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1 Introduction to Euclidean geometry

1.1 Parallelograms

In what follows we suppose that we have an Euclidean space, i.e. an absolute space satisfying
Euclidean parallel axiom (EPP) together with its equivalent forms [5, Theorem 17.]. Taking a plane
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S in the space the points {A,B,C,D} ⊂ S are the vertices of a convex quadrilateral if the segments
−
AC and

−
BD intersect each other at an interior point. The adjacent sides of the quadrangle are

−
AB,

−
BC,

−
CD and

−
DA, respectively.

−
AB and

−
CD, or

−
BC and

−
DA are opposite sides.

Excercise 1 Using (EPP) prove that the sum of the interior angles of a triangle is π.

Hint. Let ABC△be a triangle and consider the line through C parallel to the opposite side. Since
the su�cient conditions of parallelism are necessary it follows that we have equal alternate interior
angles completing the angle C∠ to π.

De�nition 1 A convex quadrilateral is a parallelogram if each side is parallel to its opposite side.

Theorem 1 (characterization of parallelograms) A convex quadrilateral is a parallelogram if and only
if one of the following conditions is satis�ed:

(1) each side is congruent to its opposite side

(2) each angle is congruent to its opposite angle

(3) two opposite sides are parallel and congruent

(4) the diagonals bisect each other

(5) the convex quadrilateral is central symmetric

Proof. If a convex quadrilateral is a parallelogram then the diagonals divides the quadrilateral into
congruent triangles because the su�cient conditions of parallelism are necessary (for the congruance
of the triangles see (ASA)). This means that we can immediately conclude (1), (2) and (3). Using
(1), statement (4) also follows. (4) and (5) are obviously equivalent. Conversely, if the opposite sides
of a convex quadrilateral are congruent then the diagonals divides the quadrilateral into congruent
triangles because of (SSS). Therefore the su�cient condition of parallelism implies that the opposite
sides are parallel (we have equal alternate interior angles), i.e. the quadrilateral is a paralelogram.
Suppose that the opposite angles are congruent. Dividing the quadrilateral into triangles we have
that the sum of the angles must be 2π. Therefore we have that the the consecutive interior angles
add up to π (180◦). It is a su�cient condition of parallelism. If (3) is assumed to be true then we can
divide the quadrilateral into congruent triangles by one of its diagonals (the congruence follows from
the necessary conditions of parallelism and (SAS)). Using the su�cient conditions of parallelism we
can conclude that the complement opposite sides are also parallel and congruent. Since (4) and (5)
are obviously equivalent, it is enough to check one of them. If (4) is assumed to be true then axiom
(SAS) implies that the diagonals divide the quadrilateral two pairs of congruent triangles (recall that
the vertically opposite angles are congruent). The quadrilateral is a parallelogram because of the
su�cient conditions of parallelism. �

1.2 Theorems about parallel lines

Let a and b be lines in the plane S of a Euclidean space and consider the line c ⊂ S intersecting
both a and b. The parallel projection of a onto b sends any point A ∈ a into A′ ∈ b such that lAA′ is
parallel to c. Especially all the lines connecting a point and its image are parallel.
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Figure 1: Parallel projection theorem I

Theorem 2 (parallel projection theorem) The parallel projection preserves the ratio of the segments.

Proof. In the �rst step of the proof we clarify that the parallel projection preserves betweeness, i.e.
A−X −B implies that A′ −X ′ −B′. If A = A′, or B = B′ then Pasch theorem immediately implies
that A′ −X ′ − B′. In case of A ̸= A′ and B ̸= B′ let us apply Pasch theorem two times (Figure 1.)
to the triangles AA′B△ and A′BB′△, respectively (the intersecting line is lXX′ in both cases). The

second step in the proof of the theorem is the investigation of a special case: suppose that
−
AB=

−
CD.

Taking the lines parallel b through the points A and C, respectively (Figure 2.), we have congruent

triangles ABE△ and CDF△ with equal sides
−
AE=

−
CF . Therefore Theorem 1 (characterization of

parallelograms) implies that
−

A′B′=
−
AE=

−
CF=

−
C ′D′ . The genereal case is investigated in the thrid

Figure 2: Parallel projection theorem I

step as follows. Dividing the segments
−
AB into n equal parts by the points

A = A1 − A2 − A3 − . . .− An+1 = B

let us put segments of length
−
AB /n back-to-back along

−
CD as many times as we can, i.e.

k

−
AB

n
≤

−
CD < (k + 1)

−
AB

n
⇒ k

n
≤

−
CD /

−
AB <

k + 1

n
.
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According to the �rst and the second step, A′ = A′
1 − A′

2 − A′
3 − . . .− A′

n+1 = B′ is the partition of
−

A′B′ into n equal parts and

k

−
A′B′

n
≤

−
C ′D′ < (k + 1)

−
A′B′

n
⇒ k

n
≤

−
C ′D′ /

−
A′B′ <

k + 1

n
.

Therefore ∣∣∣∣( −
CD /

−
AB

)
−

( −
C ′D′ /

−
A′B′

)∣∣∣∣ ≤ 1

n
.

Taking the limit n → ∞ we have the parallel projection theorem. �

Theorem 3 (converse of the parallel projection theorem) If we have two lines intersecting the arms

of an angle with vertex O at the corresponding points A, A′ and B, B′ such that
−
OA /

−
OA′=

−
OB /

−
OB′

then the lines are parallel to each other.

