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Abstract. In this paper we describe the structure of indecomposable nilpo-
tent Lie groups which are multiplication groups of three-dimensional simply con-
nected topological loops. In contrast to the 2-dimensional loops there is no
connected topological loop of dimension ≥ 3 such that the Lie algebra of its
multiplication group is an elementary filiform Lie algebra. We determine the in-
decomposable nilpotent Lie groups of dimension ≤ 6 and their subgroups which
are the multiplication groups and the inner mapping groups of the investigated
loops. We prove that all multiplication groups have 1-dimensional centre and
the corresponding loops are centrally nilpotent of class 2.
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1. Introduction

The multiplication group Mult(L) is an essential tool for the research in loop the-
ory since the structure of the normal subgroups of Mult(L) reflects the structure
of the normal subloops of L (cf. [1], [2], [3]). In [14] the authors established neces-
sary and sufficient conditions for a group K to be the multiplication group of L .
These criterions say that one can use special transversals A and B with respect
to a subgroup S of K . In these conditions the subgroup S is the stabilizer of the
identity of L in Mult(L) and it is called the inner mapping group Inn(L) of L .
Furthermore, the transversals A and B correspond to the sets of left and right
translations of L , respectively. These criterions have been successfully applied for
finite loops (cf. [1], [2], [13]-[16]) and they can be also used effectively for connected
topological loops L having a Lie group as their multiplication group (cf. [4]-[6]).

In [4] we proved that only the elementary filiform Lie groups Fn , n ≥ 4, are
the multiplication groups Mult(L) of 2-dimensional connected simply connected
topological loops L . In contrast to this, Proposition 2.8 shows that there does not
exist any connected topological loop L of dimension ≥ 3 having a Lie group with
elementary filiform Lie algebra as the group Mult(L). In [5] and [6] we analyzed
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the question under which circumstances will be nilpotent or solvable Lie group
the multiplication group of a topological loop L of dimension ≤ 3. Till now this
characterization has been resulted only decomposable nilpotent and solvable Lie
groups as the group Mult(L) of 3-dimensional topological loops with the exception
of the direct product Fn ×Z Fm with amalgamated centre Z , n,m ≥ 3. In [6] it
is also proved that all 3-dimensional simply connected topological loops L having
a solvable, non-nilpotent Lie group of dimension ≤ 5 as their multiplication group
are centrally nilpotent of class 2.

In this paper we focused our attention on the study of indecomposable
nilpotent Lie groups as well as on the search for 3-dimensional centrally nilpotent
topological loops of class 3. In Propositions 2.6 and 2.7 we give the precise
structure of the 3-dimensional connected simply connected topological loops L and
those of the indecomposable nilpotent Lie groups which are the groups Mult(L)
of L . In particular the centrally nilpotent loops of class 3 are characterized by
Proposition 2.7 b). All groups Mult(L) have 1-dimensional centre (cf. Proposition
2.9).

In Theorems 3.1 and 4.3 we list the indecomposable nilpotent Lie groups of
dimension ≤ 6 which are the groups Mult(L) of 3-dimensional connected simply
connected topological loops L and the subgroups of Mult(L) which are the inner
mapping groups Inn(L) of L . None of the 4-dimensional nilpotent Lie groups is
represented as the group Mult(L) for 3-dimensional loops L . Summarizing these
results we have:

Theorem Let L be a 3-dimensional connected simply connected topological proper
loop such that the group Mult(L) is an indecomposable nilpotent Lie group. Then,
one has dim(Mult(L)) ≥ 5.
a) Mult(L) has dimension 5 if and only if it is either the direct product F3×Z F3

with amalgamated centre Z or the simply connected Lie group with 1-dimensional
centre and 2-dimensional commutator subgroup.
b) Mult(L) has dimension 6 if and only if it is either the direct product F4×Z F3

with amalgamated centre Z or a simply connected Lie group with 1-dimensional
centre and 3-dimensional commutator subgroup.
In all cases the loops L are centrally nilpotent of class 2.

Together with the main result in [6] we obtain that all 3-dimensional connected
simply connected topological loops L having an at most 5-dimensional Lie group
as their multiplication group are centrally nilpotent of class 2.

2. Preliminaries

A loop is a binary system (L, ·) if there exists an element e ∈ L such that
x = e · x = x · e holds for all x ∈ L and the equations a · y = b and x · a = b
have precisely one solution, which we denote by y = a\b and x = b/a . A loop L
is proper if it is not a group.
The left and right translations λa = y 7→ a · y : L→ L and ρa : y 7→ y · a : L→ L ,
a ∈ L , are permutations of L .
The permutation group Mult(L) = 〈λa, ρa; a ∈ L〉 is called the multiplication
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group of L . The stabilizer of the identity element e ∈ L in Mult(L) is denoted
by Inn(L), and Inn(L) is called the inner mapping group of L .

Let K be a group, let S ≤ K , and let A and B be two left transversals to
S in K . We say that A and B are S -connected if a−1b−1ab ∈ S for every a ∈ A
and b ∈ B . The core CoK(S) of S in K is the largest normal subgroup of K
contained in S . If L is a loop, then Λ(L) = {λa; a ∈ L} and R(L) = {ρa; a ∈ L}
are Inn(L)-connected transversals in the group Mult(L) and the core of Inn(L)
in Mult(L) is trivial. We often use the following (see [14], Theorem 4.1 and
Proposition 2.7).

Lemma 2.1. A group K is isomorphic to the multiplication group of a loop
if and only if there exists a subgroup S with CoK(S) = 1 and S -connected
transversals A and B satisfying K = 〈A,B〉.

Lemma 2.2. Let L be a loop with multiplication group Mult(L) and inner
mapping group Inn(L). Then the normalizer NMult(L)(Inn(L)) is the direct prod-
uct Inn(L)×Z(Mult(L)), where Z(Mult(L)) is the centre of the group Mult(L).

The kernel of a homomorphism α : (L, ·)→ (L′, ∗) of a loop L into a loop
L′ is a normal subloop N of L , i.e. a subloop of L such that

x ·N = N · x, (x ·N) · y = x · (N · y), x · (y ·N) = (x · y) ·N. (1)

The centre Z(L) of a loop L consists of all elements z which satisfy the
equations zx · y = z · xy, x · yz = xy · z, xz · y = x · zy, zx = xz for all x, y ∈ L .
If we put Z0 = e , Z1 = Z(L) and Zi/Zi−1 = Z(L/Zi−1), then we obtain a series
of normal subloops of L . If Zn−1 is a proper subloop of L but Zn = L , then L is
centrally nilpotent of class n .

Lemma 2.3. Let L be a loop with multiplication group Mult(L) and identity
element e.
(i) Let α be a homomorphism of the loop L onto the loop α(L) with kernel
N . Then α induces a homomorphism of the group Mult(L) onto the group
Mult(α(L)). Let M(N) be the set {m ∈Mult(L); xN = m(x)N for all x ∈ L}.
Then M(N) is a normal subgroup of Mult(L) containing the multiplication group
Mult(N) of N and the multiplication group of the factor loop L/N is isomorphic
to Mult(L)/M(N).
(ii) For every normal subgroup N of Mult(L) the orbit N (e) is a normal subloop
of L and N ≤M(N (e)).

