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Abstract

The tangent Akivis algebra and Sabinin algebra of degree 3 of a differentiable loop is
the tangential object determined by the third-order Taylor polynomial of the multiplication
function of the loop. It is endowed with a bilinear skew-symmetric and a trilinear operation
defined by the infinitesimal commutator and associator of the loop. The aim of our work is
to study tangent algebras of degree 3 of abelian extensions of differentiable loops, which are
affine extensions of the tangent algebras of the loop by abelian algebras. This class of loop
extensions has previously been studied in terms of computational complexity and in terms of
universal algebra. We apply the obtained results to the determination of tangent algebras of
degree 3 of tangent prolongation of differentiable loops.

1 Introduction

We remember the main constructions and results of the theory of tangent prolongation of a Lie
group G with its Lie algebra g. Denoting by λx : G → G, ρx : G → G the left, respectively,
right multiplication and e ∈ G the identity element, the map (x, ξ) 7→ (x,dxλ

−1
x ξ), ξ ∈ Te(G),

identifies the tangent bundle T(G) with the product G× Te(G). The manifold G× Te(G) has a
natural Lie group structure, called tangent prolongation of G, determined by the multiplication

(x,X) · (y, Y ) =
(
xy,dxyλ

−1
xy

d

dt

∣∣
t=0

(x exp tX · y exp tY )
)

=
(
xy,Ad−1

y X + Y
)
,

where x, y ∈ G, X,Y ∈ Te(G) and Adg = de(λgρ
−1
g ) : Te(G) → Te(G) is the adjoint action of

g ∈ G on Te(G). This means that the tangent prolongation is a semidirect product G n Te(G)
determined by the adjoint representation. The Lie algebra of the tangent prolongation is the
semidirect sum g⊕α a of g with the abelian Lie algebra a on Te(G), which is determined by the
homomorphism g→ End(a) given by α : ξ 7→ θ−1 · adξ · θ, where θ : a→ g is the identity map of
the underlying vector space. The Lie bracket of g⊕α a is given by

[(ξ,X), (η, Y )] = ([ξ, η], αξY − αηX) = ([ξ, η], θ−1([ξ, θ(Y )] + [θ(X), η])), (1)

02010 Mathematics Subject Classification: 20N05, 17D99.
0Key words and phrases: differentiable loops, binary-ternary algebra, Akivis algebra and Sabinin algebra of

degree 3, abelian extension and tangent prolongation of differentiable loops, affine extension of tangent algebras
0This paper was supported by the National Research, Development and Innovation Office (NKFIH) Grant No.

K132951.
0Corresponding Author: Péter T. Nagy
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cf. [35], §V.1. and [34], §3.15.
The aim of our research project was to study the tangent prolongation of differentiable loops,
giving a natural generalization of the tangent prolongation of Lie groups. Our initial research
showed that the prolonged loop structure to the tangent bundle belongs to a special category of
loop extensions. This class of loop extensions has previously been studied in terms of compu-
tational complexity in [20], [18], called polyabelian loops, and then in terms of universal algebra
in [32], [33], called abelian extensions. The latter name is justified by the discovered interesting
properties of such loops, which allow us to consider them as non-associative variants of exten-
sions of abelian groups, yielding a somewhat broader class of extensions than the Schreier-type
theory of loop extensions studied in [25]. We have previously studied the abstract construction
of abelian extensions of loops that have some weak inverse property [10], and we have shown that
the tangent prolongation of loops inherits the classically weak associativity properties of the base
loop [11].
The basic idea of Lie theory of groups is to associate with an analytic group a Lie algebra defined
on its tangent space at the identity, whose operation is the infinitesimal commutator of the group,
determined by a second-order Taylor polynomial of the multiplication function. This construction
establishes a one-to-one correspondence between local Lie groups and Lie algebras, this assertion
is called Lie’s third theorem.
L. V. Sabinin, P. O. Mikheev ([19], [28], [29]) generalized Lie’s third theorem to local analytic loops
by introduction an infinite number of multilinear operations on the tangent space at the identity
element, corresponding to higher-order terms of the Taylor series decomposition of the local loop
multiplication. They proved that for any analytic local loop the tangent space at the identity in-
herits two families of multilinear operations 〈x1, . . . , xm; y, z〉, m ≥ 0 and (x1, . . . , xm; y1, . . . , yn),
m ≥ 1, n ≥ 2, satisfying an infinite number of identities, that make a tangent algebra, determin-
ing the local loop uniquely. The abstract version of this tangent algebra is called Sabinin algebra.
For a Lie group, the tangent Sabinin algebra is a Lie algebra, and if it is a Moufang loop then
this tangent algebra is a Malcev algebra. The theory of Sabinin algebras developed intensively
in the last decades (see e.g. [5], [7], [22], [23], [27]).
An essential difference between group theory and loop theory is that differentiable loops can
belong to any differentiability class, and the tangent algebra defined on the tangent space up
to the order of differentiability does not uniquely determine the corresponding local loop. This
justifies the investigation of local loops of any finite differentiability class and their connection
with their tangent algebras determined by the terms of their Taylor polynomial (cf. [12], [13]).
The development of Lie theory on differentiable local loops and their tangent algebras of degree
3 in the framework of web geometry was started by M. A. Akivis (see [1], [2], [3]). Their method,
applied to the third-order Taylor polynomial of the multiplication function of a non-associative
differentiable loop, leads to a binary-ternary algebra whose operations are the tangent commu-
tator and associator, measuring the non-commutativity, respectively, the non-associativity of the
loop. These algebras were later called the Akivis algebra and were studied by many authors (see
e.g. [12], [13], [21], [31], [30]).
Each Akivis algebra is closely related to a so-called Sabinin algebra of degree 3, which is obtained
by considering only the bilinear and trilinear operations together with polynomial identities up
to degree 3 of the Sabinin algebra. A Sabinin algebra of degree 3 is a vector space together
with a skew-symmetric bilinear operation and two trilinear operations. For a tangent Sabinin
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algebra of degree 3 of a differentiable local loop, the bilinear operation up to the sign is the
infinitesimal commutator of the local loop and the two trilinear operators are the symmetric and
skew-symmetric parts in the last two variables of the infinitesimal associator of the loop. Hence
the variety of Sabinin algebras of degree 3 is equivalent to the variety of Akivis algebras (cf.
Remark 13, [5], p. 7). In our following investigation, we will study the infinitesimal properties
of local loops of differentiability class 3 using their power series up to order 3 of the loop mul-
tiplication function. The results will be formulated first in Akivis algebras and then interpreted
them in Sabinin algebras of degree 3.
The development of the theory of loop extensions has recently attracted much attention and has
been applied to the construction and study of loops with special properties. (e.g. [6], [8], [9], [10],
[11], [14], [15], [18], [21], [24], [25], [26], [33]). A loop extension L of a loop K by the loop M is a
short exact sequence

1→M
ι→ L

π→ K → 1,

of loops, where ι(M) is a normal subloop of L and π induces an isomorphism of the factor loop
L/ι(M) to K. The objectives of this paper are to give a systematic investigation of abelian
extensions of differentiable loops and the corresponding extension theory of the tangent algebras
of degree 3, and to find algebraic characterizations of these tangent algebras of the tangent
prolongation of differentiable loops.
In §2 we introduce the basic concepts and methods of our research, in particular the tools of Taylor
expansions of differentiable local loop operations, the construction of tangent commutator and
associator of differentiable local loops, and the necessary notations and definitions of multilinear
algebra and of binary-ternary algebra, particularly of Akivis and Sabinin algebras of degree 3.
In §3, we define a set of multilinear maps, called the data system of the binary-ternary algebra
extension, and characterize extensions of Akivis algebras leading to Akivis algebras in terms of
their data system. In §4 we compute the data system of the tangent Akivis algebra extension
of abelian loop extensions and show that the data system of these extensions are so-called affine
extensions, containing only linear and constant terms with respect to the variables belonging to
the abelian ideal of the extension. We express also the operations of the tangent Sabinin algebra of
degree 3 of the abelian loop extension. We say that an extension of a differentiable local loop by an
abelian group is almost abelian if the tangent Akivis algebra of the extension is an affine extension
and the multiplication function is given by a third order polynomial. We prove a characterization
of almost abelian extensions from which it follows that this class is larger than the class of abelian
extensions. §5 is devoted to the characterization of abelian extensions of local loops associated
with a given affine extension of Akivis algebras. It is shown that the monomial terms of the third-
order Taylor polynomial of the multiplication map satisfy a nonlinear underdetermined system of
equations. We find the solutions depending on arbitrarily chosen tensors and the dimension of the
vector space of these tensors. The multitude of solutions allows us to consider affine extensions
of Akivis algebras by abelian algebras as infinitesimal versions of abelian extensions of loops.
In §6 we apply the results on tangent algebras of degree 3 of abelian extensions to the case of
tangent prolongation of differentiable loops. We obtain a remarkable form of the commutator
and the associator of the tangent Akivis algebra and prove that both operations of the tangent
Akivis algebra are given by analogous formulas to the expression (1) of the commutator of the Lie
algebra of the tangent prolongation of a Lie group. We determine the operations of the Sabinin
algebra of degree 3 of tangent prolongation of differentiable loops.
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2 Preliminaries

A loop is a set L with three binary operations ·, \, / : L× L→ L in which the identities

(x/y) · y = x, y\(y · x) = x, (x · y)/y = x, y · (y\x) = x, x, y ∈ L (2)

are fulfilled and there is an identity element e ∈ L satisfying

e · x = x · e = x/e = e\x = x for all x ∈ L. (3)

Left translations λx : L → L, λxy = x · y, and right translations ρx : L → L, ρxy = y · x, of the
multiplication operation x · y are bijective maps and the left and right division operations of L
satisfy x\y = λ−1

x y, respectively x/y = ρ−1
y x. A commutative loop is called abelian.

