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Abstract

We classify the isometry equivalence classes and determine the isometry
groups of connected and simply connected Riemannian nilmanifolds on fili-
form Lie groups of arbitrary dimension and on five dimensional nilpotent Lie
groups of nilpotency class > 2. To achieve this classification we prove that
up to one exceptional class the five dimensional non two-step nilmanifolds
and the filiform nilmanifolds have isometry groups of the same (minimal) di-
mension as the nilmanifold. We give a detailed description of the exceptional
case.
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1. Introduction

A connected Riemannian manifold M is said to be a Riemannian nil-
manifold if its group of isometries contains a nilpotent Lie subgroup acting
transitively on this manifold. E. Wilson proved in [10] that there is a unique
nilpotent Lie subgroup N of the group of isometries acting simply transitively
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on M and hence the Riemannian nilmanifold M can be identified with the
nilpotent Lie group N endowed with a left-invariant metric 〈., .〉N . More-
over, the group I(N) of all isometries of (N, 〈., .〉N) is isomorphic to the
semi-direct product N o OA(n), where OA(n) is the group of orthogonal
automorphisms of the Lie algebra n of N with respect to the inner product
induced on n by the left-invariant metric 〈., .〉N . It follows from this observa-
tion that the isometry equivalence classes of connected and simply connected
nilmanifolds and their isometry groups can be determined by the investiga-
tion of the classes of isometrically isomorphic metric Lie algebras, i. e. Lie
algebras equipped with an inner product. This procedure was applied by J.
Lauret in [7] to nilpotent Lie groups of dimension 3, 4 and to a 5-dimensional
two-step nilpotent group, Sz. Homolya and O. Kowalski described in [5] the
isometry equivalence classes and isometry groups of all 5-dimensional simply
connected two-step nilpotent Riemannian nilmanifolds. Moreover, S. Con-
sole, A. Fino, E. Samiou determined in [3] the isometry equivalence classes
and isometry groups of all 6-dimensional simply connected two-step nilpotent
Riemannian nilmanifolds.
Riemannian nilmanifolds of higher dimension have a rich geometry with many
open questions. Among nilmanifolds the class of higher nilpotency class, par-
ticularly the filiform manifolds have a relatively rigid structure, the papers
[6] of M. M. Kerr and T. L. Payne, [1], [2] of G. Cairns, A. Hinić Galić and
Yu. Nikolayevsky have been devoted to the investigation of the geometry of
filiform Riemannian nilmanifolds.
The aim of our paper is to investigate isometry equivalence classes and isom-
etry groups of nilmanifolds on filiform Lie groups of arbitrary dimension and
to extend the classification process of nilmanifolds to 5-dimensional nilpotent
groups of nilpotency class greater than two. It turns out that the isometry
groups of the investigated manifolds have minimal dimension, with the ex-
ception of one case, we give a detailed analysis of this nilmanifold.
The paper is organized as follows. In Section 2 we collect some basic defini-
tions and notations and formulate the steps of our classification procedure.
Section 3 is devoted to the study of filiform metric Lie algebras and of the
isometry groups of the corresponding nilmanifolds. In Subsection 3.1 we
introduce the notion of framed metric Lie algebras and show that filiform
metric Lie algebras are framed, which has consequences on the structure of
the connected component of the isometry group of the corresponding nil-
manifolds. Subsection 3.2 deals with the classification of standard filiform
metric Lie algebras and of the isometry groups of the corresponding nilman-
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ifolds. The results are used to describe the 4- and 5-dimensional cases in
detail. In Subsection 3.3 we study the non-standard filiform metric Lie al-
gebra of smallest dimension 5. In Section 4 we complete the classification of
5-dimensional nilpotent metric Lie algebras and the corresponding isometry
groups with the investigation of the two 3-step nilpotent metric Lie algebras.
The such metric Lie algebras with one-dimensional center are framed metric
algebras, hence we can apply in Subsection 4.1 our method of classification
to this case. In contrast to the previous discussion there is a subclass of 5-
dimensional 3-step nilpotent metric Lie algebras with two-dimensional center
which does not have framing and hence the dimension of the isometry group
of the corresponding nilmanifold is greater than 5. Subsection 4.2 is devoted
to the detailed description of these metric Lie algebras and the corresponding
nilmanifolds.

2. Preliminaries

In this paper we investigate on the one hand filiform Lie algebras. Denot-
ing the lower central series of a Lie algebra n by C0n = n and Cj+1n = [n, Cjn],
j ∈ N we have the following

Definition 1. A Lie algebra n is called k-step nilpotent, if Ckn = {0}, but
Ck−1n 6= {0} for some k ∈ N.
An n-dimensional Lie algebra n is called filiform, if it is (n−1)-step nilpotent.
A filiform Lie algebra n is standard filiform, if it contains a basis {G1, · · · , Gn}
such that the nontrivial Lie bracket relations are given by [G1, Gi] = Gi+1,
i = 2, . . . , n− 1.

Remark 1. For an n-dimensional filiform Lie algebra n one has dim(Cin) =
n − i − 1 for 1 ≤ i ≤ n − 1. In any n-dimensional filiform Lie algebra n
there exists a basis {G1, · · · , Gn} such that [G1, Gi] = Gi+1, i = 2, . . . , n− 1,
(cf. M. Vergne [9], D. M. Millionschikov [8], Lemma 3.4). A general filiform
Lie algebra may have more non-trivial commutation relations, the simplest
examples of filiform Lie algebras are the standard filiform Lie algebras.

On the other hand we deal with nilpotent Lie algebras of dimension ≤ 5 with
nilpotency class > 2, which are not direct products of Lie algebras of lower
dimension. According to [4], pp. 646-647, these Lie algebras are given up to
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isomorphism by the following non-vanishing commutators:

l4,3 : [G1, G2] = G3, [G1, G3] = G4;

l5,5 : [G1, G2] = G4, [G1, G4] = G5, [G2, G3] = G5;

l5,6 : [G1, G2] = G3, [G1, G3] = G4, [G1, G4] = G5, [G2, G3] = G5;

l5,7 : [G1, G2] = G3, [G1, G3] = G4, [G1, G4] = G5;

l5,9 : [G1, G2] = G3, [G1, G3] = G4, [G2, G3] = G5,
(1)

with respect to a distinguished basis {G1, G2 . . . }, which will be called the
canonical basis of the corresponding Lie algebra. In this list (1) of Lie alge-
bras l4,3 and l5,7 are standard filiform, l5,6 is non-standard filiform, l5,5 and l5,9
are 3-step nilpotent with 1-dimensional, respectively 2-dimensional center.
A Lie algebra equipped with an inner product is called metric Lie algebra,
the automorphisms preserving the inner product are called orthogonal auto-
morphisms.
In the following En denotes an n-dimensional Euclidean vector space with
a distinguished orthonormal basis E = {E1, E2, . . . , En}. We will use the
following heuristic procedure for the classification of metric Lie algebras up
to isometric isomorphisms:

1. Let {G1, G2, . . . , Gn} be a fixed basis of an n-dimensional Lie algebra n
such that the commutation relations have a simple form (e.g. as in the list
of the classification of low dimensional Lie algebras in the previous list).
2. Using the Gram-Schmidt process to the ordered basis (Gn, Gn−1, . . . , G1)
in the metric Lie algebra (n, 〈., .〉) we obtain an orthonormal basis
{F1, F2, . . . , Fn} expressed by

Fi =
n∑
k=i

aikGk, aik ∈ R, such that aii ≥ 0.

Conversely, any basis {F1, F2, . . . , Fn} of n having the form Fi =
∑n

k=i aikGk,
aik ∈ R with aii ≥ 0 determines an inner product on n as an orthonormal
basis. Such bases parametrize the inner products on n.
3. We define a Lie bracket on En with the same structure coefficients with
respect to its distinguished basis E as the metric Lie algebra (n, 〈., .〉) has
with respect to its basis F . The obtained metric Lie algebra on En is de-
pending on real parameters, (determined by the structure coefficients), and
it is isometrically isomorphic to (n, 〈., .〉).
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4. We are looking for conditions on the real parameters of metric Lie algebras
on En to get a one-to-one correspondence between the equivalence classes of
isometrically isomorphic metric Lie algebras and a family of metric Lie alge-
bras on En.

