

e =
∑
m

mf(m)

2

because each edge belongs to exactly two facets. Using Euler's theorem we
have that the sum of the defects

2πv −
∑
m

(m− 2)πf(m) = 2π(v − e+ f) = 4π

as was to be stated.

Excercise 9.2.5 Find all convex polyhedra with regular triangles as facets.

Hint. For the so-called Deltahedron's problem see [6] and [32] Theorem
45.6.

Theorem 9.2.6 (Cauchy's rigidity theorem, 1813) If there exists an edge-
and facet-preserving correspondence between the vertices of two convex poly-
hedra such that the corresponding facets are congruent then they are congru-
ent.

Proof The rigorous proof of the theorem involves some tools of combina-
torics and (colored) graph theory [1], see also [21] and [39]. An elementary
proof can be found in [32]. We summarize its basic steps. Let P(1) and
P(2) be two convex polyhedra satisfying the conditions in the rigidity the-
orem. Cauchy's original idea is to study how the dihedral angles compare
along corresponding edges. If all the dihedral angles are the same then we
can build P(1) and P(2) step by step into congruent �gures. Let each edge
of P(1) be labelled by +, - or no mark according as its dihedral angle is
less than, greater than or equal to the corresponding dihedral angle in P(2).
At each vertex we intersect the polyhedra with su�ciently small spheres.
This produces spherical polygons called vertex �gure whose interior angles
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are just the dihedral angles. Therefore its vertices inherit markings + or -
from the edges. By our conditions the corresponding spherical polygons have
equal sides. The basic question is that what about the interior angles. Using
Steinitz's comparison lemma [32] (lemma 45.3) one can prove that either
all corresponding angles are equal or, as we make a circuit of the polygon
ignoring unmarked vertices, the sign must change at least four times1. To
�nish the proof we count the total number of changes of sign in two di�erent
ways. For the sake of simplicity suppose that all edges are marked + or -
and let N be the sum over all the vertices of the number of changes of sign
of edges around that vertex. It follows that N is at least 4v, where v is the
number of vertices. On the other hand let us count by facets. On a triangu-
lar face two adjacent edges must have the same sign. Therefore such a face
can contribute at most two changes of sign to its three vertices. Facets of
n sides can contribute at most n changes of sign if n is even or n - 1 if n is
odd. Especially

4v ≤ N ≤ 2f3 +
∑
n≥4

nfn

Euler's theorem says that

4v = 4(e− f + 2) = 4

1

2

∑
n≥3

nfn −
∑
n≥3

fn + 2

 ≤ 2f3 +
∑
n≥4

nfn,

i.e.
2
∑
n≥3

(n− 2)fn + 8 ≤ 2f3 +
∑
n≥4

nfn

and, consequently, ∑
n≥4

(n− 4)fn + 8 ≤ 0

which is a contradiction. Therefore we have no any change of sign and all
corresponding dihedral angles are equal.

1Steinitz's comparison lemma states that if we have two polygons A(1)A(2) ... A(n)
and B(1)B(2) ... B(n) in the plane such that the sides A(i)A(i+1) and B(i)B(i+1) are
equal for i=1, 2, ..., n - 1 but the angles of the �rst polygon are less than or equal to
the angles of the second polygon with at least one strict inequality then A(1)A(n) <
B(1)B(n). The proof is based on the induction with respect to the number of vertices.
All of Euclidean axioms are working except the parallel postulate. Therefore the lemma
holds in spherical geometry too. Consider now a vertex �gure and suppose in contrary
that the sign changes at most two times (the number of changes of sign is obviously even
including zero change too). If we have exactly two changes then there is a diagonal cutting
the spherical polygon into two parts. One of them contains only - vertices and the other
only + vertices. Applying the spherical version of Steinitz's comparison lemma to the -
side we obtain that the diagonal is greater than the corresponding diagonal in the vertex
�gure belonging to the second polyhedron. Using the other side we have just the opposite
conclusion which is impossible.
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Remark If there are some marked and some unmarked edges we can imitate
the previous proof using only those vertices and edges that are labelled. Such
a con�guration is called a net. A net-face is formed by any maximal union
of facets of the polyhedron which are not separated by edges of the net. The
Euler's formula for nets is

v − e+ f ≥ 2

and the argument of the proof still works.

Excercise 9.2.7 Find an authentic proof of the rigidity theorem for tetra-
hedra.

Hint. Let

T1 := conv{p1, p2, p3, p4} and T2 = conv{q1, q2, q3, q4}

be two tetrahedra. By our assumption the correspondence

f(pi) = qi (i = 1, 2, 3, 4) (9.13)

of the vertices gives facets with congruent edges. Since 9.13 can be uniquely
extended to an a�ne transformation

f(p) = ϕ(p) + v

and the translation part is obviously an isometry we have that the linear part
is also an isometry. Therefore T(2) is the image of T(1) under an isometry.
In other words they are congruent.

9.3 Regular polyhedra

The Platonic solids (regular convex polyhedra) have been known since an-
tiquity. The ancient Greeks studied them extensively. Some sources (such as
Proclus) credit Pythagoras with their discovery. Other evidence suggests he
may have only been familiar with the tetrahedron, cube and dodecahedron
and the discovery of the octahedron and icosahedron belong to Theaetetus,
a contemporary of Plato. Theaetetus gave a mathematical description of
all �ve Platonic solids. He may have been responsible for the �rst known
proof that there are no other convex regular polyhedra. Euclid also gave a
complete mathematical description of the Platonic solids in the Elements.
Propositions 13 - 17 in Book XIII describe the construction of the tetra-
hedron, octahedron, cube, icosahedron and dodecahedron. For each solid
Euclid found the ratio of the diameter of the circumscribed sphere to the
edge length. In Proposition 18 he argues that there are no further convex
regular polyhedra.
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Figure 9.3: The tetrahedron.

Figure 9.4: The cube.

De�nition A convex polygon in the plane is called regular if it is equian-
gular and equilateral, i.e. all internal angles are equal in measure and all
sides have the same length. The facets of a regular polyhedron are congru-
ent regular polygons with the same dihedral angle along each edge and the
same number of edges concur at each vertex: the pair (m,n) is the symbol of
the regular polyhedra if the facets are regular m-gons and n is the common
number of edges meeting at each vertex.

Theorem 9.3.1 The possible symbols of a regular convex polyhedron are

(3, 3), (3, 4), (3, 5), (4, 3) and (5, 3).

Proof Since each vertex has the same defect and their sum is 4π (Descartes'
theorem) we have that each vertex has the same positive defect:

2π − nα(m) > 0 (9.14)

where

α(m) =
m− 2

m
π

is the common measure of the internal angles in a regular m-gon. From here

2 > n
m− 2

m
= n

(
1− 2

m

)
>
n

3



CHAPTER 9. CONVEX POLYTOPES AND POLYHEDRA 135

Figure 9.5: The octahedron.

Figure 9.6: The icosahedron.

because the value of m is at least three. It follows that n is less than six
and, consequently, its possible values are 3, 4 or 5. If n=3 then 9.14 says
that m < 6 and, consequently, its possible values are 3, 4 or 5. In case of
n=4 we have by 9.14 that the only possible value of m is 3. Finally, if we
substitute n=5 into equation 9.14 we have that m=3 (because it must be
less than 10/3)

Remark The regular tetrahedron is of type (3,3). The cube is of type
(4,3). The convex hull of the centers of the facets of a cube is the so-called
octahedron of type (3,4). The cube and the octahedron are "dual" (see also
polar sets in subsection 7.3.2. The edges of a regular octahedron can be
subdivided in the golden ratio so that the resulting vertices de�ne a regular
icosahedron of type (3,5). It can be done by �rst placing vectors along
the octahedron's edges such that each facet is bounded by a circle, then
similarly subdividing each edge into the golden mean along the direction of
its vector. The convex hull of the centers of the facets of an icosahedron is
a dodecahedron of type (5,3). They are also "dual". The convex hull of the
centers of the facets of a tetrahedron is a tetrahedron. It is "self-dual" (see
also polar sets in subsection 7.3.2).

In what follows we summarize the basic data of regular polyhedra.
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Figure 9.7: The dodecahedron.

polyhedron symbol vertices edges facets

Tetrahedron (3,3) 4 6 4

Cube (4,3) 8 12 6

Octahedron (3,4) 6 12 8

Icosahedron (3,5) 12 30 20

Dodecahedron (5,3) 20 30 12



Chapter 10

Generalized conics

The idea of generalization of classical conics is a periodic phenomenon in the
history of mathematics. There are lots of points of view of investigations:

• approximation theory [24], see also [23],

• optimization problems [30], see also [41] and [31] or

• the theory of equidistant sets.

The United Nations Convention on the Law of the Sea (Article 15) establishes
that, in absence of any previous agreement, the delimitation of the territorial
sea between countries occurs exactly on the median line every point of which
is equidistant of the nearest points to each country. The classical conics can
be always realized as sets of equidistant points from two given circles in
the plane [47]. Here we have another type of generalization together with
applications in Minkowski geometry and geometric tomography.

Generalized conics are the level sets of a function measuring the average
distance from a given set of points (focal set). Polyellipses as the level sets of
the function measuring the arithmetic mean of distances from the elements
of a �nite point-set in the plane are one of the most important cases. They
appear in optimization problems in a natural way. They also have appli-
cations in architecture, urban and spatial planning. Instead of �nite sums
we can use integration over the set of foci (curves, surfaces, integration do-
mains) to extend the notion of polyellipses. It is a topologically natural way
of the generalization (cf. Weiszfeld's problem and Erd®s-Vincze's theorem)
because the integral sums provide sequences of polyellipses/polyellipsoids to
approximate the level sets of the function measuring the average distance.
Unfortunately there are general di�culties in explicite computations as the
case of circular conics shows [56], see also [57]. To develop a kind of theory we
need subtle estimations [2] and [49] for elliptic integrals and the Gaussian hy-
pergeometric function. As a similar trend computer simulations, algorithms
and estimations are used instead of the classical tools.

137
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10.1 A panoramic view

Let G be a subset of the Euclidean coordinate space. A generalized conic is
a set of points with the same average distance from the points in G. First of
all we consider some examples how to calculate such an average distance of
a single point from a point-set. The method can be realized in several ways
from classical (discrete) means to integration over the set of foci. In most
of important cases the common feature of functions measuring the average
distance is the convexity. They also satisfy a kind of growth condition.
Therefore the level sets are compact convex subsets in the space bounded by
compact convex hypersurfaces. They are called generalized conics. In what
follows we present some examples and basic facts of the theory of generalized
conics.

Example If G is a �nite set of points in the space then the average distance
can be calculated as the arithmetic mean

F (p) :=
d(p, p1) + . . .+ d(p, pm)

m
(10.1)

of distances from the points p(1), ..., p(m) of G. Hypersurfaces of the form
F(p)=const. are called polyellipses or polyellipsoids depending on the di-
mension of the embedding coordinate space. The points p(1), ..., p(m) are
the focuses. We have the usual notion of ellipses in case of two di�erent
focuses in the coordinate plane.