Proof. The point B′ ∈
⇀

OB is uniquely determined by the segment construction theorem because

−
OB′=

−
OB ·

−
OA′ /

−
OA .

Using the parallel projection theorem with projecting line lAA′ , the point B′ must be the parallel
projected image of B as was to be proved. �

Figure 3: Application of the parallel projection theorem

Theorem 4 (application of the parallel projection theorem) If we have two parallel lines intersecting

the arms of an angle with vertex O at the corresponding points A, A′ and B, B′ then
−
OA /

−
OA′=

−
OB

/
−

OB′=
−

AA′ /
−

BB′, i.e. the common ratio between the segments on the same arms is equal to the
ratio of the cross-segments.
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Proof. Consider the angle AOA′∠ = BOB′∠ and suppose that lAA′ and lBB′ are parallel. Since
O′ = O, it is enough to prove that the ratio of the cross-segments is equal to the common ratio of
the segments on the same arms of the angle. Applying the parallel projection theorem to the angle
OBB′∠ (Figure 3.) we have that

−
AO
−

BO

=

−
C ′B′

−
BB′

=

−
AA′

−
BB′

because A, A′, B′ and C ′ are the vertices of a parallelogram. �

1.3 Similar triangles, similarity theorems in right-angled triangles

Combining the congruence theorems and the theorems about parallel lines we have the theory of
similar triangles. Therefore we do not use any kind of similarity axiom, although such an axiom can
apper in di�erent expositions of Euclidean geometry, see [1, Similarity axiom].

De�nition 2 Two triangles are similar if there is a correpondence among their vertices such that all
of the corresponding angles are congruent and all of the corresponing sides are in the same ratio. It
is called the ratio of the similarity.

Remark 1 Congruent triangles are similar with similarity ratio 1.

Theorem 5 (similarity theorems) Two triangles are similar if there is a correpondence among their
vertices such that

(S'AS') two corresponding sides are in the same ratio and the included angles are congruent

(S'S'S') all of the corresponing sides are in the same ratio

(S's'A) two corresponding sides are in the same ratio and the non-included angles opposite to
the longer sides are congruent

(AAA) all of the corresponding angles are congruent.

Theorem 6 (similarity theorems in right-angled triangles) Let a, b and c be the legs and the hy-
pothenuse of a right-angled triangle, respectively. If the orthogonal projections of the sides a and
b onto the hypotenuse are of lengths p and q, respectively, then m2 = pq, a2 = cp and b2 = cq,
a2 + b2 = c2, where m is the height belonging to the hypotenuse.

Proof. Let A, B and C be the vertices of the right-angled triangle and consider the foot point T
of the perpendicular line to c through the point C. Since the triangles ABC△, ACT△ and BCT△
have the same angles, they are similar. The equality of the ratio of the corresponding sides gives that
m2 = pq (see triangles ACT△ and BCT△), a2 = cp (see triangles ABC△ and ACT△) and b2 = cq.
To sum up a2 + b2 = cp+ cq = c(p+ q) = c2. �

Remark 2 The similarity theorem m2 = pq is called height theorem, a2 = cp and b2 = cq are leg
theorems. Pythagorean theorem is a2 + b2 = c2.
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A panoramic view

Incidence geometry → absolute geometry (RP: dist., PSP, PP: angle, SAS) → hyperbolic geometry: HPP

↓

Euclidean geometry: EPP

(parallelograms, theorems about parallel lines, similarity of triangles)

2 Isometries

2.1 Euclidean plane isometries

De�nition 3 A distance preserving one-to-one transformation σ:S → S, A → A′ := σ(A) of the
Euclidean plane is called isometry, i.e. d(A′, B′) = d(A,B) for any A,B ∈ S.

Some properties of isometries:

• they form a group with respect to the composition of mappings.

Using the triangle inequality

• A−B − C if and only if A′ −B′ − C ′.

The congruence theorem (SSS) implies that

• m(ABC∠) = m(A′B′C ′∠).

Therefore an isometry sends any line into a line. The angles are also preserved and the images of
parallel lines under an isometry are parallel.

De�nition 4 The re�ection across the line l ⊂ S is a transformation σl:S → S, X → X ′ := σl(X)
de�ned by the following properties:

• X ′ = X for any X ∈ l esetén

• If X /∈ l, then l is the perpendicular bisector of
−

XX ′.

Theorem 7 Re�ection across lines are isometries.

Proof. The distance between the points A and B is obviously preserved in case of A and B ∈ l
because of A = A′ and B = B′. Since the perpendicular bisector of a segment is the locus of points
in the plane having the same distance from each of the endpoints, it follows that if A ∈ l but B /∈ l
then d(A′, B′) = d(A,B′) = d(A,B), because of A′ = A ∈ l. Finally, suppose that A /∈ l and B /∈ l.
If lAB ∩ l ̸= ∅, then the distance d(A,B) can be easily expressed in terms of d(A,C) and d(B,C),
where C ′ = C is the intersection point of lAB and l. A similar formula holds for d(A′, B′) in terms
of d(A′, C ′) and d(B′, C ′). Therefore d(A,B) = d(A′, B′). To discuss all of the possible cases note
that if lAB and l are parallel then A, B, B′, A′ form a parallelogram and we can refer to Theorem 1.
(characterization of parallelograms). �
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Theorem 8 (�xed points of isometries) If an isometry σ has two �xed points then the line l of the
�xed points is a pointwise �xed line and σ = σl, or σ is the identity. In case of three non-collinear
�xed points σ must be the identity.

