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Abstract

We classify finite-dimensional real nilpotent Lie algebras with 2-dimensional cen-
tral commutator ideals admitting a Lie group of automorphisms isomorphic to
SO2(R). This is the first step to extend the class of nilpotent Lie algebras § of
type {n,2} to solvable Lie algebras in which h has codimension one.

1. Introduction

The most simple (non-abelian) Lie algebras are the (2n + 1)-dimensional Heisen-
berg Lie algebras, defined on a vector space h = V @ (x) by a non-degenerate alter-
nating form F on the 2n-dimensional subspace V', putting [u,v] = F(u,v)z, for any
u,v € V.

According to the literature beginning with Vergne [9], metabelian Lie algebras
h =V @ (z,y) of dimension (n + 2) defined by a pair of alternating forms Fj, Fy
on the n-dimensional vector space V', putting, for any u,v € V, [u,v] = Fj(u,v)x +
F5(u,v)y, are called nilpotent Lie algebras of type {n, 2}, where the type {p1,...,pc}
of a nilpotent Lie algebra g with descending central series g(¥ = (g, g(i_l)] is defined
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Nilpotent (real or complex) Lie algebras of type {n, 2} have been classified firstly
by Gauger [4], applying the canonical reduction of the pair Fy, F5. We mention that
also nilpotent Lie algebras of type {n, 1,1} can be explicitly described (cf. [1]). Ac-
cording to results of Belitskii, Lipyanski, and Sergeichuk [3], this line of investigation
cannot be carried further. A possible way of broadening these families of Lie algebras
appears therefore that of considering their derivations.
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In this paper we want to study derivations of a real nilpotent Lie algebra h of
type {n, 2}, whereas derivations of a nilpotent Lie algebra of type {n, 1,1} are being
considered in another paper [2].

As a first question, we ask whether h admits a compact Lie algebra of derivations,
that is, the Lie algebra of a compact Lie group. This question is interesting for the
study of the isometry groups of homogeneous nilmanifolds. Considering an invariant
inner product on h, the compact Lie algebra of derivations of § belongs to the Lie
algebra of the isometry group of a simply connected nilmanifold associated to b (cf.
[10], p. 337). Since a non-commutative simple compact Lie algebra cannot have a
two-dimensional representation, a non-commutative simple compact Lie algebra of
derivations of a nilpotent Lie algebra b of type {n,2} must induce the null map on
the two-dimensional commutator ideal §’.

Up to isomorphisms, the smallest example of a nilpotent Lie algebra h of type
{n,2} is the 5-dimensional Lie algebra of type {3,2} given by

[Ul,UQ] =, [u17u3] =Y

(cf. [5], the Lie algebra Lsg, p. 646, and [7], the Lie algebra L}, p. 162). This
Lie algebra does not have a non-commutative compact Lie algebra of derivations,
since its derivations inducing the null map on b’ are defined with respect to the basis
{u1,u2,us,z,y} by the matrices

al 0 000
b|—a 010 O
c| 0 —al|0 O
di| dy d3s |0 O
dy| ds dg |0 O

But its group of automorphisms contains the group SO2(R), acting as in Theorem 7,
that is, as the group of automorphisms of the form exp(0 @ it @ it), t € R.

In general the structure of a Lie algebra b of type {n,2} is not particularly rigid,
and the following example shows that, as soon as n = 4, the algebra of derivations
contains compact simple subalgebras.

Ezample 1. Let B = {uy, u2,us, us, z,y} be a basis of the 6-dimensional Lie algebra
b of type {4,2} defined by

[Ul, u3] =, [ulu U4] =Y, [u2) US] =Y, [u27 U4] =T

(cf. [5], the Lie algebra Lg22(e = —1), p. 647, and [7], the Lie algebra #5.(y = —1),
p. 168). A direct computation shows that, with respect to the basis B, the derivations



of b inducing the null map on b’ are represented by matrices of the form

al a9 as a4 0
—az2 a1 a4 —as
—bs 2 —a1  a

ca by —ax —ay

di dy d3 dy

ds dg d7 dg

S OO ©o O
o OO O o o

With a; = 0, ca = —a4, bs = a3, and all the entries d; equal to zero, we get an algebra
isomorphic to the compact real form sus. This Lie algebra b is isomorphic to the Lie
algebra of the complex Heisenberg group
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which is an interesting example of nilmanifolds. Namely, the group N is the smallest
H-type group with two-dimensional centre (cf. [8], Section 5, p. 3252).