Proof. The main part of the assertion was proved by Albert in [1], Theorems
3, 4 and 5 and by Bruck in [3], IV.1, Lemma 1.3. It remains only to show that
the multiplication group Mult(N) of the normal subloop N is contained in the
group M(N). It is enough to prove that the transformations λy , ρy , λ−1y , ρ−1y for
all y ∈ N are elements of M(N). By (1) for every y ∈ N there exists an y′ ∈ N
such that for all x ∈ L one has λy(x)N = (y · x)N = (x · y′)N = x(y′N) = xN ,
ρy(x)N = (x · y)N = x(yN) = xN . For all y ∈ N , x ∈ L one has λ−1y (x)N =
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(y\x)N = xN if and only if there exists an element y′ ∈ N such that y\x = x · y′
or equivalently x = y ·(x·y′). By the normality of N there are elements y′′, y′′′ ∈ N
such that x = (x · y′) · y′′ = x(y′ · y′′′). Hence with y′ = e/y′′′ the last identity is
true. For all y ∈ N , x ∈ L one has ρ−1y (x)N = (x/y)N = xN precisely if x/y is
an element of xN , i. e. for suitable y′ ∈ N we have x/y = x · y′ or equivalently
x = (x · y′) · y . Since N is normal there is ỹ ∈ N such that x = x · (y′ · ỹ). With
y′ = e/ỹ the last identity is true. This proves the assertion.

A loop L is called topological if L is a topological space and the binary operations
(x, y) 7→ x · y, (x, y) 7→ x\y, (x, y) 7→ y/x : L× L→ L are continuous. Let G be
a connected Lie group, let H be a subgroup of G . A section σ : G/H → G is
called sharply transitive, if the set σ(G/H) operates sharply transitively on G/H ,
which means that for any xH and yH there exists precisely one z ∈ σ(G/H)
with zxH = yH . Every connected topological loop L having a Lie group G as
the group topologically generated by the left translations of L is obtained on a
homogeneous space G/H , where H is a closed subgroup of G with CoG(H) = 1
and σ : G/H → G is a continuous sharply transitive section such that σ(H) =
1 ∈ G and the subset σ(G/H) generates G . The multiplication of L on the
manifold G/H is defined by xH ∗ yH = σ(xH)yH and the group G is the group
topologically generated by the left translations of L . Moreover, the subgroup H
is the stabilizer of the identity element e ∈ L in the group G .

Lemma 2.4. For any connected topological loop there is a universal covering
loop. Any 3-dimensional proper connected simply connected topological loop having
a solvable Lie group as its multiplication group is homeomorphic to R3 .

Lemma 2.4 is proved in [11], IX.1 and in [5], Lemma 3.3, p. 390.

The elementary filiform Lie group Fn is the simply connected Lie group of dimen-
sion n ≥ 3 such that its Lie algebra has a basis {e1, · · · , en} with [e1, ei] = ei+1

for 2 ≤ i ≤ n−1. A 2-dimensional simply connected topological loop LF is called
an elementary filiform loop if its multiplication group is an elementary filiform Lie
group Fn , n ≥ 4 ([5]). A Lie group is called indecomposable if its Lie algebra is
indecomposable, i.e. it is not the direct sum of two proper ideals.

Now we collect the known results about nilpotent Lie groups which are the multi-
plication groups of 3-dimensional topological loops (cf. Lemmata 3.4, 3.5, 3.6 and
Propositions 3.7, 3.8, 4.3 in [5], pp. 390-394, Theorem 11 in [1], Theorem 6 in [6]).

Lemma 2.5. Let L be a 3-dimensional proper connected simply connected topo-
logical loop such that its multiplication group Mult(L) is a nilpotent Lie group.
a) Then the centre Z of the group Mult(L) and the centre Z(L) = Z(e) of the
loop L are isomorphic to the group Rn , n = {1, 2}, where e is the identity of L.
b) Every 1-dimensional normal subloop N of L is a central subgroup of L.
c) The loop L is centrally nilpotent. Moreover, L is an extension of a 2-
dimensional centrally nilpotent loop M by the group R and also an extension
of the group N = R by a 2-dimensional centrally nilpotent loop K such that N
is a normal subloop of M .
d) If dim Z(L) = 1 and the factor loop L/Z(L) is isomorphic to the group R2 or
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if dim Z(L) = 2, then L is centrally nilpotent of class 2 and the inner mapping
group Inn(L) of the loop L is abelian.
e) If dim Z(L) = 2, then Mult(L) is a semidirect product of a group Q ∼= R by
the abelian normal subgroup M ∼= Rm , m ≥ 3, such that M = Z× Inn(L), where
R2 = Z ∼= Z(L) is the centre of Mult(L).
f) Let N be a 1-dimensional central subgroup of Mult(L), then the orbit N(e) ∼= R
is a central subgroup of L and we have the following possibilities:
If the factor loop L/N(e) is isomorphic to the abelian group R2 , then Mult(L) is
a semidirect product of a group Q ∼= R2 by the abelian normal subgroup P ∼= Rm ,
m ≥ 2, such that P = N × Inn(L).
If the factor loop L/N(e) is isomorphic to a 2-dimensional elementary filiform
loop LF , then there is a normal subgroup S of the group Mult(L) containing N
such that the factor group Mult(L)/S is an elementary filiform Lie group Fn with
n ≥ 4.
g) The unique 4-dimensional indecomposable nilpotent Lie group F4 is not the
multiplication group of a 3-dimensional topological loop.

In the next Propositions we describe the indecomposable nilpotent Lie groups
which are multiplication groups of 3-dimensional topological loops.

Proposition 2.6. Let L be a 3-dimensional proper connected simply connected
topological loop such that its multiplication group Mult(L) is an indecomposable
nilpotent Lie group and the centre Z of Mult(L) has dimension 2. Then L is
centrally nilpotent of class 2. The group Mult(L) has dimension at least 5 and it
is a semidirect product of a group Q ∼= R by the abelian group M = Z× Inn(L) ∼=
Rm , m ≥ 4, where R2 = Z ∼= Z(L). For every 1-dimensional connected subgroup
N of Z the orbit N(e) is a 1-dimensional connected central subgroup of L and the
factor loop L/N(e) is isomorphic to an elementary filiform loop LF . The group
Mult(L) has a normal subgroup S containing N ∼= R such that the factor group
Mult(L)/S is an elementary filiform Lie group Fn with n ≥ 4.

Proof. By Lemma 2.5 d), e), g) one has L is centrally nilpotent of class 2,
dim(Mult(L)) ≥ 5 and the group Mult(L) is a semidirect product as in the
assertion.

The latter part of the assertion is proved in Lemma 2.5 f) if we show that
the factor loop L/N(e) cannot be isomorphic to the group R2 .

If the factor loop L/N(e) would be isomorphic to the group R2 , then by
Lemma 2.5 f) the group Mult(L) is a semidirect product of a group Q ∼= R2 by
the abelian group P = N × Inn(L). As Mult(L)/P is isomorphic to R2 the
commutator subgroup Mult(L)′ is contained in P . Since the Lie group Mult(L)
is indecomposable Z is a subgroup of Mult(L)′ and therefore Z is a subgroup of
P . As CoMult(L)(Inn(L)) = {1} one has Inn(L) ∩ Z = {1} . Hence P contains
only a proper subgroup N of Z which is a contradiction.

Proposition 2.7. Let L be a 3-dimensional proper connected simply connected
topological loop such that its multiplication group Mult(L) is an indecomposable
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nilpotent Lie group with 1-dimensional centre Z . Then we get Z(e) = Z(L) ∼= R
and the group Mult(L) has dimension at least 5. Moreover, one of the following
possibilities holds:
a) L is centrally nilpotent of class 2. Then the factor loop L/Z(L) is isomorphic
to R2 and the group Mult(L) is a semidirect product of a group Q ∼= R2 by the
abelian group P = Z × Inn(L) ∼= Rm , m ≥ 3.
b) L is centrally nilpotent of class 3. Then the factor loop L/Z(L) is isomorphic
to an elementary filiform loop LF and the group Mult(L) has a normal subgroup
S containing Z ∼= R such that the orbit S(e) is the centre of L, S induces
the sharply transitive group R on S(e) and the factor group Mult(L)/S is an
elementary filiform Lie group Fn with n ≥ 4. The loop L has a normal subloop
M isomorphic either to R2 or to an elementary filiform loop LF such that Z(e)
is a central subgroup of M , L/M is isomorphic to R and the factor loop M/Z(e)
coincides with Z(L/Z(e)). Moreover, the group Mult(L) has a normal subgroup
V such that the orbit V (e) is the loop M , V induces an elementary filiform
group Fn with n ≥ 3 on M(e), Mult(L)/V ∼= R, V contains the inner mapping
group Inn(L) of L as well as the group Mult(M) of M and Z is a central
subgroup of Mult(M). The centre of the factor group Mult(L)/S coincides with
the multiplication group of the factor loop M/Z(e).