Proof. Suppose that A = A′, B = B′ and C = C ′ are non-collinear �xed points and let X be a
point in the plane such that X ̸= X ′. Then

d(X,A) = d(X ′, A′) = d(X ′, A), d(X,B) = d(X ′, B′) = d(X ′, B)

and
d(X,C) = d(X ′, C ′) = d(X ′, C),

i.e. A, B and C are on the perpendicular bisector of
−

XX ′. It is a contradiction. Therefore X ′ = X for
any X ∈ S. Using the previous argument, if A = A′, B = B′ but σ is not the identical transformation
then X ̸= X ′ for any X /∈ l. On the other hand

d(X,A) = d(X ′, A′) = d(X ′, A) and d(X,B) = d(X ′, B′) = d(X ′, B), (1)

i.e. both A and B are on the perpendicular bisector of
−

XX ′. It is exactly the rule of the re�ection
across the line l for any X /∈ l. If X ∈ l then X ′ ∈ l′ = l because l is given by two �xpoints of the
isometry. In particular X = X ′ because of formula (1). �

Figure 4: Fundamental theorem of plane isometries

Theorem 9 (fundamental theorem of plane isometries) If ABC△ and DEF△ are congruent trian-
gles then there exists a uniquely determine plane isometry σ:S → S such that σ(A) = D, σ(B) = E
and σ(C) = F .

Proof. The unicity is the direct consequence of Theorem 8 because σ(A) = D, σ(B) = E and
σ(C) = F , or σ̃(A) = D, σ̃(B) = E and σ̃(C) = F imply that the isometry σ := σ−1 ◦ σ̃ has three
non-collinear �xed points. Therefore σ is the identity and σ = σ̃. The proof of the existence can
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be given in three steps as follows. In the �rst step (Figure 4.) let σ1 be the re�ection across the

perpendicular bisector of
−

AD provided that A ̸= D; otherwise σ1 is the identity:

A′ = σ1(A) = D, σ1(B) = B′, σ1(C) = C ′. (2)

In the second step, let σ2 be the re�ection across the perpendicular bisector of
−

B′E provided that
B′ ̸= E; otherwise σ2 is the identity. Since

d(D,E) = d(A,B) = d(A′, B′) = d(D,B′),

the point D is on the axis of re�ection, i.e.

A′′ = σ2 ◦ σ1(A) = σ2(A
′) = σ2(D) = D, B′′ = σ2 ◦ σ1(B) = σ2(B

′) = E, σ2 ◦ σ1(C) = C ′′. (3)

In the third step let σ3 be the re�ection across the perpendicular bisector of
−

C ′′F provided that
C ′′ ̸= F ; otherwise σ3 is the identity. Since

d(D,F ) = d(A,C) = d(A′′, C ′′) = d(D,C ′′),

the point D is on the axis of re�ection. In a similar way

d(E,F ) = d(B,C) = d(B′′, C ′′) = d(E,C ′′),

i.e. the point E is on the axis of re�ection. Therefore

A′′′ = σ3 ◦ σ2 ◦ σ1(A) = σ3(A
′′) = σ3(D) = D, B′′′ = σ3 ◦ σ2 ◦ σ1(B) = σ3(B

′′) = σ3(E) = E,

C ′′′ = σ3 ◦ σ2 ◦ σ1(C) = σ3(C
′′) = F . �

Corollary 1 An isometry is uniquely determined by the images of three non-collinear points.

Corollary 2 An isometry can be written as the composition of at most three re�ections across lines.

Figure 5. shows the essentially distinct relative positions of the axis of re�ections.

De�nition 5 A translation is the composition of re�ections across two parallel lines. The composition
of re�ections across intersecting lines is called a rotation. The intersection point of the re�ection axes
is the centre of the rotation. The �rst/second line we are re�ecting across is called the interior/exterior
axis.

According to the de�nition of re�ections across lines, a translation τ :S → S keeps the distance of
X and τ(X) constant for any X ∈ S. It is exactly twice the width between the axes. Furthermore,
both axes are perpendicular to the line of X and τ(X) independently of the choice of X. The line of
X and τ(X) represents the so-called direction of the translation.

Theorem 10 (three re�ections theorem I) The composition of re�ections across three parallel lines
is a re�ection across a single line parallel to the others.
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Figure 5: Essentially di�erent relative positions of re�ection axes

Proof. Let σ := σ3◦σ2◦σ1 be the composition of re�ections across three parallel lines and consider
a line l such that it is perpendicular to all of them. The intersection points are denoted by A1, A2

and A3, respectively. It is clear that the image of any point X ∈ S is uniquely determined by the
orthogonal projection of X onto the line l. Let f : l → R be a ruler and suppose that f(A1) = a1,
f(A2) = a2 , f(A3) = a3. If x is the coordinate of the orthogonal projection of X onto the line l then

x+ x1

2
= a1 ⇒ x1 = 2a1 − x

under the re�ection σ1. A simple iteration shows that x3 = 2(a3− a2+ a1)−x, i.e. σ(X) is the image
of X under the re�ection across the perpendicular line to l at the point of coordinate a3 − a2 + a1. �

Corollary 3 (free choice of axis I) To present a translation as the composition of two re�ections, the
interior/exterior axis perpendicular to the direction of the translation can be arbitrarily chosen but
the corresponding exterior/interior axis is uniquely determined.

