
VOTING PROTOCOLS ON THE STAR GRAPH

Abstract. Given a �nite graph G = (V,E) and an assignment
ν0 : V → {0, 1} that is the initial opinion of each vertex, discor-
dant push voting is a non-deterministic protocol that produces a
sequence of functions ν1, ν2, . . . which terminates as soon as a con-
sensus is reached. More precisely, at each round a discordant vertex
u (i.e., one that has a neighbour with a di�erent opinion) is chosen
uniformly at random, and then this vertex chooses a neighbour v
with di�erent vote uniformly at random, and forces v to change
its opinion to that of u. The game stops when a consensus state
is reached, that is, when the function νk is constant. In case of
the discordant pull protocol we simply choose a discordant vertex
uniformly at random and change its opinion. It was shown that
this protocol is expected to stop in 1

4n
2+O(n3/2) steps for the cy-

cle graph if the process starts from the worst possible initial state,
where n = |V |. The best known estimate for the star graph was
that the expected time to reach consensus is between C1n

2 log n
and C2n

2 log n for some positive constants C1, C2 (in the worst
case). We show that the expected time for the push protocol to
reach consensus on the star graph is 1

8n
2 log n + O(n2), and it is

1
6n

2 + O(n log n) for the pull protocol, assuming the worst initial
case.

Keywords : Voting, �nite graph, cycle, star, push protocol

2010 Mathematics subject classi�-
cation:

Primary 60K37
Secondary 60J10, 91D10

1. Introduction

Models of voting in �nite graphs have been studied intensively for
decades, see [5, 8]. Throughout this paper, a discrete time voting pro-
tocol is de�ned by specifying a graph and a set of nondeterministic
rules. Then the process is divided into rounds; in each round, the par-
ticipants (vertices of the graph) can a�ect the vote of their neighbours
according to the given rules.
We note that many alternative de�nitions were investigated in the

literature. Continuous time voting processes were studied in [5, 7].
In [6, 1] the graph evolves together with the opinions of the vertices.
Connections of voting processes and coalescing random walks were in-
vestigated in [7, 9], and for other recent applications see [10, 3].

0

VOTING ON THE STAR 1

However, we consider discrete time voting models where the graph is
�xed, and the vote is a binary decision: the two options to choose from
are 0 and 1. Such a protocol can be synchronous (see [4] for examples),
i.e., it is allowed that several vertices of the graph change their opinion
in one round; otherwise it is asynchronous. The so-called linear voting
model was introduced in [4] as a common generalisation of many well-
studied voting protocols. Three of the most common special cases of
asynchronous linear voting are the

• Oblivious protocol: each round an edge uv is chosen uniformly
at random, and then either u adopts the opinion of v or the
other way around, with equal probability.
• Push protocol: each round a vertex u is chosen uniformly at
random, and that vertex forces a randomly chosen neighbour
to adopt the opinion of u.
• Pull protocol: each round a vertex u is chosen uniformly at ran-
dom, and that vertex is forced by a randomly chosen neighbour
v to adopt the opinion of v.

From a practical viewpoint, all linear voting models have a common
weakness: it is typical that nothing changes in many steps of the pro-
cess, as it is possible that every participant keeps his own opinion for
the next round. E.g., consider push, pull or oblivious voting on the
complete graph Kn; in this particular case, the three protocols coin-
cide. If one opinion is signi�cantly more popular than the other, then
with very high probability, both chosen vertices have the more popu-
lar opinion. So usually many idle rounds go by before the opinion of
some vertex is altered. This example demonstrates the advantage of
discordant (oblivious, push, pull) voting protocols [2]. An edge uv is
discordant if u and v have di�erent opinion, and a vertex is discordant
if it is in a discordant edge. To de�ne discordant oblivious, push and
pull voting, the above three de�nitions are modi�ed so that whenever
a random choice is made, we only allow discordant edges or vertices to
be picked (always uniformly at random).
The goal of every voting scheme that we study now is to reach con-

sensus, that is, a state where all participants have the same opinion.
The topic of the present paper is the expected time T to reach consen-
sus with the discordant push, pull and oblivious processes on the star
graph with n vertices. It was proven in [2] that the discordant push
process has an expected runtime between C1n

2 log n and C2n
2 log n at

worst, with some positive constants C1, C2. We improve these bounds,
showing that the discordant push protocol reaches consensus on the
star graph with n vertices in Tpush = 1

8
n2 log n+O(n2) time. The pull

2 VOTING ON THE STAR

protocol is the fastest out of the three above de�ned processes for the
star graph. Its expected runtime is Tpull =

1
6
n2 +O(n log n). It was al-

ready discussed in [2] that the oblivious protocol has expected runtime
Toblivious =

1
4
n2 + O(n). These results are somewhat counter-intuitive.