This, and the fact that any maximal compact subgroup of a connected real solvable
Lie group is a torus, legitimates one, in our opinion, to study the action of a torus on
nilpotent Lie algebras of type {n,2}.

The simple structure of a nilpotent Lie algebra of type {n,2} admitting a one-
dimensional compact group 7T of automorphisms is hidden by three obstacles that
can be removed by a clear notation. The first is the representation of 2h x 2k real
matrices as h X k matrices with coefficients in the algebra of split-quaternions. The
second is the reduction to canonical form of a pair of skew-Hermitian forms. The
third is the reduction to the T-undecomposable case. In Section 2 we summarize
some known facts, fix the notation and find the relations (7), that are basic for the
classification. Thereafter, we consider, in Section 3, the case where T induces the
identity on the commutator ideal. It turns out that the classification depends on
the reduction to canonical form of pairs of skew-Hermitian forms (cf. Theorem 3).
In Section 4, we consider the case where T operates effectively on the commutator
ideal. In this case, the classification is more rich and we consider four cases. The
classification is always reached by using parameters that are linked to the dimension
of the eigenspaces of T' and by a certain arbitrarity in the reduction to the echelon
form of the blocks of the matrices describing the Lie algebra . But in one case (cf.
Theorem 9), a class is possibly given by the real form of an arbitrary skew-symmetric
complex matrix. Qur classes give remarkable examples for nilmanifolds M such that
the group of isometries of M contains the compact group SO2(R). In Theorem 3
and Remark 5 we describe the H-type groups with two-dimensional centre. They are
precisely the complex Heisenberg groups (cf. [8], Section 5, p. 3252).



2. Notation

Split-quaternions and matrix notation. We denote:

i) by 0 any n x m (real or complex) zero matrix, by I, the (real or complex)
m-~dimensional identity matrix, and by Inxm & n X m matrix having rank m,
obtained by the identity matrix I, by inserting n — m zero rows (without
specifying, however, which ones);

1
ii) by J = ( _01 0 > the real matrix corresponding to the imaginary unit;

iii) by A’ the transpose of A, and by A’ the conjugate transpose of A;

iv) by A® B the diagonal block matrix < é g ) , and by (@A) the diagonal block
matrix A --- P A.

Throughout the paper, we represent the Clifford algebra of split-quaternions as the
set
H_ = {21 + 2w : 2z € C,wz = Zw,w? = 1}.

We recall that, through the usual identification of the complex number z = a + ib

with the real matrix < fb Z ) and of the reflection 2 = ( (1] é > with the split-

quaternion w, one obtains an isomorphism

a b a+d . b—c b+c .a—d
(c d>'_>< 2 ' )+ ( > ' )«
of the algebra of real 2 x 2 matrices with the algebra H_ and, more generally, of the
space of R?"*2™ matrices with the space of H™ ™ matrices.
In more details, with the identification of the split-quaternion matrix wl, with
the 2n x 2n reflection Qo, = Q @ --- & Q, any matrix A € R?"X2™ can be written
in a unique way as A = Ay + A2Q,, where A and Ay are real forms of complex

matrices A; = (2i5), Ay = (ui5) € C™™ such that, for A = (Zij) and Ay = (@ij),

one has wInﬁi =Awl, (i=1,2).

Canonical form of a pair of skew-Hermitian forms. Since a bilinear form F
is skew-Hermitian precisely when ¢F' is Hermitian, the problem of the simultaneous
reduction to canonical form of a pair of skew-Hermitian forms reduces to the one con-
cerning a pair of Hermitian forms, which has a long history that was finally resumed
in [6], that is our reference for what follows.