It is natural to take any other types of mean or their weighted versions
instead of the standard arithmetic one in formula 10.1. The most important
discrete cases are polyellipses with the classical arithmetic mean to calculate
the average Euclidean distance from the elements of a �nite point-set and
lemniscates (with the classical geometric mean to calculate the average Eu-
clidean distance from the elements of a �nite point-set). Lemniscates in the
plane play a central role in the theory of approximation in the sense that
polynomial approximations of holomorphic functions can be interpreted as
approximations of curves with lemniscates. In terms of algebra we speak
about the roots of polynomials (in terms of geometry we speak about their
foci). Endre Vázsonyi posed the problem whether the polyellipses (as the
additive versions of lemniscates) have the same approximating property by
increasing of the number of the foci or not. The answer is negative (see Erd®s-
Vincze's theorem [24], see also [60] and chapter 11). To include hyperbolas
as a special case of generalized conics we can admit a simple weighted sum
of distances instead of means. Parabolas can be given as a special case if not
only single points but hyperplanes are also admitted as the element of the
set of foci. The pure case of such a construction is presented in the following
example.
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Example If G is a �nite set

H1, . . . ,Hm (10.2)

of hyperplanes in the coordinate space of dimension n then the average dis-
tance can be calculated as the arithmetic mean

F (p) :=
d(p,H1) + . . .+ d(p,Hm)

m
(10.3)

of distances from the hyperplanes 10.2. Especially let

e1 := (1, 0 . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1)

be the canonical basis and consider the hyperplanes

Hi := a� {e1, . . . , ei−1, ei+1, . . . , en}, where i = 1 . . . n.

In terms of the coordinates of p we have

F (p) =
|p1|+ . . .+ |pn|

n
,

and hypersurfaces of the form F(p)=const. are just spheres with respect to
the 1-norm. They can be also considered as a generalization of conics.

It is a natural question whether how we can calculate the average distance
of a single point of the space from a set consisting of in�nitely many points.
Consider �rst of all a curve Γ in the space. In order to calculate the average
distance of the point p from Γ divide the curve into m parts with the same
arc-length. After choosing a point from each part let us de�ne the function

Fm(p) :=
d(p, γ1) + . . .+ d(p, γm)

m
=
d(p, γ1)s1 + . . .+ d(p, γm)sm

the arc-length of Γ
, (10.4)

where s(1)= ... =s(m) is the common arc-length of the pieces and γ(1), ...,
γ(m) are points on the curve from the corresponding pieces of the partition.
Under reasonable conditions

lim
m→∞

Fm(p) =
1

the arc-length of Γ

∫
Γ
γ 7→ d(p, γ) dγ.

In view of this argumentation we can formulate the following de�nition.

De�nition Let Γ be a bounded orientable submanifold1 in the coordinate
space of dimension n with �nite positive measure (arc-length, area or vol-
ume). The average distance is measured as the integral

F (p) :=
1

vol Γ

∫
Γ
γ 7→ d(p, γ) dγ. (10.5)

Hypersurfaces of the form F(p)=const. are called generalized conics with Γ
as the set of focuses.

1As explicite examples we can consider curves, surfaces or compact domains in the
space.
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Figure 10.1: The body C(p).

In this sense generalized conics are "limits" of sequences of polyellipses or
polyellipsoids 10.1; cf. Weissfeld's problem of the topological closure of the
set of polyellipses in the plane. To generalize the pure case of hyperplanes
10.3 in a similar way we can use the submanifolds of Grassmannians. By
taking submanifolds of the product of the coordinate space with Grassman-
nians or �ag manifolds [38] mixed cases can be also presented. Let Γ be a
subset of dimension n. The integral∫

Γ
γ 7→ d(p, γ) dγ

is just the volume of the body C(p) bounded by Γ in the horizontal hy-
perplane of dimension n and the upper half of the right circular cone with
opening angle π/2. It has a vertical axis to the horizontal hyperplane at the
vertex p.

Theorem 10.1.1 The function F is convex satisfying the growth condition

lim inf
‖p‖→∞

F (p)

‖p‖
> 0. (10.6)

Proof Convexity is clear because the integrand is a convex function of the
variable p for any �xed element γ in Γ. Since Γ is bounded it is contained
in a ball around the origin with a �nite radius K. Then

d(p, γ) +K ≥ d(p, γ) + d(γ,0) ≥ d(p,0) = ‖p‖

implies the inequality
d(p, γ)

‖p‖
≥ 1− K

‖p‖
.

Integrating both side over Γ

lim inf
‖p‖→∞

F (p)

‖p‖
= 1 > 0

as was to be stated.
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Excercise 10.1.2 Prove that the levels of the function F are bounded.

Hint. Suppose, in contrary, that the level set

L := {p ∈ En | F (p) ≤ c}

contains a sequence of points p(1), ..., p(m), ... such that the norms of the
elements p(i)'s tend to the in�nity. Then

lim
m→∞

F (pm)

‖pm‖
≤ lim

m→∞
c

‖pm‖
= 0

which contradicts to the growth condition 10.6.

Corollary 10.1.3 F has a global minimizer.

Proof The statement follows from the Weierstrass's theorem [13] : if all the
level sets of a continuous function de�ned on a non-empty closed set in the
coordinate space of dimension n are bounded then the function has a global
minimizer.

Excercise 10.1.4 Prove Weierstrass's theorem: if all the level sets of a con-
tinuous function de�ned on a non-empty closed set in the coordinate space
of dimension n are bounded then the function has a global minimizer.

Excercise 10.1.5 Under what conditions can we provide the unicity of the
minimizer?

Hint. Find a condition for the function F to be strictly convex.

10.2 Special types of generalized conics

In this section we are going to present more explicit examples of circular
conics (conics with a circle as the set of foci) in the coordinate space of
dimension three. Conics in the coordinate plane with squares as the set of
focuses will be also considered. In both cases we use integration to compute
the average distance. Integration of the Euclidean distance over subsets in
the space is crucial for �nding alternatives of Euclidean geometry. Let
O(n) be the group of linear isometries in the Euclidean space and consider a
subgroup H in the orthogonal group together with a compact convex subset
K containing the origin in its interior such that

i it is not an ellipsoid (ellipsoid problem),

ii it is invariant under the elements of H and

iii its boundary is a smooth hypersurface (regularity condition).
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By the second condition H is a subgroup of the linear isometry group
O'(n) of the Minkowski space induced by the Minkowski functional of K.
The �rst condition shows that it does not come from any inner product. In
other words the Minkowski geometry based on the functional associated to
K is an alternative of the Euclidean geometry2 for the subgroup H. One of
the main applications of the generalized conics' theory is to present convex
bodies satisfying conditions (i) - (iii).

De�nition The subgroup H is called transitive on the Euclidean unit sphere
if any two elements of the unit sphere can be transported into each other by
a transformation from H.

If the subgroup H is transitive on the Euclidean unit sphere then the
Euclidean geometry is the only possible one for H. The list of transitive
subgroups in O(n) are

SO(n) SO(n) SO(n)

- U(2k+1) U(2k)

- SU(2k+1) SU(2k)

- - Sp(k)

- - Sp(k)*SO(2)

- - Sp(k)*Sp(1)

- - -

n=2k+1 except 7 n=2(2k+1) n=4k except 8, 16

and
2In case of di�erentiable manifolds with Riemannian structures the subgroup H is

the holonomy group of the Lévi-Civita connection and the alternative geometry is called
Finsler geometry: instead of the Euclidean spheres in the tangent spaces, the unit vectors
form the boundary of general convex sets containing the origin in their interiors (M.
Berger).
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SO(7) SO(8) SO(16)

- U(4) U(8)

- SU(4) SU(8)

- Sp(2) Sp(4)

- Sp(2)*SO(2) Sp(4)*SO(2)

- Sp(2)*Sp(1) Sp(4)*Sp(1)

G(2) Spin(7) Spin(9)

n=7 n=8 n=16

For the classi�cation see [11], [12] and [29]. In what follows we present
alternatives of the Euclidean geometry for non-transitive subgroups of the
orthogonal group [57]. Theoretically we have two di�erent cases: reducible
and irreducible subgroups.

10.2.1 The case of reducible subgroups

If the group is reducible then there exists a non-trivial invariant linear sub-
space of dimension 0 < k < n in the coordinate space under the elements of
the subgroup. This subspace cuts a (k - 1)-dimensional sphere S from the
unit sphere in the embedding space. In this case S plays the role of the set
of foci. To avoid the theoretical and technical di�culties of higher dimen-
sional coordinate spaces we restrict ourselves to the space of dimension three
(circular conics) [56]. Let

w: [0, 2π]→ E3, w(t) := (cos t, sin t, 0) (10.7)

be the unit circle in the (x, y)-coordinate plane and

F (x, y, z) :=
1

2π

2π∫
0

√
(x− cos t)2 + (y − sin t)2 + z2 dt.

The surface of the form

F (x, y, z) =
8

2π
(10.8)

is a generalized conic with foci S(1) in the Euclidean space. According to
the invariance of the set of foci under the rotation around the z-axis 10.8 is
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Figure 10.2: The generalized conic 10.8.

a revolution surface with generatrix

2π∫
0

√
cos2 t+ (y − sin t)2 + z2 dt = 8 (10.9)

in the (y, z)-coordinate plane.

Lemma 10.2.1 The generalized conic 10.8 is not an ellipsoid.

Proof It is enough to prove that the generatrix

2π∫
0

√
cos2 t+ (y − sin t)2 + z2 dt = 8

is not an ellipse in the (y, z)-coordinate plane. If y=0 then we have that

z = ±

√(
8

2π

)2

− 1.

On the other hand, if z=0 then the solutions of the equation

2π∫
0

√
cos2 t+ (y − sin t)2 dt = 8

are just y=+1 or - 1. Therefore the only possible ellipse has the parametric
form

y(s) = cos s and z(s) =

√(
8

2π

)2

− 1 sin s. (10.10)

The �gure shows the generatrix (pointstyle) and its approximating el-
lipse. Consider the auxiliary function

v(s) :=

2π∫
0

√
cos2 t+ (y(s)− sin t)2 + z2(s) dt.
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Figure 10.3: The generatrix and its approximating ellipse.

Then v(0)=v(π/2)=8 but

v

(
π

3

)
=

2

π

√
2
√

3
√

8 + π2 E

(
2
√

3π

3
√

8 + π2

)
,

where

E(r) :=

∫ π
2

0

√
1− r2 sin2 t dt

is the standard elliptic integral. Using that

E(r) ≥ π

2

(
1 + (r′)

3
2

2

) 2
3

, where r′ =
√

1− r2 (10.11)

(Vuorinen's conjecture, for the proof see [2]) the inequality

√
3
√

2
√

8 + π2

(
1

2
+

1

18

√
3

(
9− 12π2

8 + π2

) 3
4
) 2

3

> 8 (10.12)

shows that v(s) is not a constant function.

Corollary 10.2.2 The generalized conic 10.8 induces a non-Euclidean Min-
kowski functional l such that the Euclidean isometries leaving the set of foci
10.7 invariant form a subgroup of the linear isometries with respect to l.