As it was pointed out in [2], for a typical graph the push protocol
should be the fastest out of the three, and the pull voting should be
the slowest.

2. Preliminaries

2.1. General notations. Given an absorbing Markov chain P with
transient states T . As usual, we denote by Q the upper left minor of

the canonical form of P =

(
Q R
0 I

)
. So Q is the transition matrix

restricted to the transient states. Following standard notations, N =
(I − Q)−1 denotes the fundamental matrix of the Markov chain. We
denote by 1 the column vector of length |T | all of whose entries equal
to 1. It is well-known that the expected times to absorption from each
transient state as initial state are the coordinates of the vector N1.

2.2. Push voting on the star graph. In order to make the prob-
lem more transparent, we de�ne a Markov chain in the following way.
Each possible state of the voting process is described by the number
of neighbours of the central vertex in the star that have the opposite
opinion as the center. If there are i > 0 such vertices, i.e., we are in
state i, then the process can evolve to two possible states in general. If
we pick a vertex out of the i discordant neighbours of the center, then
the vote of the center is altered, hence we reach the state n − 1 − i.
If we pick the center, then one of its discordant neighbours is pushed,
thus we end up in state i − 1. So the probability of transition from i
to n − 1 − i is i

i+1
, and the probability of transition from i to i − 1 is

1
i+1

. We are interested in the expected time to reach consensus from
the worst case, which is clearly the one with an equal number of zeros
and ones (or as close to equal as possible). Note that it is impossible
to reach state n − 1 from here: indeed, all the edges would be discor-
dant, and none of the discordant voting protocols can move into such
a state. So we may omit state n − 1, and only consider the transient
states 1, . . . , n− 2 and the unique absorbing state 0.
The (n−2)×(n−2) matrix I−Q derived from the transition matrix

looks as follows (we do the illustration and the calculation for odd n,
the case of even n is very similar, and of course, the same estimation
is obtained in the end); k = (n+ 1)/2:

VOTING ON THE STAR 3

1 0 0 0 0 0 0 · · · 0 0 0 0 0 −1
2

−1
3

1 0 0 0 0 0 · · · 0 0 0 0 −2
3

0
0 −1

4
1 0 0 0 0 · · · 0 0 0 −3

4
0 0

0 0 −1
5

1 0 0 0 · · · 0 0 −4
5

0 0 0
...

...
. . .

.
. ...

· · · 0 0 − 1
k−2 1 0 0 0 −k−3

k−2 0 0 · · ·
· · · 0 0 0 − 1

k−1 1 0 −k−2
k−1 0 0 0 · · ·

· · · 0 0 0 0 − 1
k

1
k

0 0 0 0 · · ·
· · · 0 0 0 0 − k

k+1
− 1

k+1
1 0 0 0 · · ·

· · · 0 0 0 −k+1
k+2

0 0 − 1
k+2

1 0 0 · · ·
... . .

. ...
. . .

. . .
...

0 0 0 −n−5
n−4 0 · · · · · · 0 − 1

n−4 1 0 0 0
0 0 −n−4

n−3 0 0 · · · · · · 0 0 − 1
n−3 1 0 0

0 −n−3
n−2 0 0 0 · · · · · · 0 0 0 − 1

n−2 1 0
−n−2

n−1 0 0 0 0 · · · · · · 0 0 0 0 − 1
n−1 1



This matrix is denoted by A. We need to solve the system of linear
equations with this matrix on the left and the vector 1 on the right,
and we are interested in the (k− 1)-st element of that solution vector,
corresponding to the worst case. Our strategy is to apply elementary
steps of Gaussian elimination on the rows of A to obtain the row vector
that is all zero except for the (k − 1)-st element, which is 1. The
following program shows the steps that need to be applied. We use
standard notations that are used in several programming languages
(e.g., Python); note that A[i] is the i-th row of the matrix, where
indexation of rows start by 1 (unlike with Python, where the �rst index
of an array is 0).
The �rst step is a special one:
A[k − 1]∗ = k
Then we apply the following triple steps for i = 0, 1, . . . , k − 3:
A[k + i]− = k+i

k+i+1
A[k − i− 1]

A[k − i− 2]+ = (A[k − i− 1] + A[k + i])
A[k − i− 2]∗ = (k − i− 1)
Initially, there is 1 on the right-hand side of every equation. After

applying all these steps to the right-hand side, we denote the resulting
vector by x. The combined result of the �rst two steps in the triple
steps is that in the (k − i − 2)-nd line we obtain 1 + (xk−i−1 + (1 −
k+i

k+i+1
· xk−i−1)) = 2− 1

k+i+1
· xk−i−1. After applying the third step, we

obtain xk−i−2 = 2(k − i− 1) + k−i−1
k+i+1

· xk−i−1.