Cr-differentiable local loops

For a differentiable map ϕ : M → N between differentiable manifolds M and N we denote by
dxϕ : Tx(M) → Tϕ(x)(N) the linear differential map between the tangent spaces at a point
x ∈ M . Let V n be a real vector space of dimension n and F a k-variable differentiable map
defined in a neighbourhood of (0, . . . , 0) ∈ V n×· · ·×V n, then F ′i (u), i = 1, . . . , k, will denote the
linear differential map of F at the point (0, . . . , 0) with respect to the i-th vector variable, applied
to the vector u ∈ V n. Similarly, F ′′ij(u, v) denotes the bilinear second, respectively, F ′′′ijk(u, v, w)
the trilinear third differential map at (0, . . . , 0) with respect to the i-th and j-th, respectively,
the i-th, j-th and k-th vector variables, applied to the adequate number of vectors u, v ∈ V n or
u, v, w ∈ V n.
An n-dimensional Cr-differentiable manifold L equipped with a Cr-differentiable partial operation
(x, y) 7→ x · y (called partial multiplication) that is defined in an open domain (e, e) ∈ U ⊂ L×L
and satisfies e · x = x · e = x for all x ∈ L with a fixed e ∈ L is called Cr-differentiable local
H-space with identity element e ∈ L.
If two more Cr-differentiable partial operations \, / : U → L (called left and right partial divi-
sions) are defined in a Cr-differentiable local H-space L, and ·, \, / : U → L satify (2) and (3),
if the terms connected by equal sign have meaning, then L is a Cr-differentiable local loop with
identity element e ∈ L.
Let L be a Cr-differentiable local H-space (r ≥ 3) of dimension n covered by a coordinate neigh-
bourhood. We identify L with its coordinate chart in the euclidean vector space (V n, 〈., .〉) and
the identity element e ∈ L with the zero element 0 ∈ V n. The coordinate function of the local
multiplication has the Taylor expansion

x · y = x+ y + q(x, y) + r(x, x, y) + s(x, y, y) +M(x, y), (4)

in a neighbourhood of (0, 0) ∈ V n × V n with an error term M(x, y) satisfying

lim
x,y→0

M(x, y)

(|x|+ |y|)3
= 0.

The bilinear and trilinear monomials in (4) are expressed by

q = (x · y)′′xy(0, 0), r =
1

2
(x · y)′′′xxy(0, 0), s =

1

2
(x · y)′′′xyy(0, 0), (5)

4



on the vector space V n, (e.g. Corollary 4.4. in [17]), hence r and s are symmetric in the first,
respectively, in the last two variables.

Remark 2.1. We notice that q(x, y) is skew-symmetric in canonical coordinate systems (cf. [16]
and [4]), having the same differentiability property as the local multiplication. This property
of the bilinear form q can also be provided by a locally invertible coordinate change φ(x) =
x − 1

2q(x, x) in a neighbourhood of 0 ∈ V n. Indeed, denoting the multiplication by φ(x) ? φ(y)
with respect to the coordinates φ(x) ∈ V n we have

φ(x) ? φ(y) = φ(x · y) = x− 1

2
q(x, x) + y − 1

2
q(y, y) + q(x, y)− 1

2
q(x, y)− 1

2
q(y, x) + · · · .

The inverse of the map φ(x) = x − 1
2q(x, x) is of the form φ−1(x) = x + 1

2q(x, x) + o(2), hence
with x̃ = φ(x) and ỹ = φ(y) we get the expansion

x̃ ? ỹ = x̃+ ỹ +
1

2
(q(x̃, ỹ)− q(ỹ, x̃)) + o(2).

In the following we assume that the bilinear map q : V n×V n → V n in (4) is skew-symmetric.
According to the implicit mapping theorem the partial left and right division operations are
implicitly determined by the equation x·y−z = 0 in a neighbourhood of (0, 0, 0) in V n×V n×V n →
V n and have the same differentiability properties as the multiplication (x, y) 7→ x · y, since the
tangent maps (x · y − z)′y(0, 0, 0) and (x · y − z)′x(0, 0, 0) are invertible (see e.g. Theorem 5.9. in
[17]). It follows

Proposition 2.2. Any Cr-differentiable local H-space L is a Cr-differentiable local loop on a
neighbourhood of the identity element e ∈ L (cf. [4] (1.3) Proposition).

An immediate computation shows that the Taylor expansions of the coordinate functions of
the left and right divisions are of the form

y/x =y − x− q(y − x, x) + q(q(y − x, x), x)− r(y − x, y − x, x)− s(y − x, x, x) + o(3),

x\y =y − x− q(x, y − x) + q(x, q(x, y − x))− r(x, x, y − x)− s(x, y − x, y − x) + o(3),

where o(3) is an error term up to order 3.

Definition 2.1. Let L be a Cr-differentiable local loop and α(t), β(t), γ(t) differentiable curves
in L with initial data

α(0) = β(0) = γ(0) = e, α′(0) = X, β′(0) = Y, γ′(0) = Z, X, Y, Z ∈ Te(L).

The bilinear tangent commutator (X,Y ) 7→ [X,Y ] of the local loop L on the tangent space Te(L)
is defined by

[X,Y ] =
1

2

d2t

d t2

∣∣∣
t=0

(α(t) · β(t))/(β(t) · α(t)) =
1

2

d2t

d t2

∣∣∣
t=0

(β(t) · α(t))\(α(t) · β(t)). (6)

The trilinear tangent associator (X,Y, Z) 7→ 〈X,Y, Z〉 of L on the tangent space Te(L) is defined
by

〈X,Y, Z〉 =
1

6

d3t

d t3

∣∣∣
t=0

((α(t) · β(t)) · γ(t)) / (α(t) · (β(t) · γ(t))) =

=
1

6

d3t

d t3

∣∣∣
t=0

(α(t) · (β(t) · γ(t))) \ ((α(t) · β(t)) · γ(t)) .

(7)
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Let L be a local loop identified with a neighbourhood Wn of 0 in the vector space V n, the
identity element of L with 0 ∈ V n and the tangent space Te(L) with V n. The bilinear and
trilinear maps q : Te(L) × Te(L) → Te(L) and r, s : Te(L) × Te(L) × Te(L) → Te(L) are well
defined by (5), using the Taylor expansion (4). According to 2.1.Lemma and 2.2.Lemma in [12]
(or IX.6.6. Theorem in [13]) the commutator (6) and the associator (7) of the local multiplication
(4) are expressed by the first non-vanishing term of the Taylor series of

(x · y)/(y · x) or (y · x)\(x · y) and
(
(x · y) · z

)
/
(
x · (y · z)

)
or
(
x · (y · z)

)
\
(
(x · y) · z

)
,

respectively. It follows for any X,Y, Z ∈ Te(L)

[X,Y ] = q(X,Y )− q(Y,X)(= 2q(X,Y ) if q(X,Y ) is skew symmetric),

〈X,Y, Z〉 = q(q(X,Y ), Z)− q(X, q(Y, Z)) + 2r(X,Y, Z)− 2s(X,Y, Z).
(8)

Tensor products

In the following we investigate bilinear and trilinear maps between vector spaces V and U for
the description of algebraic models of tangent commutators and associators. We identify the
bilinear maps V ×V → U with elements of the tensor product V∗⊗V∗⊗U and the trilinear maps
V ×V ×V → U with elements of V∗⊗V∗⊗V∗⊗U . We will denote by V∗∧V∗⊗U ⊂ V∗⊗V∗⊗U the
subspace of V∗ ⊗ V∗ ⊗U consisting of skew-symmetric tensors and by V∗ � V∗ ⊗U ⊂ V∗ ⊗ V∗ ⊗U
the subspace of V∗ ⊗ V∗ ⊗ U consisting of symmetric tensor.

Definition 2.2. The map Alt : V∗⊗V∗⊗V∗⊗U → V∗ ∧V∗ ∧V∗⊗U of trilinear maps defined by

Alt(T )(ξ, η, ζ) =
1

6
(T (ξ, η, ζ)− T (η, ξ, ζ) + T (η, ζ, ξ)− T (ζ, η, ξ) + T (ζ, ξ, η)− T (ξ, ζ, η)),

T ∈ V∗ ⊗ V∗ ⊗ V∗ ⊗ U , will be called alternator map.
The map Sym : V∗ ⊗ V∗ ⊗ V∗ ⊗ U → V∗ � V∗ � V∗ ⊗ U of trilinear maps defined by

Sym(T )(ξ, η, ζ) =
1

6
(T (ξ, η, ζ) + T (η, ξ, ζ) + T (η, ζ, ξ) + T (ζ, η, ξ) + T (ζ, ξ, η) + T (ξ, ζ, η)),

T ∈ V∗ ⊗ V∗ ⊗ V∗ ⊗ U , will be called symmetrizer map.

Clearly, the trilinear map Alt(T ) is skew-symmetric and Sym(T ) is symmetric in all pairs of
variables. Moreover Alt2(T ) = Alt(Alt(T )) = Alt(T ) and Sym2(T ) = Sym(Sym(T )) = Sym(T ),
hence the maps Alt : V∗⊗V∗⊗V∗⊗U → V∗∧V∗∧V∗⊗U and Sym : V∗⊗V∗⊗V∗⊗U → V∗�V∗�V∗⊗U
are projections onto subspaces. Hence one has the direct sum decompositions

V∗ ∧ V∗ ∧ V∗ ⊗ U ⊕ Ker(Alt) = V∗ ⊗ V∗ ⊗ V∗ ⊗ U,
V∗ � V∗ � V∗ ⊗ U ⊕Ker(Sym) = V∗ ⊗ V∗ ⊗ V∗ ⊗ U

of vector spaces, where Ker(Alt) and Ker(Sym) denotes the subspaces in V∗ ⊗ V∗ ⊗ V∗ ⊗ U ,
annihilated by the projections Alt and Sym, respectively.
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Akivis algebra and Sabinin algebra of degree 3

In the following we consider non-associative algebras over a field F of characteristic 6= 2, 3. In
particular, we will study tangent algebras of differentiable local loops, which are algebras over
the real field R.

Definition 2.3. A binary-ternary algebra A = (A, [., .]A, 〈., ., .〉A) is a vector space A over a field
F equipped with a skew-symmetric bilinear and a trilinear operation:

kA : (X,Y ) 7→ [X,Y ]A, mA : (X,Y, Z) 7→ 〈X,Y, Z〉A.

In the following the bilinear and the trilinear operations of a binary-ternary algebra M will
be denoted by [., .]M and 〈., ., .〉M, respectively.
A is called abelian if [X,Y ]A = 0 and 〈X,Y, Z〉A = 0 for any X,Y, Z ∈ A.
A homomorphism between binary-ternary algebras is a linear map preserving the operations. A
subalgebra I ⊆ A is ideal if it is the kernel of a homomorphism to some binary-ternary algebra,
i.e. one has [a, I]A ⊆ I and 〈a, b, I〉A ⊆ I, 〈a, I, b〉A ⊆ I, 〈I, a, b〉A ⊆ I for all a, b ∈ A.

Definition 2.4. A binary-ternary algebra A over F is called Akivis algebra if the operations
[X,Y ]A and 〈X,Y, Z〉A satisfy the so-called Akivis identity :

Alt(mA)(X,Y, Z) =
1

6
([[X,Y ]A, Z]A + [[Y,Z]A, X]A + [[Z,X]A, Y ]A).