Proof. Lemma 2.5 g) yields that the group Mult(L) has dimension at least 5.

Applying Lemma 2.5 f) to the centre Z ∼= R of Mult(L) we obtain assertion
a) and that the group Mult(L) has a normal subgroup S as in assertion b).
Moreover, by Lemma 2.5 b) and c) the loop L has an upper central series e <
Z(e) < M < L , where the normal subloop M of L is isomorphic either to R2

or to a loop LF such that L/M ∼= R , Z(e) = Z(L) is a central subgroup of M
and Z(L/Z(e)) = M/Z(e). Since M is normal in L by Lemma 2.3 the group
Mult(L) has a normal subgroup V = {v ∈Mult(L);xM = v(x)M for all x ∈ L} .
Hence one has V (e) = M , Mult(L)/V ∼= R and V contains the multiplication
group Mult(M) of M . Since the multiplication group of Z(L) is Z it is a
central subgroup of Mult(M) < Mult(L). The group Mult(L)/V operates
sharply transitively on the orbits of M in L . Hence the inner mapping group
Inn(L) is a subgroup of V . The group V induces on the orbit M(e) which
is homeomorphic to R2 either the sharply transitive group R2 or an elementary
filiform group Fn , n ≥ 3. This means the group V has a normal subgroup N
such that N(e) = e and V/N is isomorphic either to R2 or to Fn , n ≥ 3. If the
factor group V/N is abelian, then N contains the commutator subgroup V ′ . As
the centre Z of Mult(L) is contained in V ′ we get a contradiction to the fact that
Z(e) = Z(L) 6= {e} . Therefore V does not induce on M(e) the group R2 . The
multiplication group of the factor loop L/Z(e) is the factor group Mult(L)/S .
The multiplication group of Z(L/Z(e)) coincides with the centre Z(Mult(L)/S)
of factor group Mult(L)/S . As M/Z(e) = Z(L/Z(e)) the group Mult(M/Z(e))
coincides with Z(Mult(L)/S).

In contrast to the 2-dimensional loops we prove that the Lie groups with elemen-
tary filiform Lie algebra cannot be the multiplication group of connected topolog-
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ical loops of dimension ≥ 3.

Proposition 2.8. There does not exist any connected topological loop of dimen-
sion ≥ 3 such that its multiplication group is a Lie group with elementary filiform
Lie algebra.

Proof. Assume that there exists a connected topological loop L such that
dim(L) = m ≥ 3 with the required properties. Denote by {e1, e2, · · · , en} with
[e1, ei] = ei+1 for 2 ≤ i ≤ n − 1 the basis of the Lie algebra fn of Fn . Then the
centre z(fn) of fn is the subalgebra 〈en〉 . First we assume that the inner mapping
group Inn(L) of L is abelian. The Lie algebra of the maximal abelian subgroup
of Fn is the ideal i = 〈e2, · · · , en〉 of the Lie algebra fn . As CoFn(Inn(L)) = {1}
(cf. Lemma 2.1) the Lie algebra inn(L) is a proper subalgebra with codimension
m− 1 of i which does not contain the centre z(fn) of fn . The Lie group I of the
ideal i is the normalizer of the Lie group Inn(L) of inn(L). But I contains as
proper subgroup the direct product Z × Inn(L), where Z is the Lie group of the
centre z(fn). This contradicts Lemma 2.2.

Now we suppose that the inner mapping group Inn(L) of L is non-abelian.
In Lemma 8 in [5], pp. 424-425, we have shown that any non-abelian subalgebra
of the elementary filiform Lie algebra fn must contain the centre z(fn) of fn . This
is a contradiction to the fact that CoFn(Inn(L)) = {1} . Hence the assertion is
proved.

Applying Proposition 2.6 and the list of the indecomposable nilpotent Lie algebras
of dimension 5 and 6 ([7], pp. 167-168, [10], pp. 646-647) we get the following:

Proposition 2.9. If L is a 3-dimensional connected topological proper loop
having an at most 6-dimensional indecomposable nilpotent Lie group as its multi-
plication group, then L has 1-dimensional centre.

Proof. By Lemma 2.4 we may assume that L is homeomorphic to R3 . We
show that the indecomposable nilpotent Lie algebras of dimension ≤ 6 having
2-dimensional centre cannot be the Lie algebra of the multiplication group of
L . Among the 5- and the 6-dimensional indecomposable nilpotent Lie algebras
only the Lie algebras g5.1 , g5.3 , L6,19(ε), L6,21(ε) with ε = 0 and L6,i for i =
22, 23, 24, 25 have 2-dimensional centre (cf. [7], [10]). The Lie algebras g5.3 ,
L6,19(ε), L6,21(ε) with ε = 0 and L6,i for i = 22, 23, 24 has no abelian ideal of
codimension 1. Hence these Lie algebras are excluded (cf. Proposition 2.6).
Assume that the Lie algebra of the multiplication group Mult(L) of L is either
the Lie algebra g5.1 or L6,25 . The centre of g5.1 is z(g5.1) = 〈e1, e2〉 , respectively of
L6,25 is z(L6,25) = 〈e5, e6〉 . Let n1 be the subalgebra 〈e1〉 of z(g5.1), respectively
n2 be the subalgebra 〈e5〉 of z(L6,25). Since there does not exist an ideal s1 of
g5.1 containing n1 and an ideal s2 of L6,25 containing n2 such that the factor
Lie algebra g5.1/s1 , respectively L6,25/s2 is an elementary filiform Lie algebra
of dimension ≥ 4 we get a contradiction to Proposition 2.6. This proves the
assertion.
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3. Five-dimensional nilpotent Lie groups which are multiplication
groups of three-dimensional loops

Theorem 3.1. Let L be a connected simply connected topological proper loop
of dimension 3 such that its multiplication group Mult(L) is a 5-dimensional
indecomposable nilpotent Lie group. Then the centre Z(L) of L is isomorphic to
R and the factor loop L/Z(L) is isomorphic to R2 . Moreover, the following Lie
groups are the multiplication groups Mult(L) and the following subgroups are the
inner mapping groups Inn(L) of L:
1) Mult(L)1 is the direct product F3 ×Z F3 with amalgamated centre Z . It is
represented on R5 by the multiplication

g(q1, z1, w1, x1, y1)g(q2, z2, w2, x2, y2) =

g(q1 + q2 + z1x2 + w1y2, z1 + z2, w1 + w2, x1 + x2, y1 + y2).

Inn(L) is the subgroup {g(0, z, w, 0, 0), z, w ∈ R}.
2) Mult(L)2 is the unique 5-dimensional simply connected indecomposable nilpo-
tent Lie group with 1-dimensional centre and 2-dimensional commutator subgroup.
It is represented on R5 by the multiplication

g(x1, y1, q1, z1, w1)g(x2, y2, q2, z2, w2) =

g(x1 + x2 + q1z2 + w1y2 +
w2

1q2
2

, y1 + y2 + w1q2, q1 + q2, z1 + z2, w1 + w2).

Inn(L)2 is one of the groups Inn(L)2,1 = {g(0, y, q, 0, 0), y, q ∈ R}, Inn(L)2,2 =
{g(0, y, 0, z, 0), y, z ∈ R}.

