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Some numerical characteristics of Sylvester
and Hadamard matrices

By ÁGOTA FIGULA (Debrecen) and VAKHTANG KVARATSKHELIA (Tbilisi)

Abstract. We introduce numerical characteristics of Sylvester and Hadamard ma-

trices and give their estimates and some of their applications.

1. Introduction

A Hadamard matrix has a simple structure, it is a square matrix such that

its entries are either +1 or −1 and its rows (columns) are mutually orthogonal.

In spite of the fact that Hadamard matrices have been actively studied for about

150 years, they still have unknown properties. If Hn is a Hadamard matrix of

order n, then the matrix [
Hn Hn

Hn −Hn

]
is a Hadamard matrix of order 2n. Applying this algorithm repeatedly J. J. Syl-

vester has constructed a particular sequence of Hadamard matrices of order 2n.

These matrices are called Sylvester matrices or Walsh matrices.

Hadamard matrices have a wide range of applications in the code theory,

scheduling theory, statistics, modern communications etc. In this paper we deal

with its application for certain problems of functional analysis. Namely, using
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Hadamard matrices, in the classical Banach spaces it is easy to construct exam-

ples of unconditionally convergent series which do not converge absolutely (see

[1], [12], [13]). Note that in [8] the author made a considerable effort to prove the

existence of such series in the space l1 without giving construction. To prove the

unconditional convergence of the above mentioned constructed series the numer-

ical characteristics of Hadamard and Sylvester matrices are important tools. In

the present paper the general forms of these tools for Banach spaces with bases

are considered. These characteristics and the structure of the Hadamard and

Sylvester matrices play an important role in the investigation of the convergence

of series in Banach spaces (see e.g., [2], [14], [15]). For these characteristics we give

estimates (cf. Theorems 3.1, 3.6, 4.2 and 4.8). We believe that the investigated

characteristics and their estimates complete our knowledge about Hadamard ma-

trices and may have applications in other fields of mathematics.

In Section 2 some concepts, definitions and auxiliary results required for

further discussions are given.

In Section 3 the numerical characteristic ϱ(n) of Sylvester matrices is intro-

duced and its estimates for the case of a Banach space with a subsymmetric basis

(φi) are studied. For every positive integer n we prove the following estimates

(cf. Theorems 3.1 and 3.6)

max

{
n+ 2

6
· λ(2n), 2n

}
≤ ϱ(n) ≤ min

{(
1 +

n∑
j=1

2−jλ(2j−1)

)
· 2n, λ(n) · 2n

}
,

where λ(n) = ∥
∑n

i=1 φi∥.
In Section 4 we define the analogue characteristic ϱn for Hadamard matrices.

For every positive integer n for which there is a Hadamard matrix of order n we

show the following estimates (cf. Theorems 4.2 and 4.8)

max
{
(1/

√
2 )λ(n)

√
n, n

}
≤ ϱn ≤ λ([

√
n ] + 1)n,

where [
√
n ] is the integer part of

√
n.

As an application of the introduced notions we give a characterization for

the spaces isomorphic to l1 in terms of these characteristics (cf. Theorem 4.10).

In Section 5 we pose an open problem which has naturally arisen from our

investigations.

Most of the results of this paper were announced in [5] without proofs. Here

these results and some new ones are given with complete proofs.
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2. Notation and preliminaries

We follow the standard notation and terminology used, for example, in [7].

The notations c0, lp and Lp, 1 ≤ p <∞, have their usual meaning.

A sequence (φi) of nonzero elements in a real Banach space X is called a

(Schauder) basis of X if for every x ∈ X there is a unique sequence of scalars

(αi) so that x =
∑∞

i=1 αiφi. If (φi) is a basis in a Banach space X with a norm

∥ · ∥, then there is a constant K ≥ 1 so that for every choice of scalars (αi) and

positive integers n < m, we have∥∥∥∥ n∑
i=1

αiφi

∥∥∥∥ ≤ K

∥∥∥∥ m∑
i=1

αiφi

∥∥∥∥.
The smallest possible constant K in this inequality is called the basis constant of

(φi). Note that in X there exists an equivalent norm ∥| · ∥| (i.e. for some positive

constants C1, C2: C1∥x∥ ≤ ∥|x∥| ≤ C2∥x∥ for every x ∈ X) for which the basis

constant is K = 1.

A basis (φi) is called normalized if ∥φi∥ = 1 for all i. Let (φi) be a basis of

a Banach space X. A sequence of linear bounded functionals (φ∗
i ) defined by the

relation ⟨φ∗
i , φj⟩ = δij , where δij is the Kronecker delta, is called the sequence of

biorthogonal functionals associated to the basis (φi). Two bases, (φi) of X and

(ψi) of Y , are called equivalent provided a series
∑∞

i=1 αiφi converges if and only

if
∑∞

i=1 αiψi converges.

A basis (φi) of a Banach space X is unconditional if for any permutation

π : N → N of the set N of positive integers (φπ(i)) is a basis of X. If (φi) is an

unconditional basis of a real Banach space X, then there is a constant K ≥ 1

so that for every choice of scalars (αi) for which
∑∞

i=1 αiφi converges and every

choice of bounded scalars (λi) we have∥∥∥∥ ∞∑
i=1

λiαiφi

∥∥∥∥ ≤ K sup
i

|λi|
∥∥∥∥ ∞∑

i=1

αiφi

∥∥∥∥.
The smallest possible constant K in this inequality is called the unconditional

constant of (φi). If (φi) is an unconditional basis of X, then there is an equivalent

norm in X so that the unconditional constant becomes 1.