4 VOTING ON THE STAR

Putting ai = xk−1−i, the sequence (ai)i=0···(k−1) is uniquely deter-

mined by the following recursion: a0 = k, and ai = ai−1 · k−ik+i
+2k− 2i.

We de�ne (bi)i=0···(k−1) =
k2

i+1
− (i+ 1) and (εi)i=0···(k−1) = ai − bi.

Lemma 2.1. Let (ci)i=0···(k−1) be a sequence satisfying the same recur-

sion as ai, that is, ci = ci−1 · k−ik+i
+2k−2i. Then ci > ci−1 i� ci−1 < bi−1,

ci = ci−1 i� ci−1 = bi−1, and ci < ci−1 i� ci−1 > bi−1.

Proof. Trivial calculation. �

Lemma 2.2. (1) For all i ≤ 1√
2
·
√
k we have ai ≥ ik.

(2) For all i we have ai ≤ (2i+ 1)k.

(3) There is an ` ≤
√
2 ·
√
k such that a` ≥ b`, and the smallest

such index ` is at least 1
2
·
√
k if k ≥ 100.

Proof. The �rst two items are shown by induction. Both statements
hold for the initial value i = 0. If i ≤ 1√

2
·
√
k, then by the induction

hypothesis we have ai =
k−i
k+i
· ai−1 + 2k− 2i ≥ (1− 2i

k
)ai−1 + 2k− 2i ≥

(1− 2i
k
)(i− 1)k + 2k − 2i = ik − 2i2 + k ≥ ik.

The second item follows from ai ≤ (1 − i
k
)ai−1 + 2k − 2i ≤ (1 −

i
k
)(2i− 1)k + 2k − 2i = (2i+ 1)k − 2i2 − i ≤ (2i+ 1)k.
The third item is shown indirectly: so assume that ai < bi for all

i ≤
√
2 ·
√
k. Then by Lemma 2.1 the series (ai) is strictly monotone

increasing in any index less than
√
2 ·
√
k. By item 1 of the present

lemma, this means that ai ≥ 1√
2
·k3/2 for all 1√

2
·
√
k ≤ i ≤

√
2 ·
√
k. On

the other hand, if ` is the integer part of
√
2 ·
√
k, then `+1 ≥

√
2 ·
√
k,

so b` =
k2

`+1
−(`+1) ≤ k2√

2·
√
k
−(
√
2·
√
k) < 1√

2
·k3/2 ≤ a`, a contradiction.

The smallest index ` such that a` ≥ b` cannot be smaller then 1
2
·
√
k:

the series (ai) is strictly monotone increasing in that region, and if

` ≤ 1
2
·
√
k + 1, then by item 2 we have a` ≤ (2`+ 1)k = (

√
k + 3)k =

k3/2 + 3k, whereas the series (bi) is strictly monotone decreasing and

b` ≥ k2

`+1
− (`+ 1) ≥ k2

1
2
·
√
k+2
− (1

2
·
√
k + 2), which for k ≥ 100 is bigger

than k3/2 + 3k. �

Lemma 2.3. Let k ≥ 100, and let 1
2
·
√
k ≤ ` ≤

√
2 ·
√
k be the smallest

index (provided by Lemma 2.2) such that a` ≥ b`.

(1) For all i ≤ `, 0 ≤ ai ≤ 3k3/2, and in particular 0 ≤
∑̀
i=1

ai ≤ 5k2.

(2) 0 ≤ ε` < 6k

VOTING ON THE STAR 5

(3) For all i ≥ ` + 1 we have 0 ≤ εi =
k−i
k+i
· εi−1 + k2

i(i+1)
+ 1, and

0 ≤
k−2∑
i=`

εi < 6k2.

(4) The sum of all the ai is
k−2∑
i=0

ai =
1
2
· k2 log k +O(k2).