Proof. Let τ = σ2◦σ1 be a translation and suppose that σ̃1 is a re�ection across a line perpendicular
to the direction of τ . By the three re�ections theorem I, σ := σ2 ◦ σ1 ◦ σ̃1 = σ̃2 is a single re�ection
and τ = σ2 ◦ σ1 = σ̃2 ◦ σ̃1. �

According to the de�nition of re�ections across lines, a rotation ρ:S → S keeps the measure of the
central angle XOX ′∠ constant for any X ∈ S. It is exactly twice the measure of the angle between
the axes. It is called the angle of the rotation. The direction of a rotation can be changed by changing
the order of the axes.

Theorem 11 (three re�ections theorems II) The composition of re�ections across three concurrent
lines is a re�ection across a single line through the common point.

Proof. Let σ := σ3 ◦ σ2 ◦ σ1 be the composition of re�ections across three concircular lines. By
the help of a circle around O let us take the points A1, A2 and A3 together with the corresponding
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antipodal points, where the axes of re�ections intersect the circle at. It is clear that the image of any
point X ∈ S \ {O} is uniquely determined by the projection onto the circle. Using a protractor let
the measures be

m(A1) = a1 (mod π), m(A2) = a2 (mod π), m(A3) = a3 (mod π).

If x (mod 2π) is the coordinate of the projection of X to the circle then

x+ x1

2
≡ a1 (mod π) ⇒ x1 ≡ 2a1 − x (mod 2π).

A simple iteration shows that

x3 ≡ 2(a3 − a2 + a1)− x (mod 2π) ⇒ x+ x3

2
≡ a3 − a2 + a1 (mod π),

i.e. σ(X) is the image of X under the re�ection across the line determined by the antipodal points
on the perimeter of the circle with coordinate a3 − a2 + a1 (mod π). �
Corollary 4 (free choice of axis II) To present a rotation as the composition of two re�ections, the
interior/exterior axis through the center of the rotation can be arbitrarily chosen but the corresponding
exterior/interior axis is uniquely determined.

Proof. Let ρ = σ2 ◦ σ1 be a rotation and suppose that σ̃1 is a re�ection across a line through
the center of ρ. By the three re�ections theorem II, σ := σ2 ◦ σ1 ◦ σ̃1 = σ̃2 is a single re�ection and
ρ = σ2 ◦ σ1 = σ̃2 ◦ σ̃1. �
De�nition 6 The composition of a re�ection and a translation such that the direction of the trans-
lation is parallel to the axis of the re�ection is a glide re�ection.

Remark 3 A glide re�ection can be considered as a re�ection followed by a translation or a trans-
lation followed by a re�ection because the direction of the translation is parallel to the axis of the
re�ection.

Theorem 12 (classi�cation of Euclidean plane isometries) A Euclidean plane isometry is one of the
following types: identity, re�ection across a line, translation, rotation or glide re�ection.

Proof. It is enough to prove that if we have three axes of re�ections in general position (not parallel or
concurrent lines) then the composition σ := σ3 ◦σ2 ◦σ1 is a glide re�ection. Without loss of generality
we can suppose that the interior axes l1 and l2 intersect each other (otherwise repeat the following
process with the inverse of σ). Let O12 be the intersection point and present the rotation ρ = σ2◦σ1 by
using the perpendicular line to l3 through O12 instead of l2 as the exterior axis. Roughly speaking we
have to rotate the intersecting lines l1 and l2 about the intersection point up to the perpendicularity
of the second line to the third one. Such a rigid motion of the axes does not change the center, the
angle or the direction of the rotation:

σ = σ3 ◦ σ2 ◦ σ1 = σ3 ◦ σ2′ ◦ σ1′ ,

where l′2 is perpendicular to l3. Let O
′
23 be the intersection point of the perpendicular lines and present

the half-turn ρ′ = σ3◦σ2′ by using the perpendicular line to l
′
1 through O′

23 instead of l3 as the exterior
axis. Roughly speaking we have to rotate the intersecting lines l3 and l′2 about the intersection point
up to the perpendicularity of the third line to l′1. Such a rigid motion of the axes does not change the
center, the angle or the direction of the rotation:

σ = σ3 ◦ σ2 ◦ σ1 = σ3 ◦ σ2′ ◦ σ1′ = σ3′ ◦ σ2′′ ◦ σ1′ ,

where l′3 is perpendicular to both l′1 and l′′2 (Figure 6.). �
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Figure 6: Classi�cation of Euclidean plane isometries

2.2 Euclidean space isometries: a survey

De�nition 7 A distance preserving one-to-one transformation σ:E → E, A → A′ := σ(A) of the
Euclidean space is called isometry, i.e. d(A′, B′) = d(A,B) for any A,B ∈ E.

Some properties of isometries:

• they form a group with respect to the composition of mappings.

Using the triangle inequality

• A−B − C if and only if A′ −B′ − C ′.

The congruence theorem (SSS) implies that

• m(ABC∠) = m(A′B′C ′∠).

Therefore an isometry sends any line/plane into a line/plane. The angles are also preserved and the
images of parallel lines/planes under an isometry are parallel.