The sequence of unit vectors ei = (0, 0, . . . ,
i
1, 0, . . .), i = 1, 2, . . ., is an exam-

ple of an unconditional basis in c0 and lp, 1 ≤ p <∞ (the basis (ei) is called the

natural basis of the corresponding spaces). The Haar system is an unconditional

basis in the function spaces Lp(0, 1), 1 < p < ∞. This system is also basis in

L1(0, 1), but in this space there does not exist an unconditional basis.
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Every normalized unconditional basis in l1, l2 or c0 is equivalent to the natural

basis of these spaces. Moreover, a Banach space has, up to equivalence, a unique

unconditional basis if and only if it is isomorphic to one of the following three

spaces: l1, l2 or c0.

Let (X, ∥ · ∥) be a Banach space with a normalized basis (φi). Consider the

expression

λ(n) =

∥∥∥∥ n∑
i=1

φi

∥∥∥∥, n = 1, 2, . . . .

For every space having an unconditional basis whose unconditional constant is 1

with the exception of the space c0 we have that (λ(n)) is a non-decreasing sequence

and limn→∞ λ(n) = ∞. More precisely, if supn λ(n) <∞, then (φi) is equivalent

to the natural basis of the space c0 (see, for example, [7], p. 120).

A basis (φi) of a Banach space X is said to be symmetric if for any permuta-

tion π of the positive integers (φπ(i)) is equivalent to (φi). If (φi) is a symmetric

basis of a Banach space X, then there is a constant K such that for any choice

of scalars (αi) for which
∑∞

i=1 αiφi converges, every choice of signs ϑ = (ϑi) and

any permutation π of the positive integers we have∥∥∥∥ ∞∑
i=1

ϑiαiφπ(i)

∥∥∥∥ ≤ K

∥∥∥∥ ∞∑
i=1

αiφi

∥∥∥∥.
The smallest possible constant K in this inequality is called the symmetric con-

stant of (φi).

A basis (φi) of a Banach space X is called subsymmetric if it is unconditional

and for every increasing sequence of integers (in), (φin) is equivalent to (φi). If

(φi) is a subsymmetric basis of a Banach space X, then there is a constant K such

that for any choice of scalars (αi) for which
∑∞

i=1 αiφi converges, every choice of

signs ϑ = (ϑi) and every increasing sequence of integers (in) we have∥∥∥∥ ∞∑
n=1

ϑnαnφin

∥∥∥∥ ≤ K

∥∥∥∥ ∞∑
i=1

αiφi

∥∥∥∥.
The smallest possible constant K in this inequality is called the subsymmetric

constant of (φi).

Every symmetric basis is subsymmetric. The converse of this assertion is not

true. The unit vectors in lp, 1 ≤ p <∞, and c0 are examples of symmetric basis.

Proposition 2.1 (see [7], Proposition 3.a.7, p. 119). Let (X, ∥ · ∥) be a

Banach space with a symmetric basis (φi) whose symmetric constant is equal

to 1. Then there exists a new norm ∥ · ∥0 on X such that:
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(a). ∥x∥ ≤ ∥x∥0 ≤ 2∥x∥ for all x ∈ X;

(a). The symmetric constant of (φi) with respect to ∥ · ∥0 is equal to 1;

(c). If we put λ0(n) = ∥
∑n

i=1 φi∥0, n = 1, 2, . . . , then {λ0(n + 1) − λ0(n)} is a

non-increasing sequence, i.e. λ0(·) is a concave function on the integers.

The converse of the last assertion is also true in the sense that, for every

concave non-decreasing sequence of positive numbers (λk) there exists at least

one Banach space X having a symmetric basis (φi) with symmetric constant

equal to 1 such that ∥
∑n

i=1 φi∥ = λn for every n.

Proposition 2.2 (see [7], Proposition 3.a.4, p. 116). (A). LetX be a Banach

space with a normalized subsymmetric basis (φi) whose subsymmetric constant

is 1. Then the following inequality is valid∥∥∥∥ n∑
i=1

αiφi

∥∥∥∥ ≥
∑n

i=1 |αi|
n

λ(n), n = 1, 2, . . . .

(B). Moreover, if (φi) is a subsymmetric basis, then one has∥∥∥∥ n∑
i=1

αiφi

∥∥∥∥ ≥
∑n

i=1 |αi|
2n

λ(n), n = 1, 2, . . . .

From this it follows that if limn→∞ supλ(n)/n > 0, then (φi) is equivalent

to the natural basis of the space l1 (see, for example, [7], p. 20).

The Rademacher functions rk, k = 1, 2, . . ., are defined on [0, 1] by the equal-

ity

rk(t) = sign(sin 2kπt).

Let us note the well-known Khintchine’s inequality: for every 0 < p < ∞
there exist positive constants Ap and Bp so that

Ap

( m∑
k=1

|αk|2
)1/2

≤
(∫ 1

0

∣∣∣∣ m∑
k=1

αkrk(t)

∣∣∣∣p dt)1/p

≤ Bp

( m∑
k=1

|αk|2
)1/2

,

m = 1, 2, . . ., for every choice of scalars (α1, α2, . . . , αm). For p = 1 the best

constant is A1 = 1/
√
2 (see [10]).

A Banach spaceX is said to be of type p if there is a constant Tp = Tp(X) ≥ 0

such that for any finite collection of vectors x1, x2, . . . , xn in X we have(∫ 1

0

∥∥∥∥ n∑
k=1

rk(t)xk

∥∥∥∥2 dt)1/2

≤ Tp

( n∑
k=1

∥xk∥p
)1/p

, n = 1, 2, . . . .
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In the Khintchine’s inequality the notion of type p has meaning for the case

0 < p ≤ 2. Every Banach space has type p for 0 < p ≤ 1. The spaces lp, Lp([0, 1]),

1 ≤ p <∞, have type min(2, p).

A Hadamard matrix is a square matrix of order n with entries ±1 such that

any two columns (rows) are orthogonal (see e.g. [4], p. 238, [9], p. 44). We denote

by Hn = [hnki] a Hadamard matrix of order n. It is easy to see that the order of

a Hadamard matrix is either 1 or 2 or it is divisible by 4. Hadamard put forward

the conjecture that for any n divisible by 4 there exists a Hadamard matrix of

order n. As far as we know, Hadamard’s conjecture remains open. Let NH be the

set of all positive integers n for which there exists a Hadamard matrix of order n.