This method will be applied systematically through this paper to the descrip-
tion of the isometry equivalence classes and the isometry groups of connected
and simply connected non two-step nilpotent Riemannian nilmanifolds.

3. Filiform Lie algebras

3.1. Framing of metric Lie algebras

It turns out that every filiform metric Lie algebra and every 5-dimensional
non two-step nilpotent metric Lie algebra, up to one exceptional class, can
be decomposed into orthogonal direct sum of 1-dimensional subspaces. For
these metric Lie algebras (n, 〈., .〉) this decomposition is uniquely determined
by their algebraic and metric structure, or equivalently, any orthogonal auto-
morphism of (n, 〈., .〉) preserves this decomposition. The metric Lie algebras
satisfying this property will be called framed. For the determination of the
group of isometries of the Riemannian nilmanifolds obtained in our classi-
fication we use that each orthogonal automorphism of a framed metric Lie
algebra leaves invariant the 1-dimensional subspaces of the orthogonal direct
sum decomposition (cf. Corollary 2). We will need the following

Definition 2. An orthogonal direct sum decomposition n = V1 ⊕ · · · ⊕ Vn
on one-dimensional subspaces V1, . . . , Vn of a metric Lie algebra (n, 〈., .〉) is
called a framing, if any orthogonal automorphism of (n, 〈., .〉) preserves this
decomposition.
An orthonormal basis {G1, G2, . . . , Gn} of (n, 〈., .〉) is adapted to the framing
n = V1 ⊕ · · · ⊕ Vn if Vi = RGi for i = 1, . . . , n.
The metric Lie algebra (n, 〈., .〉) is called framed, if it has a framing.

Lemma 1. Let (n, 〈., .〉) and (n∗, 〈., .〉∗) be isometrically isomorphic framed
metric Lie algebras of dimension n with framings n = RG1⊕ · · ·⊕RGn and
n∗ = RG∗1 ⊕ · · · ⊕ RG∗n, where (G1, . . . , Gn), respectively (G∗1, . . . , G

∗
n) are

orthonormal bases. If the commutators [., .] of n and [., .]∗ of n∗ are of the
form

[Gi, Gj] =
n∑
k=1

cki,jGk and [G∗i , G
∗
j ]
∗ =

n∑
k=1

c∗ki,jG
∗
k, i, j, k = 1, . . . , n,
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then cki,j = ±c∗ki,j for all i, j, k = 1, . . . , n. Particularly, if cki,j, c
∗k
i,j ≥ 0 then

cki,j = c∗ki,j.

Proof. An isometric isomorphism n → n∗ maps Gi 7→ εiG
∗
i with εi = ±1.

Hence |cki,j| = |c∗ki,j| follows from
∑n

k=1 c
k
i,jεkG

∗
k = εiεj

∑n
k=1 c

∗k
i,jG

∗
k.

The orthogonal automorphisms of a connected and simply connected Rie-
mannian nilmanifold (N, 〈., .〉) corresponding to a framed nilpotent metric
Lie algebra (n, 〈., .〉) preserve the framing, hence we have

Corollary 2. The group OA(n) of orthogonal automorphisms of (n, 〈., .〉) is
a subgroup of the group Z2 × · · · × Z2, where the number of factors ≤ dim n.
The connected component of the isometry group I(N) of (N, 〈., .〉) is isomor-
phic to the Lie group N .

For the construction of framings we use series of ideals.

Lemma 3. Let (n, 〈., .〉) be a metric Lie algebra of dimension n. If n has
a descending series of ideals n = n(1) ⊃ n(2) ⊃ · · · ⊃ n(n) invariant under
automorphisms of n with dim(n(j)) = n − j + 1, j = 1, . . . , n, then (n, 〈., .〉)
has a framing.

Proof. Let be V1 = n(n) and Vk the 1-dimensional subspace in n(n−k+1) which
is orthogonal to n(n−k+2), for k = 2, . . . , n. Since any ideal n(j), j = 1, . . . , n, is
invariant under automorphisms of n the orthogonal direct sum decomposition
n = V1 ⊕ · · · ⊕ Vn is invariant under OA(n).

Theorem 4. Any filiform metric Lie algebra (n, 〈., .〉) has a framing.

Proof. There exists a basis {G1, · · · , Gn} of n satisfying [G1, Gi] = Gi+1,
i = 2, . . . , n− 1, (cf. Remark 1). Since dim(Cin) = n− i− 1 if 1 ≤ i ≤ n− 1,
one has Cjn = span(Gj+2, · · · , Gn). We denote n(j+2) = Cjn for 1 ≤ j ≤ n−2.
The factor algebra n/n(5) is a 4-dimensional nilpotent Lie algebra, which
is isomorphic to the standard filiform Lie algebra l4,3 according to the list
(1). Hence there exists a basis {Ḡ1, Ḡ2, Ḡ3, Ḡ4} in n/n(5) such that the non-
vanishing Lie brackets are [Ḡ1, Ḡ2] = Ḡ3, [Ḡ1, Ḡ3] = Ḡ4. Moreover n̄(3) =
span(Ḡ3, Ḡ4) is the commutator, n̄(4) = span(Ḡ4) is the center of n/n(5), and
n̄(2) = span(Ḡ2, Ḡ3, Ḡ4) is the ideal centralizing the commutator n̄(3). Let n(h)

be the preimage of n̄(h) ⊂ n/n(5) in the algebra n for h = 2, 3, 4. We obtain
a descending series of ideals n = n(1) ⊃ n(2) ⊃ · · · ⊃ n(n), which is invariant
under automorphisms of n. Hence Lemma 3 implies the assertion.
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Corollary 5. The connected component of the isometry group I(N) of a con-
nected and simply connected Riemannian nilmanifold (N, 〈., .〉) corresponding
to a filiform metric Lie algebra (n, 〈., .〉) is isomorphic to the Lie group N .

3.2. Isometry classes of standard filiform Lie algebras

Let sn be the standard filiform Lie algebra of dimension n determined
by the non-vanishing Lie brackets [G1, Gi] = Gi+1, for i = 2, . . . , n − 1 with

respect to a basis {G1, G2, . . . , Gn}. The subspaces s
(j)
n = span(Gj, · · · , Gn)

of the Lie algebra sn satisfy s
(j)
n = Cj−2n for 3 ≤ j ≤ n and s

(2)
n is the

centralizer of C1n, hence the s
(j)
n , j = 1, . . . , n, are ideals invariant under

automorphisms. It follows, that any metric standard filiform Lie algebra has
a framing according to Lemma 3.

Definition 3. Let C = {cj,k ∈ R; 2 ≤ k ≤ j ≤ n− 1} be a lower triangular
n− 2× n− 2 matrix with positive diagonal elements. We denote by n C the
Lie algebra and by [., .]C its Lie bracket defined on the Euclidean vector space
En by the non-vanishing commutators

[E1, Ei]C = −[Ei, E1]C =
n−1∑
t=i

ct,iEt+1, i = 2, . . . , n− 1,

where {E1, . . . , En} is the distinguished orthonormal basis of En. The metric
Lie algebra (n C, 〈., .〉C) is the Lie algebra n C with the Euclidean inner product
〈., .〉C of En.

It is easy to see that bracket operation (2) satisfies the Jacobi identity.

Lemma 6. Any n-dimensional nilpotent Lie algebra n C is isomorphic to the
standard filiform Lie algebra sn.