Definition 2.5. A vector space S over a field F together with a skew-symmetric bilinear operation
{a, b} : S×S → S and two trilinear operations (a, b, c) : S×S×S → S, Φ1,2(a, b, c) : S×S×S → S
satisfying the identities

(a, b, c) + (a, c, b) = 0,

(a, b, c) + {{b, c}, a}+ (b, c, a) + {{c, a}, b}+ (c, a, b) + {{a, b}, c} = 0,

Φ1,2(a, b, c) = Φ1,2(a, c, b)

for all a, b, c ∈ S is called the Sabinin algebra S = (S, {., .}, (., ., .),Φ1,2(., ., .)) of degree 3.

According to Remark 13 in [5] the variety of Sabinin algebras of degree 3 is equivalent to the
variety of Akivis algebras.

Lemma 2.3. Any Akivis algebra A = (A, [., .]A, 〈., ., .〉A) is a Sabinin algebra
S = (S, {., .}, (., ., .),Φ1,2(., ., .)) of degree 3 with

{a, b} = −[a, b]A, (a, b, c) = 〈a, c, b〉A − 〈a, b, c〉A, Φ1,2(a, b, c) =
1

2
(〈a, b, c〉A + 〈a, c, b〉A)

for all a, b, c ∈ A.
Conversely, any Sabinin algebra S = (S, {., .}, (., ., .),Φ1,2(., ., .)) of degree 3 is an Akivis algebra
A = (A, [., .]A, 〈., ., .〉A) with

[a, b]A = −{a, b}, 〈a, b, c〉A =
1

2
(2Φ1,2(a, b, c)− (a, b, c))

for all a, b, c ∈ S.
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Let L be a local loop identified with a neighbourhood Wn of 0 in the vector space V n, the
identity element of L with 0 ∈ V n and the tangent space Te(L) with V n. The formulas (8) for
the tangent commutator (6) and the tangent associator (7) of L define a binary-ternary algebra
on the tangent space Te(L), this binary-ternary algebra is a real Akivis algebra on the tangent
space Te(L), cf. [12], [13].

Definition 2.6. The tangent space Te(L) of a Cr-differentiable local loop L equipped with the
tangent commutator (6) and tangent associator (7) operations expressed by (8) is called the
tangent Akivis algebra of L and denoted by Ak(L).
A loop L is said to be associated with an Akivis algebra A if A is isomorphic to the tangent
Akivis algebra Ak(L) of L.

3 Extension of binary-ternary algebras

Definition 3.1. Let G, B be binary-ternary algebras. A binary-ternary extension C of G by B is
a short exact sequence

0→ B ι→ C π→ G → 0.

Assume that s : G → C is an injective linear map such that π ◦ s = IdG . Then for x, y, z ∈ G
denote

ψ̃(x, y) = [s(x), s(y)]C − s([x, y]G), Ψ̃(x, y, z) = 〈s(x), s(y), s(z)〉C − s(〈x, y, z〉G). (9)

If ι : B → C is an embedding of the ideal B ⊂ C, and we identify G with the factor algebra C/B,
then C is a vector space direct sum C = s(G) ⊕ B. Let A be the binary-ternary algebra defined
on the subspace s(G) such that s : G → s(G) = A becomes an algebra isomorphism. Then in
C = A⊕ B the maps π : A⊕ B → A and s : A → A⊕ B are expressed by

π(ξ,X) = ξ, s(ξ) = (ξ, 0), ξ ∈ A, X ∈ B.

Denoting the bilinear skew-symmetric map ψ(ξ, η) = ψ̃((ξ, 0), (η, 0)) and the trilinear map Ψ(ξ, η, ζ)
= Ψ̃((ξ, 0), (η, 0), (ζ, 0)) we obtain from (9):

[(ξ, 0), (η, 0)]C =[(ξ, 0), (η, 0)]A + ψ(ξ, η),

〈(ξ, 0), (η, 0), (ζ, 0)〉C =〈(ξ, 0), (η, 0), (ζ, 0)〉A + Ψ(ξ, η, ζ).
(10)

Since π(ψ(ξ, η)) = π(Ψ(ξ, η, ζ)) = 0 one has ψ(ξ, η),Ψ(ξ, η, ζ) ∈ {0} ⊕ B. Hence (10) determines
the maps

ψ ∈ A∗ ∧ A∗ ⊗ B, Ψ ∈ A∗ ⊗A∗ ⊗A∗ ⊗ B,
[(ξ, 0), (η, 0)]C = ([(ξ, 0), (η, 0)]A, ψ(ξ, η)) ,

〈(ξ, 0), (η, 0), (ζ, 0)〉C = (〈(ξ, 0), (η, 0), (ζ, 0)〉A,Ψ(ξ, η, ζ)) .

(11)

Now, we can compute

[(ξ,X), (η, Y )]C =(
[(ξ, 0), (η, 0)]A, [(0, X), (0, Y )]C + [(ξ, 0), (0, Y )]C − [(η, 0), (0, X)]C + ψ(ξ, η)

)
=(

[ξ, η]A, [X,Y ]B + [(ξ, 0), (0, Y )]C − [(η, 0), (0, X)]C + ψ(ξ, η)
)
.

(12)
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Similarly we get

〈(ξ,X), (η, Y ), (ζ, Z)〉C =
(
〈ξ, η, ζ〉A, 〈X,Y, Z〉B + 〈(0, X), (η, 0), (ζ, 0)〉C+

〈(ξ, 0), (0, Y ), (ζ, 0)〉C + 〈(ξ, 0), (η, 0), (0, Z)〉C + 〈(ξ, 0), (0, Y ), (0, Z)〉C+
〈(0, X), (η, 0), (0, Z)〉C + 〈(0, X), (0, Y ), (ζ, 0)〉C + Ψ(ξ, η, ζ)

)
.

(13)

We define the multilinear maps

α ∈ A∗ ⊗ B∗ ⊗ B, λ, µ, ν ∈ A∗ ⊗A∗ ⊗ B∗ ⊗ B, σ, τ, ρ ∈ A∗ ⊗ B∗ ⊗ B∗ ⊗ B

by the equations

α(ξ,X) = [(ξ, 0), (0, X)]C , λ(ξ, η, Z) = 〈(0, Z), (ξ, 0), (η, 0)〉C ,
µ(ξ, η, Z) = 〈((η, 0), (0, Z), (ξ, 0)〉C , ν(ξ, η, Z) = 〈(ξ, 0), (η, 0), (0, Z)〉C ,

σ(ξ, Y, Z) = 〈(ξ, 0), (0, Y ), (0, Z)〉C , τ(ξ, Y, Z) = 〈(0, Z), (ξ, 0), (0, Y )〉C ,
ρ(ξ, Y, Z) = 〈(0, Y ), (0, Z), (ξ, 0)〉C .

(14)

Definition 3.2. The collection of maps ∆ = {α, λ, µ, ν, σ, τ, ρ, ψ,Ψ} defined by (11) and (14) is
called the data system of the extension 0→ B → C → A → 0. The binary-ternary algebra C will
be denoted by A⊕∆ B.

The following assertion is obtained from the previous equations (12), (13) and (14):

Proposition 3.1. The operations of the binary-ternary algebra A⊕∆ B determined by the data
system ∆ are expressed by

[(ξ,X), (η, Y )]C =
(
[ξ, η]A, [X,Y ]B + α(ξ, Y )− α(η,X) + ψ(ξ, η)

)
〈(ξ,X), (η, Y ), (ζ, Z)〉C =

(
〈ξ, η, ζ〉A, 〈X,Y, Z〉B+

λ(η, ζ,X) + µ(ζ, ξ, Y ) + ν(ξ, η, Z) + σ(ξ, Y, Z) + τ(η, Z,X) + ρ(ζ,X, Y ) + Ψ(ξ, η, ζ)
)
.

(15)

Conversely, for arbitrary collection of maps ∆ = {α, λ, µ, ν, σ, τ, ρ, ψ,Ψ}, where

α ∈ A∗ ⊗ B∗ ⊗ B, λ, µ, ν ∈ A∗ ⊗A∗ ⊗ B∗ ⊗ B, σ, τ, ρ ∈ A∗ ⊗ B∗ ⊗ B∗ ⊗ B
ψ ∈ A∗ ∧ A∗ ⊗ B, Ψ ∈ A∗ ⊗A∗ ⊗A∗ ⊗ B,

the equations (15) define a binary-ternary algebra A⊕∆ B with data system ∆.

Definition 3.3. A binary-ternary algebra A⊕∆ B is called

affine extension if σ, τ, ρ = 0,

semidirect sum if ψ,Ψ = 0,

linear semidirect sum if σ, τ, ρ, ψ,Ψ = 0.

Theorem 3.2. A binary-ternary algebra A⊕∆ B with ∆ = {α, λ, µ, ν, σ, τ, ρ, ψ,Ψ} is an Akivis
algebra if and only if A and B are Akivis algebras and
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(i) for all ξ ∈ A, Y,Z ∈ B

[α(ξ, Y ), Z]B + [Y, α(ξ, Z)]B − α(ξ, [Y, Z]B) =

ρ(ξ, Y, Z)− ρ(ξ, Z, Y ) + σ(ξ, Y, Z)− σ(ξ, Z, Y ) + τ(ξ, Y, Z)− τ(ξ, Z, Y ),
(16)

(ii) for all ξ, η ∈ A, Z ∈ B

λ(ξ, η, Z)− λ(η, ξ, Z) + µ(ξ, η, Z)− µ(η, ξ, Z) + ν(ξ, η, Z)− ν(η, ξ, Z) =

α([ξ, η]A, Z)− α(ξ, α(η, Z)) + α(η, α(ξ, Z)),
(17)

(iii) for all ξ, η, ζ ∈ A

ψ([ξ, η]A, ζ) + ψ([η, ζ]A, ξ) + ψ([ζ, ξ]A, η)−
−α(ζ,ψ(ξ, η))− α(ξ, ψ(η, ζ))− α(η, ψ(ζ, ξ)) = Alt(Ψ)(ξ, η, ζ).

(18)

Proof. We will use the following technical assertion:

Lemma 3.3. Let U , V , W be vector spaces and F : U ⊕ V → W a trilinear map, which is
invariant with respect to cyclic permutations of variables. Then F ((ξ,X), (η, Y ), (ζ, Z)) = 0 for
any ξ, η, ζ ∈ U , X,Y, Z ∈ V if and only if

F ((ξ, 0), (η, 0), (ζ, 0)) = 0, F ((0, X), (0, Y ), (0, Z)) = 0,

F ((ξ, 0), (0, Y ), (0, Z)) = 0, F ((ξ, 0), (η, 0), (0, Z)) = 0
(19)

for any ξ, η, ζ ∈ U , X,Y, Z ∈ V .