The following property follows from the definition of Hadamard matrices. If

Hn = [hnki] is a Hadamard matrix, then for every n, n ∈ NH, we have
n∑

i=1

hnkih
n
mi = n δkm,

n∑
k=1

hnkih
n
kj = n δij .

Therefore for any n, n ∈ NH, and every sequence (βi)i≤n of real numbers one has

n∑
k=1

(
n∑

i=1

hnkiβi

)2

= n
n∑

i=1

β2
i .

It is easy to see that multiplying any row or any column of a Hadamard

matrix by −1 we get again a Hadamard matrix.

Let the triple (Ω,A,P) be a probability space, where Ω be a non-empty

set, A be a σ-algebra of subsets of Ω and P be a probability measure on the

measurable space (Ω,A), (i.e. P is assumed to be a non-negative measure on

(Ω,A) satisfying the condition P(Ω) = 1). Let X be a real Banach space with

the topological dual space X∗. A function ξ : Ω → X is scalarly measurable

(respectively scalarly integrable) if for each x∗ ∈ X∗ the scalar function ⟨x∗, ξ⟩
is measurable (respectively integrable, i.e. ⟨x∗, ξ⟩ ∈ L1(Ω,A,P)). A scalarly

integrable function ξ : Ω → X is Pettis integrable (or weak integrable) if for each

A ∈ A there exists a vector mξ,A ∈ X such that for every x∗ ∈ X∗ we have

⟨x∗,mξ,A⟩ =
∫
A

⟨x∗, ξ⟩ dP.

For a Pettis integrable function ξ : Ω → X the element mξ,Ω is called the Pettis

integral of ξ with respect to P. It is also called the mean value of the function ξ.

We denote by E ξ the Pettis integral of the function ξ. If a function ξ : Ω → X has

a measurable norm and there exists E ξ, then ∥E ξ∥ ≤ E ∥ξ∥. For every separably

valued function ξ : Ω → X from the condition E ∥ξ∥ <∞ it follows the existence

of the Pettis integral E ξ (ξ is separably valued if ξ(Ω) is a separable subset of X).

For details and proofs related with the topics of this section see [7] and [11].
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3. Sylvester matrices

The Sylvester matrices are special cases of Hadamard matrices. They are

defined by the recursion relations (cf. [9], p. 45):

S(1) =

[
1 1

1 −1

]
, S(n) =

[
S(n−1) S(n−1)

S(n−1) −S(n−1)

]
, n = 2, 3, . . . .

S(n) is a Hadamard matrix of order 2n and hence 2n ∈ NH for all n = 1, 2, . . ..

If the first column of a Hadamard matrix Hn = [hnki] consists of only +1,

then one has
n∑

k=1

hnki =

{
n, for i = 1,

0, for i = 2, 3, . . . , n.

In particular, if S(n) = [s
(n)
ki ] is the Sylvester matrix of order 2n, n = 1, 2, . . .,

then we get
2n∑
k=1

s
(n)
ki =

{
2n, for i = 1,

0, for i = 2, 3, . . . , 2n

and
2n−1∑
k=1

s
(n)
ki =

{
2n−1, for i = 1 and i = 2n−1 + 1,

0, otherwise.

Let S(n) = [s
(n)
ki ] be the Sylvester matrix of order 2n, n = 1, 2, . . ., and X

be a Banach space with a norm ∥ · ∥ and a normalized basis (φi). Consider the

function

ϱ(n)(m) =

∥∥∥∥ 2n∑
i=1

( m∑
k=1

s
(n)
ki

)
φi

∥∥∥∥, m = 1, 2, . . . , 2n. (3.1)

One has ϱ(n)(1) = λ(2n), ϱ(n)(2) = 2 ∥
∑2n−1

i=1 φ2i−1∥, ϱ(n)(2n)= 2n, where λ(2n) =

∥
∑2n

i=1 φi∥. The function ϱ(n)(m) obviously depends on X, the norm in X and

the choice of basis (φi). In particular, for the case of the spaces lp, 1 ≤ p < ∞,

with respect to the natural basis ϱ(n)(m) has the form (
∑2n

i=1 |
∑m

k=1 s
(n)
ki |p)1/p.

We set

ϱ(n) = max
1≤m≤2n

ϱ(n)(m). (3.2)

The function ϱ(n)(m) can be expressed as follows. Let ak =
∑2n

i=1 s
(n)
ki φi,

k = 1, 2, . . . , 2n. Then one has ϱ(n)(m) = ∥
∑m

k=1 ak∥. If (φi) is an unconditional

basis with unconditional constant equal to 1, then, obviously, ∥ak∥ = λ(2n) for

any k = 1, 2, . . . , 2n and ϱ(n) ≤ λ(2n) 2n ≤ 22n.
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In lp, 1 ≤ p <∞, it was proved in [12] that ϱ(n) ≤ n 2n.

The following theorem gives a similar estimate of ϱ(n) in the case of general

Banach spaces with subsymmetric basis.