Proof. By Lemma 2.4 we may assume that L is homeomorphic to R3 . Ac-
cording to Propositions 2.8, 2.9 and to the list of [7], pp. 167-168, the Lie algebra
of the group Mult(L) of L can be only one of the following Lie algebras:
g5.4 : [e2, e4] = e1, [e3, e5] = e1,
g5.5 : [e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2,
g5.6 : [e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3.
According to the list of [7], pp. 167-168, among the 5-dimensional indecompos-
able nilpotent Lie algebras only the Lie algebra g5.5 has 1-dimensional centre and
2-dimensional commutator ideal. A linear representation of the simply connected
Lie group G5.4 is given in assertion 1) and that of the simply connected Lie group
G5.5 is represented in assertion 2). The simply connected Lie group G5.6 of g5.6

is isomorphic to the linear group of matrices

g(q, x, y, z, w) =


1 2w w2 − z y − zw + w3

3
q

0 1 w w2

2
x

0 0 1 w y
0 0 0 1 z
0 0 0 0 1

 ,

where q, x, y, z, w ∈ R . For i = 4, 5, 6 the centre of G5.i is Z = exp(〈e1〉). If G5.i ,
i = 4, 5, 6, is the multiplication group Mult(L) of L , then the centre Z(L) = Z(e)
of L is isomorphic to R (cf. Lemma 2.5 a).
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The factor algebra g5.i/〈e1〉 for i = 4, 5 is different from the Lie algebra
of F4 . Therefore the factor loop L/Z(e) is isomorphic to R2 . According to
Proposition 2.7 a) the Lie algebra inn(L) of the inner mapping group Inn(L) of
L is a 2-dimensional abelian subalgebra of g5.i , i = 4, 5, which does not contain
any non-trivial ideal of g5.i .

Up to automorphisms of the Lie algebra g5.4 we get that inn(L) = 〈e2, e3〉 .
Hence one has Inn(L) = {g(0, z, w, 0, 0), z, w ∈ R} . The set

A = {g(q, x+ y, x− 2y, x, y), q, x, y ∈ R}
is Inn(L)-connected left transversal in G5.4 such that A generates G5.4 . Therefore
Lemma 2.1 yields assertion 1).

By Proposition 2.7 a) there is an abelian normal subgroup P of the
group G5.5 such that the factor group G5.5/P ∼= R2 . The Lie algebra p of
the group P has one of the following forms: p1 = 〈e1, e2, e3 + k1e4〉 , k1 ∈
R , p2 = 〈e1, e2, e4〉 . As 〈e1〉 is the centre of g5.5 we may choose inn(L) in
the following way inn(L)1,l1,l2,k1 = 〈e2 + l1e1, e3 + k1e4 + l2e1〉 , l1, l2, k1 ∈ R ,
inn(L)2,n1,n2

= 〈e2 + n1e1, e4 + n2e1〉 , n1, n2 ∈ R . The automorphism α(e1) = e1 ,
α(e2) = e2 − l1e1 , α(e3) = e3 − k1e4 − l2e1 , α(e4) = e4 , α(e5) = e5 of g5.5

maps inn(L)1,l1,l2,k1 onto inn(L)1 = 〈e2, e3〉 and the automorphism β(e1) =
e1 , β(e2) = e2 − n1e1 , β(e3) = e3 − n1e2 , β(e4) = e4 − n2e1 , β(e5) = e5
changes inn(L)2,n1,n2

onto inn(L)2 = 〈e2, e4〉 . The corresponding Lie groups
are Inn(L)1 = {g(0, y, q, 0, 0), y, q ∈ R} , Inn(L)2 = {g(0, y, 0, z, 0), y, z ∈ R} .
The set A = {g(x, zw + w3

2
, z + w2

2
, z, w), x, z, w ∈ R} is Inn(L)1 - and the set

B = {g(x, qw, q,−w2

2
, w), x, q, w ∈ R} is Inn(L)2 -connected left transversals in

G5.5 . The set A and also the set B generates G5.5 . By Lemma 2.1 assertion 2)
follows.

Finally, we prove that the Lie algebra g5.6 is not the Lie algebra of the
multiplication group of a 3-dimensional connected simply connected topological
proper loop L . If g5.6 is the Lie algebra of the multiplication group of L ,
then the Lie algebra inn(L) of the inner mapping group Inn(L) of L is a 2-
dimensional subalgebra of g5.6 which does not contain any non-trivial ideal of
g5.6 . Any 2-dimensional subalgebra of a nilpotent Lie algebra is abelian. Hence
up to automorphisms of g5.6 the following subalgebras can occur as the Lie algebra
inn(L): inn1(L) = 〈e2, e3〉 , inn2(L) = 〈e2, e4〉 . The corresponding Lie groups
are Inn1(L) = {g(0, x, y, 0, 0), x, y ∈ R} and Inn2(L) = {g(0, x, 0, z, 0), x, z ∈ R} .
Arbitrary left transversals to the group Inn1(L) of G5.6 are

A = {g(q, f1(q, z, w), f2(q, z, w), z, w), q, z, w ∈ R},

B = {g(m,h1(m,n, p), h2(m,n, p), n, p), m, n, p ∈ R},

respectively those to the group Inn2(L) are

C = {g(q, f3(q, y, w), y, f4(q, y, w), w), q, y, w ∈ R},

D = {g(m,h3(m,n, p), n, h4(m,n, p), p), m, n, p ∈ R},

where fi(q, z, w), hi(m,n, p), fj(q, y, w), hj(m,n, p) : R3 → R , i = 1, 2, j = 3, 4,
are continuous functions with fi(0, 0, 0) = fj(0, 0, 0) = 0 = hi(0, 0, 0) = hj(0, 0, 0).
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The products a−1b−1ab with a ∈ A , b ∈ B are contained in Inn1(L) if the equa-
tion wn− pz = 0 holds for all w, n, p, z ∈ R , which gives a contradiction.
The products c−1d−1cd with c = g(0, f3(0, 0, w), 0, f4(0, 0, w), w) ∈ C , d =
g(0, h3(0, n, p), n, h4(0, n, p), p) ∈ D are contained in Inn2(L) if and only if the
equations

pf4(0, 0, w) = wh4(0, n, p) (2)

2wh3(0, n, p)−2pf3(0, 0, w) = −1

3
w3h4(0, n, p)+(f4(0, 0, w)−h4(0, n, p))w2p+w2n+f4(0, 0, w)(2n+

1

3
p3)+

pf4(0, 0, w)2 + w(f4(0, 0, w)p2 + 2pn− p2h4(0, n, p)− h4(0, n, p)2) (3)

are satisfied for all p, w, n ∈ R . From equation (2) we obtain f4(0, 0, w) = c1w
and h4(0, n, p) = c1p , where c1 ∈ R is a constant. Putting these into equation (3)
it reduces to

2wh3(0, n, p)−2pf3(0, 0, w) =
2

3
c1w

3p+w2(c21p+n)+w(2c1n+2np− 2

3
c1p

3−c21p2).
(4)

Since the right hand side of (4) contains the term w2n there are no functions
f3(0, 0, w) and h3(0, n, p) such that equation (4) holds and the claim is proved.

4. Six-dimensional nilpotent Lie groups which are multiplication
groups of three-dimensional loops

Let L be a connected topological loop homeomorphic to R3 and having a 6-
dimensional indecomposable nilpotent Lie group as the group Mult(L) of L . If
L is centrally nilpotent of class 2, then one has Z(L) ∼= R and L/Z(L) ∼= R2 (cf.
Proposition 2.7 a). Moreover, the Lie algebra g of Mult(L) has an abelian ideal
p such that the factor algebra g/p is isomorphic to R2 . The Lie algebra g has a
3-dimensional abelian subalgebra k which does not contain any non-zero ideal of
g and the normalizer Ng(k) of k in g is p (cf. Proposition 2.7 a) and Lemmata
2.1, 2.2).