A pair (Hy, Hy) of Hermitian matrices can be reduced, by simultaneous congruence
H; — ATH;A, into the direct sum of diagonal blocks, which have one of the following
four types (other than the null pair)

0 0 F.
iii) | Gaex1, | O 0 0O ; (1)
F. 0 0
o (#5902 5)
BF. +G. 0 \r o))
where F is the matrix that maps (21,22, . .., ZTe—1, %) onto (Te, Te—1, ..., X2, x1), and
G. is the matrix that maps (z1, z2,...,Zc_1,Z¢) onto (Te—1, Tc—2,...,21,0), a is a real

number and 3 is a complex non-real number. With the only exception of changing 3
with (3, different values of the parameters o and 3, and of the sign +, correspond to
pairs that are not congruent.

T-undecomposable nilpotent Lie algebra of type {n,2}. Let h be a nilpotent
Lie algebra of type {n, 2}, that is, with a 2-dimensional commutator ideal b’ coinciding
with the centre 3. Let T" be a group of automorphisms of h isomorphic to SO2(R) and
t the corresponding compact algebra of derivations of b, let n = 2m if n is even, and
n =2m+1if n is odd, with n > 3. By the complete reducibility of T, we find a basis
{e1,...,en,z,y} of b, such that {x,y} is a basis of h’ = 3 and such that t operates on
b as the algebra of matrices J(t) with parameter ¢ € R, defined as

a(t) == (a1t-Jd---Dapt-J)dpt-J for n =2m, @)
Tl 0t I Bapt-J)®Pt-J for n=2m+1,

where (§t-J is the 2x 2 matrix operating on h’ = (z,y). Notice that, up to rescaling the
parameter t, we can assume that either 8 = 0 or 8 = 1. Moreover, up to interchanging
the basis vector of each T-invariant plane in f, we can assume that «; is non-negative,
for all = 1,...,m, and, up to interchanging the ordering of the planes in the basis,
we can assume that a; < a1, foralle=1,...,m —1.

If h contains two proper ideals i; and i which are invariant under 7" such that
[i1,i2] = 0 and i;Niy = b, we say that b is T-decomposable into the direct sum of i; and
io with amalgamated centre, and we restrict our interest on T-undecomposable Lie
algebras b of type {n,2}. Namely, if h; and by are two T-undecomposable nilpotent
Lie algebras of type {n,2} such that the action of the group T on the centre 3; of b
and on 32 of ho coincides, then the direct sum of h; and he with amalgamated centre
is a T-decomposable nilpotent Lie algebra of type {n,2}, and any T-decomposable
nilpotent Lie algebra of type {n,2} is obtained in this way.



We define the pair of alternating matrices (T1 = (a;;), Tr = (bij)> by putting
[6i, €j] = Q5T + bijy.

Clearly, the Lie algebra b is T-decomposable if and only if the matrices T7 and 715
can be put into the same diagonal block form and T leaves invariant the subspaces
corresponding to the blocks.

Writing for ¢ € R

o(t) := (a1t J @ Dapt-J) for n even
07l 0@art-Je - @®apt-J)  for n odd,

since t operates as an algebra of derivations of b, that is,

cej] + fer, el ),

fen )" = [

for a generator of t, e. g. for t = 1, we get

BTy = 0o(1)"T1 + T10p(1) (3)
—BT1 = 80(1)/T2 + Tgao(l).

Hence we find

BTy = —0(1)*Ty — 200(1)'T18p(1) — T100(1)* @)
B2y = —00(1)?Ty — 200(1)'T200(1) — T20o(1)2.

We arrange the matrices 71 and 75 into 2 x 2 blocks Ay and By with h,k=1,....m
(in the case where n = 2m + 1, we denote the 1 x 2 blocks of the first row with A
and By, and we put ag = 0). Then (3) is equivalent to

BBpi = —apJ A + apApiJ (5)
—BAn, = —anJBpy, + o, BpiJ

and (4) is equivalent to

=82 App = —(0f + a2) Ak + 2apapJ ApgJ (6)
—,82 . Bhk = —(04}21 + Oé%)Bhk + QQthJ/Bth.

Notice that, since ag = 0, the above equations still hold, with a slight abuse of
notation, in the case where h = 0.