Theorem 3.1. Let X be a Banach space with normalized subsymmetric

basis whose subsymmetric constant is 1. Then for ϱ(n) defined by (3.2) one has

the following estimate

ϱ(n) ≤ min

{(
1 +

n∑
j=1

2−jλ(2j−1)

)
· 2n, λ(n) · 2n

}
, n = 1, 2, . . . . (3.3)

Proof. First we prove the inequality ϱ(n) ≤ (1 +
∑n

j=1 2
−jλ(2j−1)) · 2n by

induction. For n = 1 it is true since the left hand side of (3.3) is equal to 2 and

the right hand side is equal to 3. Let n ≥ 2. Introduce the following notation

α
(n)
i (m) =

m∑
k=1

s
(n)
ki , 1 ≤ i,m ≤ 2n. (3.4)

Therefore we get

α
(n)
1 (m) = m (3.5)

and

α
(n)
2n−1+1(m) =

{
m, for 1 ≤ m ≤ 2n−1,

2n −m, for 2n−1 + 1 ≤ m ≤ 2n.
(3.6)

Since i ≤ 2n we can write that i = εn2
n + εn−12

n−1 + · · · + ε12 + ε0, where

εj ∈ {0, 1} for every j. Then by the definition and the properties of the Sylvester

matrices we can prove by induction that for any i

max
1≤m≤2n

∣∣∣α(n)
i (m)

∣∣∣ = 2f(i), (3.7)

where the function f : {1, 2, . . . , n} → {0, 1, 2, . . . , n} is defined as follows: f(1) =

n; f(i) = 0 if ε0 = 0 (i.e. i is an even number) and if ε0 = 1 (i.e. i is an odd

number), then for f(i) we have: εf(i) = 1 and εj = 0 for every j = 1, 2, . . . , f(i)−1.

For i = 1 and i = 2n−1 +1 the equality (3.7) is valid since from the relations

(3.5) and (3.6) it follows that max1≤m≤2n |α(n)
1 (m)| = 2n and

max1≤m≤2n |α(n)
2n−1+1(m)| = 2n−1. To prove (3.7) for the rest indexes i we use the

following equalities

max
1≤m≤2n+1

∣∣α(n+1)
2n+i (m)

∣∣ = max
1≤m≤2n+1

∣∣α(n+1)
i (m)

∣∣ = max
1≤m≤2n

∣∣α(n)
i (m)

∣∣ (3.8)
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for any i = 2, 3, . . . , 2n, which is a consequence of the definition and the properties

of the Sylvester matrices. Every positive integer i, 1 ≤ i ≤ 2n+1, has the unique

representation given by

i =

{
εn2

n + · · ·+ ε12 + ε0, for 1 ≤ i ≤ 2n,

2n + εn2
n + · · ·+ ε12 + ε0, for 2n + 1 ≤ i ≤ 2n+1.

(3.9)

If i is an even number, then in (3.9) we have ε0 = 0 and by (3.7) and (3.8) we

obtain max1≤m≤2n+1 |α(n+1)
i (m)| = 1. If i is an odd number and, in addition,

i ̸= 1 and i ̸= 2n + 1, then we can rewrite (3.9) as follows:

i =

{
εn2

n + . . .+ εj0+12
j0+1 + 2j0 + 1, for 3 ≤ i ≤ 2n,

2n + εn2
n + · · ·+ εj0+12

j0+1 + 2j0 + 1, for 2n + 3 ≤ i ≤ 2n+1,

where j0 = 1, 2, . . . , n− 1. Using again relations (3.7) and (3.8) we certainly have

max1≤m≤2n+1 |α(n+1)
i (m)| = 2j0 .

Applying now a simple combinatorial calculation we get that the number of

indexes i, 1 ≤ i ≤ 2n, for which max1≤m≤2n |α(n)
i (m)| = 2j , is equal to 2n−j−1

for j = 0, 1, 2, . . . , n − 1, and the equality max1≤m≤2n |α(n)
i (m)| = 2n is satisfied

only for i = 1.

As the subsymmetric constant of the basis (φi) is 1, using (3.7), we obtain

for every m = 1, 2, . . . , 2n the following relations:

ϱ(n)(m) =

∥∥∥∥ 2n∑
i=1

∣∣α(n)
i (m)

∣∣φi

∥∥∥∥ ≤
∥∥∥∥ 2n∑

i=1

max
1≤m≤2n

∣∣α(n)
i (m)

∣∣φi

∥∥∥∥
=

∥∥∥∥2nφ1 +
n∑

j=1

2n−j
2j−1∑

i=2j−1

φπ(i+1)

∥∥∥∥, (3.10)

where π is a permutation of a sequence of the positive integers {2, 3, . . . , 2n}.
Applying now the triangular inequality on the right hand side of (3.10) and using

the fact that (φi) is a subsymmetric basis we get the required inequality.

Now we prove the inequality ϱ(n) ≤ λ(n) 2n. The number of the (not neces-

sarily different) basis elements involved in the right hand side of the inequality

(3.10) is equal or less than n · 2n (more exactly, (1 + n/2) · 2n). Hence we get the

following equality

2nφ1 +
n∑

j=1

2n−j
2j−1∑

i=2j−1

φπ(i+1) =
2n∑
k=1

lk∑
i=1

φki , (3.11)

where 1 ≤ lk ≤ n for any k = 1, 2, . . . , 2n, φki ∈ {φ1, φ2, . . . , φ2n}, for any fixed

k and for every i ̸= j, i, j = 1, 2, . . . , lk, we have φki ̸= φkj and for any fixed i

but for different indexes k the elements φki can be the same. As the basis (φi) is
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subsymmetric with subsymmetric constant equal to 1 and (3.10) and (3.11) are

valid we obtain

ϱ(n)(m) ≤
∥∥∥∥2nφ1 +

n∑
j=1

2n−j
2j−1∑

i=2j−1

φπ(i+1)

∥∥∥∥
=

∥∥∥∥ 2n∑
k=1

lk∑
i=1

φki

∥∥∥∥ ≤
2n∑
k=1

∥∥∥∥ lk∑
i=1

φki

∥∥∥∥ =

2n∑
k=1

λ(lk) ≤ λ(n) 2n

for every m. This proves the theorem. �

Remark 3.2. For the estimates proved in Theorem 3.1 with respect to the

natural basis we obtain the relation 1 +
∑n

j=1 2
−jλ(2j−1) ≤ λ(n) in the case of

X = l1, but we have the converse relation 1 +
∑n

j=1 2
−jλ(2j−1) ≥ λ(n) in the

case of X = c0.

