CORRIGENDUM TO THE PAPER
 CS. VINCZE, AVERAGE METHODS AND THEIR APPLICATIONS IN DIFFERENTIAL GEOMETRY I

CSABA VINCZE

Formula

$$
\begin{equation*}
\int_{\partial K_{p}} f \mu=\int_{\partial K_{p}^{*}} f\left(\frac{F^{*}}{F}\right)^{n} \sqrt{\operatorname{det} g_{i j}} \mu^{*}=\int_{\partial K_{p}^{*}} f\left(\frac{F^{*}}{F}\right)^{n-1} \mu \tag{1}
\end{equation*}
$$

is the correct form of formula (5) in [1] under the notations $\partial K=\partial K_{p}, \partial B=\partial K_{p}^{*}$ and $\varphi=\frac{F^{*}}{F}$. Note that

$$
\frac{F^{*}}{F} \sqrt{\operatorname{det} g_{i j}} \mu^{*}=\mu
$$

References

[1] Cs. Vincze, Average methods and their applications in differential geometry I, Journal of Geom. and Physics 92 (2015), pp. 194-209, arXiv:1309.0827.

Institute of Mathematics, University of Debrecen,, P.O.Box 400, H-4002 Debrecen, Hungary E-mail address: csvincze@science.unideb.hu