Proof. Using the trilinear property of the map F and applying cyclic permutations of variables
we obtain the identity

0 = F ((ξ, 0), (η, 0), (ζ, 0)) + F ((0, X), (0, Y ), (0, Z))+

+
(
F ((ξ, 0), (η, 0), (0, Z)) + F ((ζ, 0), (ξ, 0), (0, Y )) + F ((η, 0), (ζ, 0), (0, X))

)
+

+
(
F ((ξ, 0), (0, Y ), (0, Z)) + F ((η, 0), (0, Z), (0, X)) + F ((ζ, 0), (0, X), (0, Y ))

)
for any ξ, η, ζ ∈ U , X,Y, Z ∈ V . This is true if and only if the constant, linear, bilinear and
trilinear terms in the variables X,Y, Z are vanishing, that is we get the equivalent system of
identities

F ((ξ, 0), (η, 0), (ζ, 0)) = 0, F ((0, X), (0, Y ), (0, Z)) = 0(
F ((ξ, 0), (η, 0), (0, Z)) + F ((ζ, 0), (ξ, 0), (0, Y )) + F ((η, 0), (ζ, 0), (0, X))

)
= 0,(

F ((ξ, 0), (0, Y ), (0, Z)) + F ((η, 0), (0, Z), (0, X)) + F ((ζ, 0), (0, X), (0, Y ))
)

= 0

Putting 0 into the variables X,Y in the third identity, respectively, into η, ζ in the fourth one,
we get (19). Conversely, it follows from the equations

F ((ξ, 0), (0, Y ), (0, Z)) = 0, F ((ξ, 0), (η, 0), (0, Z)) = 0, for all ξ, η ∈ U, Y, Z ∈ V,

by substitutions η 7→ ξ, ζ 7→ η, Z 7→ Y , X 7→ Z, respectively, ζ 7→ ξ, ξ 7→ η, X 7→ Y , Y 7→ Z that

0 =
(
F ((ξ, 0), (η, 0), (0, Z)) + F ((ζ, 0), (ξ, 0), (0, Y )) + F ((η, 0), (ζ, 0), (0, X))

)
+

+
(
F ((ξ, 0), (0, Y ), (0, Z)) + F ((η, 0), (0, Z), (0, X)) + F ((ζ, 0), (0, X), (0, Y ))

)
.

Hence the lemma is true.
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For the proof of the theorem we notice that if A⊕∆ B is an Akivis algebra then the ideal B and
A, isomorphic to the factor algebra of A ⊕∆ B, are Akivis algebras. Putting the terms of the
Akivis identity on one side, the map obtained is invariant with respect to cyclic permutations of
variables, so we can apply Lemma 3.3. Substituting X = Y = Z = 0 in the Akivis identity, we get
constant terms with respect to X,Y, Z, giving condition (iii) in the assertion. The replacement
X = Y = ζ = 0 yields linear terms in Z, giving condition (ii). By putting X = η = ζ = 0 we
obtain bilinear terms in Y, Z, hence condition (i) follows and the theorem is proved.

We now formulate a special construction of linear semidirect sum of Akivis algebras.

Proposition 3.4. Let A = (A, [., .]A, 〈., ., .〉A), A∗ = (A, [., .]A, 〈., ., .〉A∗) be Akivis algebras, A+

the abelian Akivis algebra on the vector space A and θ : {0} ⊕ A → A ⊕ {0} a bijective linear
map. The data system ∆ defined by σ = τ = ρ = ψ = Ψ = 0 and

α(ξ, Z) = θ−1[ξ, θZ]A, λ(ξ, η, Z) = θ−1〈θZ, ξ, η〉A∗ , µ(ξ, η, Z) = θ−1〈η, θZ, ξ〉A∗ ,

ν(ξ, η, Z) = θ−1〈ξ, η, θZ〉A∗

determine a linear semidirect sum A⊕∆ A+ of Akivis algebras.

Proof. The identity (16) of Theorem 3.2 is satisfied since A+ is abelian and σ = τ = ρ = 0.
The identity (17) can be obtained by conjugation with the map θ of the Akivis identity A∗. For
example:

α(ξ, α(η, Z)) = θ−1[ξ, θ · θ−1[η, θZ]A]A = θ−1[ξ, [η, θZ]A]A, λ(ξ, η, Z) = θ−1〈θZ, ξ, η〉A∗ .

Likewise, we get the same conjugation relationship for the other terms of the Akivis identity.

4 Akivis algebra and Sabinin algebra of degree 3 of abelian ex-
tensions of local loops

Consider a Cr-differentiable local loop L = (L, ·, /, \) of dimension n with r ≥ 3, a vector space
Uk and a Cr-differentiable map

Ω : ((x,X), (y, Y )) 7→ Ω(x, y,X, Y ), Ω : (L× Uk)× (L× Uk)→ Uk, (20)

satisfying

Ω(x, e,X, 0) = X, Ω(e, y, 0, Y ) = Y, Ω(e, e,X, Y ) = X+Y for any (x,X), (y, Y ) ∈ L×Uk. (21)

Let L×Ω U
k denote the local H-space defined on L× Uk by the multiplication

(x,X)(y, Y ) = (xy,Ω(x, y,X, Y )), x, y ∈ L, X, Y ∈ Uk (22)

having (e, 0) ∈ L×Uk as identity element. It is easy to see that L×ΩU
k satisfies the short exact

sequence
0→ Uk → L×Ω U

k → L→ e,

hence L×ΩU
k is an extension of the local loop L by the vector group Uk. According to Proposition

2.2 the multiplication (22) induces a Cr-differentiable local loop F(Ω) on a neighbourhood of (e, 0)
in L×Ω U

k. A particular case of this construction is formulated in the following
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Definition 4.1. A Cr-differentiable loop cocycle on the product manifold L × Uk is a triple of
Cr-differentiable maps:

P,Q : L× L→ GL(Uk), Θ : L× L→ Uk with (23)

P (x, e) = Id = Q(e, y), Θ(x, e) = 0 = Θ(e, y) for all x, y ∈ L.

The abelian extension F(P,Q,Θ) is the Cr-differentiable local loop on L × Uk defined by the
Cr-differentiable operations

(x,X) · (y, Y ) = (xy, P (x, y)X +Q(x, y)Y + Θ(x, y)),

(y, Y )/(x,X) =
(
y/x, P (y/x, x)−1(Y −Q(y/x, x)X −Θ(y/x, x))

)
,

(x,X)\(y, Y ) =
(
x\y,Q(x, x\y)−1(Y − P (x, x\y)X −Θ(x, x\y))

)
and identity element (e, 0). If Θ is trivial, i.e. Θ(x, y) = 0 for all x, y ∈ L, then F(P,Q) is called
linear abelian extension.

We identify L with a coordinate chart Wn ⊂ V n containing 0 ∈ V n such that e ∈ L corre-
sponds to 0 ∈ Wn and investigate the abelian extension F(P,Q,Θ) determined by the cocycle
(23). The power series expansion of the maps P,Q : Wn×Wn → GL(Uk) in a neighbourhood of
(0, 0) has the form

P (x, y) = Id + P ′2(y) + P ′′12(x, y) +
1

2
P ′′22(y, y) + o(2),

Q(x, y) = Id +Q′1(x) +
1

2
Q′′11(x, x) +Q′′12(x, y) + o(2),

(24)

since P (x, 0) = Id = Q(0, y), x, y ∈ Wn, where P ′′22(x, y) and Q′′11(x, y) are symmetric bilinear
forms. The power series expansion

Θ(x, y) = Θ′1(x) + Θ′2(y) +
1

2
(Θ′′11(x, x) + 2Θ′′12(x, y) + Θ′′22(y, y))+

1

3!
(Θ′′′111(x, x, x) + 3Θ′′′112(x, x, y) + 3Θ′′′122(x, y, y) + Θ′′′222(y, y, y)) + o(3)

of Θ : Wn ×Wn → Uk in a neighbourhood of (0, 0) satisfies

Θ(x, 0) = Θ′1(x) +
1

2
Θ′′11(x, x) +

1

3!
Θ′′′111(x, x, x) + o(3) = 0,

Θ(0, y) = Θ′2(y) +
1

2
Θ′′22(y, y) +

1

3!
Θ′′′222(y, y, y) + o(3) = 0,

hence the power series expansion gets the form

Θ(x, y) = Θ′′12(x, y) +
1

2

(
Θ′′′112(x, x, y) + Θ′′′122(x, y, y)

)
+ o(3), x, y ∈Wn, (25)

where Θ′′′112(x, y, z), respectively Θ′′′122(x, y, z) are symmetric in the first, respectively, last two vari-
ables. Consequently we have the expansion at (0, 0) with respect to the variables (x,X), (y, Y ) ∈
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Wn × Uk:

P (x, y)X +Q(x, y)Y + Θ(x, y) = X + Y + P ′2(y)X +Q′1(x)Y+

+P ′′12(x, y)X +
1

2
P ′′22(y, y)X +

1

2
Q′′11(x, x)Y +Q′′12(x, y)Y+

Θ′′12(x, y) +
1

2
(Θ′′′112(x, x, y) + Θ′′′122(x, y, y)) + o(3).

(26)

The trilinear maps

((x,X), (y, Y ), (z, Z)) 7→ P ′′12(y, z)X + P ′′12(x, z)Y +Q′′11(x, y)Z +
1

2
Θ′′′112(x, y, z),

((x,X), (y, Y ), (z, Z)) 7→ P ′′22(y, z)X +Q′′12(x, z)Y +Q′′12(x, y)Z +
1

2
Θ′′′122(x, y, z)

are symmetric in the first, respectively, last two variables. Introducing the notations

Q ((x,X), (y, Y )) =
(
q(x, y), P ′2(y)X +Q′1(x)Y + Θ′′12(x, y)

)
,

R ((x,X), (y, Y ), (z, Z)) =
(
r(x, y, z),

1

2

(
P ′′12(y, z)X + P ′′12(x, z)Y +Q′′11(x, y)Z + Θ′′′112(x, y, z)

) )
,

S ((x,X), (y, Y ), (z, Z)) =
(
s(x, y, z),

1

2

(
P ′′22(y, z)X +Q′′12(x, z)Y +Q′′12(x, y)Z + Θ′′′122(x, y, z)

) )
,

(27)

we obtain the expansion

(x,X) · (y, Y ) = (x,X) + (y, Y )+Q ((x,X), (y, Y )) +R ((x,X), (x,X), (y, Y )) +

+S ((x,X), (y, Y ), (y, Y )) + o(3), (x,X), (y, Y ) ∈Wn × Uk

of the multiplication of F(P,Q,Θ). Now we can compute the commutator:

[(x,X), (y, Y )] = Q ((x,X), (y, Y ))−Q ((y, Y ), (x,X)) =

=([x, y],
(
P ′2(y)−Q′1(y)

)
X +

(
Q′1(x)− P ′2(x)

)
Y + Θ′′12(x, y)−Θ′′12(y, x))).