Proof. The map n C → sn given by E1 7→ G1 = E1, Ei 7→ Gi =
∑n

t=i bt,iEt
with bt,i ∈ R, 2 ≤ i ≤ t ≤ n, is an isomorphism if and only if

[G1, Gi]C =
n−1∑
t=i

bt,i [E1, Et]C =
n−1∑
t=i

bt,i

n−1∑
k=t

ck,tEk+1 = Gi+1 =
n−1∑
k=i

bk+1,i+1Ek+1,

i = 2, . . . , n − 1, or equivalently
∑n−1

t=i ck,t bt,i = bk+1,i+1. Since ck,t = 0 if
k < t we obtain the recursive relation

k∑
t=i

ck,t bt,i = bk+1,i+1, 2 ≤ i ≤ k ≤ n− 1.
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It follows that for any given values bh,2, h = 2, . . . , n, there is a unique
isomorphism n C → sn. Hence n C is a standard filiform metric Lie algebra.

Theorem 7. Let 〈., .〉 be an inner product on the n-dimensional standard
filiform nilpotent Lie algebra sn.

(1) There is a unique metric Lie algebra (n C, 〈., .〉C) satisfying
(a) (n C, 〈., .〉C) is isometrically isomorphic to (sn, 〈., .〉),
(b) if the set P = {(k, i) : ck,i 6= 0 and k− i is odd} is not empty then

ck0,i0 > 0 for the minimal element (k0, i0) of P with respect to the
anti-lexicographic ordering of pairs.

(2) The group of orthogonal automorphisms of n C is the group
(a) if {(i, k) : ck,i 6= 0 and k − i is odd} = ∅: OA(n C) =

{TE1 = ε1E1, TEh = εh1ε2Eh, h = 2, · · · , n, ε1, ε2 = ±1} ∼= Z2×Z2,

(b) if {(i, k) : ck,i 6= 0 and k − i is odd} 6= ∅: OA(n C) =

{TE1 = E1, TEh = ε2Eh, h = 2, · · · , n, ε2 = ±1} ∼= Z2,

with respect to the basis {E1, . . . , En}.

Proof. Consider the ideals s
(j)
n = span(Gj, · · · , Gn), j = 1, . . . , n, s

(n+1)
n =

{0} with the canonical basis {G1, . . . , Gn} of sn. The Gram-Schmidt pro-
cess applied to the ordered basis (Gn, . . . , G1) yields an orthonormal ba-

sis {F1, . . . , Fn} such that Fi is a positive multiple of Gi modulo s
(i+1)
n

and orthogonal to s
(i+1)
n for i = 1, . . . , n. Hence Fi can be expressed as

Fi =
∑n

k=i ak,iGk, i = 1, . . . , n, where {ak,i} is a lower triangular n×n matrix
with positive diagonal elements. The orthogonal direct sum RF1⊕· · ·⊕RFn
is a framing of (sn, 〈., .〉), since the orthogonal one-dimensional subspaces
RF1, . . . ,RFn are determined by the inner product and by the descending
series of ideals s

(j)
n , j = 1, . . . , n. The non-vanishing Lie brackets with respect

to the new basis are of the form

[F1, Fi] = −[Fi, F1] = a1,1

n−1∑
t=i

at,iGt+1 = a1,1

n−1∑
t=i

at,i

n−1∑
j=t

bj+1,t+1 Fj+1,

i = 2, . . . , n − 1, where the lower triangular matrix {bj,k} is the inverse of
{aj,k}. It follows that (sn, 〈., .〉) is isometrically isomorphic to the Lie algebra
n C corresponding to the lower triangular matrix C = {cj,k} given by

cj,k = 〈[F1, Fk], Fj+1〉 = a1,1

n−1∑
t=k

at,k bj+1,t+1, 2 ≤ k ≤ j ≤ n− 1,
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with positive diagonal elements cj,j = 〈[F1, Fj], Fj+1〉 = a1,1 aj,j bj+1,j+1, j =
2, . . . , n− 1. Changing the orthonormal basis: F̃k = (−1)k Fk, k = 1, . . . , n,
we obtain

c̃j,k := 〈[F̃1, F̃k], F̃j+1〉 = 〈[−F1, (−1)kFk], (−1)j+1Fj+1〉 = (−1)j−kcj,k.

It follows that if the set P = {(j, k) : cj,k 6= 0 and j−k is odd} is not empty,
then we may assume that {F1, . . . , Fn} is an orthonormal basis adapted to
the framing of sn such that cj0,k0 > 0 for the minimal element (j0, k0) of P
with respect to the anti-lexicographic ordering of pairs. Hence we obtained
the construction of the metric Lie algebra (n C, 〈., .〉 C) corresponding to the
matrix C = {cj,k}, which is isometrically isomorphic to (sn, 〈., .〉).
Let Φ C : sn → n C and ΦD : sn → nD be isometric isomorphisms of metric
Lie algebras, where (n C, 〈., .〉 C) corresponds to the matrix C = {cj,k}, and
(nD, 〈., .〉D) corresponds to the matrix D = {dj,k}. Assume the condition
cj0,k0 > 0, respectively dj0,k0 > 0, if P 6= ∅. Denote by [., .]C and [., .]D the
Lie brackets on n C, respectively on nD. Since (n C, 〈., .〉 C) and (nD, 〈., .〉D)
are isometrically isomorphic framed metric Lie algebras, we have

〈[Φ C(F1),Φ C(Fi)]C,Φ C(Fk+1)〉C = 〈[ΦD(F1),ΦD(Fi)]D,ΦD(Fk+1)〉D.

Moreover ΦD(Fi) = εiΦ C(Fi), where εi = ±1 for i = 1, . . . , n, and hence

〈[Φ C(F1),Φ C(Fi)]C,Φ C(Fk+1)〉C = ε1εiεk+1〈[Φ C(F1),Φ C(Fi)]D,Φ C(Fk+1)〉D,

or equivalently

ck,i = ε1εiεk+1 dk,i for 2 ≤ i ≤ k ≤ n− 1.

Using Lemma 1 we get from the relations ci,i > 0, di,i > 0 that ε1εi = εi+1,
i = 2, . . . , n− 1, hence we can express εh = εh1ε2, h = 2, . . . , n. If ε1 = 1 we
have ε2 = · · · = εn and hence ck,i = dk,i, 2 ≤ i ≤ k ≤ n− 1. If ε1 = −1 we
get εh = (−1)hε2, h = 2, . . . , n, consequently

ck,i = (−1)k−i dk,i for 2 ≤ i ≤ k ≤ n− 1. (2)

If P = {(k, i) : ck,i 6= 0 and k − i is odd} 6= ∅ then according to our
assumption ck0,i0 > 0, dk0,i0 > 0, which is a contradiction, consequently
ε1 6= −1. If P = ∅, then equation (2) implies cj,k = dj,k for all 2 ≤ k ≤ j ≤
n − 1 and hence the metric Lie algebra n C isometrically isomorphic to sn is
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uniquely determined and assertion (1) is proved.
An orthogonal automorphism of n C induces a change of the orthonormal
basis: Ei 7→ εiEi, εi = ±1, i = {1, . . . , n}, preserving the commutation
relations. It follows from equation (2) that εh = εh1ε2, hence for ε1 = 1
one has ε2 = · · · = εn, and for ε1 = −1 one gets εh = (−1)hε2, h =
2, . . . , n. But the map E1 7→ −E1 and Eh 7→ (−1)hε2Eh, h = 2, . . . , n is
preserving the Lie bracket if and only if the set {(i, k) : ck,i 6= 0 and k −
i is odd} is empty. Hence the group of orthogonal automorphisms of n C can
be represented by the group of matrices described in assertion (2). This gives
the second assertion.

Corollary 8. Let (NC, 〈., .〉) be the connected and simply connected Rieman-
nian nilmanifold corresponding to the metric Lie algebra (nC, 〈., .〉). The
isometry group of (NC, 〈., .〉) is

I(NC) =

{
Z2 × Z2 nNC if {(i, k) : ck,i 6= 0 and k − i is odd} = ∅,
Z2 nNC if {(i, k) : ck,i 6= 0 and k − i is odd} 6= ∅.