Considering 77 and T3 as split-quaternion matrices, we write Apr = 21 + 20w,
By = 23 4 z4w for suitable complex numbers z1, z2, 23, 2z4. Then the equations (6)
give

(an — ai)?z1 = B221, (an — ap)?23 = B2z (7)
(an + ar)’z0 = 2, (an+ ar)?z4 = 2.



Remark 2. Notice that, if h is a given index such that, for any k # h, all the blocks
Api and By, are zero, then b is T-decomposable. By the way, from equations (5) it
follows that, in the case where 8 # 0, Ay is zero if and only if By is zero.

3. The case where =10

This is the case when, in particular, T" is contained in a non-commutative compact
group of automorphisms of h (see Remark 6).

Theorem 3. With the above notations, let b be a T-undecomposable Lie algebra of
type {n,2} and let 5 = 0. Then n is even and the pair (Tl,Tg) s the real form of
a pair of compler skew-Hermitian matrices (T1 = zHl,Tg = iHs), where, up to a
change of basis, (Hy, H2) is one of the four pairs in (1). The group T operates, with
respect to the chosen basis, as the group of automorphisms exp (a(t)), where

o(t) =t ((®ar))) &0

Proof. From the equations (5) we deduce that, if a, = 0 # ag, then Ay and By are
zero. As B is T-undecomposable, it follows from Remark 2 that «y, is positive for any
h=1,...,mand n = 2m is even. Write Ay = 21 + 29w, Bur = 23 + z4w for suitable
complex numbers 21, 22, 23, z4. Then the equations (7) give

(ah — ak)Qzl = 0, (ah - Oék)22’3 = 0,
(ap +ap)?2z =0, (ap +ag)?z = 0.

This latter forces zo = 0 = z4, that is, Ay, and By are the real form of two complex
numbers. Moreover, from the former we obtain that either Ay, and By are zero,
or ap = ag. As b is T-undecomposable, we exclude the first case, hence we have

that O(t) =t - <(EBaJ)) @ 0. Since T7 and Ty are the real form of complex m x m

skew-Hermitian matrices T\l and @, and T operates on them as the complex scalar
matrix «ail,, up to a suitable change of basis in the m-dimensional complex space,
which leaves 7' invariant, we can assume that (ﬁ,@) is in the canonical form given
in the claim. These are T-undecomposable over the real numbers, since the only
T-invariant real planes are I} = (ej, ea), ... Mz = (én—1,€n). O

Remark 4. Up to rescaling the parameter ¢, we can assume «; = 1 in the above
theorem, but we prefer to leave it, because, in the case where § is T-decomposable,
different/ya/h\les of ap can occur. For the same reason, we do not simplify the case
where (T1,T2) = (£ (aiF, + iG.), £iF,), which, by the change of basis {2/ =z, =
az +y} in b’ would transform in (£iG, +iFy).



Remark 5. For n = 4 and (ﬁ,@) of type iv) in (1), with e = 1 and § = —i, we

obtain am- (400 0)

that corresponds to Example 1 in the Introduction.

Pairs obtained by the direct sum of ¢ copies of this pair correspond to the (2¢t+1)-
dimensional complex Heisenberg groups, which are special nilmanifolds, the H-type
groups with two-dimensional centre (cf. [8], Section 5, p. 3252). These are the only
nilpotent real Lie algebras of type {n,2} which are complex Lie algebras (of type
{2.1)).

Remark 6. Let € be a simple compact algebra of derivations of the nilpotent Lie
algebra b of type {n,2}. Since ¢ cannot have a two-dimensional representation, it
induces on the 2-dimensional commutator subalgebra §’ the null map. Any element
in ¢ generates a 1-dimensional compact subalgebra of derivations of §, thus § has the
structure given in Theorem 3, and its algebra of derivations can be directly computed.

4. The cases where 3 # 0

Up to rescaling the parameter t, if 3 # 0, then we can assume that § = 1. From
now on, we need to distinguish the cases where the smallest coefficient «y, is zero or,
respectively, smaller, equal or greater than 1/2. The arguments are more or less the
ones we give in the following theorem.