Proposition 4.1. Let g be a 6-dimensional indecomposable nilpotent Lie alge-
bra with 1-dimensional centre. Let p be an abelian ideal of g such that the factor
algebra g/p is isomorphic to R2 . Let k be a 3-dimensional abelian subalgebra of
g which does not contain any non-zero ideal of g and such that the normalizer
Ng(k) of k in g is p. Then for the Lie algebras g , p and for the Lie algebra k,
up to automorphisms of g , we have one of the following cases:
(a) g1 : [e1, e2] = e3 , [e1, e3] = e6 , [e4, e5] = e6 (cf. Case L6,10 in [10]). The ideals
p have one of the following forms: p1,1 = 〈e2, e3, e5, e6〉, p1,2 = 〈e2, e3, e4+ke5, e6〉,
k ∈ R and k1 = 〈e2, e3, e5〉.
(b) g2 : [e1, e2] = e3 , [e1, e3] = e4 , [e1, e4] = e6 , [e2, e3] = e6 , [e2, e5] = e6 , (cf.
Case L6,11 in [10]), p2 = 〈e3, e4, e5, e6〉 and k2 = 〈e3, e4, e5〉.
(c) g3 : [e1, e2] = e3 , [e1, e3] = e4 , [e1, e4] = e6 , [e2, e5] = e6 (cf. Case L6,12

in [10]). The ideals p3 have one of the following forms: p3,1 = 〈e3, e4, e5, e6〉,
p3,2 = 〈e2 + ke5, e3, e4, e6〉, k ∈ R. The Lie algebras k have one of the following
forms: k3,1 = 〈e3, e4, e5〉, k3,2 = 〈e2 + ke5, e3, e4〉, k ∈ R.
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(d) g4 : [e1, e2] = e3 , [e1, e3] = e5 , [e1, e5] = e6 , [e2, e4] = e5 , [e3, e4] = e6 , (cf.
Case L6,13 in [10]), p4 = 〈e2, e3, e5, e6〉 and k4 = 〈e2, e3, e5〉.
(e) g5 : [e1, e2] = e4 , [e1, e3] = e5 , [e2, e4] = e6 , [e3, e5] = εe6 , (cf. Case L6,19

with ε = ±1 in [10]), p5 = 〈e1, e4, e5, e6〉 and k5 = 〈e1, e4, e5〉.
(f) g6 : [e1, e2] = e4 , [e1, e3] = e5 , [e1, e5] = e6 , [e2, e4] = e6 , (cf. Case L6,20 in
[10]), p6 = 〈e3, e4, e5, e6〉 and k6 = 〈e3, e4, e5〉.
(g) g7 : [e1, e2] = e3 , [e1, e3] = e4 , [e1, e4] = e5 , [e1, e5] = e6 , [e2, e3] = e5 ,
[e2, e4] = e6 , (cf. Case L6,15 in [10]), p7 = 〈e3, e4, e5, e6〉 and k7 = 〈e3, e4, e5〉.
(h) g8 : [e1, e2] = e3 , [e1, e3] = e4 , [e1, e4] = e5 , [e1, e5] = e6 , [e2, e3] = e6 , (cf.
Case L6,17 in [10]), p8 = 〈e3, e4, e5, e6〉 and k8 = 〈e3, e4, e5〉.
(i) g9 : [e1, e2] = e3 , [e1, e3] = e4 , [e1, e4] = e6 , [e2, e3] = e5 , [e2, e5] = ±e6 , (cf.
Case L6,21 with ε = ±1 in [10]), p9 = 〈e3, e4, e5, e6〉 and k9 = 〈e3, e4, e5〉.

Proof. The list of the 6-dimensional indecomposable nilpotent Lie algebras g
in [10], pp. 646-647, gives that the triples (g,p,k) of the Lie algebras have the
forms as in the assertion.

Proposition 4.2. There does not exist 3-dimensional connected topological
proper loop L such that L is centrally nilpotent of class 2 and the Lie algebra
g of the multiplication group of L is one of the Lie algebras gi , i = 7, 8, 9, of
Proposition 4.1.

Proof. By Lemma 2.4 we may assume that L is homeomorphic to R3 . Linear
representations of the simply connected Lie groups Gi of gi , i = 7, 8, 9, are: For
i = 7 the group G7 consists of matrices g(w, z, y, x, q, p) =



1 w z + w2 zw − 2y + w3

3
3x− 2yw + w2z

2
+ w4

12
p

0 1 2w w2 − z y − zw + w3

3
q

0 0 1 w w2

2
x

0 0 0 1 w y
0 0 0 0 1 z
0 0 0 0 0 1

 , (5)

for i = 8 the group G8 consists of matrices

g(w, z, y, x, q, p) =



1 w w2

2
z + w3

6
w4

24
− y + zw p

0 1 w w2

2
w3

6
q

0 0 1 w w2

2
x

0 0 0 1 w y
0 0 0 0 1 z
0 0 0 0 0 1

 ,
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for i = 9 the group G9 consists of matrices

g(w, z, y, x, q, p) =


1 z −aw −aw2−z2

2
−q
4
− aw3

6
+ yz−wz2

2
p

0 1 0 −z y − zw q

0 0 1 w w2

2
x

0 0 0 1 w 2y
0 0 0 0 1 2z
0 0 0 0 0 1

 ,

with a = ±1, w, z, y, x, q, p ∈ R (cf. Cases 6.20, 6.19, 6.18 in [8], pp. 16-18). The
subgroup of the group Gi , i = 7, 8, 9, which can occur as the inner mapping group
Inn(L)i of L is the Lie group of the Lie algebra ki given in Proposition 4.1 (g),
(h), (i). Hence in all three cases we have Inn(L) = {g(0, 0, y, x, q, 0), x, y, q ∈ R} .
Arbitrary left transversals to the group Inn(L) of the groups Gi , i = 7, 8, 9, are:

A = {g(w, z, f1(w, z, p), f2(w, z, p), f3(w, z, p), p), w, z, p ∈ R},

B = {g(m,n, g1(m,n, u), g2(m,n, u), g3(m,n, u), u), m, n, u ∈ R},
where fi(w, z, p) : R3 → R , gi(m,n, u) : R3 → R , i = 1, 2, 3, are continuous
functions with fi(0, 0, 0) = 0 = gi(0, 0, 0). We prove that none of the groups
Gi , i = 7, 8, 9, satisfies the condition that for all a ∈ A and b ∈ B one has
a−1b−1ab ∈ Inn(L). Therefore, the groups Gi , i = 7, 8, 9, are not multiplication
groups of L (cf. Lemma 2.1).
With the elements

a = g(w, z, f1(w, z, 0), f2(w, z, 0), f3(w, z, 0), 0) ∈ A,

b = g(m, 0, g1(m, 0, 0), g2(m, 0, 0), g3(m, 0, 0), 0) ∈ B
of G7 the products a−1b−1ab are contained in Inn(L) if and only if the equation

−f1(w, z, 0)[mz + wm2 +mw2 +
m3

3
] + f2(w, z, 0)[2wm+m2]−mf3(w, z, 0)+

g1(m, 0, 0)[m2w+w2m+2zm+2zw+
w3

3
]−g2(m, 0, 0)[2wm+w2+2z]+wg3(m, 0, 0) =

m2z2 − zm2w2

2
− zwm3 + zmw3

3
− zm4

12
−mwz2 (6)

is satisfied for all w, z,m ∈ R . Equality (6) holds precisely if one has

f3(w, z, 0) = −(z + w2)f1(w, z, 0) + 2wf2(w, z, 0) + z2w +
1

3
zw3

and g3(m, 0, 0) = −m2g1(m, 0, 0) + 2mg2(m, 0, 0). Putting this into equation (6)
we obtain

−f1(w, z, 0)[wm2+
m3

3
]+m2f2(w, z, 0)+g1(m, 0, 0)[w2m+2zm+2zw+

w3

3
]−g2(m, 0, 0)[w2+2z] =

m2z2 − zm2w2

2
− zwm3

3
− zm4

12
. (7)
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Substituting f2(w, z, 0) = wf1(w, z, 0)+w2+2z+ z2

2
− zw2

2
+h2(w, z), g2(m, 0, 0) =

mg1(m, 0, 0) + m2 + j2(m) into (7) with the continuous functions h2 : R2 → R ,
j2 : R→ R , h2(0, 0) = 0 = j2(0), we have

−m
3

3
f1(w, z, 0)+m2h2(w, z)+g1(m, 0, 0)[2zw+

w3

3
]−j2(m)[w2+2z] = −zwm

3

3
−zm

4

12
.