(28)

and the associator:

〈(x,X), (y, Y ), (z, Z)〉 = Q(Q((x,X), (y, Y )), (z, Z))−Q((x,X),Q((y, Y ), (z, Z)))+

+ 2R((x,X), (y, Y ), (z, Z))− 2S((x,X), (y, Y ), (z, Z)) =

=
(
q(q(x, y), z), P ′2(z)

(
P ′2(y)X +Q′1(x)Y + Θ′′12(x, y)

)
+Q′1(q(x, y))Z + Θ′′12(q(x, y), z)

)
−

−
(
q(x, q(y, z)), P ′2(q(y, z))X +Q′1(x)

(
P ′2(z)Y +Q′1(y)Z + Θ′′12(y, z)

)
+ Θ′′12(x, q(y, z))

)
+

+
(
2r(x, y, z), P ′′12(y, z)X + P ′′12(x, z)Y +Q′′11(x, y)Z + Θ′′′112(x, y, z)

)
−

−
(
2s(x, y, z), P ′′22(y, z)X +Q′′12(x, z)Y +Q′′12(x, y)Z + Θ′′′122(x, y, z)

)
=

=
(
〈x, y, z〉,

(
P ′2(z)P ′2(y)− P ′2(q(y, z)) + P ′′12(y, z)− P ′′22(y, z)

)
X+

+
(
P ′2(z)Q′1(x)−Q′1(x)P ′2(z) + P ′′12(x, z)−Q′′12(x, z)

)
Y+

+
(
Q′1(q(x, y))−Q′1(x)Q′1(y) +Q′′11(x, y)−Q′′12(x, y)

)
Z+

+P ′2(z)Θ′′12(x, y)−Q′1(x)Θ′′12(y, z) + Θ′′12(q(x, y), z)−Θ′′12(x, q(y, z))+

+Θ′′′112(x, y, z)−Θ′′′122(x, y, z)
)

(29)

of the Akivis algebra of the abelian extension F(P,Q,Θ).
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Theorem 4.1. The tangent Akivis algebra Ak(F(P,Q,Θ)) of the abelian extension F(P,Q,Θ)
is an affine extension Ak(L) ⊕∆ (Uk)+ of the Akivis algebra Ak(L) of L by the abelian Akivis
algebra (Uk)+ on the vector space Uk. The data system ∆ consists of the multilinear maps

α : Te(L)→ End(Uk), λ, µ, ν : Te(L)× Te(L)→ End(Uk), ψ : Te(L)× Te(L)→ Uk,

Ψ : Te(L)× Te(L)× Te(L)→ Uk

expressed by

α(ξ, Y ) = Q′1(ξ)Y − P ′2(ξ)Y,

λ(ξ, η, Z) = (P ′2(η)P ′2(ξ)− P ′2(q(ξ, η)) + P ′′12(ξ, η)− P ′′22(ξ, η))Z,

µ(ξ, η, Z) = (P ′2(ξ)Q′1(η)−Q′1(η)P ′2(ξ) + P ′′12(η, ξ)−Q′′12(η, ξ))Z,

ν(ξ, η, Z) = (Q′1(q(ξ, η))−Q′1(ξ)Q′1(η) +Q′′11(ξ, η)−Q′′12(ξ, η))Z,

(30)

ψ(ξ, η) = Θ′′12(ξ, η)−Θ′′12(η, ξ),

Ψ(ξ, η, ζ) = P ′2(ζ)Θ′′12(ξ, η)−Q′1(ξ)Θ′′12(η, ζ) + Θ′′12(q(ξ, η), ζ)−
−Θ′′12(ξ, q(η, ζ)) + Θ′′′112(ξ, η, ζ)−Θ′′′122(ξ, η, ζ),

(31)

for any ξ, η, ζ ∈ Te(L), Y,Z ∈ Uk.

Proof. Putting x = ξ, y = η, z = ζ in the equations (28) and (29) and using the definitions (11),
(14) and taking into account (15) we obtain the assertion.

It follows from Lemma 2.3:

Corollary 4.2. The Sabinin algebra S(F(P,Q,Θ)) of degree 3 of the abelian extension F(P,Q,Θ)
is expressed by the operations:

{(x,X), (y, Y )} =
(
{x, y},

(
Q′1(y)− P ′2(y)

)
X +

(
P ′2(x)−Q′1(x)

)
Y + Θ′′12(y, x)−Θ′′12(x, y)

)(
(x,X), (y, Y ), (z, Z)

)
=
(
(x, y, z),(

P ′2(y)P ′2(z)− P ′2(z)P ′2(y)− 2P ′2(q(z, y)) + P ′′12(z, y)− P ′′12(y, z)
)
X+(

Q′1(q(x, z)) +Q′′11(x, z)−Q′1(x)(Q′1(z)− P ′2(z))− P ′2(z)Q′1(x)− P ′′12(x, z)
)
Y+(

P ′2(y)Q′1(x) + P ′′12(x, y)−Q′1(x)(P ′2(y)−Q′1(y))−Q′1(q(x, y))−Q′′11(x, y)
)
Z+

P ′2(y)Θ′′12(x, z)− P ′2(z)Θ′′12(x, y)−Q′1(x)(Θ′′12(z, y)−Θ′′12(y, z)) + Θ′′12(q(x, z), y)−
Θ′′12(q(x, y), z)− 2Θ′′12(x, q(z, y)) + Θ′′′112(x, z, y)−Θ′′′112(x, y, z)

)
Φ1,2((x,X), (y, Y ), (z, Z)) =

(
Φ1,2(x, y, z),

1

2

((
P ′2(z)P ′2(y) + P ′2(y)P ′2(z) + P ′′12(y, z) + P ′′12(z, y)− 2P ′′22(y, z)

)
X+(

P ′2(z)Q′1(x) +Q′1(q(x, z))−Q′1(x)(P ′2(z) +Q′1(z)) + P ′′12(x, z) +Q′′11(x, z)− 2Q′′12(x, z)
)
Y+(

P ′2(y)Q′1(x) +Q′1(q(x, y))−Q′1(x)(P ′2(y) +Q′1(y)) +Q′′11(x, y) + P ′′12(x, y)− 2Q′′12(x, y)
)
Z+

P ′2(z)Θ′′12(x, y) + P ′2(y)Θ′′12(x, z)−Q′1(x)(Θ′′12(y, z) + Θ′′12(z, y)) + Θ′′12(q(x, y), z)+

Θ′′12(q(x, z), y) + Θ′′′112(x, y, z) + Θ′′′112(x, z, y)− 2Θ′′′122(x, y, z)
))
.
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Now, we investigate local loop extensions whose multiplication map is a third order polynomial
such that the tangent algebra is an affine extension of an Akivis algebra by an abelian algebra.

Definition 4.2. Let F(Ω) be a local loop with multiplication (22) defined on the coordinate
chart Wn ⊂ V n, where the map (20) satisfies the conditions (21). The loop F(Ω) is called almost
abelian extension of L by Uk if Ω is a polynomial of third order and the tangent Akivis algebra
Ak(F(Ω)) is an affine extension of an Akivis algebra by an abelian algebra.

Proposition 4.3. The local loop extension F(Ω) of L by Uk is almost abelian if and only if the
polynomial Ω(x, y,X, Y ) can be expressed in the form

Ω(x, y,X, Y ) = P (x, y)X +Q(x, y)Y + Θ(x, y) =

= X + Y + P ′2(y)X +Q′1(x)Y + P ′′12(x, y)X +
1

2
P ′′22(y, y)X+

+
1

2
Q′′11(x, x)Y +Q′′12(x, y)Y+

+ Θ′′12(x, y) +
1

2
(Θ′′′112(x, x, y) + Θ′′′122(x, y, y))+

+ Λ(x,X, Y ) + Λ(x, Y, Y ) + Λ(y,X,X) + Λ(y,X, Y )

(32)

where Λ(x, Y, Z) is an arbitrary trilinear form symmetric in Y, Z.

Proof. Consider the polynomial Ω(x, y,X, Y ) of order 3. According to the condition (21) we have
Ω(x, 0, X, 0) = X and Ω(0, y, 0, Y ) = Y , hence we obtain, using the notation of the expansion
(24), that the linear terms in the variable X are only of the form

X, P ′2(y)X = Ω′′23(y,X), P ′′12(x, y)X = Ω′′′123(x, y,X), P ′′22(y, y)X = Ω′′′223(y, y,X)

and the corresponding terms in the variable Y are only

Y, Q′1(x)Y = Ω′′14(x, Y ), Q′′11(x, x)Y = Ω′′′114(x, x, Y ), Q′′12(x, y)Y = Ω′′′124(x, y, Y ).

We get their sum as

P (x, y)X = X + P ′2(y)X + P ′′12(x, y)X +
1

2
P ′′22(y, y)X,

Q(x, y)Y = Y +Q′1(x)Y +
1

2
Q′′11(x, x)Y +Q′′12(x, y)Y.

Using the notation of the expansion (25) the constant terms in the Taylor polynomial with respect
to the variables X and Y are

Θ′′12(x, y) = Ω′′12(x, y), Θ′′′112(x, x, y) = Ω′′′112(x, x, y), Θ′′′122(x, y, y) = Ω′′′122(x, y, y),

and their sum is

Θ(x, y) = Θ′′12(x, y) +
1

2

(
Θ′′′112(x, x, y) + Θ′′′122(x, y, y)

)
, x, y ∈Wn. (33)
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In addition, we get the terms that are quadratic or bilinear in the variables X,Y of the form

Ω′′′134(x,X, Y ), Ω′′′144(x, Y, Y ), Ω′′′233(y,X,X), Ω′′′234(y,X, Y ).