}
Remark 2. The Lie algebra l4,3 is the 4-dimensional standard filiform Lie al-
gebra. J. Lauret in [7] has been determined up to isometry the 4-dimensional
homogeneous nilmanifolds belonging to the Lie algebra l4,3. By Theorem 7 the
metric Lie algebra (l4,3, 〈., .〉) is isometrically isomorphic to a unique metric
Lie algebra n4,3(κ, λ, µ), κ > 0, µ > 0, λ ≥ 0, defined by the non-vanishing
Lie brackets

[E1, E2] = κE3 + λE4, [E1, E3] = µE4

with respect to an orthonormal basis {E1, . . . , E4} on the 4-dimensional Eu-
clidean space E4. Considering the orthonormal basis Fi =

∑4
k=i aikGk with

aii > 0, i = 1, . . . , 4 obtained by the Gram-Schmidt process from the ordered
canonical basis {G4, G3, G2, G1} of l4,3. It follows that [F1, F2] = κF3 + λ̃F4,
[F1, F3] = µF4, where

κ =
a11a22

a33

> 0, µ =
a11a33

a44

> 0, λ̃ =
a11

a44

(
a23 −

a22a34

a33

)
. (3)

The inner product 〈., .〉m on the orthogonal complementary subspace m to
l′4,3 = span(F3, F4) determines the coefficients a1k, k = 1, 2, 3, 4 and a2k,
k = 2, 3, 4. If these coefficients and the isometric isomorphism class, given
by κ, λ, µ with κ, µ > 0, are fixed, then the equations (3) are uniquely solvable
for a33, a34 and a44, determining the inner product on l′4,3, hence:
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If there is given a complementary subspace m to l′4,3 in l4,3 and an inner
product 〈., .〉m on m than for any isometric isomorphism class of metric Lie
algebras on l4,3 there exists a unique inner product 〈., .〉l′4,3 on l′4,3 such that l4,3
with the inner product determined by the orthogonal direct sum (m, 〈., .〉m)⊕
(l′4,3, 〈., .〉l′4,3) belongs to this isometric isomorphism class.

Remark 3. The Lie algebra l5,7 is the 5-dimensional standard filiform Lie
algebra. Let n5,7(c2,2, c2,3, c2,4, c3,3, c3,4, c4,4) be a four-step nilpotent filiform
Lie algebra defined by

[E1, E2] = c2,2E3+c2,3E4+c2,4E5, [E1, E3] = c3,3E4+c3,4E5, [E1, E4] = c4,4E5

with respect to the distinguished orthonormal basis {E1, . . . , E5} of the Eu-
clidean vector space E5. The metric Lie algebra (l5,7, 〈., .〉) is isometrically
isomorphic to a unique metric Lie algebra n5,7(c2,2, c2,3, c2,4, c3,3, c3,4, c4,4) with
ci,j ∈ R such that c2,2, c3,3, c4,4 > 0 and either c2,3 > 0 or c2,3 = 0, c3,4 ≥ 0
(cf. Theorem 7).

3.3. Non-standard filiform algebra of dimension 5

The smallest filiform but not standard filiform Lie algebra is l5,6.

Definition 4. Let a, b, c, d, f, g, h be given real numbers with a, d, g, h 6= 0.
The metric Lie algebra defined on the Euclidean vector space E5 by the
non-vanishing commutators

[E1, E2] = aE3 + bE4 + cE5, [E1, E3] = dE4 + fE5,

[E1, E4] = gE5, [E2, E3] = hE5 (4)

is denoted by n5,6(a, b, c, d, f, g, h).

It easy to control that the bracket operation (4) satisfies the Jacobi identity.
The Lie algebra n5,6(a, b, c, d, f, g, h) is four-step nilpotent and isomorphic to
the filiform nilpotent algebra l5,6 since the map

G1 7→ G1, G2 7→ w(adg G2 + bg G3 + (c− bf

d
)G4), G3 7→ wdg G3,

G4 7→ w(g G4 −
f

d
G5), G5 7→ wG5, where w =

h

ad2g2
,

is an isomorphism l5,6 → n5,6(a, b, c, d, f, g, h).
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Theorem 9. Let 〈., .〉 be an inner product on the 5-dimensional four-step
nilpotent filiform Lie algebra l5,6.

(1) The metric Lie algebra (l5,6, 〈., .〉) is isometrically isomorphic to a unique
metric Lie algebra n5,6(a, b, c, d, f, g, h) with a, b, c, d, f, g, h ∈ R such
that a, d, g, h > 0 and either b > 0 or b = 0, f ≥ 0.

(2) The group of orthogonal automorphisms of n5,6(a, b, c, d, f, g, h) is the
following group with respect to the basis {E1, E2, E3, E4, E5}:

(i) if b = f = 0, then one has OA(n5,6(a, b, c, d, f, g, h)) = {TE1 =
ε1E1, TE2 = E2, TE3 = ε1E3, TE4 = E4, TE5 = ε1E5, ε1 =
±1} ∼= Z2

(ii) if b2 + f 2 6= 0, then it is trivial.

Proof. In the Lie algebra l5,6 the center is Z(l5,6) = span(G5), the com-
mutator subalgebra is l′5,6 = span(G3, G4, G5), the second member of the
lower central series is C2(l5,6) = span(G4, G5) and the centralizer of C2(l5,6)
is span(G2, G3, G4, G5). Hence the subspaces span(Gi, · · · , Gn), i = 1, . . . , 5,
of l5,6 form a descending series of ideals which are invariant under all auto-
morphisms of l5,6. The Gram-Schmidt process applied to the ordered basis
(G5, G4, G3, G2, G1) yields an orthonormal basis {F1, F2, F3, F4, F5} of l5,6,
where for i = 1, . . . , 5 the vector Fi is a positive multiple of Gi modulo
the subspace span(Gj; j > i) and orthogonal to span(Gj; j > i). It follows
Fi =

∑5
k=i aikGk with aii > 0 and the orthogonal direct sum RF1⊕· · ·⊕RF5

is a framing of (l5,6, 〈., .〉). It means that the commutators can be expressed
as

[F1, F2] = aF3 +bF4 +cF5, [F1, F3] = dF4 +fF5, [F1, F4] = gF5, [F2, F3] = hF5

(5)
a, d, g, h > 0, a, b, c, d, f, g, h ∈ R. Changing the orthonormal basis F1 7→
−F1, F2 7→ F2, F3 7→ −F3, F4 7→ F4, F5 7→ −F5 we obtain

[F1, F2] = aF3−bF4+cF5, [F1, F3] = dF4−fF5, [F1, F4] = gF5, [F2, F3] = hF5.

Hence there is an orthonormal basis satisfying (5) such that a, d, g, h > 0 and
b ≥ 0. Moreover, if b = 0 then we can find a basis with a, d, g, h > 0, b = 0
and f ≥ 0. Consequently the existence of n5,6(a, b, c, d, f, g, h) satisfying
a, b, d, g, h > 0, or a, d, g, h > 0, b = 0, h ≥ 0 is proved.
Let the linear map T : n5,6(a, b, c, d, f, g, h)→ n5,6(a′, b′, c′, d′, f ′, g′, h′) be an
isometric isomorphism. The decomposition RE1⊕RE2⊕RE3⊕RE4⊕RE5
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is a framing of both Lie algebras, where a, a′, d, d′, g, g′, h, h′ > 0 and b, b′ ≥ 0,
hence by Lemma 1 we have a = a′, d = d′, g = g′, h = h′, b = b′, moreover
|c′| = c, |f ′| = |f |. Let be T (Ei) = εiEi, εi = ±1, i = 1, . . . , 5, then we obtain
from [TEi, TEj]

′ = T [Ei, Ej], i, j = 1, . . . , 5, using commutation relations (5)
the equations

ε1ε2(aE3 + b′E4 + c′E5) = aε3E3 + bε4E4 + cε5E5,

ε1ε3(dE4 + f ′E5) = dε4E4 + fε5E5, ε1ε4gE5 = gε5E5, ε2ε3hE5 = hε5E5.