Theorem 7. With the notations given in (2), if 8 =1 and if the smallest coefficient
ap 18 zero, then, with respect to a suitable basis of By, the group T operates as the
group of automorphisms exp (8(15)), where

at) =t ((@0) @ (@)@ (®2)) @ @ (@lJ)) ot-J (8)

with the diagonal blocks (©kJ) of dimension dy x dy (with dy even for k > 0), and
the T-undecomposable Lie algebra by is described by the pair (Ty,T5), where

0 | Wy
Wyl 0 |
AL
T = o 9)
2
0 |W
W/ 0

and T has the same shape with the blocks Wy, & J instead of Wy. The blocks Wy have
dimension di X diy1 and the following hold.



i) The block Wy can be written into the echelon form

O|@Li |0 0] 0
WOZ 0 0 IQs 0 QQS )
0 0 |0 Iyn| O

where L1 = (1,0) and Qo5 is the real form of the split-quaternion matriz wis,
s >0, t >0, such that the first zero columns, as well as the blocks L1, are not
necessarily being and Wy # 0 has no zero rows,

it) for any k > 0, the block Wy, is the real form of a complex matriz /Wk that can be
reduced to the almost echelon form Wy, = (0|1,,) (and, in particular, W; = I,,),
where I, is obtained by the complex identity matriz by possibly adding zero
rows,

and such that there does not exist two successive columns of T of indices 25 — 1,25
which are both zero.

Proof. Recall that we have chosen a basis such that 0 < «; < ;41 and that, by the
equations (5), we get
Apr, =0 < By, =0.

If the coefficient «y, is zero, then the equations (6) become

P

—Apk = —agApg
5

— By = —aj, Bpg,

and we see that, if ap # 1, then Apr, = Bpr = 0. As h is T-undecomposable, by
Remark 2 we find that the smallest non-zero coefficients must be equal to 1. For the
same reason, the next possible coefficients must be equal to 2 and so on, that is, the
derivations must be of the form given in (8).

Moreover, equations (7) for Apr = 21 + zow, which with 5 = 1 become

(ap — )’z = 21,
(ap + ag)?za = 29,

show that Apx # 0 only if |ap — ag| = 1, and that Apy is the real form of a non-zero
complex number, as soon as 0 < ap = a — 1. Thus 77 must be of the form given in
(9) and the blocks W; are, for i > 0, the real form of complex matrices /V[Z By the
first of equations (5), which for =1 gives

By = —ayp, - JApi + ay, - ApgdJ,

the block of T5, corresponding to aj, = 0 and o = 1, is equal to Wy(@®J), and the
same holds for the blocks corresponding to 0 < «j, = ap — 1, because in these cases
Apr commutes with J, hence they are of the form W;(®J) also for i > 0.



Consider a basis change block diagonal matrix of the form

X=XooX1® & Xi11)® I,

where, for ¢ > 0, the blocks X; are d; X d; matrices that are the real form of complex
matrices )A(i, and notice that it leaves the derivations invariant, and changes the block
W; of T into the block X{WiXiH (and the corresponding block of T3, accordingly).

In order to reduce the blocks W; into the form given in the claim, we now perform
the following algorithm:

i)

ii)

iii)

Starting from the last block W; and working upward one by one, by left mul-
tiplication X{ W; with a suitable matrix X;, we can assume that the blocks W;
are reduced to lower echelon form, that is, such that, for A < k, the pivot of the
h-th row is on the right of the pivot of the k-th row. Moreover we annihilate
the entries also below any pivot (as well as above it). For ¢ = 0, the matrices
Xy and W) are not necessarily the real forms of complex matrices. For i > 0,
on the contrary, they are.

Let ¢ > 0 and proceed downward. In order to reduce to zero all the row entries
which are on the right of any pivot, we operate on the real form W; of the
complex matrix W; by adding to a given (complex) column a linear combination
of the previous (complex) columns of W, that is, by the multiplication

Wi
0 Xit1
Wi,

with a suitable matrix, that we still indicate as X;;1, which is the real form of
an upper triangular complex matrix with any diagonal (complex) entry equal to
I and this operation did not change the lower echelon form of W;, 1. Notice, in
fact, that the transpose of a lower echelon matrix is still a lower echelon matrix.
Thus we can assume that the columns of all blocks W; are either zero or vectors
from the canonical basis (taken in the reverse order).