(8)
Since on the right hand side of (8) there is the term − zm4

12
there does not exist

functions f1(w, z, 0), h2(w, z), g1(m, 0, 0), j2(m) such that for all w , z , m ∈ R
equation (8) holds. This contradiction excludes the group G7 .

Taking the elements

c = g(0, z, f1(0, z, 0), f2(0, z, 0), f3(0, z, 0), 0) ∈ A,

d = g(m,n, g1(m,n, 0), g2(m,n, 0), g3(m,n, 0), 0) ∈ B

of G8 the products c−1d−1cd are contained in Inn(L) if and only if the equation

0 =
zm4

24
+mz2 +

m3

6
f1(0, z, 0)− m2

2
f2(0, z, 0) +mf3(0, z, 0)

holds for all z,m ∈ R . This contradiction excludes the group G8 .

The products e−1f−1ef of the elements

e = g(w, z, f1(w, z, 0), f2(w, z, 0), f3(w, z, 0), 0) ∈ A,

f = g(m,n, g1(m,n, 0), g2(m,n, 0), g3(m,n, 0), 0) ∈ B

of G9 are contained in Inn(L) if and only if with a = ±1 the equation

f1(w, z, 0)(2wm+3an2+3azn+m2)−f2(w, z, 0)m+
3an

2
f3(w, z, 0)+g1(m,n, 0)(−2wm−3anz−3az2−w2)+

+g2(m,n, 0)w−3az

2
g3(m,n, 0) = zw2m+zwm2−wm2n−w2nm−awn3−amz3+zm

3 − nw3

3
(9)

is satisfied for all w, z,m, n ∈ R . Equation (9) holds if and only if one has
f2(w, z, 0) = 2wf1(w, z, 0) − zw2 − az3 , f3(w, z, 0) = −2zf1(w, z, 0) − 2

9
aw3 ,

g2(m,n, 0) = 2mg1(m,n, 0) − m2n − an3 , g3(m,n, 0) = −2ng1(m,n, 0) − 2
9
am3 .

Putting this into equation (9) we obtain

f1(w, z, 0)(3an2 +m2) + g1(m,n, 0)(−3az2 − w2) = zwm2 − w2nm. (10)

As on the right hand side of (10) there is no n2 and z2 we have f1(w, z, 0) =
b(3az2 + w2), g1(m,n, 0) = b(3an2 + m2), where b ∈ R is an arbitrary constant.
Substituting this into (10) we get the contradiction that for all z, w, n,m ∈ R one
has 0 = zwm2 − nmw2 . This excludes the group G9 .

Theorem 4.3. Let L be a connected simply connected topological proper loop
of dimension 3 such that its multiplication group Mult(L) is a 6-dimensional
indecomposable nilpotent Lie group. If L is centrally nilpotent of class 2, then
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the following Lie groups are the multiplication groups Mult(L) and the following
subgroups are the inner mapping groups Inn(L) of L:
1) Mult(L)1 is the direct product F4 ×Z F3 with amalgamated centre Z the
multiplication of which is given by

g(u1, y1, x1, w1, z1, q1)g(u2, y2, x2, w2, z2, q2) =

g(u1 + u2, y1 + y2, x1 + x2 + u1y2, w1 + w2, z1 + z2, q1 + q2 + u1x2 +
u21y2

2
+ w1z2).

Inn(L)1 is the subgroup {g(0, y, x, 0, z, 0), x, y, z ∈ R}.
2) The multiplication of Mult(L)2 is given by

g(w1, z1, y1, x1, p1, q1)g(w2, z2, y2, x2, p2, q2) = g(w1 + w2, z1 + z2, y1 + y2 + w1z2,

x1+x2+w1y2+
w2

1z2
2

, p1+p2, q1+q2+2w1x2+(w2
1−z1)y2+(p1+y1−z1w1+

w3
1

3
)z2).

Inn(L)2 is the subgroup {g(0, 0, y, x, p, 0), x, y, p ∈ R}.
3) The multiplication of Mult(L)3 is given by

g(w1, z1, y1, x1, p1, q1)g(w2, z2, y2, x2, p2, q2) =

g(w1+w2, z1+z2, y1+y2+w1z2, x1+x2+w1y2+
w2

1z2
2

, p1+p2, q1+q2+w1x2+
w2

1y2
2

+(p1+
w3

1

6
)z2).

Inn(L)3 is one of the subgroups Inn(L)3,1 = {g(0, 0, y, x, p, 0), x, y, p ∈ R},
Inn(L)3,2 = {g(0, z, y, x, kz, 0), x, y, z ∈ R}, k ∈ R.
4) The multiplication of Mult(L)4 is given by

g(w1, z1, y1, x1, p1, q1)g(w2, z2, y2, x2, p2, q2) =

g(w1+w2, z1+z2, y1+y2+w1z2, x1+x2+w1y2+(p1+
w2

1

2
)z2, p1+p2, q1+q2+y2(p1+

w2
1

2
)+w1(x2+z2p1)+z2

w3
1

6
).

5) The multiplication of Mult(L)5 is given by

g(z1, y1, w1, x1, q1, p1)g(z2, y2, w2, x2, q2, p2) =

g(z1+z2, y1+y2, w1+w2, x1+x2+w1z2, q1+q2+w1y2, p1+p2+y1q2+z1x2+(y1w1−q1)y2+(z1w1−x1)z2).

6) The multiplication of Mult(L)6 is given by

g(x1, y1, w1, z1, q1, p1)g(x2, y2, w2, z2, q2, p2) =

g(x1+x2, y1+y2, w1+w2, z1+z2+
1

2
(x1w2−x2w1−y1w2−y2w1), q1+q2−

1

2
(x1w2+x2w1−y1w2+y2w1),

p1 + p2 + (x1 − y1)(z2 + q2)− w1w2 − (z1 − q1)(x2 + y2)).

7) The multiplication of Mult(L)7 is given by

g(w1, p1, z1, y1, q1, x1)g(w2, p2, z2, y2, q2, x2) =



Figula and Lattuca 15

g(w1+w2, p1+p2, z1+z2, y1+y2+w1z2+p1p2, q1+q2+w1p2, x1+x2+w1y2+p2q1+
w2

1z2
2

).

Inn(L)i , i = 4, 5, 6, 7, is the subgroup {g(0, 0, z, y, q, 0), z, y, q ∈ R}.
The multiplication groups Mult(L)i , i = 2, · · · , 7 are precisely the 6-dimensional
simply connected indecomposable nilpotent Lie groups with 1-dimensional centre
and 3-dimensional commutator subgroup.