Proof. The �rst item follows from item 2 of Lemma 2.2 and the fact
that the series (ai) is monotone increasing in the �rst ` indices by
Lemma 2.1.
For the second item, we use the following inequalities:

• a`−1 < b`−1, by minimality of `; that is, a`−1 − b`−1 < 0
• a` − a`−1 ≤ 2k by the recursive rule that de�nes the series (ai)

• �nally, b`−1−b` = (k
2

`
−`)−(k2

`+1
−`−1) < k2

`2
≤ 4k, as 1

2
·
√
k ≤ `

Adding up these three inequalities yields the second item of the
lemma.
The third item is shown by �rst observing that ai = (bi−1+εi−1)· k−ik+i

+

2k−2i = (k
2−i2
i

+εi−1)· k−ik+i
+2k−2i = (k2−2ki+i2)+2ki−2i2

i
+ k−i

k+i
·εi−1 = k2

i
−

i+ k−i
k+i
·εi−1 = k2

i+1
−(i+1)+ k−i

k+i
·εi−1+ k2

i(i+1)
+1 = bi+

k−i
k+i
·εi−1+ k2

i(i+1)
+1.

This calculation veri�es εi =
k−i
k+i
·εi−1+ k2

i(i+1)
+1, and in particular all the

εi are non-negative for i ≥ `. For the upper estimation of the sum
k−2∑
i=`

εi

we observe that k−i
k+i
≤ 1− 1

2
√
k
for all i ≥ `, as 1

2
·
√
k ≤ ` ≤ i. Hence, for

any ` ≤ i1 < i2 < · · · < it we have
t∑

u=1

u∏
v=1

k−iv
k+iv
≤

∞∑
m=0

(1− 1
2
√
k
)m = 2

√
k.

So
k−2∑
i=`

εi = ε` + (k−`
k+`

ε` +
k2

`(`+1)
+ 1) + (k−(`+1)

k+(`+1)
(k−`
k+`

ε` +
k2

`(`+1)
+ 1) +

k2

(`+1)(`+2)
+1)+ · · · If we expand all the parantheses in this expression,

then the sum of all coe�cients of ε` is thus at most 2
√
k, and so is the

sum of all coe�cients of any of the k2

i(i+1)
. We may simply estimate from

above the coe�cient of each occurrence of 1 by 1: there are less then

k2/2 occurrences. This way we obtain the upper estimation
k−2∑
i=`

εi ≤

2
√
kε` +2

√
k

k−2∑
i=`

k2

i(i+1)
+ k2/2 ≤ 2

√
k · 6k+2k5/2

k−2∑
i=`

(1
i
− 1

i+1
) + k2/2 ≤

12k3/2 + 2k5/2 · 1
`
+ k2/2 = 12k3/2 + 4k2 + k2/2 ≤ 6k2 as k ≥ 100.

6 VOTING ON THE STAR

We now prove the fourth item.
k−2∑
i=0

ai =
`−1∑
i=0

ai+
k−2∑
i=`

ai = O(k2)+
k−2∑
i=`

ai,

by item 1. So the sum is O(k2)+
k−2∑
i=`

bi+
k−2∑
i=`

εi = O(k2)+
k−2∑
i=`

bi = O(k2)+

k−2∑
i=`

k2

i+1
−

k−2∑
i=`

(i+1) = O(k2)+k2 ·
k−2∑
i=`

1
i+1

= O(k2)+k2 · (
k−1∑
i=1

1
i
−
∑̀
i=1

1
i
) =

O(k2) + k2 · (log k − log `+O(1)) = O(k2) + k2 · (log k − log `).

As 1
2
·
√
k ≤ ` ≤

√
2 ·
√
k, we have log ` = 1

2
log k +O(1).

Thus
k−2∑
i=0

ai = O(k2)+k2 ·(log k−log `) = O(k2)+k2 ·(log k− 1
2
log k+

O(1)) = 1
2
k2 log k +O(k2).

�

Theorem 2.4. The expected runtime of the discordant push protocol
on the star graph with n vertices is 1

8
· n2 log n + O(n2) at the worst

case.

Proof. We prove for odd n. After running the above discussed steps of
Gaussian elimination on the matrix A, we obtain the following matrix.
We only visualise the �rst row A[1] and the rows A[k − 1], A[k], A[k +
1], . . . , A[n− 4], A[n− 3], A[n− 2].

0 0 0 · · · 0 0 0 0 0 0 0 · · · 0 0 0 1
...