Proof It is clear that generalized conics together with the induced Minkowski
functionals heritage all symmetry properties of the set of foci. On the other
hand the previous lemma shows that l can not be arised from an inner prod-
uct.

In general the group of linear isometries of a non-Euclidean Minkowski
space is trivial. Results like 10.2.2 give examples on geometric spaces having
more and more rich linear isometry group up to the Euclidean geometry.
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10.2.2 The case of irreducible subgroups

De�nition A transformation group H is closed if for any point p the orbit

P (p) = {ϕ(p) | ϕ ∈ H}

is a closed subset.

Example The group of rotations in the plane around the origin with ratio-
nal magnitudes is not a closed subgroup.

Excercise 10.2.3 Prove that each non-transitive closed subgroup in the or-
thogonal group of the Euclidean plane is �nite.

Hint. The proof is a kind of nearest-point-type argumentation. Take a
point u on the unit circle and consider its orbit P(u) under H. Since H is
not transitive there exists a point u' on the unit circle which is not in P(u).
By the closedness we can consider the closest points of P(u) to u' into the
two possible directions. They form a circular arc C' of positive length such
that its (relative) interior is disjoint from P(u). The nearest-point property
implies that the relative interiors of the circular arcs P(C') must be pairwise
disjoint. Then H must be �nite because the sum of the lengths is obviously
bounded.

Remark The result says that the alternative geometries of dimension two
for non-transitive closed subgroups in O(2) always can be realized by Minkow-
ski functionals induced by polyellipses in the plane. A similar theorem can
be formulated in case of the coordinate space of dimension three because of
Wang's theorem [62] stating that the dimension of a non-transitive closed
subgroup in O(3) is just 0 or 1. In case of a one-dimensional subgroup the
unit component is actually a one-parameter family of rotations around a
line. Choose a �nite "unit component" - invariant system of points on this
line we can consider the image of the system under mappings from di�erent
connected components (it is enough to choose only one mapping from each
component). Since the number of the components is �nite we have a �nite
collection of points which is invariant under the whole group.

In case of higher dimensional spaces the convex hull of non-trivial orbits3

will play the role of the set of foci.

Lemma 10.2.4 Let H be a closed subgroup in the orthogonal group. It is
irreducible if and only if the origin is the interior point of the convex hull of
any non-trivial orbit under H.

3The only trivial orbit is that of the origin � it is a singleton.
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Proof First of all note that the convex hulls of the orbits are obviously
invariant under H. If H is irreducible and the origin is not a point of the con-
vex hull of a non-trivial orbit then we can use a simple nearest-point-type
argumentation to present a contradiction as follows: taking the uniquely
determined nearest point of the convex hull to the origin it can be easily
seen that it must be a �xed point of any element of H. This contradicts to
the irreducibility. If the origin is not in the interior of the convex hull of
a non-trivial orbit P(u) we can consider the common part T of supporting
hyperplanes at the origin. Since 0 is not in P(u) it can not be an extreme
point of the convex hull which means that T is at least a one-dimensional
linear subspace. On the other hand it is invariant under H which is a con-
tradiction. Therefore the origin must be in the interior of the convex hull of
any non-trivial orbit. The converse of the statement is trivial.

Excercise 10.2.5 Prove that invariant ellipsoids must be Euclidean balls in
case of any irreducible subgroup of the orthogonal group.

Hint. Suppose that H contains orthogonal transformations with respect
to di�erent inner products. For the sake of simplicity let one of them be
the canonical inner product and consider another one given by a symmetric
matrix M. If Mv=λv for some nonzero vector v then for any transformation
h in H we have

wMh(v) = h−1(w)Mv = λh−1(w)v = λwh(v) ⇒ Mh(v) = λh(v)

because both h and its inverse are orthogonal transformations with respect
to both M and the canonical inner product. Therefore eigenvectors with
eigenvalue λ form an invariant linear subspace of H which must be the whole
space according to the irreducibility. Thus Mv=λv for all vectors and the
balls with respect to these inner products coincide.

Example Consider the group of symmetries of the square

[−1, 1]× [−1, 1] (10.13)

centered at the origin in the Euclidean plane. The convex hull of any non-
trivial orbit is a convex polygon having singularities at the vertices. For
example the orbit

P ((−1,−1)) = {(−1,−1), (1,−1), (1, 1), (−1, 1)}

induces the supremum norm

|(x, y)| := 1√
2
max {|x|, |y|}.
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To avoid the singularities at the vertices consider the function

F (x, y) :=
1

4

∫ 1

−1

∫ 1

−1

√
(x− t)2 + (y − s)2 ds dt.

Curves of the form F(x,y)=const. are just generalized conics with the square
10.13 as the set of foci. In what follows we investigate the level curve C
passing through the point (2,1).

Excercise 10.2.6 Prove that C is not a circle: recall that invariant ellipses
under the symmetry group of the square must be circles.

Hint. According to the symmetric role of the variables x, t and y, s we
can calculate the coordinate functions

D1F (x, y) =
1

4

∫ 1

−1

∫ 1

−1

x− t√
(x− t)2 + (y − s)2

ds dt,

D2F (x, y) =
1

4

∫ 1

−1

∫ 1

−1

y − s√
(x− t)2 + (y − s)2

ds dt

of the gradient vector �eld:

D1F (x, y) = −1

8

[
(s− y)

√
(x− 1)2 + (y − s)2+

+(x− 1)2 ln

(
(s− y) +

√
(x− 1)2 + (y − s)2

)
+

(s− y)
√

(x+ 1)2 + (y − s)2 + (x+ 1)2 ln

(
(s− y)+

+
√

(x+ 1)2 + (y − s)2

)] 1

−1
and D2F (x, y) = D1F (y, x).

Using these formulas consider the auxiliary function

v(x, y) := yD1F (x, y)− xD2F (x, y)

to measure the di�erence between the gradient vectors of the family of gen-
eralized conics and circles. We have

v(2, 1) = −2
√

13 +
9

2
ln 3− 9

2
ln(−2 +

√
13) +

1

2
ln(−2 +

√
5)− 8 ln 2+

+4 ln(−3 +
√

13) + 4 ln(
√

5 + 1) + 8

which is obviously di�erent from zero.
The general case is discussed via the following theorem of the alternatives.
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De�nition Let z be a �xed element of the unit sphere S in the coordinate
space of dimension n and consider its orbit under H. The minimax point of
the orbit is such a point z* on the sphere where the minimum

a := min
‖w‖=1

max
γ∈P (z)

d(w, γ)

is attained at.

Consider the function

f :R→ R, f(t) :=

{
0 if t ≤ a

(t− a)e−
1
t−a if t > a.

By the help of the standard calculus [38] it can be seen that it is a smooth
convex function on the real line. De�ne

g(t) := t+ f(t)

and take the functions

F (p) :=

∫
conv P (z)

γ 7→ d(p, γ) dγ

and
F ∗(p) :=

∫
conv P (z)

γ 7→ g(d(p, γ)) dγ.

It is clear that
c := F (z∗) = F ∗(z∗).

On the other hand one of the hypersurfaces F(p)=c and F*(p)=c must be
di�erent from the sphere unless the mapping

w ∈ S 7→ max
γ∈Pz

d(w, γ)

is constant. It is impossible because H is not transitive.

Excercise 10.2.7 Prove that if the mapping

w ∈ S 7→ max
γ∈P (z)

d(w, γ)

is constant then
P (z) = S

and H is transitive on the Euclidean unit sphere.

Hint. Taking any element in P(z) its antipole shows that the constant
is just the diameter of the sphere. Finally we have the following theorem of
the alternatives.
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Theorem 10.2.8 (Theorem of the alternatives) If H is non-transitive on
the unit sphere, closed and irreducible, z in S and c is the common value
of the functions F and F* at the minimax point z* then at least one of the
hypersurfaces∫

conv P (z)
γ 7→ d(p, γ) dγ = c or

∫
conv P (z)

γ 7→ g(d(p, γ)) dγ = c,

induces a non-Euclidean Minkowski functional l such that H is the subgroup
of the linear isometries with respect to l.

Finally we slightly modify the rate of the level in such a way that c* > c.
A continuity-type argumentation shows that the generalized conic belonging
to the level c* induces a non-Euclidean regular Minkowski functional for the
subgroup H. Regularity follows easily because the set of foci is contained in
the interior of these convex hypersurfaces. The theorem of the alternatives
motivates the following de�nition.

De�nition Let Γ be a bounded orientable submanifold in the coordinate
space of dimension n with �nite positive measure. If g is a strictly monotone
increasing convex function on the non-negative real numbers with initial
value g(0)=0 and

Fg(p) :=
1

vol Γ

∫
Γ
γ 7→ g(d(p, γ)) dγ (10.14)

then hypersurfaces of the form F(g)(p)=const. are called generalized conics
with distorsion g.

Excercise 10.2.9 Prove that 10.14 is a convex function satisfying the growth
condition 10.6

Hint. Use that

lim
r→∞

g(r)

r
> 0.

Theorem 10.2.10 If H is a non-transitive closed subgroup of the orthogonal
group then the alternative geometry for H always can be realized by Minkowski
functionals associated to generalized conics in the space.

10.3 Applications in Geometric Tomography

If the Euclidean distance is substituted by the distance function arising from
the 1-norm then we have another notion of generalized conics with appli-
cations in geometric tomography [58]. Geometric tomography focuses on
problems of reconstructing homogeneous (often convex) objects from tomo-
graphic data (X-rays, projections, sections etc.). A key theorem in this area
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states that any convex planar body can be determined by parallel X-rays in
a set of four directions whose slopes have a transcendental cross-ratio [26].

Let K be a compact body (a compact set is called a body if it is the
closure of its interior) in the coordinate plane,

FK(x, y) :=
1

A(K)
fK(x, y), (10.15)

where
fK(x, y) :=

∫
K
d1((x, y), (α, β)) dαdβ,

A(K) is the area of K and

d1(v, w) = |v1 − w1|+ |v2 − w2|

is the distance function induced by the taxicab norm (1-norm)

|(x, y)|1 = |x|+ |y|.

Excercise 10.3.1 Using the notations

x < K := {(α, β) ∈ K | x < α}, K < x := {(α, β) ∈ K | α < x},

y < K := {(α, β) ∈ K | y < β}, K < y := {(α, β) ∈ K | β < y},

x = K := {(α, β) ∈ K | α = x}, y = K := {(α, β) ∈ K | β = y}

prove that

D1FK(x, y) =
A(K < x)

A(K)
− A(x < K)

A(K)
,

D2FK(x, y) =
A(K < y)

A(K)
− A(y < K)

A(K)
.

Hint. For the proof see [58].

Corollary 10.3.2 The global minimizer of the generalized conic function
associated to K bisects the area in the sense that the vertical and horizontal
lines through this point cut the body K into two parts with equal area.