Proof. As dim(Mult(L)) = 6 by Proposition 2.9 we get that Mult(L) has 1-
dimensional centre and hence the simply connected loop L has also 1-dimensional
centre Z(L) ∼= R (cf. Theorem 11 in [1]). Since L is centrally nilpotent of class
2 it follows from Propositions 4.1, 4.2 that the pairs (gi,ki), i = 1, · · · , 6, in
Proposition 4.1 can be occur as the Lie algebras of the group Mult(L) and the
subgroup Inn(L) of L . According to the list of the 6-dimensional indecomposable
nilpotent Lie algebras g in [10], pp. 646-647, precisely the Lie algebras gi ,
i = 2, · · · , 6, in Proposition 4.1 have 1-dimensional centre and 3-dimensional
commutator ideal. Linear representations of the simply connected Lie groups of
gi are given in this order by the direct product Mult(L)1 = F4 ×Z F3 , by the
matrix groups Mult(L)2 = G6,15 in [8] (p. 15), Mult(L)3 = G6,17 in [8] (p. 16),
Mult(L)4 = G6,16 in [8] (p. 16), Mult(L)5 = G6,14 with a = 1 in [8] (p. 15),
Mult(L)6 = G6,14 with a = −1 in [8] (p. 15), Mult(L)7 = G6,13 in [8] (p. 14).
Using these linear representations the Lie groups of the Lie algebras ki are the Lie
groups Inn(L)i , i = 1, · · · , 7, of Theorem 4.3. The set

A1 = {g(u, u2, u, w, w, q), u, w, q ∈ R}, respectively

A2 = {g(w, z, wz,−1

2
z2 +

1

2
w2z,−w

3

3
− 2wz, q), w, z, q ∈ R}

is Inn(L)1 -, respectively Inn(L)2 -connected left transversal in Mult(L)1 , respec-
tively in Mult(L)2 . The set

A3,1 = {g(w, z, wz,
w2z

2
,−w

3

6
, q), w, z, q ∈ R}, respectively

A3,2 = {g(w, p+
w3

3
, wp+

w4

6
,
w2p

2
+
w5

12
, p, q), p, q, w ∈ R}

is Inn(L)3,1 -, respectively Inn(L)3,2 -connected left transversal in Mult(L)3 . The
set

A4 = {g(w, z, zw − w3

6
, zw2 − w4

6
, z2w +

zw3

3
− w5

12
, q), w, z, q ∈ R},

A5 = {g(m,n,−m2+n2,
mn2 − nm2 −m3 − n3

2
,
−mn2 − nm2 +m3 + n3

2
, p), m, n, p ∈ R},

A6 = {g(z, y, y2 + z2, z, y, p), z, y, p ∈ R}, A7 = {g(w, p, w2, w3, 0, x), w, p, x ∈ R}

is in this order Inn(L)i -connected left transversal in Mult(L)i , i = 4, 5, 6, 7.
Moreover, for all i = 1, · · · , 7, the set Ai generates the group Mult(L)i . Hence
Lemma 2.1 is satisfied for all these transversals and the theorem is proved.
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5. 3-dimensional loops L with 6-dimensional indecomposable
nilpotent multiplication groups have nilpotency class 2

Proposition 5.1. Let g be a 6-dimensional indecomposable nilpotent Lie alge-
bra with 1-dimensional centre z. Let s be an ideal of g such that z < s and the
factor algebra g/s is an elementary filiform Lie algebra fm with m ≥ 4. Let v be
a 5-dimensional ideal of g such that g′ < v and s < v . Let k be a 3-dimensional
subalgebra containing no ideal 6= 0 of g with the properties k < v , dim(k∩s) = 1,
v has an ideal n with n < k and v/n ∼= fm , m ≥ 3.
I) There does not exist any subalgebra i ∼= fm , m ≥ 4 such that z < i < v ,
dim(k∩ i) ≥ 2, i complements n in v and the centre of g/s is isomorphic to the
factor algebra i/(i ∩ (k⊕ z)).
II) Assume that g has a subalgebra i ∼= R2 such that z < i < v , k complements
i in v and the centre of g/s is isomorphic to i/z. Then the Lie algebra g coin-
cides with g7 in Proposition 4.1 and up to automorphisms of g the subalgebra k
is k = 〈e2, e3, e5〉.

Proof. Applying the list of [10], pp. 646-647, we get for the pairs (g, s) the
following:
(a) g2 in Proposition 4.1 and s = 〈e5 + ke4, e6〉 , k ∈ R .
(b) g3 in Proposition 4.1 and s = 〈e5 + ke4, e6〉 , k ∈ R .
(c) g : [e1, e2] = e3 , [e1, e3] = e4 , [e1, e4] = e5 , [e2, e3] = e5 , [e2, e5] = e6 ,
[e3, e4] = −e6 , (cf. Case L6,14 in [10]) and s = 〈e5, e6〉 .
(d) g7 in Proposition 4.1 and s = 〈e5, e6〉 .
(e) g : [e1, e2] = e3 , [e1, e3] = e4 , [e1, e4] = e5 , [e2, e5] = e6 , [e3, e4] = −e6 (cf.
Case L6,16 in [10]) and s = 〈e5, e6〉 .
(f) g8 in Proposition 4.1 and the ideal s is either s8,1 = 〈e5, e6〉 or s8,2 = 〈e6〉 .
(g) g9,± in Proposition 4.1 and the ideal s is either s9,1 = 〈e5, e6〉 or s9,2 = 〈e4, e6〉 .
In all cases (a) till (g) the centre z of the Lie algebra g is 〈e6〉 . In cases (a) till
(e) the centre z(g/s) of the filiform factor algebra g/s is isomorphic to 〈e4〉 .
For i = {8, 9} the centre of gi/si,1 , respectively of gi/si,2 is isomorphic to 〈e4〉 ,
respectively to 〈e5〉 . In all cases 〈e4〉 and 〈e5〉 are in the commutator ideal g′

of g . The subalgebra k and the ideal s has a 1-dimensional intersection and k
does not contain any proper ideal of g . Hence in cases (a) and (b) the element
e5 + ke4 + ae6 ∈ s , in cases (c) till (f) the element e5 + ae6 ∈ s , in case (g) either
the element e5 + ae6 ∈ s9,1 or the element e4 + ae6 ∈ s9,2 , a, k ∈ R , is contained
in k .
In all cases (a) till (g) there are two ideals v of g with codimension 1 such that
g′ < v and s < v : v1,l = 〈e1+ le2, e3, e4, e5, e6〉 , l ∈ R , and v2 = 〈e2, e3, e4, e5, e6〉 .
For the subalgebras i and k of g having the properties as in I) we obtain:
In cases (d) and (f) the Lie algebra i coincides with v1,l and the Lie algebra k
has the form kl1,l2,l3 = 〈e3 + l1e6, e4 + l2e6, e5 + l3e6〉 , li ∈ R , i = 1, 2, 3. The
factor algebra v1,l/(k ⊕ z) is isomorphic to 〈e1 + le2〉 , l ∈ R . In cases (a), (b),
(g) the Lie algebra i < v1,l is i = 〈e1, e3, e4, e6〉 with the Lie brackets [e1, e3] = e4 ,
[e1, e4] = e6 , l = 0, and the Lie algebra k coincides with kl1,l2,l3 . The factor algebra
i/(i ∩ (k ⊕ z)) is isomorphic to 〈e1〉 . In case (g) for the Lie algebra i we obtain
also the possibility i = 〈e2, e3, e5, e6〉 < v2 with the Lie brackets [e2, e3] = e5 ,
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[e2, e5] = ±e6 and the subalgebra k is kl1,l2,l3 . The factor algebra i/(i∩ (k⊕z)) is
isomorphic to 〈e2〉 . Since 〈e1 + le2〉 , l ∈ R , 〈e1〉 , 〈e2〉 are not in the commutator
ideal of g the factor algebra i/(i∩ (k⊕ z)) is not isomorphic to the centre of g/s .
This proves assertion I) of the proposition.
Now we seek for the subalgebras i and k of g having the properties as in II).
In cases (a), (b), (g) the factor algebra v1,l/n = v1,0/〈e5 + l3e6〉 , l3 ∈ R is
isomorphic to 〈e1, e3, e4, e6〉 ∼= f4 . In cases (d) and (f) the factor algebra v1,l/n is
v1,l . In these cases the Lie algebra i has the form i1 = 〈e6, e1〉 and the Lie algebra
k1 coincides with kl1,l2,l3 . The factor algebra i/z is isomorphic to 〈e1〉 .
In case (b) the factor algebra v2/n = v2/〈e3 + l1e6, e4 + l2e6〉 , l1, l2 ∈ R is
isomorphic to 〈e2, e5, e6〉 ∼= f3 . Hence for the subalgebra i < v2 we get i2 = 〈e2, e6〉
and k2 = kl1,l2,l3 . The factor algebra i/z is isomorphic to 〈e2〉 .
In cases (c) and (e) for the factor algebra v1,l/n we obtain v1,0/〈e5〉 which is
isomorphic to 〈e3, e1, e4, e6〉 ∼= f4 . The subalgebra i < v1,0 has the form i3 =
〈e6, e3〉 and k3 coincides with kn1,n2 = 〈e1 + n1e6, e4 + n2e6, e5〉 , n1, n2 ∈ R . The
factor algebra i/z is isomorphic to 〈e3〉 .
In case (d) the factor algebra v2/n = v2/〈e3 + a2e6 + a1e4, e5 + a1e6〉 for some
a1, a2 ∈ R is isomorphic to 〈e2, e4, e6〉 ∼= f3 . The subalgebras i < v2 and k < v2