De�nition 8 The re�ection across the the plane S ⊂ E is a transformation σS:E → E, X → X ′ :=
σS(X) de�ned by the following properties:

• X ′ = X for any X ∈ S

• if X /∈ S, then S is the perpendicular bisector of
−

XX ′.

Theorem 13 Re�ections across planes are isometries.

Proof. Except the trivial case of A and B ∈ S, distance preserving goes back to the analogue
property of re�ections across the line l := S∩SABA′B′ because A, B and the images A′, B′ are coplanar
points. �

Imitating the steps of the previous section it can be proved that any space isometry is the com-
position of at most four re�ections across planes.
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De�nition 9 A translation is the composition of re�ections across two parallel planes. The compo-
sition of re�ections across intersecting planes is called a rotation. The intersection of the re�ection
planes is the axis of the rotation. The �rst/second plane we are re�ecting across is called the inte-
rior/exterior plane.

According to the de�nition of re�ections across planes, a translation τ :E → E keeps the distance
of X and τ(X) constant for any X ∈ E. It is exactly twice the width between the re�ection planes.
Furthermore, both re�ection planes are perpendicular to the line of X and τ(X) independently of the
choice of X. The line of X and τ(X) represents the so-called direction of the translation.

Theorem 14 (three re�ections theorem I) The composition of re�ections across three parallel planes
is a re�ection across a single plane parallel to the others.

Proof. Let σ := σ3 ◦ σ2 ◦ σ1 be the composition of re�ections across three parallel planes and
consider a line l such that it is perpendicular to all of them. The intersection point is denoted by A1,
A2 and A3, respectively. It is clear that the image of any point X ∈ E is uniquely determined by the
orthogonal projection of X onto the line l. Let f : l → R be a ruler and suppose that f(A1) = a1,
f(A2) = a2 , f(A3) = a3. If x is the coordinate of the orthogonal projection of X onto the line l then

x+ x1

2
= a1 ⇒ x1 = 2a1 − x

under the re�ection σ1. A simple iteration shows that x3 = 2(a3− a2+ a1)−x, i.e. σ(X) is the image
of X under the re�ection across the perpendicular plane to l at the point of coordinate a3 − a2 + a1.
�

Corollary 5 (free choice of re�ection plane I) To present a translation as the composition of two
re�ections, the interior/exterior re�ection plane perpendicular to the direction of the translation can
be arbitrarily chosen but the corresponding exterior/interior re�ection plane is uniquely determined.

Proof. Let τ = σ2 ◦ σ1 be a translation and suppose that σ̃1 is a re�ection across a plane perpen-
dicular to the direction of τ . By the three re�ections theorem I, σ := σ2 ◦ σ1 ◦ σ̃1 = σ̃2 is a single
re�ection and τ = σ2 ◦ σ1 = σ̃2 ◦ σ̃1. �

According to the de�nition of re�ections across planes, a rotation ρ:E → E keeps the measure of
the central angle XOX ′∠ constant for any X ∈ E, where O is the orthogonal projection of X to the
rotational axis. It is exactly twice the measure of the angle between the planes. It is called the angle
of the rotation. The direction of a rotation can be changed by changing the order of the re�ection
planes.

Theorem 15 (three re�ections theorems II) The composition of re�ections across three planes pas-
sing through a common line is a re�ection across a single plane through the common line.

Proof. Let σ := σ3 ◦ σ2 ◦ σ1 be the composition of re�ections across three planes S1, S2 and S3

through the common line l. If σ is restricted to a plane S perpendicular to l then it is the composition
of re�ections across three concurrent lines l1 = S ∩ S1, l2 = S ∩ S2 and l3 = S ∩ S3. Applying the
three re�ections theorem II in the plane S we have that σ reduces to a single re�ection across a line
m in S. The re�ection across the plane spanned by l and m substitutes the composition of re�ections
across S1, S2 and S3 in the space. �
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Figure 7: A glide re�ection (left) and a rotore�ection (right)

Corollary 6 (free choice of axis II) To present a rotation as the composition of two re�ections, the
interior/exterior re�ection plane through the axis of the rotation can be arbitrarily chosen but the
corresponding exterior/interior re�ection plane is uniquely determined.

Proof. Let ρ = σ2 ◦ σ1 be a rotation and suppose that σ̃1 is a re�ection across a plane through the
rotational axis of ρ. By the three re�ections theorem II, σ := σ2 ◦ σ1 ◦ σ̃1 = σ̃2 is a single re�ection
and ρ = σ2 ◦ σ1 = σ̃2 ◦ σ̃1. �

De�nition 10 The composition of a re�ection and a translation such that the direction of the trans-
lation is parallel to the re�ection plane is a glide re�ection. The composition of a re�ection and a
rotation with axis perpendicular to the re�ection plane is called rotore�ection.

Remark 4 A glide re�ection can be considered as a re�ection followed by a translation or a trans-
lation followed by a re�ection because the direction of the translation is parallel to the axis of the
re�ection. A rotore�ection can be considered as a re�ection followed by a rotation or a rotation
followed by a re�ection because the rotational axis is perpendicular to the re�ection plane.

Theorem 16 The composition of three re�ections across planes in general position is a glide re�ection
or a rotore�ection.

