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Abstract. If the multiplication group MultðLÞ of a connected simply connected 2-dimensional
topological loop L is a Lie group, then MultðLÞ is an elementary filiform Lie group F of di-
mension nþ 2 for some nd 2, and any such group is the multiplication group of a connected
simply connected 2-dimensional topological loop L. Moreover, if the group topologically
generated by the left translations of L has dimension 3, then L is uniquely determined by a
real polynomial of degree n.

1 Introduction

The multiplication group MultðLÞ and the inner mapping group InnðLÞ of a loop L

introduced in [1], [2] are important tools for studying L since they strongly reflect the
structure of L. In particular, there is a strong correspondence between the normal
subloops of L and certain normal subgroups of MultðLÞ. Hence, it is an interesting
question which groups can be represented as multiplication groups of loops (see [9],
[11], [12]). A purely group-theoretic characterization of multiplication groups is given
in [10].

Topological and di¤erentiable loops such that the groups G topologically gener-
ated by the left translations are Lie groups have been studied in [7]. There the topo-
logical loops L are treated as continuous sharply transitive sections s : G=H ! G,
where H is the stabilizer of the identity element of L in G. In [7] and [4] it is
proved that essentially up to two exceptions any connected 3-dimensional Lie group
occurs as the group topologically generated by the left translations of a connected 2-
dimensional topological loop. These exceptions are either locally isomorphic to the
connected component of the group of motions or isomorphic to the connected com-
ponent of the group of dilatations of the euclidean plane. In contrast to this, if the
group MultðLÞ topologically generated by all left and right translations of a con-
nected 2-dimensional topological loop L is a Lie group, then the isomorphism types
of MultðLÞ and of L are strongly restricted. This is shown by our theorems, in which
Lie groups with filiform Lie algebras (cf. [5, pp. 626–663]) play a fundamental role.

The elementary filiform Lie group Fnþ2 is the simply connected Lie group of
dimension nþ 2d 3 whose Lie algebra is elementary filiform, i.e. it has a basis
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fe1; . . . ; enþ2g such that ½e1; ei� ¼ ðnþ 2� iÞeiþ1 for 2c ic nþ 1 and all other Lie
brackets are zero. With this notion we can formulate our theorems as follows:

Theorem 1. Let L be a connected simply connected 2-dimensional topological loop

which is not a group. The group MultðLÞ topologically generated by all left and right

translations of L is a Lie group if and only if MultðLÞ is an elementary filiform Lie

group Fnþ2 with nd 2. Moreover, the group G topologically generated by the left

translations of L is an elementary filiform Lie group Fmþ2, where 1cmc n, and the

inner mapping group InnðLÞ corresponds to the abelian subalgebra he2; e3; . . . ; enþ1i.

The loop L of Theorem 1 is a central extension of the group R by the group R
(cf. [7, Theorem 28.1]). Hence it is a centrally nilpotent loop of class 2 and can be
represented in R2. If L is not simply connected but satisfies all other conditions of
Theorem 1, then L is homeomorphic to the cylinder R�R=Z. The multiplication
group MultðLÞ of L is a Lie group of dimension nþ 2d 4 with elementary fili-
form Lie algebra such that the centre of MultðLÞ is isomorphic to the group SO2ðRÞ
(cf. Theorem 1 and [7, Theorem 28.1]).

Theorem 2. Let G be the elementary filiform Lie group Fnþ2 with nd 1. Then G is

isomorphic to the group topologically generated by the left translations of a connected

simply connected 2-dimensional topological loop L ¼ ðR2; �Þ with the multiplication

ðu1; z1Þ � ðu2; z2Þ ¼ ðu1 þ u2; z1 þ z2 � u2v1ðu1Þ þ u22v2ðu1Þ þ � � � þ ð�1Þnun
2vnðu1ÞÞ;

ð1Þ

where vi : R ! R, i ¼ 1; 2; . . . ; n, are continuous functions with við0Þ ¼ 0 such that the

function vn is non-linear.