We have to distinguish the case where ¢ = 0, because Wy is not necessarily
the real form of a complex matrix, but X7 is such, hence the real matrix X3
operates on pairs of columns, with indices 25 — 1,2j5. As Wy is a lower echelon
matrix with zeros above and below any pivot, considering the pivot of a row and
its position with respect to the pivot of the previous row, we have the following

three cases:
- lo ol--- .. lo ol---
R el al-- ) o lo 1] )

o]0 1
.11 0
10




As any row is virtually the second row of a two-rows real form of a single
complex row, in the last two cases, the second row can be reduced to a vector
e2i+1 of the real canonical basis, by multiplying on the right with the real form
X1 of an upper triangular complex matrix )/(:1 which has the identity in any
(complex) diagonal entry but the one corresponding to the pivot, which has to

be
1 1 —a 0 -1
1+a2<a 1) o <1 0)’ (10)

respectively. In order to show that we can assume that also the entries below
(1,0) are zero, we consider, for instance, the minimal case of the matrix

0 01 O

0 1[0 a

1 0(0 b

The following multiplications, first on the left

100 0 0[1 0 00/1 o0
b1 0 0 1 a |=101|-b a
a |0 1 1 0(0 b 1 0| a b
with a real matrix, and second on the right
0 0[1 0 (1) ?‘b"’ :Z 0 01 0
0 1|-b a 0 T o =10 1/0 0
1 0] a b 0oo0lo 1 1 0{0 O

with the real form of a complex matrix, show therefore that the block L1 = (1,0)
has only zero blocks on left and right, and above and below.

We are left with the first case

o lo 11]---
(o,
which is the case where the two rows can be seen as a row with entries in the
algebra H_ of split-quaternions, and with pivot w. By multiplying on the right
with the real form of an upper triangular complex matrix which has the identity
in any (complex) diagonal entry, we reduce each non zero entry z; 4+ zow to 21
and, by another multiplication, we can assume that, in the row, only the most
leftward entry z; is non-zero. Finally, we reduce it to 1 by multiplying on the

right with the real form of an upper triangular complex matrix which has z; 1
in the suitable (complex) diagonal entry.

11



iv)

Thus, also in the case i = 0, we can assume that the columns of the block Wy
are either zero or vectors from the canonical basis. Moreover this operation did
not change the lower echelon form of W7, however some row has been multiplied
by a complex scalar at point (10) and in the above reduction of z; to 1. These
rows can be reduced again to vectors of the canonical basis, by multiplying on
the right with a suitable complex diagonal matrix, and so on with the successive
blocks W;.

Starting again from the last block and working upward, we change now the
lower echelon blocks into upper echelon blocks by multiplying on the left with
the suitable permutation matrix. We still indicate the blocks by Wj.

Starting now from the first block Wy, by multiplying on the left by a real
permutation matrix @, and on the right by a complex permutation matrix Q1,
in the most general case we reduce it to the form

QuWoQi=1|[ 0] 0 |Ls 0
0 Iy

where Q94 is the real form of the split-quaternion matrix wily, s > 0, t > 0,
and the first zero columns, as well as the blocks L, are not necessarily being
(notice that Wy cannot have zero rows). The second block is now QWi and its
(complex) columns are vectors from the canonical basis, in the order permuted
by the multiplication by @}. The zero rows are not necessarily at the bottom
now, and we cannot move them to the bottom without permuting the columns
of Wy. On the contrary, by multiplying on the right by a complex permutation
matrix @2, we can permute the columns and reduce Wi to the almost echelon
form W = (0|I,.,), where I, is obtained by the complex identity matrix by
adding zero rows. Going down, we cannot move the rows of Q4,Ws without
permuting the columns of Wi, but we can permute the columns and reduce W2
to the form Wy = (0|I,,), where I,, is obtained by the complex identity matrix
by adding zero rows.