It follows ε1ε2 = ε3, ε1ε3 = ε4, ε1ε4 = ε5, ε2ε3 = ε5 and ε2 = 1 = ε4,
ε1 = ε3 = ε5. Since ε1ε2 = ε1 = ε5 one has c′ = c. If b = b′ 6= 0 then we have
in addition ε1ε2 = ε4 and hence ε1 = 1 = ε2 = ε4 = ε3 = ε5 and we obtain
f ′ = f . If b = b′ = 0 then one has f ≥ 0, f ′ ≥ 0 and Lemma 1 yields f ′ = f .
This proves that the Lie algebra n5,6(a, b, c, d, f, g, h) is uniquely determined.
If T : n5,6(a, b, c, d, f, g, h) → n5,6(a, b, c, d, f, g, h) is an orthogonal automor-
phism, then one has TEi = εiEi, i = 1, . . . , 5, where εi = ±1. From Lie
brackets (5) we obtain

ε1ε2 (aE3 + bE4 + cE5) = a ε3E3 + b ε4E4 + c ε5E5, ε1ε4g E5 = g ε5E5,

ε1ε3 (dE4 + f E5) = d ε4E4 + f ε5E5, ε2ε3hE5 = h ε5E5.

It follows

1. if b = f = 0, then ε1 = ε3 = ε5 and ε2 = ε4 = 1,

2. if b2 + f 2 6= 0, then ε1 = ε2 = ε3 = ε4 = ε5 = 1.

Hence assertion (2) is proved.

Corollary 10. Let (N5,6(a, b, c, d, f, g, h), 〈., .〉) be the connected and sim-
ply connected Riemannian nilmanifold belonging to the metric Lie algebra
(n5,6(a, b, c, d, f, g, h), 〈., .〉). The isometry group of the nilmanifold
(N5,6(a, b, c, d, f, g, h), 〈., .〉) is

I(N5,6(a, b, c, d, f, g, h)) =

{
Z2 nN5,6(a, b, c, d, f, g, h) if b = f = 0,
N5,6(a, b, c, d, f, g, h) if b2 + f 2 6= 0.

}
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4. Three-step nilpotent Lie algebras of dimension 5

4.1. One-dimensional center

Now we consider the Lie algebra l5,5.

Definition 5. Let a, b, c, d, e be real numbers with a, d, e 6= 0 and let
n5,5(a, b, c, d, e) be the metric Lie algebra defined on E5 by the non-vanishing
commutators

[E1, E2] = aE4 + bE5, [E1, E3] = cE5, [E1, E4] = dE5, [E2, E3] = eE5. (6)

Easy to show that bracket operation (6) satisfies the Jacobi identity and the
map

G1 7→ G1, G2 7→ adG2 + bG4, G3 7→
e

ad
G3 + cG4, G4 7→ dG4, G5 7→ G5

is an isomorphism l5,5 → n5,5(a, b, c, d, e), where {G1, G2, G3, G4, G5} is the
canonical basis of l5,5.

Theorem 11. Let 〈., .〉 be an inner product on the 5-dimensional three-step
nilpotent Lie algebra l5,5.

(1) There is a unique metric Lie algebra n5,5(a, b, c, d, e) with a, d, e > 0,
b, c ≥ 0, which is isometrically isomorphic to the metric Lie algebra
(l5,5, 〈., .〉).

(2) The group of orthogonal automorphisms of n5,5(a, b, c, d, e) is the group:

(a) for b = c = 0:

OA(n5,5(a, 0, 0, d, e)) = {TE1 = ε1E1, TE2 = ε1ε4E2, TE3 = E3,

TE4 = ε4E4, TE5 = ε1ε4E5, ε1, ε4 = ±1} ∼= Z2 × Z2, (7)

(b) for b = 0, c > 0:

OA(n5,5(a, 0, c, d, e)) = {TE1 = ε1E1, TE2 = ε1E2, TE3 = E3,

TE4 = E4, TE5 = ε1E5, ε1 = ±1} ∼= Z2, (8)

(c) for b > 0, c = 0:

OA(n5,5(a, b, 0, d, e)) = {TE1 = E1, TE2 = ε2E2, TE3 = E3,

TE4 = ε2E4, TE5 = ε2E5, ε2 = ±1} ∼= Z2, (9)
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(d) if b > 0, c > 0, then it is trivial

with respect to the basis {E1, E2, E3, E4, E5}.

Proof. The center Z(l5,5) of l5,5 is span(G5), the commutator subalgebra l′5,5
is span(G4, G5). The preimage π−1(Z(l5,5/Z(l5,5))) of the center of the fac-
tor algebra l5,5/Z(l5,5) in l5,5 is span(G3, G4, G5) and the centralizer of l′5,5 is
span(G2, G3, G4, G5). Hence the subspaces span(Gi, · · · , Gn), i = 1, . . . , 5,
of l5,5 form a descending series of ideals which are invariant under all au-
tomorphisms of l5,5. The Gram-Schmidt process applied to the ordered
basis (G5, G4, G3, G2, G1) yields an orthonormal basis {F1, F2, F3, F4, F5} of
l5,5, where the vector Fi is a positive multiple of Gi modulo the subspace
span(Gj; j > i) and orthogonal to span(Gj; j > i). According to Lemma 3
the direct sum RF1 ⊕ · · · ⊕ RF5 is a framing of (l5,5, 〈., .〉). Expressing the
vectors of the new basis in the form Fi =

∑5
k=i aikGk with aii > 0 we get

[F1, F2] = aF4 + bF5, [F1, F3] = cF5, [F1, F4] = dF5, [F2, F3] = eF5, (10)

with suitable a, d, e > 0, a, b, c, d, e ∈ R. Changing the orthonormal basis:
F̃1 = −F1, F̃2 = −F2, F̃3 = F3, F̃4 = F4, F̃5 = −F5 we obtain

[F̃1, F̃2] = aF̃4 − bF̃5, [F̃1, F̃3] = cF̃5, [F̃1, F̃4] = dF̃5, [F̃2, F̃3] = eF̃5.

Similarly, the change of the basis: F̃1 = F1, F̃2 = −F2, F̃3 = F3, F̃4 = −F4,
F̃5 = −F5 yields

[F̃1, F̃2] = aF̃4 + bF̃5, [F̃1, F̃3] = −cF̃5, [F̃1, F̃4] = dF̃5, [F̃2, F̃3] = eF̃5.

Hence there is an orthonormal basis such that in commutators (10) the co-
efficients b and c are non-negative, i.e. (l5,5, 〈., .〉) is isometrically isomorphic
to a metric Lie algebra n5,5(a, b, c, d, e) with a, d, e > 0, b, c ≥ 0. Since
{F1, . . . , F5} is an orthonormal basis adapted to the framing of (l5,5, 〈., .〉)
the uniqueness of the construction of n5,5(a, b, c, d, e) follows from Lemma 1.
If the map Ei 7→ εiEi is an orthogonal automorphism of n5,5(a, b, c, d, e)
then [ε1E1, ε2E2] = aε4E4 + bε5E5, [ε1E1, ε3E3] = cε5E5, [ε1E1, ε4E4] =
dε5E5, [ε2E2, ε3E3] = eε5E5

If b = c = 0 then we obtain ε4 = ε1ε2, ε2 = ε5 = ε2ε3, hence ε3 = 1 and
ε1ε4 = ε2 = ε5. It follows that the group of orthogonal automorphisms of
n(a,0,0,d,e) is isomorphic to the group given by (7).
For b = 0, c > 0 we get ε4 = ε1ε2, ε5 = ε1ε3 = ε1ε4 = ε2ε3. Then one has
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ε3 = 1 = ε4 and ε1 = ε2 = ε5. Hence the group of orthogonal automorphisms
of n(a,0,c,d,e) is isomorphic to the group (8).
The relations b > 0, c = 0 yield ε4 = ε5 = ε1ε2 = ε1ε4 = ε2ε3. Hence
ε1 = ε3 = 1 and ε4 = ε5 = ε2. Consequently, the group of orthogonal auto-
morphisms of n(a,b,0,d,e) is isomorphic to the group (9).
If b, c > 0, then we obtain ε4 = ε5 = ε1ε2 = ε1ε3 = ε1ε4 = ε2ε3. Hence one
has ε1 = ε2 = ε3 = ε4 = ε5 = 1, i.e. the group of orthogonal automorphisms
of n5,5(a, b, c, d, e) is trivial. This yields the second assertion.