Let X be a Banach space (not necessarily with basis), x1, x2, . . . , x2n be a

sequence of elements from the unit ball of X and S(n) be the Sylvester matrix

of order 2n, n = 1, 2, . . .. By analogy with the definition of ϱ(n) let ϱ̂(n)(m) =

∥
∑2n

i=1(
∑m

k=1 s
(n)
ki )xi∥, m = 1, 2, . . . , 2n, and let ϱ̂(n) = max1≤m≤2n ϱ̂

(n)(m).

Corollary 3.3. We have ϱ̂(n) ≤ n · 2n.

Proof. Using the triangular inequality and the fact that ∥xi∥ ≤ 1 for any i,

we have

ϱ̂(n)(m) ≤
2n∑
i=1

∣∣∣∣ m∑
k=1

s
(n)
ki

∣∣∣∣.
The right hand side of the last relation is the expression ϱ(n)(m) in the space l1
with respect to the natural basis, which is for every m = 1, 2, . . . , 2n less or equal

than n 2n (cf. Theorem 3.1). �

Corollary 3.4. Let X be a Banach space of type p, p > 1, with a normalized

subsymmetric basis (φi) whose subsymmetric constant is 1. Then one has

ϱ(n) ≤ c · 2n,
where the constant c ≥ 1 depends only on the space X.

Proof. Since (φi) is a normalized subsymmetric basis whose subsymmetric

constant is 1, then λ(2j−1) ≤ Tp(X) 2(j−1)/p for every j ≥ 1, where Tp(X) is the
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constant involved in the definition of the space of type p. Then for the right hand

side of (3.3) we get

1 +

n∑
j=1

2−jλ(2j−1) ≤ 1 + Tp(X)

n∑
j=1

2−j+(j−1)/p ≤ 1 + Tp(X)/(2− 21/p).

Taking c = 1 + Tp(X)/(2− 21/p) the proof is finished. �

Let us note that in the space c0 we have a similar estimate, namely ϱ(n) ≤ 2n

(cf. Theorem 3.1), although c0 is a space of type 1. As ϱ(n) ≥ 2n, we get ϱ(n) = 2n

in the space c0.

Thus, in the Banach spaces of type p, p > 1, (as well as in c0), we have

supn ϱ
(n)/2n < ∞. But in general this is not true. The following statement

shows the validity of this fact for the space l1.

Theorem 3.5 ([6]). For the space l1 with the natural basis one has

ϱ(n) = max
1≤m≤2n

ϱ(n)(m) = (3n+ 7)2n/9 + 2(−1)n/9, n ≥ 1.

For any n the maximum is attained at the points mn = (2n+1 + (−1)n)/3 and

m′
n = (5 · 2n−1 + (−1)n−1)/3 .

Let us estimate ϱ(n) from below.

Theorem 3.6. If a Banach space X satisfies the conditions of Theorem 3.1,

then one has

ϱ(n) ≥ max

{
n+ 2

6
λ(2n), 2n

}
, n = 1, 2, . . . .

Proof. By the definition of ϱ(n)(m) for any positive integer n we have,

ϱ(n) ≥ ϱ(n)(2n) = 2n and the inequality ϱ(n) ≥ 2n is evident.

Let us prove that for any integer n the inequality ϱ(n) ≥ n+2
6 λ(2n) is also

true. Using the inequality of Proposition 2.2 (B) for any integer n we have∥∥∥∥ 2n∑
i=1

∣∣α(n)
i (m)

∣∣φi

∥∥∥∥ ≥
∑2n

i=1 |α
(n)
i (m)|

2n+1
λ(2n) for any m = 1, 2, . . . , 2n,

where the numbers α
(n)
i (m) are defined by (3.4). Hence for any integer n we get

max
1≤m≤2n

∥∥∥∥ 2n∑
i=1

∣∣α(n)
i (m)

∣∣φi

∥∥∥∥ ≥
max1≤m≤2n

∑2n

i=1 |α
(n)
i (m)|

2n+1
λ(2n). (3.12)
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We know that ∥
∑2n

i=1 |α
(n)
i (m)|φi∥ = ϱ(n)(m) and

∑2n

i=1 |α
(n)
i (m)| is the value of

ϱ(n)(m) in the space l1 with respect to the natural basis. Therefore, by Theo-

rem 3.5 we have

max
1≤m≤2n

2n∑
i=1

∣∣α(n)
i (m)

∣∣ = 3n+ 7

9
2n + (−1)n

2

9
for any n = 1, 2, . . . .

Putting these expressions into (3.12) we complete the proof by elementary calcu-

lations. �

Remark 3.7. If a basis (φi) of a space X is in addition symmetric, then using

the inequality of Proposition 2.2 (A) we can prove by analogy with Theorem 3.6

that

ϱ(n) ≥ max

{
n+ 2

3
λ(2n), 2n

}
, n = 1, 2, . . . .

It follows from Theorem 3.6 that in spaces of type p, p > 1, for sufficiently

large n the lower estimate 2n is more precise than n+2
6 λ(2n), because in such

spaces we have λ(2n) ≤ Tp(X) 2n/p. Hence, the lower estimate n+2
6 λ(2n) can

compete with 2n in spaces of type 1.

The following example shows that beside l1 there exist Banach spaces differ-

ent from l1 with supn ϱ
(n)/2n = ∞.

Example 3.8. Consider the real function f(t) =

√
log2 5

5
t+4√

log2(t+4)
, t ≥ 1. It

is concave since for every t ≥ 1 we have

f ′′(t) =

√
log2 5

10 ln 2
· − log2(t+ 4) + 3/(2 ln 2)

(t+ 4) log
5/2
2 (t+ 4)

≤ 0.

By Proposition 2.1(c) the sequence (λn) with λn = f(n), n = 1, 2, . . ., is concave.