0 0 0 · · · 0 0 −1 1 0 0 0 · · · 0 0 0 0
0 0 0 · · · 0 0 0 −1 1 0 0 · · · 0 0 0 0
0 0 0 · · · 0 0 0 0 −1 1 0 · · · 0 0 0 0

...
. . .

. . .
...

. . .
. . .

...
. . .

. . .

0 0 0 · · · 0 0 0 0 0 0 0 · · · −1 1 0 0
0 0 0 · · · 0 0 0 0 0 0 0 · · · 0 −1 1 0
0 0 0 · · · 0 0 0 0 0 0 0 · · · 0 0 −1 1


Hence, to obtain the row vector all of whose entries are 0 except for

the (k − 1)-st, we need to compute A[1] − (A[k − 1] + A[k] + · · · +
A[n− 2]). The current values on the right-hand sides of the equations
corresponding to rows 1, k− 1, k, k+1, k+2, . . . , n− 2 are ak−2, a0, 1−
k

k+1
· a0, 1− k+1

k+2
· a1, 1− k+2

k+3
· a2, . . . , 1− k+(k−3)

k+(k−3+1)
· ak−3, respectively.

VOTING ON THE STAR 7

Thus the value of the (k− 1)-st unknown is ak−2− k+ (k
k+1
· a0− 1) +

(k+1
k+2
· a1 − 1) + · · ·+ (k+(k−3)

k+(k−3+1)
· ak−3 − 1) = (1 +O(1

k
)) · (

k−2∑
i=0

ai)− 2 =

1
2
· k2 log k +O(k2) = 1

8
· n2 log n+O(n2). �

2.3. Pull voting on the star graph.

Theorem 2.5. The expected runtime of the discordant pull protocol on
the star graph with n vertices is 1

6
· n2 +O(n log n) at the worst case.

Proof. We prove for odd n. The same notations are used as in the
case of push voting. There is only a slight di�erence in the transition
matrix: the probability of transition from i to n− 1− i is 1

i+1
, and the

probability of transition from i to i− 1 is i
i+1

.
The (n−2)×(n−2) matrix I−Q derived from the transition matrix

looks as follows (we do the illustration and the calculation for odd n,
the case of even n is very similar, and of course, the same estimation
is obtained in the end); k = (n+ 1)/2:

1 0 0 0 0 0 0 · · · 0 0 0 0 0 −1
2

−2
3

1 0 0 0 0 0 · · · 0 0 0 0 −1
3

0
0 −3

4
1 0 0 0 0 · · · 0 0 0 −1

4
0 0

0 0 −4
5

1 0 0 0 · · · 0 0 −1
5

0 0 0
...

...
. . .

.
. ...

· · · 0 0 −k−3
k−2 1 0 0 0 − 1

k−2 0 0 · · ·
· · · 0 0 0 −k−2

k−1 1 0 − 1
k−1 0 0 0 · · ·

· · · 0 0 0 0 −k−1
k

k−1
k

0 0 0 0 · · ·
· · · 0 0 0 0 − 1

k+1
− k

k+1
1 0 0 0 · · ·

· · · 0 0 0 − 1
k+2

0 0 −k+1
k+2

1 0 0 · · ·
... . .

. ...
. . .

. . .
...

0 0 0 − 1
n−4 0 · · · · · · 0 −n−5

n−4 1 0 0 0
0 0 − 1

n−3 0 0 · · · · · · 0 0 −n−4
n−3 1 0 0

0 − 1
n−2 0 0 0 · · · · · · 0 0 0 −n−3

n−2 1 0
− 1

n−1 0 0 0 0 · · · · · · 0 0 0 0 −n−2
n−1 1


We follow a similar strategy as in the previous subsection. Of course,

some factors need to be modi�ed in the Gaussian elimination steps.
The �rst step is a special one:
A[k − 1]∗ = k

k−1
Then we apply the following triple steps for i = 0, 1, . . . , k − 3:
A[k + i]− = 1

k+i+1
A[k − i− 1]

8 VOTING ON THE STAR

A[k − i− 2]+ = (A[k − i− 1] + A[k + i])
A[k − i− 2]∗ = k−i−1

k−i−2
Initially, there is 1 at every entry in the right-hand side vector of the

system of linear equations.
It is easy to show by induction that after these steps, we have the

following values on the right-hand side of the equations:
xk−1 =

k
k−1

xk−2 = (k
k−1 ·

k
k+1

+ 2) · k−1
k−2 = k2+2(k2−1)

k2−1 · k−1
k−2

xk−3 = ((k
k−1 ·

k
k+1

+ 2) · k−1
k−2 ·

k+1
k+2

+ 2) · k−2
k−3 = k2+2(k2−1)+2(k2−4)

k2−4 · k−2
k−3

xk−(i+1) = (· · · ((k
k−1 ·

k
k+1

+ 2) · k−1
k−2 ·

k+1
k+2

+ 2) · · ·) · k−i
k−(i+1)