For n > 1 the group G coincides with the group MultðLÞ topologically generated

by all left and right translations of L if and only if there are continuous functions

si : R ! R, i ¼ 1; . . . ; n, such that for all x; u A R the equation

�xðs1ðuÞ þ v1ðuÞÞ þ x2ðs2ðuÞ þ v2ðuÞÞ þ � � � þ ð�1ÞnxnðsnðuÞ þ vnðuÞÞ

¼ �uv1ðxÞ þ u2v2ðxÞ þ � � � þ ð�1ÞnunvnðxÞ

holds.

Moreover, L is commutative if v1; . . . ; vn satisfy the vector equation

v1ðxÞ
v2ðxÞ
..
.

vnðxÞ

0
BBBB@

1
CCCCA ¼ A

x

x2

..

.

xn

0
BBB@

1
CCCA;

where A ¼ ðaijÞ A MnðRÞ and aij ¼ ð�1Þ iþj
aji for all i; j A f1; 2; . . . ; ng.
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Theorem 3. If L is a 2-dimensional connected simply connected topological loop having

the elementary filiform Lie group F3 as the group topologically generated by the left

translations of L, then the multiplication of L is given by

ðu1; z1Þ � ðu2; z2Þ ¼ ðu1 þ u2; z1 þ z2 � u2v1ðu1ÞÞ; ð2Þ

where v1 : R ! R is a non-linear continuous function with v1ð0Þ ¼ 0.
The group MultðLÞ topologically generated by all left and right translations of L

is isomorphic to the elementary filiform Lie group Fnþ2 for nd 2 if and only if the

continuous function v1 : R ! R is a polynomial of degree n.

2 Preliminaries

A binary system ðL; �Þ is called a loop if there exists an element e A L such that
x ¼ e � x ¼ x � e holds for all x A L and the equations a � y ¼ b and x � a ¼ b have pre-
cisely one solution, which we denote by y ¼ anb and x ¼ b=a. A loop L is proper if it
is not associative.

The left and right translations la ¼ y 7! a � y : L ! L and ra : y 7! y � a : L ! L,
a A L are permutations of L. The permutation group MultðLÞ ¼ hla; ra; a A Li is
called the multiplication group of L. The stabilizer of the identity element e A L in
MultðLÞ is denoted by InnðLÞ, and it is called the inner mapping group of L.

Let K be a group, let ScK , and let A and B be two left transversals to S in K (i.e.
two systems of representatives for the left cosets of the subgroup S in K). We say that
A and B are S-connected if a�1b�1ab A S for all a A A and b A B. By CKðSÞ we denote
the core of S in K (the largest normal subgroup of K contained in S). If L is a loop,
then LðLÞ ¼ fla; a A Lg and RðLÞ ¼ fra; a A Lg are InnðLÞ-connected transversals
in the group MultðLÞ, and the core of InnðLÞ in MultðLÞ is trivial. The connection
between multiplication groups of loops and transversals is given in [10, Theorem
4.1]. This theorem yields the following

Lemma 4. Let L be a loop and LðLÞ be the set of left translations of L. Let K be a

group containing LðLÞ and S be a subgroup of K with CKðSÞ ¼ 1 such that LðLÞ is a
left transversal to S in K. The group K is isomorphic to the multiplication group

MultðLÞ of L if and only if there is a left transversal T to S in K such that LðLÞ
and T are S-connected and K ¼ hLðLÞ;Ti. In this case S is isomorphic to the inner

mapping group InnðLÞ of L.

The kernel of a homomorphism a : ðL; �Þ ! ðL 0; �Þ of a loop L into a loop L 0 is
a normal subloop N of L. We need the following facts concerning normal subloops
(cf. [3, p. 62]).

Lemma 5. Let L be a loop with multiplication group MultðLÞ and identity element e.

(i) Let a be a loop homomorphism from L with kernel N. Then a induces a surjective

group homomorphism from MultðLÞ to MultðaðLÞÞ.
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Denote by MðNÞ the set fm A MultðLÞ; xN ¼ mðxÞN for all x A Lg. Then

MðNÞ is a normal subgroup of MultðLÞ, and the multiplication group of the factor

loop L=N is isomorphic to MultðLÞ=MðNÞ.

(ii) For every normal subgroup N of MultðLÞ the orbit NðeÞ is a normal subloop of L.

Moreover, NcMðNðeÞÞ.

