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Okada’s theorem
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is a rule how to change derivatives with respect to xi and yi of a Funk metric. We have relatively
simple formulas [1] for the canonical objects:
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The Funk metric is projectively equivalent to the affine space Rn, i.e. any straight line c(t) =
p + tv can be reparameterized to the geodesics of the Funk metric. According to formula (2),
the reparametrization is just the solution of the differential equation

(4) θ′′ = −θ′F (vp);

see e.g. [2]. Under the initial conditions θ(0) = 0 and θ′(0) = 1, it follows that
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is a geodesic of the Funk metric. Equation (4) and its solution are the corrections of equation
(21) and its solution in [3].
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