Proof. The idea of the proof is the same as in 2D. Using rotations around the intersection lines we
can construct an equivalent con�guration of re�ection planes such that two of them are perpendicular
to the third one. If the planes perpendicular to the third one are parallel then we have a glide
re�ection. Otherwise the composition gives a rotore�ection (Figure 7.). �

De�nition 11 The composition of a rotation and a translation along the rotational axis is called a
rototranslation.

Remark 5 A rototranslation be considered as a translation followed by a rotation or a rotation
followed by a translation because the rotational axis is parallel to the direction of the translation.

Theorem 17 (classi�cation of Euclidean space isometries) A Euclidean space isometry is one of the
following types: identity, re�ection across a plane, translation, rotation, glide re�ection, rotore�ection
or rototranslation.

13



2.3 The general concept of congruence

De�nition 12 Two subsets in the Euclidean plane/space are congruent if there is an isometry sending
one of them to another.

Remark 6 The fundamental theorem of plane isometries shows that the general concept of congru-
ence is an extension of the congruence of triangles.

For the isometries of higher dimensional Euclidean spaces see [3, Chapter 11.], [6].

3 Similarities

De�nition 13 A one-to-one transformation of the Euclidean plane/space is called a similarity if
d(A′, B′) = kd(A,B) for any A, B in the plane/space, where the positive real number k > 0 is called
the ratio of the similarity.

Isometries are similarities with ratio k = 1.

3.1 The �xed point theorem of similarities

Theorem 18 Any non-isometric similarity has a uniquely determined �xed point.

Proof. The unicity is clear because two �xed points A ̸= B imply that

d(A′, B′) = d(A,B) = kd(A,B) ⇒ k = 1,

i.e. we have an isometry. To prove the existence suppose that k ̸= 1 and, without loss of the generality,
consider the case of 0 < k < 1. In case of k > 1 we can apply the following argument to the inverse
mapping with ratio 1/k.

Choosing an arbitrary starting point A0 let us de�ne the sequence An+1 := A′
n for any natural

number n = 1, 2, . . . . Then we have that

d(A1, A2) = d(A′
0, A

′
1) = kd(A0, A1),

d(A2, A3) = d(A′
1, A

′
2) = kd(A1, A2) = k2d(A0, A1), . . .

Using induction,
d(An, An+1) = knd(A0, A1). (4)

By the polygonal inequality Legyen most m > n és alkalmazzuk a töröttvonal-egyenl®tlenséget:

d(A0, An) ≤ d(A0, A1) + d(A1, A2) + . . .+ d(An−1, An) = d(A0, A1)
(
1 + k + k2 + . . .+ kn−1

)
=

d(A0, A1)
1− kn

1− k
< d(A0, A1)

1

1− k
.

Therefore the sequence An is bounded and we can choose a convergent subsequent Anl
with limit

point A. Since

d(Anl+1, A) ≤ d(Anl+1, Anl
) + d(Anl

, A)
(4)
= knld(A0, A1) + d(Anl

, A)

and the right hand side can be arbitrarily small, it follows that the sequence Anl+1 of the subsequent
elements also tends to A. Therefore the subsequent element of A is equal to A because of A′ =
(liml→∞Anl

)′ = liml→∞ A′
nl
= liml→∞ Anl+1 = A. �
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3.2 Similarities in the Euclidean plane/space

De�nition 14 Let O be a given point together with the real number λ ̸= 0. The central similarity
σλ,O is de�ned by the following properties: σλ,O(O) = O and

• if λ > 0 and X ̸= O then X ′ := σλ,O(X) is the uniquely determined point on
⇀

OX such that
d(O,X ′) : d(O,X) = k,

• if λ < 0 and X ̸= O then X ′ := σλ,O(X) is the uniquely determined point on the complement

half-line of
⇀

OX such that d(O,X ′) : d(O,X) = k,

where k is the absolute value of the so-called signed ratio λ. The point O is the center of the similarity.

Corollary 7 If σλ,O is a central similarity then d(A′, B′) = kd(A,B), where k is the absolute value
of the signed ratio λ.

Proof. If λ > 0 then we can refer to the converse and the application of the parallel projection
theorem (Theorem 3 and Theorem 4). The case of λ < 0 is also easy to discuss because the composition
of the central similarity and the point re�ection throughO changes the sign of λ but keeps the distances
unchanged because point re�ections are isometries. �

Using the �xed point theorem of similarities we can classify the plane similarities as follows: if we
have a non-ismetric similarity φ with ratio k ̸= 1 then it has a uniquely determined �xpoint O. It is
clear that

σ := σ1/k,O ◦ φ
is an isometry (similarity with ratio 1) having a �xpoint. Therefore σ can be the identity, a re�ection
across a line, or a rotation and, consequemtly,

• φ = σk,O is a central similarity,

• φ = σk,O ◦ σl is a central similarity composed with a re�ection such that the re�ection axis
passes through the center of the central similarity (dilative re�ection),

• φ = σk,O ◦ρ is a central similarity composed with a rotation such that the center of the rotation
is the center of the central similarity (dilative rotation).

Theorem 19 (classi�cation of plane similarities) A non-isometric similarity of the Euclidean plane
is a central similarity, a dilative re�ection or a dilative rotation.