Corollary 12. Let (N5,5(a, b, c, d, e), 〈., .〉) be the connected and simply con-
nected Riemannian nilmanifold corresponding to the metric Lie algebra
(n5,5(a, b, c, d, e), 〈., .〉). The isometry group of (N5,5(a, b, c, d, e), 〈., .〉) is

I(N5,5(a, b, c, d, e)) =


Z2 × Z2 nN5,5(a, b, c, d, e) if b = c = 0,
Z2 nN5,5(a, b, c, d, e) if b > 0, c = 0 or

b = 0, c > 0,
N5,5(a, b, c, d, e) if b > 0, c > 0.


4.2. Two-dimensional center

We consider the Lie algebra l5,9 with its canonical basis {G1, G2, G3, G4, G5}.
Its center and commutator subalgebra are Z(l5,9) = span(G4, G5), respec-
tively l′5,9 = span(G3, G4, G5).

Definition 6. Let {E1, E2, E3, E4, E5} be an orthonormal basis in the Eu-
clidean vector space E5. Denote by n5,9(k, l,m, p, q), k, l,m, p, q ∈ R with
k, p, q 6= 0 the metric Lie algebra defined on E5 by the non-vanishing com-
mutators

[E1, E2] = kE3 + lE4 +mE5, [E1, E3] = pE4, [E2, E3] = qE5. (11)

Denote by ñ5,9(k, l, p) the metric Lie algebra n5,9(k, l, 0, p, p), i.e. in the case
that m = 0, p = q.

Clearly, bracket operation (11) satisfies the Jacobi identity and the map

E1 7→ E1 +
m

q
E3, E2 7→ E2 −

l

p
E3, E3 7→ kE3, E4 7→ pkE4, E5 7→ qkE5

is an isomorphism n5,9(k, l,m, p, q)→ l5,9.
We investigate now the existence of one-parameter subgroups in the group
of orthogonal automorphisms of the metric Lie algebra n5,9(k, l,m, p, q).
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Lemma 13. The group OA(n5,9(k, l,m, p, q)) of orthogonal automorphisms
of n5,9(k, l,m, p, q) contains a one-parameter subgroup if and only if l = m =
p − q = 0. In this case the connected component of OA(l5,9) is the one-
parameter group

{TE1 = cos tE1 + sin tE2, TE2 = − sin tE1 + cos tE2, TE3 = E3,

TE4 = cos tE4 + sin tE5, TE5 = − sin tE4 + cos tE5, t ∈ [0, 2π)},
Otherwise, OA(l5,9) is a subgroup of the group Z2 × Z2 × Z2 × Z2 × Z2.

Proof. Any one-parameter subgroup {αt; t ∈ R} of OA(n5,9(k, l,m, p, q))
preserves the center Z(l5,9) = span(E4, E5), the commutator subalgebra l′5,9 =
span(E3, E4, E5), the orthogonal complement span(E3) of Z(l5,9) in l′5,9 and
the orthogonal complement span(E1, E2) of l′5,9. Hence {αt; t ∈ R} induces
rotations in span(E1, E2), span(E4, E5) and fixes span(E3):

αt(E1) = cos t E1 + sin t E2, αt(E2) = − sin t E1 + cos t E2, αt(E3) = E3,

αt(E4) = cos γ tE4 + sin γ tE5, αt(E5) = − sin γ tE4 + cos γ tE5,
(12)

where t ∈ R and γ ∈ R is some constant. According to relations (11) we get

αt([E1, E2]) = [αt(E1), αt(E2)] = [E1, E2],

or equivalently

l(cos γ tE4 + sin γ tE5) +m(− sin γ tE4 + cos γ tE5) = lE4 +mE5, t ∈ R,

from which follows either γ = 0 or l = m = 0. If γ = 0 then we have

cos t [E1, E3] + sin t [E2, E3] = [αt(E1), E3] = pE4,

− sin t [E1, E3] + cos t [E2, E3] = [αt(E2), E3] = qE5

for all t ∈ R, giving a contradiction. Hence l = m = 0 and we have

[E1, E2] = k E3, [E1, E3] = pE4, [E2, E3] = q E5, k, p, q 6= 0.

Using αt([E1, E3]) = [αt(E1), E3] we get

p(cos γ tE4 + sin γ tE5) = [cos t E1 + sin t E2, E3] = cos t pE4 + sin t q E5.

It follows γ = 1 and p = q. Conversely, for l = m = p−q = 0 the maps given
by (12) with γ = 1 are clearly automorphism of n5,9(k, 0, 0, p, p).
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Theorem 14. Let 〈., .〉 be an inner product on the 5-dimensional three-step
nilpotent Lie algebra l5,9.

(1) The metric Lie algebra (l5,9, 〈., .〉) is isometrically isomorphic to a unique
n5,9(k, l,m, p, q) with k, l,m, p, q ∈ R such that k > 0, q > p > 0 and
l,m ≥ 0, or to a unique ñ5,9(k, l, p) with k, l, p ∈ R such that k, p > 0
and l ≥ 0.

(2) The group of orthogonal automorphisms is the following group with
respect to the basis {E1, E2, E3, E4, E5}:
(A) for n5,9(k, l,m, p, q)

(i) if l = m = 0:

OA(n5,9(k, 0, 0, p, q)) = {TE1 = ε1E1, TE2 = ε2E2, TE3 =

ε1ε2E3, TE4 = ε2E4, TE5 = ε1E5, ε1, ε2 = ±1} ∼= Z2 × Z2,

(ii) if l = 0, m > 0:

OA(n5,9(k, 0,m, p, q)) = {TE1 = ε1E1, TE2 = E2, TE3 =

ε1E3, TE4 = E4, TE5 = ε1E5, ε1 = ±1} ∼= Z2,

(iii) if l > 0, m = 0:

OA(n5,9(k, l, 0, p, q)) = {TE1 = E1, TE2 = ε2E2, TE3 = ε2E3,

TE4 = ε2E4, TE5 = E5, ε2 = ±1} ∼= Z2, (13)

(iv) if l,m > 0, then it is trivial;

(B) for ñ5,9(k, l, p):

(i) if l = 0: OA(ñ5,9(k, 0, p)) =

{TE1 = cos tE1+ε2 sin tE2, TE2 = − sin tE1+ε2 cos tE2, TE3 =

ε2E3, TE4 = ε2 cos tE4 + sin tE5, TE5 = cos tE5 − ε2 sin tE4,

ε2 = ±1, t ∈ [0, 2π)}, (14)

(ii) if l > 0, then it is group (13).
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Proof. Let be given an inner product 〈., .〉 on l5,9. The Gram-Schmidt process
applied to (G5, G4, G3, G2, G1) gives an orthonormal basis G∗i =

∑5
k=i aikGk,

i = 5, . . . , 1 of l5,9 with aii > 0, where G∗i are positive multiples of Gi modulo
span(Gj; j > i) and orthogonal to span(Gj; j > i) and G∗5, G

∗
4 ∈ Z(l5,9),

G∗3 ∈ l′5,9. Consequently the commutation relations of (l5,9, 〈., .〉) with respect
to the orthonormal basis {G∗1, G∗2, G∗3, G∗4, G∗5} are of the form

[G∗1, G
∗
2] = k G∗3 + l G∗4 +mG∗5, [G∗1, G

∗
3] = pG∗4 +r G∗5, [G∗2, G

∗
3] = q G∗5, (15)

with some k, l,m, p, q, r ∈ R, k, p, q > 0.
We notice that any orthogonal automorphism of (l5,9, 〈., .〉) preserves the
subspaces Z(l5,9) = span(G∗4, G

∗
5), l′5,9 = span(G∗3, G

∗
4, G

∗
5), the orthogonal

complement span(G∗1, G
∗
2) of l′5,9 and the orthogonal complement span(G∗3) of

Z(l5,9) in l′5,9. We consider the one-parameter family {αt; t ∈ R} of linear
maps αt : (l5,9, 〈., .〉)→ (l5,9, 〈., .〉) defined by

αt(G
∗
1) = cos tG∗1 + sin tG∗2, αt(G

∗
2) = − sin tG∗1 + cos tG∗2,

αt(G
∗
3) = G∗3, αt(G

∗
4) =

Φ
(1)
t

‖Φ(1)
t ‖

, αt(G
∗
5) =

Φ
(2)
t

‖Φ(2)
t ‖

,
(16)

where

Φ
(1)
t = [αt(G

∗
1), G∗3] = p cos tG∗4 + (r cos t+ q sin t ) G∗5,

Φ
(2)
t = [αt(G

∗
2), G∗3] = −p sin tG∗4 + (−r sin t+ q cos t) G∗5.