The claim follows after repeating the same argument till the last block W\l, which,

in particular, will be reduced to the form I,,, because it cannot have zero (complex)

columns. O

Theorem 8. With the notations given in (2), if 5 =1 and if the smallest coefficient
ayp, 18 greater than %, then, with respect to a suitable basis of b, the group T operates
as the group of automorphisms exp (8(t)), where

at)=t- ((@aJ) @ @a+1)))®- - ® (Bla+ l)J)) @t J,

12



with the diagonal blocks (®(a+ k — 1)J) of dimension dj, x dj, (with dj, even), then
the T-undecomposable Lie algebra b is described by the pair (T1,T>), where

0 | W
W[ 0 | W,
Wi 0 | Ws
T = -
3
0 |W
—W/ 0

and Ty has the same shape with the blocks Wy (®J) instead of Wy. The block Wy,

—

has dimension d X di+1 and is the real form_of a complex matriz Wy_that can be
reduced to the almost echelon form Wy = (O]Ek) (and, in particular, W1 = (0|I,,)
and /I/Iz = .7”), where frk 1s obtained by the complex identity matriz by adding zero
rows and such that no two successive columns of T of indices 25 — 1,25 are both zero.

Proof. Let the smallest coefficient a, be greater than % and let ap # ap. By equations
(7), if 1 —ap # ar # 1+ ap, then Apr = Bpr = 0. Since b is T-undecomposable,
we have that the closest coefficients are o, = 1 — «p, or o = 1 + «p,. But, since
ap > %, we have that 1 — oy, < ayp, thus ap = 1 — aj, would be a contradiction to the
minimality of ay. Therefore, in this case, the coefficients are ay, 1+ ap, 2 + ap, and
so on. With the same arguments as in Theorem 7, the claim follows. In this case,
also the first block Wj is the real form of a complex matrix Wl. O

The following case is, somehow, exceptional. In fact, in addition to the various
choices of I, here it is possible that the real form of an arbitrary skew-symmetric
complex matrix gives a class of T-undecomposable Lie algebras b.

Theorem 9. With the notations given in (2), if 8 =1 and if the smallest coefficient
ap, s equal to %, then, with respect to a suitable basis of by, the group T operates as
the group of automorphisms exp (a(t)), where

aot)=t- ((@%J) o (@%J) DO (@2Z2;1J)) ®t-

If we denote by dy, x di (dj even) the dimension of the block (®2E=LJ), then the
T-undecomposable Lie algebra b is described by the pair (T1,Ts) with

Q¢ H | W
—W 0 Wy
-Wj 0 Ws
= s | .. (11)
3 . .
0 | W
_M/l/ 0
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where Qgq, s the real form of the split-quaternion matriz wla, and Ty has the same

shape with the blocks Qg, H ®& J and Wy, @ J intead of Qd1H2 and Wy, such that the
following hold.

i) H and Wy are the real form of the complex matrices

e 0|0
, Wi=1| 0|0
00

o of

respectively, with s > 0, r > 0, dy = 2(s+2r), and I:TO s a s X s skew-symmetric
complex matriz,

i) for any k k > 1, the block Wy, of dimension dy X dy11 is the real form of a complex
matriz Wy, that can be reduced to the almost echelon form Wi = (0|IT ) (and,
i particular, VVl = m)f where Irk is obtained by the complex identity matriz
by adding zero rows.

Moreover, no two successive columns of T1 of indices 25 — 1,25 are both zero.

Proof. If ap = %, then the assumption ap = 1 — oy, leads to a contradiction to
ar # ap. Thus, also in this case, the distinct coefficients are ay, 1+ ap, 2 + ap, and
so on. By equations (7), we see, however, that, if a = ap, then Ay = 2zow, hence the
di x di block corresponding to the values of aj equal to % is the real form of a split-
quaternion matrix wH . Notice that, whereas the real form of His skew-symmetric if
and only if H is skew-Hermitian, the real form of wH is skew-symmetric if and only
if H is skew-symmetric. This forces T} and T} to be of the form given in (11).

“With the same argument of Theorem 7, we reduce W; to the almost echelon form
(O|I ), and in particular W; = Im and, since we can operate on the first row by
multiplication on the left with a further matrix, we reduce Wi to the real form of

- (35).