Therefore, there exists at least one Banach space X having a symmetric basis

(φi) with symmetric constant equal to 1 such that λ(n) = ∥
∑n

i=1 φi∥ = λn for

every n = 1, 2, . . . (see [7], p. 120). Hence by Remark 3.7 for any integer n we

have

ϱ(n) ≥ n+ 2

3
· λ(2n) = n+ 2

3
·
√

log2 5

5
· 2n + 4√

log2(2
n + 4)

>

√
log2 5

15
· n+ 2√

n+ 2
· 2n ≥

√
log2 5

15
·
√
n+ 2 · 2n.
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The space X is not isomorphic to l1 since

lim
n→∞

sup
n

λ(n)

n
= lim

n→∞
sup
n

(√
log2 5

5
· n+ 4

n
√
log2(n+ 4)

)
= 0.

In particular, it follows from the obtained estimate that the type of X does

not exceed 1 (cf. Corollary 3.4).

4. Hadamard matrices

The main aim of this section is to clear up whether the estimates for Sylvester

matrices found in Section 3 can be extended to general Hadamard matrices.

Let Hall
n be the set of all Hadamard matrices of order n, n ∈ NH. For a

Hadamard matrix Hn = [hnki] we consider the same numerical characteristic

ϱHn(m) = ∥
∑n

i=1(
∑m

k=1 h
n
ki)φi∥, m = 1, 2, . . . , n, where (φi) is a normalized

basis of a Banach space X. Setting ak =
∑n

i=1 h
n
kiφi, we notice that

ϱHn(m) =

∥∥∥∥ m∑
k=1

ak

∥∥∥∥. (4.1)

If (φi) is an unconditional basis with unconditional constant equal to 1, then we

have max1≤m≤n ϱHn(m) ≤ λ(n) n ≤ n2 for any Hn ∈ Hall
n .

Finally we set ϱHn = max1≤m≤n ϱHn(m) and ϱn = maxHn∈Hall
n
ϱHn .

Remark 4.1. Note that the characteristic ϱHn = ϱ(Hn) can be regarded as

a norm of the Hadamard matrix Hn. Indeed, let us denote by Mn the vector

space of all square matrices of order n, n ∈ NH, and let X be a Banach space

with a basis (φi). One has Hall
n ⊂ Mn. Let Tn = [tnki] ∈ Mn be a matrix and

ϱ(Tn) = max1≤m≤n ∥
∑n

i=1(
∑m

k=1 t
n
ki)φi∥. It is easy to see that ϱ is a norm in

Mn and with respect to this norm Mn is a Banach space.

The following theorem gives us the lower estimate for ϱn.

Theorem 4.2. Let X be a Banach space with a normalized unconditional

basis whose unconditional constant is 1. Then we have

ϱn ≥ max
{
(1/

√
2)λ(n)

√
n, n

}
for any n ∈ NH.
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Proof. If one of the columns of a Hadamard matrix Hn consists of +1 only,

then we have ϱHn(n) = n and the inequality ϱn ≥ n is evident.

Let Hn = [hnki] be a Hadamard matrix of order n and (rk(t))k≤n be a se-

quence of Rademacher functions defined on the interval [0, 1]. For every t ∈ [0, 1]

the matrix Hn,t = [hnki rk(t)] is also a Hadamard matrix such that ϱHn,t =

max1≤m≤n ϱHn,t(m) = max1≤m≤n ∥
∑m

k=1 ak rk(t)∥, where ak =
∑n

i=1 h
n
kiφi, k =

1, 2, . . . , n.

Let ξ(t) =
∑n

i=1 |
∑n

k=1⟨φ∗
i , ak rk(t)⟩|φi. Using the fact that (φi) is an un-

conditional basis with unconditional constant equal to 1, it is easy to see that

∥ξ(t)∥ =

∥∥∥∥ n∑
i=1

n∑
k=1

⟨φ∗
i , ak⟩ rk(t)φi

∥∥∥∥
=

∥∥∥∥∥
n∑

k=1

( n∑
i=1

⟨φ∗
i , ak⟩φi

)
rk(t)

∥∥∥∥ =

∥∥∥∥ n∑
k=1

ak rk(t)

∥∥∥∥
for every t ∈ [0, 1]. As the Rademacher functions are bounded, ∥ξ(t)∥ is integrable

with respect to the Lebesgue measure on [0, 1]. Hence, there exists the Pettis

integral E ξ of the measurable function ξ and E ∥ξ∥ ≥ ∥E ξ∥. It is easy to see that

E ξ =
∑n

i=1(E |
∑n

k=1⟨φ∗
i , ak⟩ rk(t)|)φi.

As the Rademacher functions are bounded, ϱHn,t is also integrable with re-

spect to the Lebesgue measure on [0, 1], and using the Khintchine’s inequality we

have

∞ > E ϱHn,t = E max
1≤m≤n

∥∥∥∥ m∑
k=1

ak rk(t)

∥∥∥∥ ≥ E ∥ξ∥ ≥ ∥E ξ∥

≥ (1/
√
2)

∥∥∥∥ n∑
i=1

( n∑
k=1

⟨φ∗
i , ak⟩2

)1/2

φi

∥∥∥∥ = (1/
√
2)λ(n)

√
n,

where (φ∗
i ) are the biorthogonal functionals associated to the basis (φi). Then,

clearly, there exists a point t0 ∈ [0, 1] such that ϱHn,t0
≥ E ϱHn,t

and therefore

ϱn ≥ ϱHn,t0
≥ (1/

√
2)λ(n)

√
n. �

An immediate consequence of this theorem is the following corollary.

Corollary 4.3. In lp, 1≤ p< 2, with the natural basis we have sup
n∈NH

ϱn/n=∞.

For the spaces lp the similar fact for the Sylvester matrices holds only for the

space l1 (see Theorem 3.5).

Let us estimate ϱn from above for the case of lp, 1 ≤ p <∞.
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Theorem 4.4. In lp, 1 ≤ p <∞, with the natural basis for any n ∈ NH the

following inequality holds
ϱn ≤ max

{
n(p+2)/2p, n

}
.