The theory of topological loops L is the theory of the continuous binary operations
ðx; yÞ 7! x � y, ðx; yÞ 7! x=y, ðx; yÞ 7! xny on the topological space L. If L is a topo-
logical loop, then the left translations la as well as the right translations ra, a A L, are
homeomorphisms of L.

Every connected topological loop having a Lie group as the group topologically
generated by the left translations is realized on a homogeneous space G=H, where
G is a connected Lie group, H is a closed subgroup of G with CGðHÞ ¼ 1 and
s : G=H ! G is a continuous sharply transitive section with sðHÞ ¼ 1 A G such that
the subset sðG=HÞ generates G. The multiplication of L on the manifold G=H is de-
fined by xH � yH ¼ sðxHÞyH, and the group G is the group topologically generated
by the left translations of L. Moreover, the subgroup H is the stabilizer of the identity
element e A L in the group G (cf. [7, §1.3]).

3 Proofs

If L is a connected topological loop having (with respect to the compact–open topol-
ogy) a Lie group as the group MultðLÞ topologically generated by all left and right
translations, then MultðLÞ acts transitively and e¤ectively as a topological transfor-
mation group on L. All transitive transformation groups on a 2-dimensional mani-
fold have been classified by Lie (cf. [6]) and Mostow in [8, §10].

Lemma 6. If the group MultðLÞ topologically generated by all left and right transla-

tions of a 2-dimensional connected topological loop L is a Lie group, then the group

MultðLÞ is solvable.

Proof. Let L be a 2-dimensional connected topological loop such that the group
MultðLÞ topologically generated by all left and right translations is a non-solvable
Lie group. We may assume that L is simply connected, since otherwise we would
consider the universal covering of L. Then L is homeomorphic to R2 (cf. [7, Theorem
19.1]).

If the radical R of MultðLÞ is trivial, then according to [8, §10] the Lie group
MultðLÞ is locally isomorphic to either PSL2ðRÞ or PSL2ðRÞ � PSL2ðRÞ. But these
groups are excluded in [7, Lemma 19.5 and Theorem 19.7].

If dimRd 1, then MultðLÞ has a non-trivial connected abelian normal subgroup
K. By Lemma 5, the orbit KðeÞ is a normal subloop of L. For KðeÞ ¼ feg the inner
mapping group InnðLÞ contains the non-trivial normal subgroup K of MultðLÞ,
which is a contradiction.

If the orbit KðeÞ is the whole loop L, then dimK ¼ 2, since otherwise MultðLÞ
does not act e¤ectively on L. Moreover, K operates sharply transitively on L. Hence
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we have MultðLÞ ¼ Kz InnðLÞ. If the group MultðLÞ is non-solvable, then it is the
semidirect product of the 2-dimensional abelian group K by a Lie group S locally
isomorphic either to GL2ðRÞ (cf. [8, Subcases III.8 and IV.2]) or to SL2ðRÞ (cf. [8,
Subcases III.1 and IV.1]). In all of these cases any subgroup locally isomorphic to
SL2ðRÞ acts irreducibly on K, which is the unique 2-dimensional sharply transitive
normal subgroup of the group MultðLÞ. But then the group K is contained in the
group topologically generated by the left translations of L, and this gives a contradic-
tion to [7, Corollary 17.8].

Hence the orbit KðeÞ is a 1-dimensional normal subloop of L. As L=KðeÞ is a
connected 1-dimensional loop such that the group topologically generated by all of
its left and right translations is a factor group of MultðLÞ, we conclude that
L=KðeÞ is a 1-dimensional Lie group (see [7, Theorem 18.18]). Then MultðLÞ con-
tains a normal subgroup M of codimension 1 such that KcM and each orbit
fxKðeÞ; x A Lg is invariant under M (see Lemma 5).