Clearly, the bilinear forms Ω′′′144(x,X, Y ), Ω′′′233(y,X, Y ) corresponding to the quadratic forms
Ω′′′144(x, Y, Y ), Ω′′′233(y,X,X) are symmetric in X,Y . We obtain the trilinear maps

((x,X), (y, Y ), (z, Z)) 7→ P ′′12(y, z)X + P ′′12(x, z)Y +Q′′11(x, y)Z +
1

2
Θ′′′112(x, y, z)+

+Ω′′′134(x, Y, Z) + Ω′′′134(y,X,Z) + Ω′′′233(z,X, Y ),

((x,X), (y, Y ), (z, Z)) 7→ P ′′22(y, z)X +Q′′12(x, z)Y +Q′′12(x, y)Z +
1

2
Θ′′′122(x, y, z)+

+Ω′′′144(x, Y, Z) + Ω′′′234(z,X, Y ) + Ω′′′234(y,X,Z)

symmetric in the first, respectively, last two variables. Consequently, the following terms are
added to the second component of the expression (27) of R ((x,X), (y, Y ), (z, Z)), respectively
S ((x,X), (y, Y ), (z, Z)):

1

2

(
Ω′′′134(x, Y, Z) + Ω′′′134(y,X,Z) + Ω′′′233(z,X, Y )

)
,

1

2

(
Ω′′′144(x, Y, Z) + Ω′′′234(z,X, Y ) + Ω′′′234(y,X,Z)

)
.

Therefore, the associator (29) contains the following additional terms(
Ω′′′134(x, Y, Z) + Ω′′′134(y,X,Z) + Ω′′′233(z,X, Y )

)
−

−
(
Ω′′′144(x, Y, Z) + Ω′′′234(z,X, Y ) + Ω′′′234(y,X,Z)

)
.

Hence the maps σ, τ , ρ defined by (14) are given by

σ(x, Y, Z) = Ω′′′134(x, Y, Z)− Ω′′′144(x, Y, Z),

τ(x, Y, Z) = Ω′′′134(x, Z, Y )− Ω′′′234(x, Z, Y ),

ρ(x, Y, Z) = Ω′′′233(x, Y, Z) − Ω′′′234(x, Y, Z).

In this case
σ(x, Y, Z) = τ(x, Y, Z) = ρ(x, Y, Z) = 0

if and only if there is a monomial Λ(x, Y, Z) symmetric in the variables Y,Z satisfying

Λ(x, Y, Z) = Ω′′′134(x, Y, Z) = Ω′′′144(x, Y, Z) = Ω′′′234(x, Y, Z) = Ω′′′233(x, Y, Z).

Hence the polynomial Ω(x, y,X, Y ) has the form (32), which determines a non-abelian local loop
extension associated with an affine extension of an Akivis algebra by an abelian algebra.

5 Abelian loop extensions associated with tangent algebra ex-
tensions

Let V n and Uk be vector spaces. For the solution of equations (31) with respect to the maps
Θ′′′112 and Θ′′′122 we discuss, that a trilinear map with vanishing alternator how can be expressed
as a difference of two maps f ∈ V n

∗ � V n
∗ ⊗ V n

∗ ⊗ Uk, g ∈ V n
∗ ⊗ V n

∗ � V n
∗ ⊗ Uk and investigate

the sum f + g of these maps.
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Lemma 5.1. Let T ∈ V n
∗ ⊗ V n

∗ ⊗ V n
∗ ⊗Uk be a given trilinear map such that Alt(T ) = 0. Then

T can be uniquely expressed as

T (ξ, η, ζ) = f(ξ, η, ζ)− g(ξ, η, ζ), (34)

with Sym(f + g) = 0, where f ∈ V n
∗ � V n

∗ ⊗ V n
∗ ⊗ Uk, g ∈ V n

∗ ⊗ V n
∗ � V n

∗ ⊗ Uk. Any other pair
f̄ ∈ V n

∗ � V n
∗ ⊗ V n

∗ ⊗ Uk, ḡ ∈ V n
∗ × V n

∗ � V n
∗ ⊗ Uk of maps satisfying (34) is of the form

f̄(ξ, η, ζ) = f(ξ, η, ζ) + χ(ξ, η, ζ), ḡ(ξ, η, ζ) = g(ξ, η, ζ) + χ(ξ, η, ζ),

with arbitrary χ ∈ V n
∗ � V n

∗ � V n
∗ ⊗ Uk.

Proof. Clearly, if T ∈ V n
∗ ⊗ V n

∗ ⊗ V n
∗ ⊗ Uk is symmetric in two variables then Alt(T ) = 0, i.e. T

belongs to the kernel Ker(Alt). If

f(ξ, η, ζ)−g(ξ, η, ζ) = f̄(ξ, η, ζ)− ḡ(ξ, η, ζ), f, f̄ ∈ V n
∗ �V n

∗ ⊗V n
∗ ⊗Uk, g, ḡ ∈ V n

∗ ⊗V n
∗ �V n

∗ ⊗Uk

then
χ = f̄ − f = ḡ − g ∈ V n

∗ � V n
∗ � V n

∗ ⊗ Uk (35)

is symmetric in all pairs of variables. Let us denote

X = {(f, g)− Sym(f, g); f ∈ V n
∗ � V n

∗ ⊗ V n
∗ ⊗ Uk, g ∈ V n

∗ ⊗ V n
∗ � V n

∗ ⊗ Uk} ⊂ Ker(Sym),

Y = {(h,−h) ∈ (V n
∗ � V n

∗ ⊗ V n
∗ ⊗ Uk)⊕ (V n

∗ ⊗ V n
∗ � V n

∗ ⊗ Uk);h ∈ V n
∗ � V n

∗ � V n
∗ ⊗ Uk},

Z = {(χ, χ) ∈ (V n
∗ � V n

∗ ⊗ V n
∗ ⊗ Uk)⊕ (V n

∗ ⊗ V n
∗ � V n

∗ ⊗ Uk);χ ∈ V n
∗ � V n

∗ � V n
∗ ⊗ Uk}.

It is clear that X ⊕Y ⊕Z forms an interior direct sum decomposition of the exterior direct sum
(V n
∗ � V n

∗ ⊗ V n
∗ ⊗ Uk)⊕ (V n

∗ ⊗ V n
∗ � V n

∗ ⊗ Uk). According to (35), if the maps f, g satisfy (34),
then for any χ ∈ V n

∗ �V n
∗ �V n

∗ ⊗Uk the maps f̄ = f+χ, ḡ = g+χ also satisfy (34), hence we are
looking for solutions of (34) in the subspace X ⊕ Y. Considering the projections p1 : (f, g) 7→ f ,
respectively, p2 : (f, g) 7→ g, we define the injective linear map

ϕ : ((V n
∗ � V n

∗ ⊗ V n
∗ ⊗ Uk)⊕ (V n

∗ ⊗ V n
∗ � V n

∗ ⊗ Uk))/Z → Ker(Alt),

ϕ(f, g) = p1(f, g)− p2(f, g) = f − g.
(36)

We prove by counting dimensions, that ϕ maps the subspace X⊕Y surjectively onto Ker(Alt). Let
e1, . . . , en be a basis of V n. The maps contained in Alt(V n

∗ ⊗V n
∗ ⊗V n

∗ ⊗Uk) = V n
∗ ∧V n

∗ ∧V n
∗ ⊗Uk

are uniquely determined by their values on tensor products ei⊗ej⊗el, where i < j < l. It follows
that

dim(Alt(V n
∗ ⊗ V n

∗ ⊗ V n
∗ ⊗ Uk)) =

(
n

3

)
k, and dim(Ker(Alt)) = (n3 −

(
n

3

)
)k.

The elements of V n
∗ � V n

∗ ⊗ V n
∗ ⊗ Uk are uniquely determined by their values on the tensor

products ei ⊗ ej ⊗ ek, where i ≤ j, hence dim(V n
∗ � V n

∗ ⊗ V n
∗ ⊗Uk) = 1

2n
2(n+ 1)k. Similarly, we

get dim(V n
∗ ⊗V n

∗ �V n
∗ ⊗Uk) = 1

2n
2(n+1)k. The vector space V n

∗ �V n
∗ �V n

∗ ⊗Uk is isomorphic to
the vector space of Uk-valued homogeneous polynomials of degree 3 in n variables. The F-valued
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monomials are of the form x3
i , or xix

2
j , or xhxixj , their number is n+ n(n− 1) +

(
n
3

)
= n2 +

(
n
3

)
.

Hence dim(V n
∗ � V n

∗ � V n
∗ ⊗ Uk) = dim(Z) = (n2 +

(
n
3

)
) dim(Uk) = (n2 +

(
n
3

)
)k. It follows that

dim
(
X ⊕ Y

)
= dim

(
(V n
∗ � V n

∗ ⊗ V n
∗ ⊗ Uk)⊕ (V n

∗ ⊗ V n
∗ � V n

∗ ⊗ Uk)
)
− dim(Z) =

= n2(n+ 1)k − (n2 +

(
n

3

)
)k = (n3 −

(
n

3

)
)k.

Consequently, dim
(
X ⊕Y) = dim(Ker(Alt)), hence ϕ defined by (36) maps X ⊕Y onto Ker(Alt)

bijectively. It follows that the equation (34) has a unique solution (f, g) ∈ X ⊕ Y. If (b, c) ∈ X ,
(h,−h) ∈ Y and (χ, χ) ∈ Z then (f, g) = (b, c) + (h,−h) + (χ, χ) belongs to X ⊕Y if and only if
χ = 0, or equivalently Sym(f + g) = 0. It follows that the equation (34) has a unique solution
(f, g) satisfying Sym(f + g) = 0. The other solutions of (34) have the form (f + χ, g + χ) with
arbitrary χ ∈ V n

∗ � V n
∗ � V n

∗ ⊗ Uk, hence the assertion is proved.

We consider now a Cr-differentiable local loop L of dimension n with tangent Akivis algebra
Ak(L). Let Ak(L) ⊕∆ (Uk)+ be an affine extension of Ak(L) by the abelian Akivis algebra
(Uk)+ on the vector space Uk corresponding to a data system ∆ = {α, λ, µ, ν, ψ,Ψ}. We want
to determine the Taylor polynomials P̃ (x, y)X, Q̃(x, y)Y and Θ̃(x, y) of order 3 of the cocycle
maps P (x, y)X, Q(x, y)Y and Θ(x, y) given by (24) and (25) of all abelian extensions of L by
the vector group Uk associated with the Akivis algebra Ak(L) ⊕∆ (Uk)+. The monomial terms
in P̃ (x, y), Q̃(x, y), Θ̃(x, y) satisfy the underdetermined nonlinear system of equations (30) and
(31). We find the solutions of this system of equations depending on arbitrarily given tensors.