=

= k2+2(k2−1)+···+2(k2−i2)
k2−i2 · k−i

k−(i+1)
=

k2(2i+1)−2· i(i+1)(2i+1)
6

k2−i2 · k−i
k−(i+1)

= 3k2(2i+1)−i(i+1)(2i+1)
3(k+i)(k−(i+1))

In particular, x1 =
3k2(2k−3)−(k−2)(k−1)(2k−3)

3(2k−2)(k−(k−2+1))
= 4k3+O(k2)

6k+O(1)
= 2

3
k2+O(k).

To obtain the row vector with a single 1 in the (k − 1)-st entry, we
need to return the following di�erence: A[1]− (A[k] +A[k+ 1] + · · ·+
A[n − 2]), see the illustration in the previous subsection. Hence, the
value of the (k−1)-st unknown is x1−(xk+xk+1+ · · ·+xn−2). In order
to show that the sum −(xk + xk+1 + · · ·+ xn−2) is negligible compared
to x1, we use the following equations (for i ≥ 1):
−xk+i =

1
i+1
· xk−(i+1) − 1

Hence, the sum −(xk + xk+1 + · · ·+ xn−2) can be written as

− k
k−1 +

k−3∑
i=1

(1
i+1
· xk−(i+1) − 1) = O(k) +

k−3∑
i=1

1
i+1
· xk−(i+1) =

= O(k) +
k−3∑
i=1

1
i+1
· 3k

2(2i+1)−i(i+1)(2i+1)
3(k+i)(k−(i+1))

Using 2i+1
i+1
≤ 2 and 0 ≤ i(i+ 1) ≤ k2 we obtain

O(k) +O(k2) ·
k−3∑
i=1

1
(k+i)(k−i)

Using 1
k+i
≤ 1

k
yields

O(k) · (O(1) +
k−3∑
i=1

1
k−i) ≤ O(k)(log k +O(1)) = O(k log k).

So the biggest element of the solution vector is 2
3
k2 + O(k log k) =

1
6
n2 +O(n log n).

�

References

[1] Basu, R., and Sly, A. Evolving voter model on dense random graphs. Annals
of Applied Probability 27, 2 (2017), 1235�1288.

VOTING ON THE STAR 9

[2] Cooper, C., Dyer, M., Frieze, A., and Rivera, N. Discordant voting
processes on �nite graphs. In 43rd International Colloquium on Automata,

Languages, and Programming (ICALP 2016), pp. 2033�2045.
[3] Cooper, C., Elsasser, R., Ono, H., and Radzik, T. Coalescing random

walks and voting on connected graphs. SIAM Journal on Discrete Mathematics

27, 4 (2013), 1748�1758.
[4] Cooper, C., and Rivera, N. The linear voting model. In 43rd Interna-

tional Colloquium on Automata, Languages, and Programming (ICALP 2016),
pp. 2021�2032.

[5] Donnelly, P., and Welsh, D. Finite particle systems and infection models.
Mathematical Proceedings of the Cambridge Philosophical Society 94, 1 (1983),
167�182.

[6] Durrett, R., Gleeson, J. P., Lloyd, A. L., Mucha, P. J., Shi, F.,
Sivakoff, D., Socolar, J. E. S., and Varghese, C. Graph �ssion in an
evolving voter model. Proceedings of the National Academy of Sciences of the

United States of America 109, 10 (2012), 3682�3687.
[7] Hassin, Y., and Peleg, D. Distributed probabilistic polling and applications

to proportionate agreement. Information and Computation 171, 2 (2001), 248�
268.

[8] Nakata, T., Imahayashi, H., and Yamashita, M. Probabilistic local ma-

jority voting for the agreement problem on �nite graphs. Springer, 1999.
[9] Oliveira, R. On the coalescence time of reversible random walks. Transac-

tions of the American Mathematical Society 364, 4 (2012), 2109�2128.
[10] Oliveira, R. Mean �eld conditions for coalescing random walks. The Annals

of Probability 41, 5 (2013), 3420�3461.