If MultðLÞ is non-solvable, then according to [8, §10], it is locally isomorphic either
to PSL2ðRÞ �L2, where L2 is the 2-dimensional non-commutative Lie group (cf. [8,
Subcase II.10]), or to the semidirect product of a normal subgroup K ffi Rn, for
some nd 2, by a Lie group S locally isomorphic to GL2ðRÞ such that any subgroup
locally isomorphic to SL2ðRÞ acts irreducibly on K (cf. Subcases III.8 and IV.2).
The groups locally isomorphic to PSL2ðRÞ �L2 are excluded by [7, Lemma 19.5].
If MultðLÞ is locally isomorphic to KzGL2ðRÞ, then the subgroup M is locally
isomorphic to Kz SL2ðRÞ. Since dimKd 2, the group K has a subgroup K̂K of

codimension 1 such that K̂KðeÞ ¼ feg. As K acts transitively on the 1-dimensional
Lie group KðeÞ, the group K̂K fixes KðeÞ elementwise. As K̂K < M the group
M does not act e¤ectively on KðeÞ. Then there exists a normal subgroup N of M
which fixes every element of KðeÞ and hence N VK ¼ K̂K. Since the abelian group
K is the unique normal subgroup of M, we have a contradiction and the lemma is
proved. r

Remark 7. If L is a 2-dimensional connected simply connected topological proper
loop such that MultðLÞ is a solvable Lie group, then MultðLÞ is a semidirect product
of the abelian group MGRn, for some nd 2, by a group SGR, such that
M ¼ Z � InnðLÞ, where ZGR is the centre of MultðLÞ and InnðLÞGRn�1 is the
stabilizer of e A L in MultðLÞ (cf. [7, Theorem 28.1]).

Proof of Theorem 1. By Lemma 6 the group MultðLÞ is solvable. As L is not associa-
tive, MultðLÞ has dimension at least 3. Since L is simply connected it is homeomor-
phic to R2. By the classification of Mostow (cf. [8, §10]) every solvable Lie group
of dimension at least 3 acting transitively on the plane R2 is locally isomorphic to
one of the Lie groups in the Subcases I.3, II.1, II.3, II.5, II.7, II.11, II.12, II.13,
III.3, III.4, III.5 and III.7. It follows from Remark 7 that the commutator subgroup
of MultðLÞ is abelian and that MultðLÞ has a 1-dimensional centre. Hence a
direct computation shows that MultðLÞ is isomorphic either to the 3-dimensional
non-commutative nilpotent Lie group or to the direct product of a 1-dimensional
Lie group with the 2-dimensional non-commutative solvable Lie group, or the Lie
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algebra of MultðLÞ has the form

mult1ðLÞ ¼
�

q

qx
;wðxÞ q

qy
; . . . ;wðnÞðxÞ q

qy

�
; for some n > 1;

(cf. Subcase II.3). The 3-dimensional groups are excluded by [7, Theorems 23.12 and
23.7]. For every n > 1 the abelian normal subgroup M of codimension 1 of the
Mult1ðLÞ belonging to the Lie algebra mult1ðLÞ is generated by the set

�
wðxÞ q

qy
;wð1ÞðxÞ q

qy
; . . . ;wðnÞðxÞ q

qy

�
:

According to Remark 7 the group M contains a 1-parameter subgroup of central
elements of the group Mult1ðLÞ. This is the case precisely if the Lie algebra of M
contains the generator q=qy (cf. [8], Lemma 1, p. 628). Hence the function wðxÞ has
the form xn, with n > 1. Then for every n > 1 the group Mult1ðLÞ is nilpotent with
maximal nilindex. Putting

e1 ¼
q

qx
; e2 ¼ xn q

qy
; e3 ¼ xn�1 q

qy
; . . . ; enþ1 ¼ x

q

qy
; enþ2 ¼

q

qy

we obtain the first assertion.
As M ¼ Z � InnðLÞ (see Remark 7), where the centre Z of Mult1ðLÞ belongs to

the Lie algebra henþ2i, the Lie algebra of the group InnðLÞ is given by

innðLÞ ¼ he2 þ a1enþ2; e3 þ a2enþ2; . . . ; enþ1 þ anenþ2i; ai A R; i ¼ 1; . . . ; n:

Using the automorphism j of the Lie algebra mult1ðLÞ ¼ he1; e2; . . . ; enþ2i defined by

jðe1Þ ¼ e1; jðenþ2Þ ¼ enþ2;

jðeiÞ ¼ ei � ai�1enþ2 �
Xnþ1

k¼iþ1

ðn� i þ 2Þan�kþiþ1ek ð2c ic nþ 1Þ

we obtain the last assertion.
Since also the group G topologically generated by the left translations of L acts

transitively on R2 and since G is an at least 3-dimensional subgroup of the elemen-
tary filiform Lie group MultðLÞ, the classification of Mostow (cf. [8, §10]) gives the
second assertion. r