Using these formulas the partial derivatives can be expressed by the Cav-
alieri's principle as follows:

A(K < x) =

x∫
−∞

Y (s) ds and A(K < y) =

y∫
−∞

X(t) dt,
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Figure 10.4: A convex polygon with coordinate X-rays I.

where the functions X and Y give the one-dimensional measure of sections
with the coordinate lines, respectively. These are called X-ray functions into
the coordinate directions. Lebesgue's di�erentiation theorem shows that

D1D1FK(x, y) =
2

A(K)
Y (x) and D2D2FK(x, y) =

2

A(K)
X(y)

holds almost everywhere. Therefore the function 10.15 measuring the average
"taxicab" distance can be considered as an accumulation of coordinate X-
rays' information. The following �gures show di�erent polygons with the
same coordinate X-rays to illustrate the di�culties of the reconstruction.

As we can see the inner singularities (together with the endpoints of the
support intervals) of the coordinate X-ray functions determine a grid having
the possible vertices. This means (among others) that we have only �nitely
many di�erent polygons with the same coordinate X-rays. Another impor-
tant consequence is that any convex polygon can be successively determined4

by three X-rays because we can choose the third direction in such a way that
it is not parallel to any line joining the points of the grid.

Excercise 10.3.3 Prove that the singularities of the coordinate X-rays cor-
respond to the vertices of the convex polygon in the plane.

4For a more precise formulation of determination, veri�cation and successive determi-
nation see [26]
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Figure 10.5: A convex polygon with coordinate X-rays II.

Hint. Any convex polygon P in the plane can be written into the form

P = {(x, y) | f(x) ≤ y ≤ g(x)}, a ≤ x ≤ b

where f is a convex, g is a concave function of the variable. Therefore the
vertical X-ray function has the simple form Y(x)=g(x) - f(x). On the other
hand the support of Y is an interval [a,b]. It can be easily seen that the
di�erence of a concave and a convex function is concave and, consequently,
the X-ray functions of convex compact planar bodies are continuous and
di�erentiable almost everywhere. Moreover, if Y is di�erentiable at an inner
point x then

f ′+(x)− f ′−(x) = g′+(x)− g′−(x),

where the signs + and - refer to the right and left hand side derivatives of
the functions, respectively. Since f is convex,

f ′−(x) ≤ f ′+(x)

and, consequently, for a concave function,

g′−(x) ≥ g′+(x)

which means that

f ′−(x) = f ′+(x) and g′−(x) ≤ g′+(x),
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i.e. Y is di�erentiable at x if and only if P has no vertex along the vertical
line at x.

De�nition The box of a compact convex planar body means the circum-
scribed rectangle with parallel sides to the coordinate directions.

Excercise 10.3.4 Prove that the set of compact convex planar bodies having
the same box is convex in the sense that if K and L have a common box then
it is a box for any convex combination

M := λK + (1− λ)L

too. Conclude that

YM (x) ≥ λYK(x) + (1− λ)YL(x), (10.16)

XM (y) ≥ λXK(y) + (1− λ)XL(y). (10.17)

Express the coordinate X-rays of M in terms of the coordinate X-rays of K
and L.

Hint. Use the in�mal convolution of functions.
Inequalities 10.16 and 10.17 imply, by the Cavalieri's principle, that the

volume is a concave function on the set of compact convex planar bodies
having a common box; in general see the Brunn-Minkowski inequality in
subsection 4.2.1. As another consequence we have

fλK+(1−λ)L ≥ λfK + (1− λ)fL.

For generalizations and applications see [59]. The goal of this section is to
present a positive reconstructing result for the class of generalized 1-conics

fK(x, y) = const.

The proof will be presented in a more general situation. Let K be a compact
body and consider the distance function

dp((x, y), (α, β)) = (|x− α|p + |y − β|p)1/p

induced by the p-norm, where p is greater or equal than one. De�ne the
class of generalized p-conics as the boundary of the level sets

fpK(x, y) ≤ c (10.18)

of generalized p-conic functions

fpK(x, y) :=

∫
K
dp((x, y), (α, β)) dαdβ; especially fK = f1

K .
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Theorem 10.3.5 Let C be a solid generalized p-conic and suppose that C* is
a compact body with the same area as C. If the generalized p-conic functions
associated to C and C* coincide then C is equal to C* except on a set of
measure zero.

Proof Let C be the level set 10.18 of the generalized p-conic function asso-
ciated with K and suppose that C* is a compact body with the same area
as C such that the generalized p-conic functions associated with C and C*
coincide. By the Fubini theorem∫

C
fpK =

∫
K
fpC =

∫
K
fpC∗ =

∫
C∗
fpK (10.19)

and thus∫
C\C∗

fpK =

∫
C
fpK−

∫
C∩C∗

fpK
10.19
=

∫
C∗
fpK−

∫
C∩C∗

fpK =

∫
C∗\C

fpK . (10.20)

Since ∫
C\C∗

fpk ≤ cA(C \ C∗) (10.21)

and ∫
C∗\C

fpk ≥ cA(C∗ \ C) (10.22)

we have that
A(C \ C∗) ≥ A(C∗ \ C). (10.23)

But C and C* have the same area and, consequently, equality holds in for-
mula 10.23. Therefore equalities hold in both 10.21 and 10.22. This means
that C does not contain any subset of positive measure which is disjoint from
C* and vice versa:

A(C \ C∗) = A(C∗ \ C) = 0 (10.24)

showing that C is equal to C* except on a set of measure zero.

Corollary 10.3.6 Let C and C* be generalized p-conics. If the generalized
p-conic functions associated to C and C* coincide then C=C*.

Proof Since both of the sets C and C* are generalized p-conics they have a
symmetric role in 10.23 showing that they have the same area. To �nish the
proof we use the previous theorem for the compact convex sets C and C*.

Corollary 10.3.7 Generalized 1-conics are determined by their X-rays in
the coordinate directions among compact bodies.

Proof In case of p=1 the condition for the generalized conic functions im-
plies automatically that C and C* have the same area. To �nish the proof
we use the previous theorem for the sets C and C*.
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Remark The problem of determination of convex bodies by a �nite set of
X-rays was posed by P. C. Hammer at the A.M.S. Symposium on Convex-
ity in 1961. X-rays can be considered as original but special examples for
tomographic quantities. Another question is how to recognize a convex pla-
nar body from its angle function. The notion was introduced by J. Kincses
[34]. Conditions for distinguishability are formulated in terms of the tangent
homomorphism using the theory of dynamical systems [33]. Like the coordi-
nate X-ray pictures the author prove that distinguishability is typical in the
sense of Baire category: a set is of �rst category if it is the countable union
of nowhere dense sets (not typical cases) and of second category otherwise
(typical cases).

Example Consider the square

N := conv {(0, 0), (1, 0), (1, 1), (0, 1)} ;

for any point (x,y) in N

fN (x, y) = (x− (1/2))2 + (y − (1/2))2 + (1/2)

and circles can be interpreted as generalized 1-conics with N as the set foci.
Therefore they are determined by their X-rays into the coordinate directions
among compact bodies.

Excercise 10.3.8 Prove that for any point in N

fN (x, y) = (x− (1/2))2 + (y − (1/2))2 + (1/2).

Excercise 10.3.9 Consider the triangle

T := conv {(0, 0), (1, 0), (1, 1)} .

Prove that for any point in the box of T

fT (x, y) =
x3 − y3

3
+ y2 − x− y

2
+

1

2
.

Excercise 10.3.10 Let P be a convex polygon in the plane. Prove that gen-
eralized conics with P as the set of foci are the union of adjacent algebraic
curves of degree at most three.

Hint. For the partition of the level curves use the grid of the polygon
determined by the vertices.

Excercise 10.3.11 Consider the unit disk

D = {(x, y) | x2 + y2 ≤ 1}.

Prove that for any point in the box of D

fD(x, y) = 2x2
√

1− x2 + 2x arcsin(x) +
4

3
(1− x2)3/2+

2y2
√

1− y2 + 2y arcsin(y) +
4

3
(1− y2)3/2.



Chapter 11

Erd®s-Vincze's theorem

Let a set of points in the Euclidean plane be given. We are going to in-
vestigate the levels of the function measuring the sum of distances from the
elements of the point-set which are called focuses. Levels with only one focus
are circles. In case of two di�erent points as focuses they are ellipses in the
usual sense. If the set of focuses consists of more than two points then we
have the so-called polyellipses. In what follows we investigate them from the
viewpoint of di�erential geometry. Lower and upper bounds for the curvature
involving explicit constants will be given. They depend on the number of the
focuses, the rate of the level and the global minimum of the function measur-
ing the sum of the distances. The minimizer is characterized by E. Vázsonyi
(Weiszfeld) [63]. We also present the solution of Weissfeld's problem: any
convex closed curve in the plane can be approximated by polyellipses with
a su�ciently large number of focuses? The answer is negative as a theorem
due to P. Erd®s and I. Vincze states. Especially the Hausdor� distances
of circumscribed polyellipses from a regular triangle have a positive lower
bound. In other words a regular triangle is not an accumulation point of the
set of circumscribed polyellipses with respect to the Hausdor� metric.

Figure 11.1: Weiszfeld Endre, 1916-2003.

157
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Figure 11.2: Erd®s Pál, 1913-1996.

11.1 Polyellipses in the plane

De�nition Let p(1), ..., p(n) be not necessarily di�erent points in the co-
ordinate plane and consider the function F de�ned by the formula

F (q) :=
n∑
i=1

d(q, pi). (11.1)

The levels of the form F(p)=c are called polyellipses with the points p(1),
..., p(n) as focuses. The multiplicity of the focuses means that how many
times they appear in the sum 11.1.

Excercise 11.1.1 Prove that the function measuring the sum of distances
is convex.

Hint. Use the triangle-inequality to prove the convexity of the function
F. The argumentation shows that if the focuses are not collinear then it is a
strictly convex function which means that equality

F (λp+ (1− λ)q) = λF (p) + (1− λ)F (q)

occurs if and only if the convex combination is trivial. Di�erentiability is
also clear everywhere except the focuses. By the help of the more subtle
calculus in section 1.6 we can determine the one-sided directional derivatives
at everywhere into any direction: consider the function

f :E2 → R, f(q) := d(q, p1);

then the limit

Dvf(p1) := lim
t→0+

f(p1 + tv)− f(p1)

t
= ‖v‖
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is just the one-sided directional derivative at the the critical point into the
direction v. If the point q with coordinates x and y is not critical then the
partial derivatives are given by the formulas

D1f(x, y) =
x− x1√

(x− x1)2 + (y − y1)2
,

D2f(x, y) =
y − y1√

(x− x1)2 + (y − y1)2
.

Therefore

Dvf(q) =
1

d(q, p1)
〈v, q − p1〉

and, consequently,

DvF (p1) =
∑
pj=p1

‖v‖+
∑
pj 6=p1

1

d(p1, pj)
〈v, p1 − pj〉.