have one of the following forms:
i4 = 〈e4, e6〉 , k4 = ka1,a2,a3,a4 = 〈e5+a1e6, e3+a2e6+a1e4, e2+a3e6+a4e4〉 , ai ∈ R ;
i5 = i3 and k5 = ka1,a2,a3,a4 with a1 6= 0;
i6 = i2 and for the Lie algebra k we get the following possibilities: k6,1 = kl1,l2,l3 ,
k6,2 = 〈e5, e4 + l2e6 + a2e2, e3 + l1e6〉 , a2 6= 0.
In case (f) the factor algebra v2/n = v2/〈e4 + a2e6, e5 + a1e6〉 , a1, a2 ∈ R is
isomorphic to 〈e2, e3, e6〉 ∼= f3 . The subalgebras i and k of v2 have one of the
following forms: i7 = i3 and k7 = 〈e5 + a1e6, e4 + a2e6, e2 + a3e6 + b3e3〉 ,
i8 = i2 and k8 = kl1,l2,l3 . In case (g) the factor algebra v2/n = v2/〈e4 + a2e6〉 is
isomorphic to 〈e2, e3, e5, e6〉 ∼= f4 . For the subalgebra i of v2 we get i9 = i2 and
the Lie algebra k9 coincides with kl1,l2,l3 . For i1 and i2 the factor algebra i/z is
not isomorphic to z(g/s) because 〈e1〉 and 〈e2〉 are not in the commutator ideal
of g . In cases (c) till (f) the factor algebra i3/z is not isomorphic to z(g/s). In
case (d) the factor algebras i4/z , z(g/s) are isomorphic to 〈e4〉 .
Using the automorphism γ(e6) = e6 , γ(e5) = e5 − a1e6 , γ(e4) = e4 − a1e5 + a21e6 ,
γ(e3) = e3−a1e4+a21e5−(a2+a31)e6 , γ(e2) = e2−a1e3−a4e4+a1a4e5−(a3+a4a

2
1)e6 ,

γ(e1) = e1 − (a4 + a21)e3 + (a1a4 + a2 + a31)e4 of g7 the Lie algebra ka1,a2,a3,a4 is
reduced to k = 〈e2, e3, e5〉 , which proves the assertion II).

Theorem 5.2. There does not exist any 3-dimensional connected topological
proper loop L such that L is centrally nilpotent of class 3 and the multiplication
group Mult(L) of L is a 6-dimensional indecomposable nilpotent Lie group.

Proof. By Lemma 2.4 we may assume that L is homeomorphic to R3 . As L
is centrally nilpotent of class 3 by Proposition 2.7 b) the factor loop L/Z(L) is
isomorphic to an elementary filiform loop LF . Moreover, L has a 2-dimensional
normal subloop M isomorphic either to a loop LF or to the group R2 . If M ∼= LF ,
then the Lie algebra mult(L) of the multiplication group Mult(L) of L and the
Lie algebra inn(L) of the inner mapping group Inn(L) of L satisfy the same
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conditions given in Proposition 5.1 I) for the Lie algebra g and the subalgebra k .
If M ∼= R2 , then mult(L) and inn(L) have the same properties as g and k in
Proposition 5.1 II). Therefore the pair (g,k) in Proposition 5.1 II) can occur as
the pair (mult(L), inn(L)) of L . In Proposition 5.1 we have i = mult(M).
The simply connected Lie group G of g is isomorphic to the matrix group (5)
(cf. Case 6.20 in [8], p. 18) and the Lie group of inn(L) = 〈e2, e3, e5〉 is
Inn(L) = {g(0, z, y, 0, q, 0), z, y, q ∈ R} . Arbitrary left transversals to the group
Inn(L) of the group G are:

A = {g(w, f1(w, x, p), f2(w, x, p), x, f3(w, x, p), p), w, x, p ∈ R},

B = {g(m, g1(m,n, r), g2(m,n, r), n, g3(m,n, r), r),m, n, r ∈ R},

where fi(w, x, p) : R3 → R , gi(m,n, r) : R3 → R , i = 1, 2, 3, are continuous
functions with fi(0, 0, 0) = 0 = gi(0, 0, 0). The set {a−1b−1ab; a ∈ A, b ∈ B} is
contained in Inn(L) if and only if the following equations are satisfied:

0 = −f2(w, x, p)m+
f1(w, x, p)m

2

2
+f1(w, x, p)wm+g2(m,n, r)w−g1(m,n, r)wm−

g1(m,n, r)w
2

2
(11)

0 = −3g1(m,n, r)w
2

2
−3f2(w, x, p)m+

3f1(w, x, p)m
2

2
+3g2(m,n, r)w+3f1(w, x, p)wm−3g1(m,n, r)wm

(12)

r(f1(w, x, p), f2(w, x, p), g1(m,n, r), g2(m,n, r),m,w) = −w2n+xm2+2xwm−2nwm+

+2xg1(m,n, r)− 2f1(w, x, p)n+ wg3(m,n, r)−mf3(w, x, p), (13)

where r(f1(w, x, p), f2(w, x, p), g1(m,n, r), g2(m,n, r),m,w) are the terms which
depend on f1(w, x, p), f2(w, x, p), g1(m,n, r), g2(m,n, r), m , w . To satisfy equa-
tion (11) it is necessary that we have f2(w, x, p) = f1(w, x, p)w , g2(m,n, r) =
g1(m,n, r)m . Putting these forms of the functions f2 , g2 into (11) it is re-

duced to 0 = f1(w,x,p)m2−g1(m,n,r)w2

2
. This yields that f1(w, x, p) = f1(w) = cw2 ,

g1(m,n, r) = g1(m) = cm2 , c ∈ R . Therefore we get f2(w, x, p) = f2(w) = cw3

and g2(m,n, r) = g2(m) = cm3 . Using these forms of the functions fi , gi , i = 1, 2,
both sides of equation (12) are the same. Putting these forms of the functions fi ,
gi , i = 1, 2, into (13) we obtain that the left hand side of (13) depends only on
the variables m , w . Hence the right hand side is independent of the variables
n , x , p , r . This is the case precisely if one has c = −1

2
and f3(w, x, p) = 2xw ,

g3(m,n, r) = 2nm . Hence the right hand side of (13) is 0, but the left hand side is
equal to r(m,w) = 1

2
m3w3 + 1

3
(w5m−wm5)− 1

6
(2w4m2 +w2m4) which is different

from 0. This contradiction proves the assertion.
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