Lemma 8. Let V be a non-commutative subalgebra of the elementary filiform Lie alge-

bra of dimension nþ 2d 3. Then V ¼ Vi has a basis

fe1 þ t1; ei; eiþ1; . . . ; enþ2g

with a fixed i A f2; . . . ; nþ 1g and t1 A he2; e3; . . . ; ei�1i.
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Proof. If V is not commutative, then V is a filiform Lie algebra of dimension
nþ 4� i with 2c ic nþ 1 and has a basis of the form

fe1 þ t1; ei þ ti; eiþ1 þ tiþ1; . . . ; enþ1 þ tnþ1; enþ2g

with t1 A he2; e3; . . . ; enþ2i and tiþj A heiþjþ1; . . . ; enþ2i, 0c j < nþ 1� i. Successive
addition of suitable linear combinations

P j
k¼0 lnþ2�kenþ2�k to tnþ1�j shows that V

contains the elements enþ2; enþ1; . . . ; ei, and the assertion follows. r

Proof of Theorem 2. For nd 1 the Lie algebra g ¼ he1; e2; . . . ; enþ2i of the elemen-
tary filiform Lie group G ¼ Fnþ2 is isomorphic to the Lie algebra of all matrices of
the form

0 a1 a2 � � � an�1 an b

0 0 0 � � � 0 0 �c

0 �2c 0 � � � 0 0 0

0 0 �3c � � � 0 0 0

0 0 0 � � � �nc 0 0

0 0 0 � � � 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

with a1; . . . ; an; b; c A R. Hence we can represent the elements of G as the matrices

gðc; a1; a2; . . . ; an�1; an; bÞ

¼

1 a1 a2 � � � an�1 an b

0 1 0 0 � � � 0 �c

0 �2c 1 0 � � � 0 c2

0 3c2 �3c 1 � � � 0 �c3

0 ð�1Þn�1 n
1

� �
cn�1 ð�1Þn�2 n

2

� �
cn�2 � � � ð�1Þ n

n�1

� �
c1 1 ð�1Þncn

0 0 0 � � � 0 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ð3Þ

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

with a1; . . . ; an; b; c A R. Since all elements of G have a unique decomposition

gðu; 0; . . . ; 0; zÞgð0; v1; v2; . . . ; vn; 0Þ;

the continuous functions v1ðu; zÞ, v2ðu; zÞ; . . . ; vnðu; zÞ determine a continuous section
s : G=H ! G defined by

gðu; 0; . . . ; 0; zÞH 7! gðu; 0; . . . ; 0; zÞgð0; v1ðu; zÞ; v2ðu; zÞ; . . . ; vnðu; zÞ; 0Þ
¼ gðu; v1ðu; zÞ; v2ðu; zÞ; . . . ; vnðu; zÞ; zÞ;
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where

H ¼ fgð0; v1; v2; . . . ; vn; 0Þ; vi A R for i ¼ 1; . . . ; ng:

The image sðG=HÞ acts sharply transitively on the factor space G=H precisely if for
all ðu1; z1Þ; ðu2; z2Þ A R2 the equation

gðu; v1ðu; zÞ; v2ðu; zÞ; . . . ; vnðu; zÞ; zÞgðu1; 0; . . . ; 0; z1Þ

¼ gðu2; 0; . . . ; 0; z2Þgð0; t1; t2; . . . ; tn; 0Þ ð4Þ

has a unique solution ðu; zÞ A R2 with a suitable element gð0; t1; t2; . . . ; tn; 0Þ in H.
From (4) we obtain the equations

u ¼ u2 � u1

ti ¼
Xn

k¼i

ð�1Þk�i k

i

� �
uk�i
1 vkðu; zÞ for i ¼ 1; 2; . . . ; n;

0 ¼ zþ z1 � z2 � u1v1ðu; zÞ þ u21v2ðu; zÞ þ � � � þ ð�1Þnun
1vnðu; zÞ:

Hence equation (4) has a unique solution if and only if for every u0 ¼ u2 � u1 and
u1 A R the function

f : z 7! z� u1v1ðu0; zÞ þ u21v2ðu0; zÞ þ � � � þ ð�1Þnun
1vnðu0; zÞ

is a bijective mapping from R to R. Let c1 < c2 A R. Then f ðc1Þ0 f ðc2Þ and we
may assume that f ðc1Þ < f ðc2Þ. We consider the inequality

0 < f ðc2Þ � f ðc1Þ

¼ c2 � c1 � u1ðv1ðu0;c2Þ � v1ðu0;c1ÞÞ þ u21ðv2ðu0;c2Þ � v2ðu0;c1ÞÞ

þ � � � þ ð�1Þnun
1 ðvnðu0;c2Þ � vnðu0;c1ÞÞ: ð5Þ

If for every i the function viðu; zÞ is independent of z, then f is monotone and the
continuous functions v1ðuÞ; v2ðuÞ; . . . ; vnðuÞ determine a 2-dimensional topological
loop L. Now we represent L in the coordinate system ðu; zÞ 7! gðu; 0; . . . ; 0; zÞH.
Then the product ðu1; z1Þ � ðu2; z2Þ will be determined if we apply

sðgðu1; 0; . . . ; 0; z1ÞHÞ ¼ gðu1; v1ðu1Þ; v2ðu1Þ; . . . ; vnðu1Þ; z1Þ

to the left coset gðu2; 0; . . . ; 0; z2ÞH and find in the image coset the element of G

which lies in the set fgðu; 0; . . . ; 0; zÞH; u; z A Rg. We obtain

ðu1; z1Þ � ðu2; z2Þ ¼ ðu1 þ u2; z1 þ z2 � u2v1ðu1Þ þ u22v2ðu1Þ þ � � � þ ð�1Þnun
2vnðu1ÞÞ:
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This loop is proper precisely if the set

sðG=HÞ ¼ fgðu; v1ðuÞ; v2ðuÞ; . . . ; vnðuÞ; zÞ; u; z A Rg

generates the whole group G. The set sðG=HÞ contains the subset

F ¼ fgðu; v1ðuÞ; v2ðuÞ; . . . ; vnðuÞ; 0Þ; u A Rg

and the centre Z ¼ fgð0; 0; . . . ; 0; zÞ; z A Rg of G. The group hFi topologically
generated by the set F and the group Z generate G if and only if hFi is a non-
commutative subgroup of codimension 1 in G. By Lemma 8 this is the case precisely
if the mapping assigning to the first component of any element of hFi its ðnþ 1Þth
component is not a homomorphism. This occurs if and only if the function vn is non-
linear; thus the first assertion follows.

For n ¼ 1 the elementary filiform Lie group F3 cannot be the group topologically
generated by all left and right translations of L (cf. Theorem 1). Now let n > 1. By [7,
Proposition 18.16] the filiform Lie group G coincides with the group topologically
generated by all translations of L given by the multiplication (1) if and only if for
every y A L the map f ðyÞ : x 7! ylxl

�1
y from L to L is an element of

H ¼ fgð0; t1; . . . ; tn; 0Þ; ti A R; i ¼ 1; . . . ; ng:

This is equivalent to the condition that the mapping

gðx; 0; . . . ; 0; yÞH 7! ðgðu; v1ðuÞ; v2ðuÞ; . . . ; vnðuÞ; zÞÞ�1

� ðgðx; v1ðxÞ; v2ðxÞ; . . . ; vnðxÞ; yÞÞgðu; 0; . . . ; 0; zÞH

has the form

gðx; 0; . . . ; 0; yÞH 7! gð0; s1ðu; zÞ; s2ðu; zÞ; . . . ; snðu; zÞ; 0Þgðx; 0; . . . ; 0; yÞH

for suitable functions s1ðu; zÞ; s2ðu; zÞ; . . . ; snðu; zÞ. This gives the relation

gðx; v1ðxÞ; . . . ; vnðxÞ; yÞgðu; 0; . . . ; 0; zÞH

¼ gðu; v1ðuÞ; . . . ; vnðuÞ; zÞgð0; s1ðu; zÞ; . . . ; snðu; zÞ; 0Þgðx; 0; . . . ; 0; yÞH

or the equation

gðx; v1ðxÞ; . . . ; vnðxÞ; yÞgðu; t1; . . . ; tn; zÞ

¼ gðu; v1ðuÞ; . . . ; vnðuÞ; zÞgð0; s1ðu; zÞ; . . . ; snðu; zÞ; 0Þgðx; 0; . . . ; 0; yÞ ð6Þ

for a suitable gð0; t1; . . . ; tn; 0Þ A H. Equation (6) yields

ti ¼
Xn

k¼i

ð�1Þk�i k

i

� �
ðxk�iðskðu; zÞ þ vkðuÞÞ � uk�ivkðxÞÞ
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for i ¼ 1; 2; . . . ; n and