In general

DvF (pi) =
∑
pj=pi

‖v‖+
∑
pj 6=pi

1

d(pi, pj)
〈v, pi − pj〉. (11.2)

In what follows we characterize the minimizer of the function F by
Weiszfeld's theorems (see as geometric median problem). Finding such a
point where the global minimum is attained at is crucial in the optimization
problems. It is often referred as Fermat-problem according to the original
version: how can we �nd a point in the plane of a triangle for which the
sum of distances from the vertices is minimal? The solution of the original
problem was given by Evangelista Torricelli. The problem has several types
of solutions based on Viviani's theorem, Ptolemy's inequality or mechanical
ideas, see e.g. [31] and [54]. For any triangle all of whose angles have less
than 120 degree in measure the so-called Fermat-point or isogonic center
is the point from which all the sides are seen at the angle having 120 degree
in measure. Otherwise the Fermat-point is just the vertex where the critical
angle is attained at or, it is exceeded.

Excercise 11.1.2 Using a standard nearest point type argumentation prove
the �rs obstruction: the minimizer must be in the convex hull of the focal
points.

Since the convex hull of �nitely many points is obviously compact the
�rst obstruction implies the existence of the global minimizer.

Lemma 11.1.3 If the focal points are not collinear then the minimizer is
uniquely determined.
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Proof The condition implies that F is a strictly convex function having at
most one minimizer.

Excercise 11.1.4 Let four di�erent collinear focal points be given in the
plane; prove that any point of the internal segment is a minimizer of the
function F.

Proposition 11.1.5 (Weiszfeld, Endre) The i-th focal point is a minimizer
of the function F if and only if the length of the sum of the normalized
position vectors of the rest of focal points with respect to this one is less than
or equal to its multiplicity:

the lenght of
∑
pj 6=pi

1

d(pi, pj)
(pj − pi) ≤ ki. (11.3)

Proof A necessary and su�cient condition for a point to be the minimizer
of a convex function is that the zero vector belongs to the set of the subgra-
dients. According to 11.2 and theorem 1.6.4 it is equivalent to the condition

0 ≤ ki +
1

‖v‖
∑
pj 6=pi

1

d(pi, pj)
〈v, pi − pj〉,

where k(i) is just the multiplicity of the i-th focal point. Since the right hand
side is constant along the rays emanating from the origin, it can be uniquely
determined by the help of values along the unit circle. This means that there
exists a global minimum of the expression. On the other hand the Cauchy-
Schwarz-Buniakowski inequality shows that the minimum is attained if we
substitute the vector

vi := −
∑
pj 6=pi

1

d(pi, pj)
(pi − pj) =

∑
pj 6=pi

1

d(pi, pj)
(pj − pi)

which is just the sum of the normalized position vectors of the rest of focal
points with respect to p(i). After substitution we have that the length of
v(i) is less or equal than the multiplicity as was to be stated.

De�nition A minimizer of the function F is called regular if it doesn't
belong to the set of the focal points.

Proposition 11.1.6 (Weiszfeld, Endre) A necessary and su�cient condi-
tion for a point to be a regular minimizer of the function F is that the sum of
the normalized position vectors of the focal points with respect to this point
is zero.
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Proof Let p be a given point in the plane which is not in the set of the focal
points. To characterize the minimizer we have the inequality

0 ≤ 1

‖v‖

n∑
j=1

1

d(p, pj)
〈v, p− pj〉,

for any non-zero element v. Except from the normalizing factor the right
hand side is linear in the variable v which means that the inequality is
satis�ed for any element v if and only if

0 =
n∑
i=1

1

d(p, pj)
(p− pj)

as was to be proved.

In general there is no any simple way to �nd the minimizer. Instead
of a constructing process we can use algorithms such as the gradient de-
scent method to approximate the global minimum of convex functions on
convex domains. To avoid this way we are motivated to estimate directly
the minimum value of the function without any information about the ex-
act/approximate position of the minimizer. Let the number of the focal
points be at least two and c* is the minimum of the function F attained at
the point p*. For the sake of simplicity we use the notations

c1 := F (p1), . . . , cn := F (pn)

for the values of F at the corresponding focal points, respectively.

Theorem 11.1.7

1

2

c1 + . . .+ cn
n− 1

≤ c∗ ≤ c1 + . . .+ cn
n

, (11.4)

Proof The upper bound follows immediately as

c∗ ≤ F
(
p1 + . . .+ pn

n

)
≤ c1 + . . .+ cn

n

because of the convexity. For the derivation of the lower bound we use the
triangle inequality:

c1 = d(p1, p1) +
n∑
j=2

d(p1, pj) =
n∑
j=2

d(p1, pj) ≤
n∑
j=2

d(p1, p
∗) + d(p∗, pj) =

(n− 1)d(p1, p
∗) +

n∑
j=2

d(p∗, pj) = (n− 2)d(p1, p
∗) + c∗
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and a similar result holds for c(2), ..., c(n) too. Taking the sum of these
relations we have the lower bound

1

2

c1 + . . .+ cn
n− 1

≤ c∗

as was to be proved.

Proposition 11.1.8 In case of at least two focuses equality

c∗ =
c1 + . . .+ cn

n

holds if and only if the number of di�erent focuses is exactly two, i.e. the
levels of the function F are ellipses in the usual sense.

Proof The relation

c∗ ≤ F
(
p1 + . . .+ pn

n

)
≤ c1 + . . .+ cn

n

implies that in case of the equality the focuses must be collinear and all of
them must be a minimizer. Suppose that we have m di�erent focuses with
multiplicities k(1), ..., k(m), respectively. Then

n = k1 + . . .+ km.

Since the focuses are collinear we can order them in such a way that the
points labelled by the �rst and the last indices are the extreme points of
their convex hull. Theorem 11.1.5 shows that

k1 ≥ k2 + . . .+ km and km ≥ k1 + . . .+ km−1

and, consequently,

k1 + km ≥ k1 + km + (k2 + . . .+ km−1).

Therefore k(2)= ... =k(m - 1)=0. Using Theorem 11.1.5 again it also follows
that k(1)=k(m) and, consequently, we have exactly two di�erent focuses with
the same multiplicity. This means that the levels are ellipses in the usual
sense.

Remark The �gure 11.3 shows how the lower bound can be attained in the
non-trivial case of three di�erent collinear focuses. The focuses are

(±1, 0), (0, 0).
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Figure 11.3: Ellipses with three collinear focuses in the plane.

Excercise 11.1.9 Find the minimizer of the function F measuring the sum
of distances from the vertices of a convex quadrilateral. What about the case
of a concave deltoid? Explain how the symmetry about a line helps us �nding
the minimizer.

Remark Suppose that we have at least three di�erent points as focuses.
If they form a regular n-gon then the focal points are invariant under the
symmetry group leaving the vertices of the regular n-gon invariant. Since
the minimizer is uniquely determined it must be �xed under the elements of
the symmetry group.

In what follows we illustrate the problem of parametrization of polyel-
lipses in the plane. Consider the levels of the function F measuring the sum
of the distances from the points

p1 = (−1, 0), p2 = (0, 0) and p3 = (1, 0).

It can be easily seen that the second focal point is the minimizer with min-
imal value 2. The �gure shows the levels in case of constants 2.5, 3 and 4,
respectively. Since the set of the focuses are invariant under the re�ections
about the coordinate axes it is enough to parameterize the part in the �rst
quadrant of the coordinate plane. Let us introduce the abbreviations

r1 := d(p, p1), r := d(p, p2), r3 := d(p, p3),

where p is an arbitrary point except the origin. In terms of the polar angle
α we have the relations

r1
2 = r2 + 1 + 2r cosα, (11.5)

r3
2 = r2 + 1− 2r cosα (11.6)
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by the help of using the cosine-rule. If p is a point of the polyellipse de�ned
by the formula

r1 + r + r3 = c

then r(1)+r(3)=c - r. According to equations 11.5 and 11.6

4r cosα = r2
1 − r2

3 = (r1 − r3)(r1 + r3) = (r1 − r3)(c− r)

and, consequently,

r1 = r3 +
4r

c− r
cosα.

Therefore

c = r1 + r + r3 = 2r3 +
4r

c− r
cosα+ r

which implies that

r3 =
1

2

(
c− r − 4r

c− r
cosα

)
.

After substitution into 11.6

r cosα =
c− r

2

√
r2 + 1− (c− r)2

4
.

Using the distance from the origin as the parameter, the function

x(r) :=
c− r

2

√
r2 + 1− (c− r)2

4
(11.7)

gives the �rst coordinates of the points of the polyellipse. By the help of
Pythagorean theorem

y(r) :=

√(
1− (c− r)2

4

)(
r2 − (c− r)2

4

)
. (11.8)

In order to provide non-negative numbers under the square roots we have to
restrict the coordinate functions to the interval

2

3

√
c2 − 3− c

3
≤ r ≤ min{c− 2,

c

3
}.

Remark Note that c must be greater than the minimum value 2. In case
of c=3 the curve contains the focuses p(1) and p(3) as the �gure shows.

By the help of standard integral formulas such as

P =

∫ b

a

√
x′(r)2 + y′(r)2 dr

and

A =

∫ b

a
x(r)y′(r) dr = −

∫ b

a
x′(r)y(r) dr
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the perimeter and area of a domain bounded by a parameterized curve can be
calculated. The date of the following table are computed by the computer-
algebra system MAPLE.

polyellipses perimeter area
c = 2.5 2.7123 0.5645

c = 3 4.9604 1.77584

c = 5 7.4968 4.3964

(11.9)

11.2 On the curvature of polyellipses

In what follows we are going to investigate the polyellipses from the viewpoint
of di�erential geometry. According to the convexity of the function F these
are convex curves in the plane. Let

w: t→ (w1(t), w2(t)) (11.10)

be a twice continuously di�erentiable parameterized curve in the plane and
consider the normalized tangent vector �eld

T :=
1

||w′||
w′.

Di�erentiating equations
cos(θ) = T

and
sin(θ) = T

we have that
θ′ = T 1(T 2)′ − T 2(T 1)′.

The derivative of the angle function θ is called the (signed) curvature in
case of curves with unit speed. Otherwise we divide it by the length of the
velocity vector w' to provide the invariance under orientation preserving re-
parametrizations. As it can be seen the derivative of the angle function is
just the scalar product of T' and the unit normal vector �eld N if they form
a positively oriented (like the canonical) basis at each parameter t:

N :=
1

‖w′‖
(−w′2, w′1).

Since

T ′ = the tangential term +
1

‖w′‖
w′′

and N is orthogonal to the tangential term we have that

κs =
θ′

‖w′‖
=

1

‖w′‖
〈T ′, N〉 =

〈w′′, N〉
‖w′‖

=
w′1w

′′
2 − w′2w′′1
‖w′‖3

. (11.11)
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Figure 11.4: The geometric description of the curvature.

Excercise 11.2.1 Prove that the the vanishing of the curvature character-
izes the line segments in the plane. What about the curvature of circles?

Remark The curvature at the point p belonging to the parameter t(0) can
be characterized in the following (geometric) way: consider the circle passing
through the points w(s(1)), w(t(0)) and w(s(2)). If exists then the curvature
is just the reciprocal of the radius of the limit circle as s(1) and s(2) tend to
t(0). In general the linear independence of the velocity and the acceleration
vector at t(0) provides the existence of such a limit circle in case of twice
continuously di�erentiable parameterized curves.