Proof. Let p ≥ 2 and Hn ∈ Hall
n be an arbitrary Hadamard matrix of order

n. Using definition (4.1) and the fact that ∥a∥lp ≤ ∥a∥l2 one can see that

ϱHn ≤ max
1≤m≤n

∥∥∥∥ m∑
k=1

ak

∥∥∥∥
l2

= max
1≤m≤n

( m∑
k=1

ak,

m∑
k=1

ak

)1/2

= n,

where (·, ·) denotes the inner product in the space l2. Hence in lp, p ≥ 2, the

estimate ϱn ≤ n holds.

Now let 1 ≤ p ≤ 2 and Hn ∈ Hall
n be again an arbitrary Hadamard matrix of

order n. If a = (αi) ∈ lp is a sequence of the length n (i.e. αn ̸= 0 and αi = 0 for

any i > n), then we have ∥a∥lp ≤ n(2−p)/2p ∥a∥l2 . Hence, we have

ϱHn ≤ n(2−p)/2p max
1≤m≤n

∥∥∥∥ m∑
k=1

ak

∥∥∥∥
l2

= n(p+2)/2p

and the theorem is proved. �

For Sylvester matrices Corollary 4.3 and Theorem 4.4 yield the following

corollary.

Corollary 4.5. Let S(n) be the Sylvester matrix of order 2n, n = 1, 2, . . . .

Then in lp, p ≥ 2, with the natural basis we have

ϱ(n) = 2n.

Theorem 4.2 and 4.4 imply the following assertion.

Corollary 4.6. In lp, 1 ≤ p ≤ ∞, with respect to the natural basis for every

n ∈ NH we have

(1/
√
2)n(p+2)/2p ≤ ϱn ≤ n(p+2)/2p, for 1 ≤ p < 2,

ϱn = n, for p ≥ 2.

Let X be a Banach space (not necessarily with a basis), x1, x2, . . . , xn be a

sequence of elements from the unit ball of X and Hn ∈ Hall
n , n ∈ NH. Let us put

ϱ̂Hn(m) = ∥
∑n

i=1(
∑m

k=1 h
n
ki)xi∥, m = 1, 2, . . . , n, ϱ̂Hn = max1≤m≤n ϱ̂Hn(m) and

ϱ̂n = maxHn∈Hall
n
ϱ̂Hn .
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Corollary 4.7. For any n ∈ NH we have ϱ̂n ≤ n
√
n.

Proof. The proof goes analogously to the proof of Corollary 3.3. Following

this way for the case p = 1 we use the estimate given by Corollary 4.6. �

Now we prove the analogue of Theorem 3.1 for the Hadamard matrices.

Theorem 4.8. Let X be a Banach space with a normalized subsymmetric

basis whose subsymmetric constant is 1. Then we have for any n ∈ NH

ϱn ≤ λ([
√
n ] + 1)n,

where [
√
n ] is the integer part of

√
n.

Proof. Let Hn = [hnki] be a Hadamard matrix of order n. As we already

have noted

ϱHn = max
1≤m≤n

∥∥∥∥ n∑
i=1

( m∑
k=1

hnki

)
φi

∥∥∥∥ ≤ max
1≤m≤n

n∑
i=1

∣∣∣∣ m∑
k=1

hnki

∣∣∣∣ ≤ n
√
n (4.2)

for every Hn ∈ Hall
n . For the sake of convenience let us introduce the notation

α
(n)
i (m) =

∣∣∣∣ m∑
k=1

hnki

∣∣∣∣ for any i,m = 1, 2, . . . , n. (4.3)

Using the definition of the Hadamard matrices and (4.2) we obtain the following

properties of the numbers α
(n)
i (m):

(a). For all i and m the number α
(n)
i (m) is an integer and 0 ≤ α

(n)
i (m) ≤ n.

(b). For any m we have
∑n

i=1 α
(n)
i (m) ≤ n

√
n.

Denote by M the subset of X consisting of n points {
∑n

i=1 α
(n)
i (m)φi : m =

1, 2, . . . , n}, where α(n)
i (m) is defined by (4.3). Then we have ϱHn

= maxx∈M ∥x∥.
Let us consider the following subsets of X:

S=

{ n∑
i=1

tiφi : 0 ≤ ti ≤ n, i = 1, 2, . . . , n

}
and T =

{ n∑
i=1

tiφi :
n∑

i=1

ti ≤n
√
n

}
.

Since S is an n-dimensional parallelepiped and T is a hyperplane in X, the sets S,

T as well as their intersection S ∩ T are convex. Moreover, we have M ⊂ S ∩ T .
The set S ∩ T is compact because it is a bounded set in an n-dimensional subset

of X spanned by the basis vectors φ1, φ2, . . . , φn. According to the Krein–Milman

theorem (see, for example, [3], p. 104) S∩T is a closed convex span of its extreme
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points. Hence we have

ϱHn = max
x∈M

∥x∥ ≤ sup
x∈S∩T

∥x∥ = sup
x∈E

∥x∥, (4.4)

where E is the set of all extreme points of S ∩ T . The extreme points of the set

S are the vertices of the parallelepiped S, i.e. the points of the form
∑n

i=1 βiφi,

where each βi takes the values 0 or n. Since E ⊂ S ∩ T , the set E contains those

extreme points of S for which the condition
∑n

i=1 βi ≤ n
√
n is satisfied. If we

denote by l the number of these βi-s which are different from zero, then the last

condition can be expressed as follows: ln ≤ n
√
n, or equivalently l ≤

√
n. Since l

is an integer, we get l ≤ [
√
n ]. Since the basis (φi) is subsymmetric, the norm

∥
∑n

i=1 βiφi∥ can be estimated as follows ∥
∑n

i=1 βiφi∥ ≤ λ(l)n < λ([
√
n ] + 1)n.