Central similarities with signed ratios help us to simplify the classi�cation of space similarities.
The �rst step is to list the space isometries with a �xed point: σ can be the identity, a re�ection
across a plane, a rotation or a rotore�ection. Therefore

• φ = σk,O is a central similarity,

• φ = σk,O ◦ σS is a central similarity composed with a re�ection such that the re�ection plane
passes through the center of the central similarity. Using a half-turn π around the line perpen-
dicular to S at the point O, it can be easily seen that

φ = σk,O ◦ σS = σ−k,O ◦ π,

i.e. we have a dilative rotation (Figure 8.),
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Figure 8: Classi�cation of space similarities

• φ = σk,O ◦ρ is a central similarity composed with a rotation such that the rotational axis passes
through the center of the central similarity (dilative rotation).

• φ = σk,O ◦ σ, where σ is a rotore�ection given by ρl ◦ σS such that the rotational axis l is
perpendicular to S at the point O. As we have seen above

φ = σk,O ◦ σ = σk,O ◦ ρl ◦ σS = σk,O ◦ σS ◦ ρl = σ−k,O ◦ π ◦ ρl = σ−k,O ◦ ρ,

where ρ is a rotation about the common rotational axis l. We have a dilative rotation again.

Theorem 20 (classi�cation of space similarities) A non-isometric similarity of the Euclidean space
is a central similarity or a dilative rotation.

3.3 The general concept of similarity

De�nition 15 Two subsets in the Euclidean plane/space are similar if there is a similarity sending
one of them to another.

4 Geometric measure theory

4.1 The arclength of a circle

De�nition 16 A polygonal chain inscribed in a circle means a sequence of points A0, A1, . . ., An = A0

on the perimeter such that

• A0, A1, . . ., An−1 are distinct points,

• n ≥ 3 and A′
i−1 −A′

i −A′
i+1 (i = 2, . . . , n− 1) under the central projection through A0 onto the

tangent line at the diametrically opposite point to A0.

Lemma 1 The set of lengths of the polygonal chains inscribed in a circle is bounded from above.
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Figure 9: The projection onto the tangent square

Proof. Let a square be drawn around the circle and consider the central projection of the points
of the polygonal chain onto the sides of the square through the center of the circle. By completing
the polygonal chain with new points if necessary we can suppose that the projected points A′

i and
A′

i+1 are on the same side of the square. Figure 9. shows that the length of the projected segment
is greater than the corresponding side of the polygonal chain. Therefore its entire length is less than
the perimeter of the tangential square. �

Remark 7 Similar results can be found by using tangential regular n-gons.

As we have seen above, the perimeter of the tangential square is an upper bound of the set of
lengths of the polygonal chains inscribed in a circle. The real number is called the supremum (the
least upper bound) of a set in R if it is an upper bound and less than or equal to any upper bound
of the set.

De�nition 17 The supremum of the lengths of the polygonal chains inscribed in a circle is the ar-
clength of the circle.

Theorem 21 The arclength of a circle is 2rπ.

Proof. By de�nition, the arclength K of a circle is greater than the perimeter of any cyclic regular
polygon. Its side is of length 2r sin(αn/2), where αn = 2π/n is given by dividing the complete angle
into n equal parts. Therefore

K ≥ 2rn sin(αn/2) = 2rπ
sin(αn/2)

(αn/2)
.

On the other hand, by Remark 7, K is less than any tangential regular polygon. Since its side is of
length 2r tan(αn/2), we have that

K ≤ 2rn tan(αn/2) = 2rπ
tan(αn/2)

(αn/2)
.

Taking the limit n → ∞, it follows that K = 2rπ because of limx→0
sinx
x

= 1 and limx→0 cos(x) = 1.
�

17



Remark 8 Using a similar argument we have that the arclength belonging to the central angle α in
a circle is rα. Note that the angle is measured in radian.

4.2 The area of polygonal domains

In what follows we are working in a given plane of the Euclidean spce.

De�nition 18 A polygonal domain is the union of �nitely many non-overlapping triangles.

4.2.1 Axioms of area measurement of polygonal domains

Let P be the set of the polygonal domains in the plane. There exists a uniquely determined
mapping t:P → R (area function) such that

(t1) t(P ) > 0 for any P ∈ P,

(t2) if P1 and P2 are congruent polygonal domains then t(P1) = t(P2),

(t3) if P1 and P2 are non-overlapping polygonal domains, then t(P1 ∪ P2) = t(P1) + t(P2),

(t4) the area of a rectangle with sides of lengths a and b is ab.

The number t(P ) is called the area of the polygonal domain P .

Excercise 2 Using the axioms of area measurement �nd the formula for the area of parallelograms,
triangles and trapezoid.

4.3 Jordan measure in the plane, the area of a circle

De�nition 19 The subset K ⊂ S is called bounded if it can be covered by a polygonal domain. The
outer Jordan measure of a bounded set K is de�ned as

µ(K) = inf{t(P ) | K ⊂ P ∈ P}.

The inner Jordan measure of a bounded set K is de�ned as

µ(K) = sup{t(P ) | K ⊃ P ∈ P}.

If K does not contain polygonal domain, then its inner Jordan measure is zero: µ(K) := 0. The
bounded set K is Jordan measurable if the inner measure is equal to the outer measure. Their common
value is called the Jordan measure of the Jordan measurable set K, i.e. µ(K) = µ(K) = µ(K).