In terms of the function F the gradient vector �eld represents the normal
directions along the curve which means that

N := ± 1

‖grad F‖
grad F,

where the sign refers to the orientation. Therefore

κs = ±w
′′
1D1F (w) + w′′2D2F (w)

‖w′‖2 · ‖grad Fw‖
.

On the other hand F is constant along w and, consequently,

0 = (F ◦ w)′ = w′1D1F (w) + w′2D2F (w). (11.12)

Di�erentiating equation 11.12 again

0 = w′′1D1F (w) + w′′2D2F (w) + w′1

(
w′1D1D1F (w) + w′2D2D1F (w)

)
+

w′2

(
w′1D1D2F (w) + w′2D2D2F (w)

)
.



CHAPTER 11. ERD�S-VINCZE'S THEOREM 167

Figure 11.5: Ludwig Otto Hesse, 1811-1874.

In terms of the Hessian matrix formed by the second order partial derivatives

0 = w′′1D1F (w) + w′′2D2F (w) + HessFw(w′, w′)

and we have that

κs = ∓ 1

‖grad Fw‖
Hess Fw(T, T ). (11.13)

In case of convex functions the curvature (the absolute value of the signed
curvature) is

κ =
1

‖grad Fw‖
Hess Fw(T, T ) (11.14)

because the calculus of convex functions states that if F is convex then its
Hessian matrix is poisitive semide�nite. Using the Laplacian (the trace of
the Hessian matrix)

∆F := D1D1F +D2D2F

11.14 can be also written into the form

κ =
1

‖grad Fw‖
(∆ Fw −Hess Fw(N,N)) . (11.15)

Excercise 11.2.2 Find the Hessian matrix of the second order polynomial
function

f(x, y) = a11x
2 + 2a12xy + a22y

2 + 2a13x+ 2a23y + a33.

Since the derivative of F does not exists at the focuses in the usual sense
we shall suppose that polyellipses under consideration do not pass through
any of them.
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Figure 11.6: Pierre-Simon Laplace, 1749-1827.

Remark In their paper [41] the authors proved that if c is large enough then
the polyellipse is contained between two concentric circles whose radii di�er
by an arbitrarily small amount, Proposition 6, p. 247. In other words the
curvature function goes to being identically zero as c tends to the in�nity.

Here we are going to give not only a limit, but lower and upper bounds
for the curvature involving explicit constants: the number of the focuses, the
rate of the level and the global minimum of the function F. In what follows
w denotes the parameterization of the polyellipse

F (w) = c (11.16)

with focuses p(1), ..., p(n),

c1 = F (p1), . . . , cn = F (pn)

and the minimum c* of the function F is attained at the point p* in the
plane.

Lemma 11.2.3 For the Euclidean distance from the minimizer along the
curve we have the estimations

c− c∗

n
≤ d(w, p∗) ≤ c+ c∗

n
, (11.17)

which means that the polyellipse is contained in the ring centered at the min-
imizer with the radii

r1 :=
c− c∗

n
and r2 :=

c+ c∗

n
.

Proof Taking the sum as i runs from 1 to n the triangle inequalities

d(w, pi)− d(pi, p
∗) ≤ d(w, p∗) ≤ d(w, pi) + d(pi, p

∗)

give both the upper and the lower bound.



CHAPTER 11. ERD�S-VINCZE'S THEOREM 169

Remark As a direct consequence of the previous result it follows that the
convex hull of any polyellipse is a compact set; compactness and further
convexity-topological properties in terms of the general notion of the norm
are investigated in [30].

Corollary 11.2.4 For the area of the domain bounded by a polyellipse we
have the estimations (

c− c∗

n

)2

π ≤ A ≤
(
c+ c∗

n

)2

π.

Lemma 11.2.5 For the length of the gradient vector along the curve we have
the estimations

n
c− c∗

c+ c∗
≤ ‖gradw F‖ ≤ n. (11.18)

Proof From the de�nition of the subgradient it follows that if a convex
function is di�erentiable at w then

〈grad Fw, q − w〉 ≤ F (q)− F (w).

In case of q=p* the relation

c− c∗ ≤ ‖grad Fw‖ · ‖w − p∗‖

can be derived by using the Cauchy-Schwarz-Buniakowski inequality. By
inequalities 11.17

c− c∗ ≤ c+ c∗

n
‖grad Fw‖

which gives the lower bound for the norm of the gradient. On the other
hand, the gradient is just the sum of the unit vectors going from w to the
focal points. This means that the norm of this vector couldn't be greater
than the number of the focuses as was to be stated.

Remark A straightforward calculation shows that

‖grad Fw‖2 = n+ 2
∑
i<j

cosαij ,

where the double index refers to the angle of the position vectors

vi := pi − w and vj := pj − w.

Lemma 11.2.6 For the Laplacian along the curve we have the estimations

n
n∑
i=1

1

c+ ci
≤ ∆Fw ≤ n

n∑
i=1

1

|c− ci|
. (11.19)
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Proof A straightforward calculation shows that

D1D1Fw =
n∑
i=1

1

d3(w, pi)
(w2 − p2

i )
2

and the similar formula

D2D2Fw =
n∑
i=1

1

d3(w, pi)
(w1 − p1

i )
2

holds in case of the second order derivatives with respect to the y variable.
Therefore

∆Fw =
n∑
i=1

1

d(w, pi)
. (11.20)

For any i=1, ...,n

c− ci = d(w, pi) +
∑
j 6=i

d(w, pj)− d(pj , pi).

Using the estimations

−d(w, pi) ≤ d(w, pj)− d(pj , pi) ≤ d(w, pi)

it follows that

|c− ci| ≤ d(w, pi) +
∑
j 6=i
|d(w, pj)− d(pj , pi)| ≤ d(w, pi) + (n− 1)d(w, pi)

= nd(w, pi).

On the other hand

c+ ci = d(w, pi) +
∑
j 6=i

d(w, pj) + d(pi, pj) ≥ d(w, pi) + (n− 1)d(w, pi)

= nd(w, pi).

Therefore
n

c+ ci
≤ 1

d(w, pi)
≤ n

|c− ci|
which implies both the lower and upper bound for the Laplacian.

Theorem 11.2.7 For the curvature along the curve we have the upper bound

κw ≤
c+ c∗

c− c∗
n∑
i=1

1

|c− ci|
. (11.21)
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Proof Since the function F is convex its Hessian matrix is positive semi-
de�nite. Therefore

κw ≤
∆Fw

‖grad Fw‖
which gives, by the help of Lemma 11.2.5 and Lemma 11.2.6, the upper
bound for the curvature function.

Excercise 11.2.8 Taking the limit as c tends to the in�nity prove that the
curvature function goes to being identically zero.

In order to give a lower bound for the curvature we need the determinant
of the matrix formed by the second order derivatives. Since

D1D2Fw = −
n∑
i=1

1

d3(w, pi)
(w1 − p1

i )(w
2 − p2

i )

we have that

detDiDjFw =
∑
i<j

1

d3(w, pi)d3(w, pj)

(
(w1−p1

i )(w
2−p2

j )−(w1−p1
j )(w

2−p2
i )

)2

which implies the formula

detDiDjFw = 4
∑
i<j

1

d3(w, pi)d3(w, pj)
µ2[w, pi, pj ], (11.22)

where µ means the area of the triangle spanned by the points in the ar-
gument. By the help of the relation between the geometric and arithmetic
means we have the estimation√

d(w, pi)d(w, pj) ≤
d(w, pi) + d(w, pj)

2
≤ c

2

and, consequently,

4

(
2

c

)6∑
i<j

µ2[w, pi, pj ] ≤ detDiDjFw.

Moreover, the square function is convex which implies that(∑
i<j

µ[w, pi, pj ]

)2

≤
(
n

2

)∑
i<j

µ2[w, pi, pj ].

On the other hand

µ[p1, . . . , pn] ≤
∑
i<j

µ[w, pi, pj ],

where µ(p(1), ..., p(n)) is the area of the convex hull of the focuses. We have
just proved the following result.
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Lemma 11.2.9 For any element of the polyellipse 11.16

8

(
2

c

)6 1

n(n− 1)
µ2[p1, . . . , pn] ≤ detDiDjFw. (11.23)

Remark As the previous result shows if the focuses are not collinear then
the second order partial derivatives form the coe�cients of a positive de�nite
bilinear form (cf. the expression for the second order partial derivative with
respect to the �rst variable).

Theorem 11.2.10 Suppose that the focuses are not collinear; the reciprocal
of the curvature function can be estimated by the formula

1

κw
≤
(
c

2

)6(n
2

)3 n− 1

µ2[p1, . . . , pn]

n∑
i=1

1

|c− ci|
. (11.24)

Proof Let λ(1) and λ(2) be the eigenvalues of the matrix consisting of the
second order partial derivatives at w and suppose that they are labelled in
a non-increasing order. Since λ(1) and λ(2) are just the solutions of the
characteristic equation

λ2 − λ∆Fw + detDiDjFw = 0

we have that

detDiDjFw ≤ λ2
2 + detDiDjFw = λ2∆Fw. (11.25)

On the other hand, the �rst eigenvalue is just the maximum of the mapping
represented by the Hessian matrix at w on the unit circle, which means that

0 ≤ λ1 −
1

‖grad Fw‖2
Hess Fw(grad Fw, grad Fw).

Therefore

λ2 ≤ λ2 + λ1 −
1

‖grad Fp‖2
Hess Fw(grad Fp, grad Fp)

= κp ‖grad Fp‖

because the Laplacian is just the sum of the eigenvalues. We have by 11.25
that

1

κp
≤ ‖grad Fp‖

λ2
≤ ‖grad Fp‖

∆Fp
detDiDjF (p)

where all the terms can be estimated by inequality 11.23, Lemma 11.2.6 and
Lemma 11.2.5.
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Figure 11.7: The limit curve as r tends to the in�nity.

11.3 Erd®s-Vincze's theorem

The problem whether all the convex plane curves can be arbitrarily approx-
imated by polyellipses under a su�ciently large number of the focuses was
posed by Endre Vázsonyi (E. Weiszfeld). In case of a circle we can choose
the vertices of (inscribed or circumscribed) regular n-gons as the focuses of a
polyellipses to give an approximating process as n tends to the in�nity. Let
r be a positive real parameter and consider the polyellipse C(r) determined
by the equation√

x2 + (y + 1)2 +
√
x2 + (y − 1)2 +

√
(x− r)2 + y2 = 2 +

√
r2 + 1.

The focuses are

p1 := (0, 1), p2 := (0,−1), p3 := (r, 0)

and C(r) passes through the points p(1) and p(2). Taking the limit as r
tends to the in�nity the formula√

x2 + (y + 1)2 +
√
x2 + (y − 1)2 = 2 + x

determines a curve C containing the line segment s(p(1),p(2)).
The "limit curve" can be arbitrarily approximated by circumscribed

polyellipses with three focuses. More precisely, the Hausdor� distance of
the curves goes to being zero as r tends to the in�nity. In their paper [24]
the authors proved that there is no way to reach a regular triangle by the
help of a similar process even if the increase of the number of focuses is al-
lowed. In what follows we present the proof of this theorem using the tools
of the di�erential geometry of plane curves.