Theorem 5.2. For any given maps

π ∈ Ak(L)∗ ⊗ Uk∗ ⊗ Uk, Π ∈ Ak(L)∗ �Ak(L)∗ ⊗ Uk∗ ⊗ Uk,
Γ ∈ Ak(L)∗ �Ak(L)∗ ⊗ Uk, χ ∈ Ak(L)∗ �Ak(L)∗ �Ak∗(L)⊗ Uk

the Taylor polynomials P̃ (x, y)X, Q̃(x, y)Y and Θ̃(x, y) of order 3 of cocycles of abelian extensions
F(P,Q,Θ) associated with Ak(L)⊕∆ (Uk)+ are uniquely given by

P̃ (x, y) = Id + π(y) + λ(x, y)− π(y)π(x) + π(q(x, y)) + Π(x, y) +
1

2
Π(y, y),

Q̃(x, y) = Id + α(x) + π(x)+

+
1

2

(
λ(x, x)− µ(x, x) + ν(x, x) + α(x)2 + 2π(x)α(x) + Π(x, x)

)
+

+ λ(x, y)− µ(y, x)− α(x)π(y) + π(y)α(x)− π(x)π(y) + π(q(x, y)) + Π(x, y)

Θ̃(x, y) =
1

2
ψ(x, y) + Γ(x, y) +

1

2
(f(x, x, y) + g(x, y, y)) +

1

2
(χ(x, x, y) + χ(x, y, y)) .

(37)

The maps f ∈ Ak(L)∗ �Ak(L)∗ ⊗Ak(L)∗ ⊗ Uk and g ∈ Ak(L)∗ ⊗Ak(L)∗ �Ak(L)∗ ⊗ Uk in the
expression of Θ̃(x, y) are the unique solution of the equations

Sym(f + g) = 0, and

f(ξ, η, ζ)− g(ξ, η, ζ) =

=Ψ(ξ, η, ζ)− π(ζ)(
1

2
ψ(ξ, η) + Γ(ξ, η)) + (α(ξ) + π(ξ))(

1

2
ψ(η, ζ) + Γ(η, ζ))−

−(
1

2
ψ(q(ξ, η), ζ) + Γ(q(ξ, η), ζ)) + (

1

2
ψ(ξ, q(η, ζ)) + Γ(ξ, q(η, ζ))).
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Proof. We consider the system of equations (30) for P ′2, Q′1, P ′′12, P ′′22, Q′′11, Q′′12. We omit the last
variable Z in the maps

α(ξ) = α(ξ, Z), λ(ξ, η) = λ(ξ, η, Z), µ(ξ, η) = µ(ξ, η, Z), ν(ξ, η) = ν(ξ, η, Z), (38)

and assume that π(ξ) = P ′2(ξ) and Π(ξ, η) = P ′′22(ξ, η) are arbitrary linear, respectively, bilinear
symmetric maps. Then we obtain from (30) the following system of equations

α(ξ) = −π(ξ) +Q′1(ξ),

λ(ξ, η) = π(η)π(ξ)− π(q(ξ, η)) + P ′′12(ξ, η)−Π(ξ, η),

µ(ξ, η) = π(ξ)Q′1(η)−Q′1(η)π(ξ) + P ′′12(η, ξ)−Q′′12(η, ξ),

ν(ξ, η) = Q′1(q(ξ, η))−Q′1(ξ)Q′1(η) +Q′′11(ξ, η)−Q′′12(ξ, η)

for the linear Q′1, bilinear P ′′12, Q′′12 and symmetric bilinear map Q′′11. We can express

P ′2(ξ) = π(ξ), P ′′22(ξ, η) = Π(ξ, η), Q′1(ξ) = α(ξ) + π(ξ),

P ′′12(ξ, η) = λ(ξ, η)− π(η)π(ξ) + π(q(ξ, η)) + Π(ξ, η),

Q′′12(ξ, η) = λ(ξ, η)− µ(η, ξ)− α(ξ)π(η) + π(η)α(ξ)− π(ξ)π(η) + π(q(ξ, η)) + Π(ξ, η),

Q′′11(ξ, η) = λ(ξ, η)− µ(η, ξ) + ν(ξ, η)−
− α(q(ξ, η)) + α(ξ)α(η) + π(ξ)α(η) + π(η)α(ξ) + Π(ξ, η).

The last equation gives a symmetric bilinear expression for Q′′11(ξ, η), since (17) implies that

Q′′11(ξ, η)−Q′′11(η, ξ) = λ(ξ, η)− λ(η, ξ) + µ(ξ, η)− µ(η, ξ) + ν(ξ, η)− ν(η, ξ)−
− 2α(q(ξ, η)) + α(ξ)α(η)− α(η)α(ξ) = 0.

According to the formulas (24) we obtain the polynomial formulas P̃ (x, y) and Q̃(x, y) in (37).
Assuming Γ(ξ, η) = 1

2(Θ′′12(ξ, η) + Θ′′12(η, ξ)), we get from the first of the equations (31) that

Θ′′12(ξ, η) =
1

2
ψ(ξ, η) + Γ(ξ, η), (39)

where Γ(ξ, η) is an arbitrary symmetric bilinear map. The second one of (31) gives the equation

Θ′′′112(ξ, η, ζ)−Θ′′′122(ξ, η, ζ) = Ψ(ξ, η, ζ)− π(ζ)Θ′′12(ξ, η)+

+(α(ξ) + π(ξ))Θ′′12(η, ζ)−Θ′′12(q(ξ, η), ζ) + Θ′′12(ξ, q(η, ζ))
(40)

for Θ′′′112(ξ, η, ζ) and Θ′′′122(ξ, η, ζ). It follows from Lemma 5.1 that (40) is solvable if the alternator
map Alt annihilates the expression

Ψ(ξ, η, ζ)− π(ζ)Θ′′12(ξ, η) + (α(ξ) + π(ξ))Θ′′12(η, ζ)−Θ′′12(q(ξ, η), ζ) + Θ′′12(ξ, q(η, ζ)). (41)
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We compute the alternator of (41):

Alt(Ψ)(ξ, η, ζ)−
−
(
π(ζ)ψ(ξ, η)− (α(ξ) + π(ξ))Θ′′12(η, ζ) + (α(η) + π(η))Θ′′12(ξ, ζ)+

+ 2Θ′′12(q(ξ, η), ζ)−Θ′′12(ξ, q(η, ζ)) + Θ′′12(η, q(ξ, ζ))+

+ π(ξ)ψ(η, ζ)− (α(η) + π(η))Θ′′12(ζ, ξ) + (α(ζ) + π(ζ))Θ′′12(η, ξ)+

+ 2Θ′′12(q(η, ζ), ξ)−Θ′′12(η, q(ζ, ξ)) + Θ′′12(ζ, q(η, ξ))+

+ π(η)ψ(ζ, ξ)− (α(ζ) + π(ζ))Θ′′12(ξ, η) + (α(ξ) + π(ξ))Θ′′12(ζ, η)+

+ 2Θ′′12(q(ζ, ξ), η)−Θ′′12(ζ, q(ξ, η)) + Θ′′12(ξ, q(ζ, η))
)

=

= Alt(Ψ)(ξ, η, ζ) + α(ξ)ψ(η, ζ) + α(η)ψ(ζ, ξ) + α(ζ)ψ(ξ, η)−
− ψ(2q(ξ, η), ζ)− ψ(2q(η, ζ), ξ)− ψ(2q(ζ, ξ), η).

(42)

Since the initial data of the Akivis algebra Ak(L)⊕∆ (Uk)+ satisfy the equation (18), we obtain
from (42), remembering to the notation (38), that

Alt(Ψ)(ξ, η, ζ) + α(ξ, ψ(η, ζ)) + α(η, ψ(ζ, ξ)) + α(ζ, ψ(ξ, η))−
− ψ([ξ, η]A, ζ)− ψ([η, ζ]A, ξ)− ψ([ζ, ξ]A, η) = 0.

It follows, that the maps Θ′′′112 and Θ′′′122 are the solutions of the equation (34) with

T (ξ, η, ζ) = Ψ(ξ, η, ζ)− π(ζ)Θ′′12(ξ, η) + (α(ξ) + π(ξ))Θ′′12(η, ζ)−
−Θ′′12(q(ξ, η), ζ) + Θ′′12(ξ, q(η, ζ)) =

= Ψ(ξ, η, ζ)− π(ζ)(
1

2
ψ(ξ, η) + Γ(ξ, η)) + (α(ξ) + π(ξ))(

1

2
ψ(η, ζ) + Γ(η, ζ))−

− (
1

2
ψ(q(ξ, η), ζ) + Γ(q(ξ, η), ζ)) + (

1

2
ψ(ξ, q(η, ζ)) + Γ(ξ, q(η, ζ))).

Using (39) and applying Lemma 5.1 we obtain from (25) that the third order Taylor polynomial
Θ̃(x, y) of the cocycle of F(P,Q,Θ) can be expressed as in the form (37), where the maps
f ∈ Ak(L)∗�Ak(L)∗⊗Ak(L)∗⊗Uk, g ∈ Ak(L)∗⊗Ak(L)∗�Ak(L)∗⊗Uk are uniquely determined
by the equations

T (ξ, η, ζ) = f(ξ, η, ζ)− g(ξ, η, ζ), Sym(f + g) = 0,

and the map χ ∈ Ak(L)∗ � Ak(L)∗ � Ak(L)∗ ⊗ Uk can be given arbitrarily. Hence the theorem
is proved.

Corollary 5.3. The dimension of vector space formed by the arbitrarily given tensors π, Π, Γ, χ
in the expressions (37) is 1

6(9k + 3nk + 6n+ n2 + 5)nk.

Proof. The tensors π, Π, Γ, χ form vector spaces of dimension nk2, 1
2n(n + 1)k2, 1

2n(n + 1)k,
(n2 +

(
n
3

)
)k, respectively, computing their sum we get the assertion.

6 Tangent algebras of the tangent prolongation of loops

Definition 6.1. Let L be a Cr-differentiable local loop (r ≥ 4) and α(t), β(t) differentiable curves
in L with initial data α(0) = β(0) = e, α′(0) = X, β′(0) = Y , where X,Y ∈ Te(L). The tangent
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prolongation T (L×Te(L)) of L is the manifold L×Te(L) equipped with the Cr−1-differentiable
multiplication

(x,X) · (y, Y ) =
(
xy,dxyλ

−1
xy

d

dt

∣∣
t=0

(xα(t) · yβ(t))
)

= (xy,deλ
−1
xy ρyλxX + deλ

−1
xy λxλyY ),

for all (x,X), (y, Y ) ∈ L× Te(L).