�xðs1ðu; zÞ þ v1ðuÞÞ þ x2ðs2ðu; zÞ þ v2ðuÞÞ þ � � � þ ð�1Þnxnðsnðu; zÞ þ vnðuÞÞ

¼ �uv1ðxÞ þ u2v2ðxÞ þ � � � þ ð�1ÞnunvnðxÞ: ð7Þ

Since the right-hand side of (7) is independent of z, so is the left-hand side, and we
have siðu; zÞ ¼ siðuÞ for i ¼ 1; . . . ; n. Hence (6) is satisfied if and only if there are
continuous functions si : R ! R, i ¼ 1; . . . ; n, depending on the variable u such that
for all x; u A R equation (7) holds.

Moreover, L is commutative precisely if siðuÞ ¼ 0 for all i ¼ 1; . . . ; n (cf. [7,
Lemma 18.16]). If the functions v1; . . . ; vn are polynomials, then comparison of coef-
ficients yields the last assertion. r

Proof of Theorem 3. For n ¼ 1 equation (5) in the proof of Theorem 2 is linear in the
variable u1. Hence the function f is monotone if and only if v1ðu; zÞ ¼ v1ðuÞ, and the
first assertion follows from Theorem 2.

Now let K be the group of matrices (3) with nd 2 and let S be the subgroup

fgð0; t1; t2; . . . ; tn; 0Þ; ti A R; i ¼ 1; 2; . . . ; ng:

Then K is isomorphic to Fnþ2 (cf. proof of Theorem 2). The set

Lv1 ¼ flðu; vÞ; ðu; vÞ A Lv1g

of all left translations of the loop Lv1 defined by (2) in the group K has the form

Lv1 ¼ g u; v1ðuÞ; 0; 0; . . . ; 0;� 1
2 v1ðuÞuþ z

� �
; u; z A R

	 

:

An arbitrary transversal T of S in K has the form

T ¼ fgðx; h1ðx; yÞ; . . . ; hnðx; yÞ; yÞ; x; y A Rg;

where hj : R2 ! R, j ¼ 1; 2; . . . ; n, are continuous functions with hjð0; 0Þ ¼ 0.
By Lemma 4, the group K is isomorphic to MultðLv1Þ precisely if the set
fa�1b�1ab; a A T ; b A Lv1g is contained in S and the set fLv1 ;Tg generates the group
K. The products a�1b�1ab with a A T and b A Lv1 are in S if and only if the equation

xv1ðuÞ ¼ ð�1Þnþ1
unhnðx; yÞ þ ð�1Þnun�1hn�1ðx; yÞ þ � � � þ ð�1Þ2uh1ðx; yÞ ð8Þ

holds for all x; y; u A R. If x ¼ 0 then equation (8) reduces to

0 ¼ ð�1Þnþ1
unhnð0; yÞ þ ð�1Þnun�1hn�1ð0; yÞ þ � � � þ ð�1Þ2uh1ð0; yÞ: ð9Þ

Since the polynomials u; u2; . . . ; un are linearly independent, equation (9) is satisfied if
and only if hið0; yÞ ¼ 0 for all i with 1c ic n. As the function v1 : R ! R depends
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only on the variable u and the functions hi : R2 ! R, i ¼ 1; 2; . . . ; n, are independent
of u, equation (8) holds precisely if hiðx; yÞ ¼ aix with ai A R for all i with 1c ic n.
By Lemma 8 the set fLv1 ;Tg generates the group K if and only if an is di¤erent from
0, since then the Lie algebra of the non-commutative group generated by the set
fLv1 ;Tg contains elements of the form e2 þ s with s A he3; e4; . . . ; enþ2i. r

Acknowledgments. The author thanks the referee for the useful remarks.
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