Theorem 11.3.1 The approximation of a regular triangle by circumscribed
polyellipses always has an absolute error which couldn't be exceeded even if
the number of focuses are arbitrary large.
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Figure 11.8: Polyellipses with parameters r=5, 15 and 30.

We need some preparation to prove the statement. Let T be a regular
triangle in the plane and suppose, in contrary, that there exists a sequence

E1, . . . , En, . . . (11.26)

of circumscribed polyellipses such that

lim
n→∞

h(En, T ) = 0.

We use the symbol H for notating the subgroup of isometries which leave
the triangle T invariant. H consists of the identity, the re�ections about the
heights and the rotations around the centre with magnitude (2kπ/3), where
k=1 or - 1, respectively. The �rst step is a kind of symmetrization. Let E
be a circumscribed polyellipse de�ned by the equation

n∑
i=1

d(p, pi) = c

and consider the polyellipse E' such that E' contains all the vertices A, B
and C of the triangle and its focal set is

G := {f(pi) | i = 1, . . . n, f ∈ H}.

We are going to prove that

h(E′, T ) ≤ h(E, T ).

First of all note that the role of the vertices A, B and C are absolutely
symmetric as the formulas∑

f∈H
d(A, f(pi)) =

∑
f∈H

d(B, f(pi)) =
∑
f∈H

d(C, f(pi))

show. Therefore E' is de�ned by the equation∑
f∈H

d(p, f(p1)) + . . .+ d(p, f(pn)) = c′,
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where (for example)

c′ =
∑
f∈H

d(A, f(p1)) + . . .+ d(A, f(pn)).

Let f be an element in H and consider the polyellipse f(E) with focuses

f(p1), . . . , f(pn)

such that the sum of distances from the focuses is just c. Because T is a
subset in E we have that T is a subset in f(E) too. Therefore

d(A, f(p1)) + . . .+ d(A, f(pn)) ≤ c.

Since such a formula holds for any f in H we have that c' is less or equal than
6c. Consider now the set

Γ = ∪f∈H convf(E). (11.27)

If the point q is not in the union of the convex hulls then

d(q, f(p1)) + . . .+ d(q, f(pn)) > c

for any f in H. Taking the sum as f runs through the elements of H it follows
that ∑

f∈H
d(q, f(p1)) + . . .+ d(q, f(pn)) > 6c ≥ c′

and, consequently, q is in the complement of conv E' too. Therefore conv E'
(together with T) is a subset of the union 11.27 and E' is not farther from
the triangle than the boundary of Γ. On the other hand the boundary of the
union 11.27 is not farther from the triangle T than E because1

h(E, T ) = h(f(E), f(T )) = h(f(E), T )

(recall that f is an isometry leaving T invariant). This means that E' is not
farther from the triangle T than E as was to be proved. In view of the sym-
metrization process we can suppose that the sequence 11.26 of polyellipses
consists of curves passing through all the vertices with an invariant focal set
under the elements of the group H. The second step is a process to avoid
singularities. Let q(n) be the common point of the perpendicular bisector of
the side AB and the arc of E(n) between A and B. Because of the symmetry
the line l(n) passing through q(n) into the parallel direction to the side AB
supports the polyellipse at q(n). Therefore the Euclidean distance between

1The Hausdor� distance of sets is determined by the distances between their points
and, because of the invariance of T under H, the possible distances between the points of
the boundary of Γ and T are the same as the possible distances between the points of E
and T.



CHAPTER 11. ERD�S-VINCZE'S THEOREM 176

Figure 11.9: The pair of curves E(n) and E'(n).

Figure 11.10: Similar triangles.

q(n) and the midpoint M of AB is just the same as the Hausdor� distance
between the sets. This means that M is the limit of q(n)'s as n tends to the
in�nity. From the viewpoint of di�erential geometry we have two di�erent
cases: the point q(n) belongs to the set of the focuses or not. If it does then
we ignore this point together with the focuses of the form f(q(n)) as f runs
through the elements of the isometry group H of T. In this case we substitute
the polyellipse labelled by n with E'(n) as follows:

(a) the focuses are the rest of those of E(n),

(b) the curve contains all of deleted focuses.

In what follows we prove that all the vertices of the triangle is in the
interior of the convex hull of E'(n); see �gure 11.9 (the focuses are the vertices
of a regular hexagon inscribed in the unit circle centered at the origin). Let
k(n) be the multiplicity of the point q(n) as the focus of the polyellipse E(n).
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Then the sum of distances from the focuses of E'(n) must be

c′n = cn − kn
∑
f∈H

d(qn, f(qn)) = cn − 4kn

(
1

2
d(A,B) +

√
3 δn

)
,

where δ(n) is the Euclidean distance between q(n) and M. The formula can
be easily derived by the help of using similar triangles 11.10:

d(qn, f(qn)) :
d(A,B)

2
= (δn +

1

3
m) :

m

3
,

where m is the height of the triangle and q(n) is not a �xpoint of f. It
happens four times in H. On the other hand

∑
f∈H

d(A, f(qn)) = 4

√
a2

4
+ δn

2 + 2(m+ δn),

where �a� is the common length of the sides. Therefore

kn
∑
f∈H

d(A, f(qn)) ≥

kn

(
a

2
+
a

2
+
a

2
+
a

2
+m+m

)
≥

≥ 4kn

(
a

2
+

√
3

4
a

)
> 4kn

(
a

2
+
√

3 δn

)
provided that δ(n) is small enough. This means that all the vertices of the
triangle is in the interior of the convex hull of E'(n) because

cn − kn
∑
f∈H

d(A, f(qn)) < c′n.

The comparison of the sum of distances shows that we must have focuses
more than the deleted ones provided that n is great enough. In view of
the second step we can consider a sequence of polyellipses E(1), ..., E(n), ...
such that the focal set is invariant under the elements of the group H and the
curvature goes to being zero at the point q(n) as n tends to the in�nity: the
convexity implies that the curvature radius at q(n) is greater than the radius
of the circle passing through the points A, B and q(n). The third step is
to prove that the curvature function is uniformly bounded from below which
obviously gives a contradiction. Let n be great enough for q=q(n) to be in
the interior of the circumscribed circle of the triangle T and consider the
function F measuring the sum of distances from the elements of the focal set

G := {f(pi) | i = 1, . . . n, f ∈ H}

of E=E(n).
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Lemma 11.3.2 If R is the radius of the circumscribed circle of the triangle
then

‖grad Fq‖ ≤
n∑
i=1

24R

R+ d(o, pi)
,

where o is the center of the triangle, and the set of the focuses is generated
from the points

p1, . . . , pn

by the symmetry group H.

Proof Recall that the gradient vector is just the sum of the normalized
position vectors of q with respect to the focuses:

grad Fq =
∑
f∈H

1

d(q, f(p1))
(q − f(p1)) + . . .+

1

d(q, f(pn))
(q − f(pn)).

Let k(0) be the multiplicity of the center if it is one of the focuses; otherwise
k(0):=0. Then

‖grad Fq‖ ≤ 6k0 + ‖
∑
pi 6=o

∑
f∈H

1

d(q, f(pi))
(q − f(pi))‖

because f(o)=o for any element of the symmetry group H. Since the center
is the minimizer of any function measuring the sum of distances from the
elements of an invariant point-set under H∑

pi 6=o

∑
f∈H

1

d(o, f(pi))
(o− f(pi)) = 0

and we have that the norm of the gradient at the point q is less or equal
than

6ko +
∑
pi 6=o

∑
f∈H
‖ 1

d(q, f(pi))
(q − f(pi))−

1

d(o, f(pi))
(o− f(pi))‖.

The estimation

6ko ≤
∑
pi=o

24R

R+ d(pi, o)
= 24ko

is trivial. From now on we suppose that p(i) is di�erent from the center. In
order to estimate the norm of the di�erence of the unit vectors

vi :=
1

d(q, f(pi))
(q − f(pi))

and

wi :=
1

d(o, f(pi))
(o− f(pi)) =

1

d(o, pi)
(o− f(pi))
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consider �rst of all the case when the i-th focus and all the elements of the
form f(p(i)) are in the interior of the circumscribed circle of the triangle.
Since the norm of the di�erence of unit vectors is less or equal than 2 it
follows that

4R

R+ d(o, pi)
≥ 2 ≥ ‖vi − wi‖ (11.28)

and, consequently,

∑
f∈H
‖vi − wi‖ ≤ 6

4R

R+ d(o, pi)
=

24R

R+ d(o, pi)
.

The only task is to prove inequality

4R

R+ d(o, pi)
≥ ‖vi − wi‖

for the focuses outside of the circumscribed circle. From the triangle spanned
by the vectors v(i) and w(i) with the same (unit) length we have that

‖vi − wi‖ = 2 sin
αi
2
≤ 2 sinαi

because the angle α(i) of these unit vectors is obviously less than 90 degree.
A simple sine-rule shows that

d(o, pi) sinαi = d(o, q) sin(for some angle) ≤ d(o, q) ≤ R.

Therefore

2R sinαi + 2d(o, pi) sinαi ≤ 2R sinαi + 2R ≤ 4R

and, consequently,

2 sinαi ≤
4R

R+ d(o, pi)
⇒ ‖vi − wi‖ ≤

4R

R+ d(o, pi)

as was to be proved. Taking the sum as f runs through the elements of H we
have the upper bound for the norm of the gradient vector immediately.

Lemma 11.3.3 If v is a parallel unit vector to the side AB of the triangle
then

Hess Fq(v, v) ≥ 1

2

n∑
i=1

1

R+ d(o, pi)
.

Proof Without loss of generality we can suppose that the center of the
triangle coincides with the origin and AB is parallel to the y-axis. Then
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v=(0,1) and the second coordinate of q is zero. Using the formulas for the
second order partial derivatives we should estimate the sum of terms of type

S(q, pi) :=
∑
f∈H

1

d3(q, f(pi))
(q1 − f1(pi))

2

n-times. It is obviously enough to prove that

S(q, pi) ≥
1

2

1

R+ d(o, pi)
(11.29)

for any i=1, ..., n. First of all note that the case of p(i)=o is trivial (recall
that q lies in the interior of the circumscribed circle and its second coordinate
is zero). Suppose that p(i) is di�erent from the origin. By the triangle
inequality,

d(q, f(pi)) ≤ d(q, o) + d(o, f(pi)) ≤ R+ d(o, pi)

and, consequently,

1

R+ d(o, pi)

∑
f∈H

1

d2(q, f(pi))
(q1 − f1(pi))

2 ≤ S(q, pi).

For some isometry f in H, the polar angle of f(p(i)) must be between 120 and
240 (degree). Therefore

1

4
= cos2 60◦ ≤ 1

d2(q, f(pi))
(q1 − f1(pi))

2

and it happens at least two times showing that estimation 11.29 holds.

Now we are in the position to �nish the proof of the theorem. Using the
notations in the proof of the previous lemma the curvature is just

κ(q) =
1

‖grad Fq‖
Hess Fq(v, v) ≥ 1

48R
(11.30)

which is a contradiction.