(17)

Clearly, αt(G
∗
1), αt(G

∗
2) and αt(G

∗
3) are orthogonal unit vectors, the vec-

tors αt(G
∗
4) and αt(G

∗
5) are linearly independent and contained in the center

Z(l5,9), moreover

[αt(G
∗
1), αt(G

∗
2)] = [G∗1, G

∗
2] = k G∗3, mod Z(l5,9), k > 0.

The vectors αt(G
∗
4) and αt(G

∗
5) are orthogonal if and only if 〈Φ(1)

t ,Φ
(2)
t 〉 = 0,

or equivalently

1

2

(
q2 − p2 − r2

)
sin 2t+ qr cos 2t = 0, p, q > 0. (18)

This equation shows that the vectors αt(G
∗
4) and αt(G

∗
5) are orthogonal for

all t ∈ R if and only if r = q − p = 0, otherwise there is a unique 0 ≤ t0 <
π
2

such that αt(G
∗
4) and αt(G

∗
5) are orthogonal if and only if t = t0 +k π

2
, k ∈ Z.
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Lemma 15. The metric Lie algebras (l5,9, 〈., .〉) can be classified into three
types:

(A) The family {αt; t ∈ R} is a one-parameter group of orthogonal auto-
morphisms of (l5,9, 〈., .〉) if and only if (l5,9, 〈., .〉) is isometrically iso-
morphic to a unique metric Lie algebra ñ5,9(k, 0, p) with k, p > 0.

(B) Each element of the family {αt; t ∈ R} is an orthogonal map, but not
all are automorphisms if and only if (l5,9, 〈., .〉) is isometrically isomor-
phic to a unique metric Lie algebra ñ5,9(k, l, p) with k, l, p > 0. In this
case (l5,9, 〈., .〉) has a framing.

(C) There is only one orthogonal map in the set {αt; t ∈ [0, π
2
)} of linear

maps if and only if (l5,9, 〈., .〉) is isometrically isomorphic to a unique
metric Lie algebra n5,9(k, l,m, p, q) with k > 0, q > p > 0 and l,m ≥ 0.

Proof. Assume that Φ
(1)
t and Φ

(2)
t are orthogonal for any t ∈ R. This is the

case if and only if r = 0 and p = q, according to (18), and hence

[G∗1, G
∗
2] = k G∗3 + l G∗4 +mG∗5, [G∗1, G

∗
3] = pG∗4, [G∗2, G

∗
3] = pG∗5. (19)

We get that (l5,9, 〈., .〉) is isometrically isomorphic to some n5,9(k, l,m, p, p),
in particular if m = 0, to some ñ5,9(k, l, p) with k, l, p > 0.
It follows from (17) that

G∗4 =
1

p

(
cos tΦ

(1)
t − sin tΦ

(2)
t

)
, G∗5 =

1

p

(
sin tΦ

(1)
t + cos tΦ

(2)
t

)
. (20)

Putting these expressions into the equation [αt(G
∗
1), αt(G

∗
2)] = kG∗3 + lG∗4 +

mG∗5 we get

[αt(G
∗
1), αt(G

∗
2)] = k G∗3+

1

p

{
(l cos t+m sin t)Φ

(1)
t + (−l sin t+m cos t)Φ

(2)
t

}
.

Assuming l = m = 0, or equivalently that the center Z(l5,9) is orthogonal
to the Lie bracket of any two vectors contained in span(αt(G

∗
1), αt(G

∗
2)), we

obtain using (16) and (17)

[αt(G
∗
1), αt(G

∗
2)] = k αt(G

∗
3), [αt(G

∗
1), αt(G

∗
3)] = pαt(G

∗
4),

αt(G
∗
2), αt(G

∗
3)] = pαt(G

∗
5).

The coefficients in these Lie brackets are independent of t ∈ R, hence {αt; t ∈
R} is a one-parameter group of orthogonal automorphisms.
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If (l,m) 6= (0, 0) we have a unique t̄ ∈ (−π
2
, π

2
] such that the solutions of the

equation −l sin t+m cos t = 0 are t = t̄+k π, k ∈ Z and αt̄(G
∗
i ), i = 1, . . . , 5,

satisfy
[αt̄(G

∗
1), αt̄(G

∗
2)] = k̄ αt̄(G

∗
3) + l̄ αt̄(G

∗
4),

[αt̄(G
∗
1), αt̄(G

∗
3)] = p̄ αt̄(G

∗
4), [αt̄(G

∗
2), αt̄(G

∗
3)] = p̄ αt̄(G

∗
5) (21)

with k̄, l̄, p̄ ∈ R, k̄, p̄ > 0, l̄ 6= 0. The 1-dimensional subspaces span(αt̄(G
∗
i )),

i = 1, . . . , 5, are invariant with respect to any orthogonal automorphisms of
(l5,9, 〈., .〉), hence the decomposition Rαt̄(G∗1)⊕· · ·⊕Rαt̄(G∗5) is a framing of
(l5,9, 〈., .〉). It follows that (l5,9, 〈., .〉) has no one-parameter groups of orthogo-
nal automorphisms. Changing the basis αt̄(G

∗
i ) 7→ (−1)iαt̄(G

∗
i ), i = 1, . . . , 5,

we get from (21) that [αt̄(G
∗
1), αt̄(G

∗
2)] = k̄ αt̄(G

∗
3) − l̄ αt̄(G∗4), hence we can

assume l̄ > 0, consequently (l5,9, 〈., .〉) is isometrically isomorphic to some
ñ5,9(k̄, l̄, p̄) with k̄, l̄, p̄ > 0. The uniqueness of ñ5,9(k̄, l̄, p̄) with k̄, l̄, p̄ > 0, iso-
metrically isomorphic to (l5,9, 〈., .〉), follows from Lemma 1, hence assertion
(B) is true.
In the case l = m = 0 for any isometric isomorphism Φ : ñ5,9(k, 0, p) →
ñ5,9(k′, 0, p′) one has

Φ(G∗1) = ±(cos tG∗1 +sin tG∗2),Φ(G∗2) = ±(cos tG∗2−sin tG∗1),Φ(G∗3) = ±G3,

from which follows k = k′, p = p′. This means that ñ5,9(k, 0, p) is uniquely
determined, giving the proof of assertion (A).