A basis change matrix of the form X1 @ Iy, @ - -- ® I, transforms the blocks W; and
Qg H into X]W; and X[Qg, HX;, respectively.

s I
In order to leave invariant the echelon form of W7, we have to take X7 = < 5 lo) )

Notice now that X|Qq, HX; is the real form of
XIwIﬂﬁ)?l = wfﬂiiﬁ)?l.
2 2
Hy | Hy

“H | H
ence )A({I:T)A(l changes Hs into D'HsD and H; into (Hy + C'Hy)D

If we write H = ( >, with Hy of dimension s X s, we see that the congru-

14



. 0 |1
Thus we can reduce, firstly, Hs to the canonical form ( 7 6 ), because Ho
—ir
has to be non-degenerate, or 77 would have a zero (complex) row. Finally, since Ho
is non-degenerate, we reduce H; to zero, taking C' = —H1H2_1. O

Remark 10. In the case where O(t) = (@4t - J) @t - J, we find that (T},T») =
(@127@J)V

In the following last theorem we will change the ordering of the coefficients ajp,
defining the derivations O(t).

Theorem 11. With the notations given in (2), if 5 = 1 and if the smallest coefficient
ap, s smaller than %, then, with respect to a suitable basis of b, the group T operates,
in the most general case, as the group of automorphisms exp (8(15)), where O(t) =

al(t) (S5) 62(t) Dt J with

o(t)=t- ((@(ll —a))®-- D (@2—-a)))® (@1 — a)J))

Aa(t)=t- ((@aJ) & @a+1)))d & (B(a+ lz)J))

and the T-undecomposable Lie algebra by is described by the pair (Th,Ts) with

0 ‘/21—1
V1|
0 Vi
-V 0 04, S
_ 1 dy
= S04, | 0 | (12)
W0
- I/Vlg
_M/llz O

where the blocks Vi, Wy and S are the real form of complex matrices Vk, Wk and
S that can be reduced to the almost echelon form Vi = (0|IT) Wi = (O]I ) and

= (0|I,) (and, in particular, V;,_; = = (0|4, ,) and I/Vl2 = 7412) where I, is
obtamed by the complex identity matriz by addmg zero rows, §1q, 1is the real form of
the split-quaternion matriz wla, , and such that no two successive columns of Th of

indices 25 — 1,27 are both zeroz. The matrix Ty has the same shape as 17 with the
blocks QUq, S @ J, Vi, ® J and Wy, & J intead of 24,5, Vi, Wi.

Proof. At last, let the smallest coefficient ap be smaller than %, thus the closest
possible coefficients are ap, = 1 — ap, and ap = 1+ . The latter gives, as above, the
coefficients oy, 1+ ap, 2+ ap, and so on. The former gives moreover the coefficients
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1—ap, 2—ay, and so on, and no other, since (1 —ay,) — 1 is negative and 1 — (1 — )
is again ajp. Thus, in this case, the coefficients are

h—a,....2—a, 1 —a,a,1+a,24+a,...,ls+ a.

Notice that no coefficient of the form a — ay, can be equal to b+ ay, because ay < %
It follows that:

i) if ap = a4+ « and a = b+ «, then aj, +  is not an integer and, by equations
(7), we see that Apy is non-zero only if |b—a| = 1 and that Ay is the real form
of a complex number,

ii) if ap, = a4+« and a = b— «, then |ay, — ag| is not an integer and, by equations
(7), we see that Apy is non-zero only if a+b =1, that is a, = v and o = 1 —a,
and that Ay is the real form of a split-quaternion wzs,

iii) if ap = a — @ and a = b — «, then ay, + oy is not an integer and, by equations
(7), we see that again Apj is non-zero only if |b — a] = 1 and that Apy is the
real form of a complex number.

Thus, T} is of the form given in (12). With the same arguments as in Theorem 7, we
can reduce the blocks V;, W; and S to the form given in the claim. ]

Remark 12. In Theorem 11 it can happen that 9(t) = (81 (t) ® (®at - J)) ®t-J and

0 Vi,-1
Vi |
T = 0 Vi
iz 0 Qq, S
-S4, | O
or that 0(t) = 02(t) &t - J and

0 Wy
_ /

T, = 11 0

.. M/l2
_WI/Q 0
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