It is clear that any polygonal domain is Jordan measurable and its Jordan measure is its area. If
K is Jordan measurable and L is congruent to K then L is also Jordan measurable with µ(L) = µ(K),
because any inscribed (circumscribed) polygonal domain of K is congruent to an inscribed (circum-
scribed) polygonal doimain of L through the isometry sending K to L. If K is Jordan measurable
and L is similar to K then L is also Jordan measurable with µ(L) = k2µ(K), where k is the ratio of
the similarity. As an example for not Jordan measurable set consider the set of points with rational
coordinates in the square [0, 1]× [0, 1], i.e. K := [0, 1]2∩Q2. It is clear that µ(K) = 1, but µ(K) = 0.
Admitting coverings with in�nitely many triangles instead of the �nite union in the de�nition of the
polygonal domains we can push the outer measure of K down to be less than any positive real number
ε > 0. The set K becomes measurable of measure zero. It is the so-called Lebesgue measure1.

1C. Jordan (1838-1922), H. L. Lebesgue (1875-1941).
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Theorem 22 The area of a circle is r2π.

Proof. The lower bound for the inner Jordan measure can be given in terms of the area of cyclic
regular polygons:

An = n
r2 sinαn

2
= r2π

sinαn

αn

,

where αn = 2π/n, i.e. µ(K) ≥ limn→∞ An = r2π because limx→0
sinx
x

= 1. Using tangential regular
polygons we have an upper bound for the outer Jordan measure:

µ(K) ≤ n
2r2 tan(αn/2)

2
= r2π

tan(αn/2)

(αn/2)

with limit r2π. Therefore r2π ≤ µ(K) ≤ µ(K) ≤ r2π, i.e. the circle is Jordan measurable with
µ(K) = r2π. �

Remark 9 Using a similar argument we have that the Jordan measure belonging to the central angle
α in a circle is r2α

2
. Note that the angle is measured in radian.

4.4 Axioms of volume measurement, the volume of a sphere

4.4.1 Axioms of volume measurement

There exists a family V of bounded sets in the space as the domain of a mapping µ:V → R (volume
function) such that

(V1) µ(M) ≥ 0 for any M ∈ V,

(V2) any bounded convex pointset is in V,

(V3) intersection, union and di�erence of two sets in V are in V,

(V4) µ is monotone, i.e. µ(M) ≤ µ(N) provided that M and N are in V and M ⊂ N ,

(V5) µ is additive, i.e. µ(M∪N) = µ(M)+µ(N) provided that M and N are in V and µ(M∩N) = 0,

(V6) the volume of a parallelepiped is the area of one of its faces times the corresponding height,

(V7) if M is in V and N is congruent to M , then N is in V and µ(M) = µ(N).

(V8) (Cavalieri's principle) Let M and N be in V and suppose that they are between parallel planes.
If any plane parallel to the bounding planes intersects both M and N in cross sections of equal
area, then µ(M) = µ(N), i.e. M and N are of equal volume.

The elements in V are called sets having volume. The volume of M ∈ V is µ(V ).

Lemma 2 If M is a bounded planar set in V, then µ(M) = 0.

Proof. SinceM is a bounded planar set we can construct a parallelepiped such thatM is contained
in one of its faces and the corresponding height can be arbitrarily small. It follows by (V6), that the
volume of such a parallelepiped can also be arbitrarily small. Using the monotonicity of the volume
function, we have that µ(M) = 0. �
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Figure 10: The volume of a pyramid

Lemma 3 The volume of a prism is the area of the base times the height.

Proof. Using the additivity of the volume function it is enough to prove the statement for triangular
based prisms. Completing the base to a parallelogram we can complete the prism to a parallelepiped.
It is the union of two congruent triangular based prisms. The additivity of the volume function and
(V6) implies the statement. �

Corollary 8 The volume of a cylinder is the area of the base times the height.

Proof. The proof is based on Cavalieri's principle by constructing a prism such that both the base
and the height are of the same measures as the measures of the base and the height of the cylinder.
�

Lemma 4 The volume of a pyramid is one-third the area of the base times the height.

Proof. Using the additivity of the volume function it is enough to prove the statement for triangular
based pyramids (tetrahedrons). First of all note that if two tetrahedrons have bases of equal area
and heights of equal length then they are of equal volume. It follows by Cavalieri's principle because
central similarities with respect to the opposite vertices to the bases of equal area produce cross
sections of equal area in the tetrahedrons. Completing a tetrahedron to a triangular based prism as
Figure 10. shows, let us apply the additivity of the volume function to �nish the proof. Note that
we have three tetrahedrons with pairwise common bases such that corresponding heights are of equal
length. �

Corollary 9 The volume of a cone is one-third the area of the base times the height.

Proof. The proof is similar to the proof of Corollary 8. �
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Figure 11: The volume of the sphere

4.4.2 The volume of a sphere

Theorem 23 The volume of a sphere is 4r3π
3

.

Proof. Let G be a sphere. As Figure 11 shows, consider a cylinder H around the sphere. There is
a double cone Kwithin the cylinder such that the vertex is at the center of the sphere. We are going
to prove that G and H \K have cross sections of equal area parallel to the base of the cylinder. It
is enough to invstigate the upper half of the cone. By Pythagorean theorem, the horizontal plane
located at the heigth h above the equator intersects the sphere in a circle of area (r2 − h2) π. It is the
same as the area of the ring that is the plane's intersection within the cylinder but outside the cone
located at the same height (Figure 11.). Using Cavalieri's principle

V (G) = V (H \K) = V (H)− V (K) = 2r3π − 2
r3π

3
=

4r3π

3

as was to be proved. �
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