Assume now, that Φ
(1)
t and Φ

(2)
t are not orthogonal for some t ∈ R. In this

case there is a unique 0 ≤ t0 <
π
2

such that αt(G
∗
4) and αt(G

∗
5) are orthogonal

if and only if t = t0 + k π
2
, k ∈ Z. Moreover, the orthogonal basis

{αt(G∗1), αt(G
∗
2), αt(G

∗
3), αt(G

∗
4), αt(G

∗
5)} satisfies

[αt(G
∗
1), αt(G

∗
2)] = k̄ αt(G

∗
3) + l̄ αt(G

∗
4) + m̄ αt(G

∗
5),

[αt(G
∗
1), αt(G

∗
3)] = p̄ αt(G

∗
4), [αt(G

∗
2), αt(G

∗
3)] = q̄ αt(G

∗
5),

(22)

with some k̄, l̄, m̄, p̄, q̄ ∈ R, k̄, p̄, q̄ > 0, where p̄ = ‖Φ(1)
t ‖ 6= q̄ = ‖Φ(2)

t ‖. The
change of the value from t to t + π

2
leads to the exchange of the subspaces

span(αt(G
∗
1)) and span(αt(G

∗
2)), hence we can assume that the inequality

‖Φ(1)
t ‖ < ‖Φ

(2)
t ‖ holds. The decomposition Rαt(G∗1) ⊕ · · · ⊕ Rαt(G∗5) cor-

responding to this choice of t ∈ R is a framing of the metric Lie algebra
(l5,9, 〈., .〉) since the one-dimensional subspaces span(αt(G

∗
i )), i = 1, . . . , 5,

are invariant with respect to any orthogonal automorphisms of (l5,9, 〈., .〉).
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Changing the basis αt∗(G
∗
i ) 7→ (−1)iαt∗(G

∗
i ), i = 1, . . . , 5, we obtain instead

of the first equation of (22) that [αt∗(G
∗
1), αt∗(G

∗
2)] = k̄ αt∗(G

∗
3)− l̄ αt∗(G∗4) +

m̄ αt∗(G
∗
5). With the change αt∗(G

∗
1) 7→ αt∗(G

∗
1), αt∗(G

∗
2) 7→ −αt∗(G∗2),

αt∗(G
∗
3) 7→ −αt∗(G∗3), αt∗(G

∗
4) 7→ −αt∗(G∗4), αt∗(G

∗
5) 7→ αt∗(G

∗
5) we get

[αt∗(G
∗
1), αt∗(G

∗
2)] = k̄ αt∗(G

∗
3) + l̄ αt∗(G

∗
4)− m̄ αt∗(G

∗
5). Hence we can assume

that the coefficients of commutators (22) satisfy k̄, p̄, q̄ > 0 and l̄, m̄ ≥ 0.
It follows that there exists an isometric isomorphism l5,9 → n5,9(k̄, l̄, m̄, p̄, q̄)
such that k̄, p̄, q̄ > 0 and l̄, m̄ ≥ 0 and according to Lemma 1 this isomet-
rically isomorphic Lie algebra n5,9(k̄, l̄, m̄, p̄, q̄) is uniquely determined. This
proves assertion (C). Since the investigated types define disjoint classes of
metric Lie algebras and their union contains all metric Lie algebras l5,9 the
lemma is proved.

The metric Lie algebras n5,9(k, l,m, p, q) with k, p, q > 0 and l,m ≥ 0 and
ñ5,9(k, l, p) with k, l, p > 0 are framed, hence if T is an orthogonal auto-
morphism then one has T (Ei) = εiEi and [T (Ei), T (Ej)] = T ([Ei, Ej]),
i, j = 1, . . . , 5, where εi = ±1.

Let l = m = 0. From the Lie brackets [ε1E1, ε2E2] = kε3E3, [ε1E1, ε3E3] =
pε4E4, [ε2E2, ε3E3] = qε5E5 we obtain ε3 = ε1ε2, ε4 = ε1ε3, ε5 = ε2ε3, and
hence ε2 = ε4, ε1 = ε5, ε3 = ε1ε2. It follows assertion (2)(A)(i).

Let l = 0, m > 0. The Lie brackets [ε1E1, ε2E2] = kε3E3 + mε5E5,
[ε1E1, ε3E3] = pε4E4, [ε2E2, ε3E3] = qε5E5 give ε3 = ε1ε2 = ε5, ε4 = ε1ε3,
ε5 = ε2ε3. Then one has ε3 = ε1 = ε5 and ε2 = ε4 = 1. Hence we obtain
assertion (2)(A)(ii).

Let l > 0, m = 0. From the Lie brackets [ε1E1, ε2E2] = kε3E3 + lε4E4,
[ε1E1, ε3E3] = pε4E4, [ε2E2, ε3E3] = qε5E5 one has ε3 = ε1ε2 = ε4, ε4 = ε1ε3,
ε5 = ε2ε3. Hence we obtain ε3 = ε4 = ε2 and ε1 = ε5 = 1, consequently
assertions (2)(A)(iii) and (2)(B)(ii) are true.

If m, l > 0, then from [ε1E1, ε2E2] = kε3E3 + lε4E4 +mε5E5, [ε1E1, ε3E3] =
pε4E4, [ε2E2, ε3E3] = qε5E5 follows ε4 = ε5 = ε1ε2 = ε3, ε4 = ε1ε3, ε5 = ε2ε3.
We obtain ε1 = ε2 = ε3 = ε4 = ε5 = 1, i.e. the group of orthogonal automor-
phisms of n5,9(l,m, n, p, q) is trivial and assertion (2)(A) is true.

If T : ñ5,9(l, 0, p)→ ñ5,9(l, 0, p) is an orthogonal automorphism of ñ5,9(l, 0, p)
then one has TE1 = cos tE1 − sin tE2, TE2 = ε2(sin tE1 + cos tE2), TE3 =
ε3E3, TE4 = ε4(cos tE4− sin tE5), TE5 = ε5(sin tE4 + cos tE5), [TEi, TEj] =
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T [Ei, Ej], for i, j = 1, ..., 5, where t ∈ [0, 2π), εi = ±1. From the Lie brackets

[cos tE1 − sin tE2, ε2(sin tE1 + cos tE2)] = ε2kE3 = kε3E3,

[cos tE1 − sin tE2, ε3E3] = ε3p(cos tE4 − sin tE5) = pε4(cos tE4 − sin tE5),

[ε2(sin tE1 +cos tE2), ε3E3] = ε2ε3p(sin tE4 +cos tE5) = pε5(sin tE4 +cos tE5)

we obtain ε2 = ε3, ε3 = ε4, ε5 = ε2ε3, and hence ε5 = 1, ε2 = ε3 =
ε4. It follows that the group of orthogonal automorphisms of ñ5,9(l, 0, p)
is isomorphic to group (14) in assertion (2)(B)(i). Since the Lie algebra
ñ5,9(l,m, p), l > 0, m > 0, p > 0 is framed for an orthogonal automorphism
T : ñ5,9(l,m, p) → ñ5,9(l,m, p) of ñ5,9(l,m, p) we obtain the Lie brackets as
for the Lie algebra n5,9(l,m, n, p, q) in case (2)(A)(iii) taking p = q. Hence
we have the same equations as for the Lie algebra n5,9(l,m, n, p, q) in case
(2)(A)(iii). This proves assertion (2)(B)(ii). Hence Theorem 14 is proved.

Corollary 16. Let (N5,9(k, l,m, p, q), 〈., .〉), respectively (Ñ5,9(k, l, p), 〈., .〉) be
the connected and simply connected Riemannian nilmanifolds belonging to the
nilpotent metric Lie algebras (n5,9(k, l,m, p, q), 〈., .〉) and (ñ5,9(k, l, p), 〈., .〉).

Their isometry groups I(N5,9(k, l,m, p, q)), respectively I(Ñ5,9(k, l, p)) are
the following groups:

I(N5,9(k, l,m, p, q)) =


Z2 × Z2 nN5,9(k, l,m, p, q) if m = l = 0,
Z2 nN5,9(k, l,m, p, q) if l > 0,m = 0 or

l = 0,m > 0,
N5,9(k, l,m, p, q) if l > 0,m > 0.


I(Ñ5,9(k, l, p)) =

{
Z2 n Ñ5,9(k, l, p) if l > 0

Z2 × SO(2) n Ñ5,9(k, l, p) if l = 0.

}
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C.R. Acad. Sci. Paris. 263 (1966), 4–6.

[10] E. Wilson, Isometry groups on homogeneous nilmanifolds, Geom. Ded-
icata 12 (1982), 337- 346.

24



  

LaTeX Source Files
Click here to download LaTeX Source Files: elsarticle-template-num.tex

http://ees.elsevier.com/geophy/download.aspx?id=70323&guid=5f1b6ed3-e820-42fc-b939-bc8bd5d07cf6&scheme=1