Remark Inequality 11.30 involves a global minimum for the curvature along
the whole arc of the polyellipse because of the symmetry. The method pre-
sented in the proof can be used for the estimation of the curvature in all of
the cases when the set of the focuses shows invariance under some isome-
tries. This observation yields the general result for the approximation with
not necessarily circumscribed polyellipses. If the Hausdor� distance is ε
then, by the convexity, the approximating polyellipse must be between the
outer and inner ε-parallel bodies of the triangle T. Then we can apply the
previous estimation to the curvature of the polyellipse as a circumscribed
curve of the inner parallel body. A continuity-type argumentation gives the
contradiction.
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Figure 11.11: A continuity-type argumentation.

Excercise 11.3.4 How to generalize Erd®s-Vincze's theorem for regular poly-
gons with vertices more than three.
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Rådström's embedding

theorem

12.1 Rådström's embedding theorem

Let C* be the collection of non-empty bounded and closed (i.e. compact)
convex sets in the coordinate space of dimension n equipped with the Haus-
dor� distance. In section 1.5 we proved that it is a metric space and the
elements of C* form a cancellative semigroup with respect to the addition of
sets. Moreover scalar multiplication have several properties like the ordinary
scalar multiplication of vectors but not without any restriction (see section
1.4). Rådström's embedding theorem eliminates these additional require-
ments to provide an in�nitely dimensional normed linear space environment
for convex sets. The method can be used in general to present any cancella-
tive semigroup as a subset of a group in the usual sense.

De�nition Consider the set of ordered pairs (A,B) of elements in C*. We
say that (A,B) and (C,D) are related if

A+D = B + C (12.1)

Lemma 12.1.1 Relation 12.1 is an equivalence relation.

Proof Re�exivity and symmetry are clear by the de�nition. Suppose that
(A,B) is related to (C,D) and (C,D) is related to (E,F). Then, by de�nition,

A+D = B + C and C + F = E +D.

Adding these equations we have that

A+ F +D + C = E +B +D + C

which means by the cancellation law 1.4.3 that

A+ F = E +B

182
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proving that (A,B) is related to (E,F) and the transitivity holds for 12.1 as
was to be proved.

The equivalence class represented by the ordered pair (A,B) will be de-
noted as [A,B].

De�nition Let us de�ne the addition

[A,B] + [C,D] = [A+ C,B +D] (12.2)

between the equivalence classes.

Excercise 12.1.2 Prove that the addition 12.2 is independent of the choice
of the representation of equivalence classes. Find the zero element with re-
spect to the operation 12.2 and prove that the set of the equivalence classes
equipped with 12.2 is an Abelian group.

De�nition Let the scalar multiplication be de�ned as

λ[A,B] =

{
[λA, λB] if λ ≥ 0

(−λ)[B,A] if λ < 0
(12.3)

Excercise 12.1.3 Prove that the scalar multiplication 12.3 is independent
of the choice of the representation of equivalence classes.

Lemma 12.1.4 The salar multiplication 12.3 satis�es the following proper-
ties:

λ ([A,B] + [C,D]) = λ[A,B] + λ[C,D], (12.4)

(λ1 + λ2)[A,B] = λ1[A,B] + λ2[A,B], (12.5)

(λ1λ2)[A,B] = λ1 (λ2[A,B]) (12.6)

and
1 · [A,B] = [A,B]. (12.7)

Proof Suppose �rst of all that the scalar multiplier is non-negative in prop-
erty 12.4. Then the left hand side can be written as

[λ(A+ C), λ(B + C)]

and the right hand side is

[λA+ λC, λB + λD].

They are obviously equal to each other by property 1.24. The case of negative
multipliers is similar. Property 12.5 comes from 1.25 in case of scalars with
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the same sign. The only non-trivial case when we have scalars with di�erent
signs. From now on we suppose that

λ1 > 0 and λ2 < 0. (12.8)

Let the sum of the scalars be non-negative, i.e.

λ1 + λ2 ≥ 0.

Then the left hand side of 12.5

(λ1 + λ2)[A,B] = [(λ1 + λ2)A, (λ1 + λ2)B].

The right hand side

λ1[A,B] + λ2[A,B] = [λ1A, λ1B] + [(−λ2)B, (−λ2)A] =

[λ1A+ (−λ2)B, λ1B + (−λ2)A].

To prove that they are the same we should check that

X +W = Z + Y,

where
X = (λ1 + λ2)A, Y = (λ1 + λ2)B,

Z = λ1A+ (−λ2)B, W = λ1B + (−λ2)A.

Since the scalars
(λ1 + λ2) and (−λ2)

have the same sign we can write that

X +W = ((λ1 + λ2) + (−λ2))A+ λ1B = λ1A+ λ1B = λ1(A+B)

and

Z + Y = λ1A+ ((λ1 + λ2) + (−λ2))B = λ1A+ λ1B = λ1(A+B)

as was to be proved. The discussion of the further possible cases is similar.
To prove the associativity-like property 12.6 consider again the case of scalars
with di�erent signs under the convention 12.8. The left hand side is

(−λ1λ2)[B,A] = [(−λ1λ2)B, (−λ1λ2)A].

The right hand side is

λ1[(−λ2)B, (−λ2)A] = [λ1(−λ2)B, λ1(−λ2)A].

They are obviously equal to each other by property 1.26. Consider the case of
scalars with the same sign. Then the left hand side preserves the ordering of
the set A and B. The right hand side also preserves this ordering by changing
it two times in case of negative scalar multipliers. The last property 12.7 is
trivial.
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Corollary 12.1.5 The set of equivalence classes is a real vector space with
respect to the addition 12.2 and the scalar multiplication 12.3.

In what follows we shall construct a norm on the vector space of the
equivalence classes.

De�nition Let the mapping H be de�ned as

H([A,B], [C,D]) := h(A+D,B + C). (12.9)

Lemma 12.1.6 De�nition 12.9 is independent of the representation of equiv-
alence classes.

Proof We have that

H([A′, B′], [C ′, D′]) = h(A′ +D′, B′ + C ′) =

h(A′ +D′ + (A+B + C +D), B′ + C ′ + (A+B + C +D))

because the Hausdor� metric is translation invariant. Furthermore

h(A′ +D′ + (A+B + C +D), B′ + C ′ + (A+B + C +D)) =

h((A′ +B) + (D′ + C) + (A+D), (B′ +A) + (C ′ +D) + (B + C)) =

h(A+D,B + C))

provided that

A+B′ = A′ +B and C +D′ = C ′ +D,

i.e. [A,B] is related to [A',B'], and [C,D] is related to [C',D']. Therefore

H([A′, B′], [C ′, D′]) = H([A,B], [C,D])

as was to be proved.

Lemma 12.1.7 H is a translation invariant metric on the vector space of
equivalence classes and

H(λ[A,B], λ[C,D]) = |λ|H([A,B], [C,D]). (12.10)

Proof The translation invariance follows from the corresponding theorem
1.5.5 for the Hausdor� distance:

H([A,B] + [E,F ], [C,D] + [E,F ]) = H([A+ E,B + F ], [C + E,D + F ]) =

h(A+D +E + F,C +B +E + F ) = h(A+D,C +B) = H([A,B], [C,D]).
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On the other hand if we have a non-negative scalar multiplier then

H(λ[A,B], λ[C,D]) = H([λA, λB], [λC, λD]) = h(λA+ λD, λB + λC) =

h(λ(A+D), λ(B + C)) = λh(A+D,B + C) = λH([A,B], [C,D]).

The case of a negative scalar multiplier is similar. Among the metric prop-
erties non-negativity and symmetry are trivial because of the corresponding
properties of the Hausdor� metric. To check the positive de�niteness suppose
that

0 = H[A,B], [C,D]) = h(A+D,B + C)

which means that
A+D = B + C

because of the positive de�niteness of the Hausdor� metric. This means
that (A,B) and (C,D) are related to each other, i.e. the equivalence classes
represented by them coincide. Finally, the triangle inequality follows as

H([A,B], [E,F ]) = h(A+F,B+E) = h(A+F+(C+D), B+E+(C+D)) =

h((A+D) + (C + F ), (B + C) + (D + E)) ≤

h((A+D) + (C + F ), (B + C) + (C + F ))+

h((B + C) + (C + F ), (B + C) + (D + E)) =

h(A+D,B +C) + h(C + F,D+E) = H([A,B], [C,D]) +H([C,D], [E,F ])

because of the corresponding property of the Hausdor� metric.

Lemma 12.1.8 If δ is a translation invariant metric satisfying property
12.10 then

N(v) := δ(x, y) if v = y − x (12.11)

is a norm on the vector space.

Proof Suppose that y - x=y' - x'; then y+x'=y'+x=w and the translation
invariance of the metric implies that

δ(x, y) = δ(x+ (x′ + y′), y + (x′ + y′)) =

δ(x′ + (x+ y′), y′ + (y + x′)) = δ(x′ + w, y′ + w) = δ(x′, y′).

Therefore the mapping N is well-de�ned. The properties of the norm can
be derived from the corresponding properties of the distance and property
12.10 (cf. absolute homogenity). To prove the triangle inequality consider
two elements v=y - x and w=y' - x'. We have that

N(v + w) = δ(x+ x′, y + y′) ≤ δ(x+ x′, y + x′) + δ(y + x′, y + y′) =

δ(x, y) + δ(x′, y′) = N(v) +N(w)

as was to be proved.
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Corollary 12.1.9 The set of equivalence classes equipped with the norm
coming from H forms a normed vector space.

Theorem 12.1.10 The family of non-empty compact convex subsets in the
coordinate space of dimension n can be isometrically embedded as a convex
cone into a real normed vector space. Explicitly

µ:K → µ(K) := [K,K +K], (12.12)

where the mapping 12.12 is additive and positively homogeneous in the sense
that

µ(λK) = λµ(K)

for any positive real number λ.

Proof First of all note that for any non-empty compact convex sets L and
M

[L,K + L] = [M,K +M ] (12.13)

because of L+(K+M)=M+(K+L). Especially,

µ(K) = [M,K +M ].

Then we have

µ(K) +µ(L) = [M,K+M ] + [M,L+M ] = [M +M, (K+L) + (M +M)] =

= µ(K + L)

because of 12.13. Using the invariance property 12.13 again

µ(λK) = [M,λK +M ] = [λM,λK + λM ] =

[λM,λ(K +M)] = λ[M,K +M ] = λµ(K)

provided that the scalar multiplier is positive (or at least non-negative). In
the next step we prove that µ is an isometric embedding.

H(µ(K), µ(L)) = H([M,K+M ], [M,L+M ]) = h(M+M+L,M+M+K) =

h(L,K) = h(K,L)

because of the translation invariance of the Hausdor� metric.

Remark A similar statement can be formulated for any subfamily of non-
empty compact convex sets provided that the subfamily is a cone: it is closed
under the addition and the scalar multiplication by positive real numbers.

Excercise 12.1.11 Prove that the family of closed disks around the origin
is closed under the addition and the scalar multiplication by positive real
numbers.

For a more general survey of spaces of convex sets (together with the
partial ordering induced by the inclusion of sets) we can refer to [17].
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