It is easy to check that the set E, besides the vertices of the parallelepiped S,

contains the points of the intersection of the bound of T with the edges of the

parallelepiped S. The edges of S consists of the points which have the form∑n
i=1 βiφi, where one of βi satisfies the condition 0 ≤ βi0 ≤ n and all other βi-s

take the values 0 or n. Denote by l the number of βi-s for which βi = n. Due

to the condition
∑n

i=1 βiφi ∈ T , we have βi0 + ln ≤ n
√
n. As βi0 ≥ 0 and l

is an integer we have l ≤ [
√
n ]. Since 0 ≤ βi0 ≤ n, using again that (φi) is a

subsymmetric basis, we obtain∥∥∥∥ n∑
i=1

βiφi

∥∥∥∥ =

∥∥∥∥βi0φi0 +

n∑
i0 ̸=i=1

βiφi

∥∥∥∥ ≤
∥∥∥∥nφi0 +

n∑
i0 ̸=i=1

βiφi

∥∥∥∥ ≤ λ([
√
n ] + 1)n.

Thus, for every point x of the set E the estimate ∥x∥ ≤ λ([
√
n ]+1)n is valid

and using (4.4) we complete the proof of the theorem. �

Remark 4.9. We can rephrase Theorem 4.8 in the following way: Let Hn =

[hnki] be a Hadamard matrix of order n ∈ NH and let ak =
∑n

i=1 h
n
kiφi, k =

1, 2, . . . , n, where (φi) is a normalized subsymmetric basis of a Banach space X

with subsymmetric constant equal to 1. Then we have

max
1≤m≤n

∥∥∥∥ m∑
k=1

ϑkak

∥∥∥∥ ≤ λ

(
[
√
n ] + 1

)
n

for every sign ϑk ∈ {−1, 1}, k = 1, 2, . . . , n, every Hadamard matrix Hn ∈ Hall
n

and every positive integer n ∈ NH.

By Theorem 3.1, in a Banach space with a normalized subsymmetric basis

whose subsymmetric constant is 1 we have ϱ(n)/(n · 2n) ≤ 1. On the other hand,

by Theorem 3.5 in the space l1 we have ϱ(n)/(n · 2n) ≥ 1/3. Using Sylvester and

Hadamard matrices we can characterize the spaces isomorphic to l1 as follows.
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Theorem 4.10. Let X be a Banach space with a normalized subsymmet-

ric basis (φi) whose subsymmetric constant is 1. The following statements are

equivalent:

(i). There is a constant δ > 0 such that ϱn/(n
√
n) ≥ δ for every n ∈ NH, where

δ is independent of n.

(ii). X is isomorphic to l1.

(iii). There exists a constant ε > 0 which does not depend on n such that for every

n = 1, 2, . . . we have ϱ(n)/(n · 2n) ≥ ε.

Proof. (i) =⇒ (ii). Using Theorem 4.8 for every n ∈ NH we have

0 < δ ≤ ϱn/(n
√
n ) ≤ λ([

√
n ] + 1)n/(n

√
n ) = λ([

√
n ] + 1)/

√
n.

Therefore one has λ([
√
n ])/

√
n ≥ δ/2 > 0 for infinitely many n. Now the validity

of the statement (ii) follows from the fact which was mentioned in Section 2: if

lim
n→∞

supλ(n)/n > 0,

then X is isomorphic to l1.

(ii) =⇒ (iii). Let X be isomorphic to l1, and denote by T : X → l1 an

isomorphism between X and l1. It is clear that (Tφi) is an unconditional basis

in l1. Since in l1 all normalized unconditional bases are equivalent (see [7], p. 71),

there exists a bounded linear operator S : l1 → l1 with bounded inverse operator,

such that Tφi = Sei for every integer i, where (ei) is a sequence of the unit

vectors in l1. By Theorem 3.5 for every integer n we have

1/3 ≤ max
1≤m≤2n

∥∥∥∥ 2n∑
i=1

∣∣∣∣ m∑
k=1

s
(n)
ki

∣∣∣∣ei∥∥∥∥/ (n · 2n)

= max
1≤m≤2n

∥∥∥∥ 2n∑
i=1

∣∣∣∣ m∑
k=1

s
(n)
ki

∣∣∣∣S−1Tφi

∥∥∥∥/ (n · 2n) ≤ ∥S−1T∥ max
1≤m≤2n

ϱ(n)(m)/ (n · 2n) .

With ε = 1/(3∥S−1T∥) > 0 we get the validity of assertion (iii).

The implication (iii) =⇒ (i) is true because 2n ∈ NH. �

5. Unsolved problem

Let (ei) be the natural basis of the space l1, S(n) = [s
(n)
ki ] be the Sylvester

matrix of order 2n, n = 1, 2, . . ., and (ak)k≤2n be the sequence in l1 defined by

ak =

2n∑
i=1

s
(n)
ki ei, k = 1, 2, . . . , 2n.
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Let us formulate the assertion of Theorem 3.5 in the following manner:

ϱ(n) =

∥∥∥∥ mn∑
k=1

ak

∥∥∥∥
l1

= (3n+ 7)2n/9 + 2(−1)n/9,

where mn = (2n+1 + (−1)n)/3.

Now let us consider a permutation σ : {1, 2, . . . , 2n} → {1, 2, . . . , 2n} and the

following expression: ∥∥∥∥ mn∑
k=1

aσ(k)

∥∥∥∥
l1

.

By Corollary 4.6 for every permutation σ : {1, 2, . . . , 2n} → {1, 2, . . . , 2n} we

have ∥∥∥∥ mn∑
k=1

aσ(k)

∥∥∥∥
l1

≤ 23n/2.

The authors do not know yet the answer for the following conjecture:

Conjecture 5.1. For any positive integer n and for any permutation σ :

{1, 2, . . . , 2n} → {1, 2, . . . , 2n} the following inequality holds:∥∥∥∥ mn∑
k=1

aσ(k)

∥∥∥∥
l1

≥ (3n+ 7)2n/9 + 2(−1)n/9.
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