We can see immediately, (cf. [11], Lemma 4.1.):

Lemma 6.1. The tangent prolongation T (L × Te(L)) of a Cr-differentiable local loop L is a
Cr−1-differentiable linear abelian extension F(P,Q) of L determined by the Cr−1-differentiable
cocycle

P (x, y) := de(λ
−1
xy ρyλx), Q(x, y) := de(λ

−1
xy λxλy). (43)

Lemma 6.2. The monomial terms of the power series expansion (26) of

P (x, y)X +Q(x, y)Y = de(λ
−1
xy ρyλx)X + de(λ

−1
xy λxλy)Y

are expressed by

P ′2(y)X = 2q(X, y),

P ′′12(x, y)X = q(q(x,X), y)− q(q(x, y), X)− 2q(x, q(X, y))+

+ 2r(x,X, y)− 2r(x, y,X),

1

2
P ′′22(x, y)X = −q(x, q(X, y))− q(y, q(X,x))− r(x, y,X) + s(X,x, y),

(44)

and

Q′1(x) = Q′′11(x, y) = 0,

Q′′12(x, y)Y = q(x, q(y, Y ))− q(q(x, y), Y ) + 2s(x, y, Y )− 2r(x, y, Y ).
(45)

Proof. Let us denote
Σ = x · y, Γ(z) = ρyλxz, ∆(z) = λxλyz.

The map P (x, y) = de(λ
−1
xy ρyλx) = de(Σ\Γ) is the linear part of Σ\Γ(z) with respect to the

variable z. We have the expansions

Γ(z) = (x · z) · y = x+ y + z + q(x, z) + q(x+ z, y) + q(q(x, z), y)+

+r(x, x, z) + r(x+ z, x+ z, y) + s(x, z, z) + s(x+ z, y, y) + o(3)

and

Γ(z)− Σ = z + q(x, z) + q(z, y) + q(q(x, z), y) + r(x, x, z)+

+2r(x, z, y) + r(z, z, y) + s(x, z, z) + s(z, y, y) + o(3).

Using

x\y = y − x− q(x, y − x) + q(x, q(x, y − x))− r(x, x, y − x)− s(x, y − x, y − x) + o(3)

21



we obtain

Σ\Γ(z) = Γ(z)− Σ− q(Σ,Γ(z)− Σ) + q(Σ, q(Σ,Γ(z)− Σ))−
− r(Σ,Σ,Γ(z)− Σ)− s(Σ,Γ(z)− Σ,Γ(z)− Σ) + · · · =
= z + 2q(z, y) + q(q(x, z), y)− q(q(x, y), z)−
− q(x+ y, q(z, y)− q(y, z)) + 2r(x, z, y)− 2r(x, y, z)+

+ r(z, z, y)− r(y, y, z) + s(x, z, z) + s(z, y, y)− s(x+ y, z, z) + o(3).

The linear part of Σ\Γ with respect to the variable z gives

P (x, y)Z = Z + 2q(Z, y) + q(q(x, Z), y)− q(q(x, y), Z)− 2q(x+ y, q(Z, y))+

+ 2r(x, Z, y)− 2r(x, y, Z)− r(y, y, Z) + s(Z, y, y) + o(3).
(46)

Similarly, Q(x, y) = de(λ
−1
xy λxλy) = de(Σ\∆) is the linear part of λ−1

xy λxλy(z) = Σ\∆(z) with
respect to the variable z. We have

∆(z)− Σ = z + q(x+ y, z) + q(x, q(y, z)) + r(x, x, z) + r(y, y, z)+

+ s(y, z, z) + 2s(x, y, z) + s(x, z, z) + o(3),

and

Σ\∆(z) = ∆(z)− Σ− q(Σ,∆(z)− Σ) + q(Σ, q(Σ,∆(z)− Σ))−
− r(Σ,Σ,∆(z)− Σ)− s(Σ,∆(z)− Σ,∆(z)− Σ) + · · · =
= z + q(x, q(y, z))− q(q(x, y), z)− 2r(x, y, z) + 2s(x, y, z) + o(3).

It follows

Q(x, y)Z = Z + q(x, q(y, Z))− q(q(x, y), Z) + 2s(x, y, Z)− 2r(x, y, Z) + o(3). (47)

According to (24), (46) and (47) we have

P ′2(y)X + P ′′12(x, y)X +
1

2
P ′′22(y, y)X =

= 2q(X, y) + q(q(x,X), y)− q(q(x, y), X)− 2q(x+ y, q(X, y))+

+ 2r(x,X, y)− 2r(x, y,X)− r(y, y,X) + s(X, y, y),

(48)

and

Q′1(x)Y +
1

2
Q′′11(x, x)Y +Q′′12(x, y)Y =

= q(x, q(y, Y ))− q(q(x, y), Y ) + 2s(x, y, Y )− 2r(x, y, Y ).
(49)

The assertion of lemma follows from the formulas (48) and (49).

Proposition 6.3. The commutator and the associator of the tangent Akivis algebra of the
tangent prolongation T (L× Te(L)) are expressed by

[(x,X), (y, Y )] = ([x, y], [X, y] + [x, Y ])

and
〈(x,X), (y, Y ), (z, Z)〉 =

(
〈x, y, z〉, 〈X, y, z〉+ 〈x, Y, z〉+ 〈x, y, Z〉

)
in a distinguished coordinate chart Wn × V n.
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Proof. We apply the results of Theorem 4.1 to the prolongation F(P,Q) of L determined by the
cocycle (43). Using the formulas (28) and (29) in the case Θ = 0 we get the commutator and the
associator:

[(x,X), (y, Y )] = ([x, y], 2(q(X, y)− q(Y, x)) = ([x, y], [X, y] + [x, Y ]),

〈(x,X), (y, Y ), (z, Z)〉 =
(
〈x, y, z〉, q(q(X, y), z)− q(X, q(y, z)) + 2r(X, y, z)−

− 2s(X, y, z) + q(q(x, Y ), z)− q(x, q(Y, z)) + 2r(x, Y, z)− 2s(x, Y, z)−
− q(x, q(y, Z)) + q(q(x, y), Z)− 2s(x, y, Z) + 2r(x, y, Z)

)
=

=
(
〈x, y, z〉, 〈X, y, z〉+ 〈x, Y, z〉+ 〈x, y, Z〉

)
.

Hence the assertion is proved.

In Proposition 6.3 we identified the local loop L with the coordinate chart Wn ⊂ V n, the
tangent space Te(L) with the vector space V n, the tangent prolongation T (L × Te(L)) with
Wn × V n, and computed the commutator and associator in the tangent space T(0,0)(W

n × V n).
Now we will find a coordinate-free expression for the operations of the tangent Akivis algebra of
tangent prolongation T (L × Te(L)). Using the fact that the tangent spaces of a vector space
are canonically isomorphic to the vector space we get a canonical linear isomorphism of the
tangent space T(e,0) (L× Te(L)) to the direct sum Te(L) ⊕ Te(L). The bilinear, respectively,
trilinear forms q, r, s, the commutator and the associator of L are defined on the subspace
Te(L)⊕ {0} ∼= Te(L). Let

θ : {0} ⊕ Te(L)→ Te(L)⊕ {0}, θ : (0, X) 7→ (X, 0)

be the canonical linear isomorphism induced by the identity map of Te(L). In the expressions
in Proposition 6.3 of the operations of the tangent Akivis algebra of T (L × Te(L)) we replace
x, y, z ∈ Wn with ξ, η, ζ ∈ Te(L) ⊕ {0}. Using the map θ : (0, X) 7→ (X, 0) we obtain the
expression of the commutator and of the associator as follows:

Theorem 6.4. The tangent Akivis algebra Ak(T (L×Te(L))) of the tangent prolongation T (L×
Te(L)) of a Cr-differentiable local loop L is a linear semidirect sum

Ak(T (L× Te(L))) ∼= Ak(L)⊕∆ Te(L)+

of the tangent Akivis algebra Ak(L) and the abelian Akivis algebra Te(L)+ on the tangent space
Te(L), determined by the data system ∆ consisting of the maps

α(ξ, Z) = θ−1[ξ, θZ], λ(ξ, η, Z) = θ−1〈θZ, ξ, η〉, µ(ξ, η, Z) = θ−1〈η, θZ, ξ〉,
ν(ξ, η, Z) = θ−1〈ξ, η, θZ〉, where θ : (0, X) 7→ (X, 0).

The commutator and the associator of Ak(T (L× Te(L))) are expressed by

[(ξ,X), (η, Y )] = ([ξ, η], θ−1([θ(X), η]) + θ−1([ξ, θ(Y )])),

〈(ξ,X), (η, Y ), (ζ, Z)〉 =
(
〈ξ, η, ζ〉, θ−1(〈θ(X), η, ζ〉) + θ−1(〈ξ, θ(Y ), ζ〉) + θ−1(〈ξ, η, θ(Z)〉)

)
for any (ξ,X), (η, Y ), (ζ, Z) ∈ Te(L)⊕ Te(L).
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It follows from Lemma 2.3:

Corollary 6.5. The Sabinin algebra S(T (L × Te(L))) of degree 3 of the tangent prolongation
T (L× Te(L)) of a Cr-differentiable local loop L is defined by the operations

{(ξ,X), (η, Y )} =
(
{ξ, η}, θ−1({θ(X), η}) + θ−1({ξ, θ(Y )})

)
,(

(ξ,X), (η, Y ), (ζ, Z)
)

=
(
(ξ, η, ζ), θ−1((θ(X), η, ζ)) + θ−1((ξ, θ(Y ), ζ)) + θ−1((ξ, η, θ(Z)))

)
Φ1,2((ξ,X), (η, Y ), (ζ, Z)) =

(
Φ1,2(ξ, η, ζ), θ−1(Φ1,2(θ(X), η, ζ) + θ−1(Φ1,2(ξ, θ(Y ), ζ))+

θ−1(Φ1,2(ξ, η, θ(Z))
)
.

The expressions obtained for the commutator and associator of the tangent Akivis algebra
of the tangent prolongation show that this semidirect sum of Akivis algebras is constructed as
described in Proposition 3.4 in the case if A = A∗ and θ : {0} ⊕Te(L)→ Te(L)⊕ {0} is induced
by the identity map of Te(L).
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[33] D. Stanovský and P. Vojtěchovský, Abelian Extensions and Solvable Loops, Results Math.
66, (2014), 367–384.

[34] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Graduate Texts in
Mathematics, 102, Springer-Verlag, New York, (1984).

[35] K. Yano, S. Ishihara, Tangent and Cotangent Bundles: Differential Geometry, Pure and
Applied Mathematics, 16, Marcel Dekker, Inc., New York, (1973).

Author’s addresses:
Ágota Figula, Institute of Mathematics, University of Debrecen, H-4002 Debrecen, P.O.Box 400,
Hungary. E-mail: figula@science.unideb.hu
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