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Abstract

We show that there does not exist any connected topological proper
loop homeomorphic to a quasi-simple Lie group and having a compact
Lie group as the group topologically generated by its left translations.
Moreover, any connected topological loop homeomorphic to the 7-
sphere and having a compact Lie group as the group of its left trans-
lations is classical. We give a particular simple general construction
for proper loops such that the compact group of their left translations
is direct product of at least 3 factors.
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1 Introduction

H. Scheerer has clarified in [10] for which compact connected Lie groups G
and for which closed subgroups H the natural projection G → G/H has
a continuous section σ. For a semisimple compact Lie group G the image
σ(G/H) is not homeomorphic to a Lie group precisely if G contains a fac-
tor locally isomorphic to PSO8(R). This is due to the fact that the group
topologically generated by the left translations of the octonions of norm 1
is the group SO8(R). Hence any compact connected topological loop whose
group topologically generated by the left translations is a compact Lie group
containing no factor locally isomorphic to PSO8(R), is itself homeomorphic
to a compact Lie group.

But it remained an open problem for which σ the image σ(G/H) de-
termines a loop. This is the case if σ(G/H) acts sharply transitively on
G/H what means that for given cosets g1H, g2H there exists precisely one
z ∈ σ(G/H) such that the equation zg1H = g2H holds. Continuous sections
σ with this property (they are called sharply transitive sections) correspond
to topological loops (L, ∗) (cf. [9], Proposition 1.21, p. 29) realized on G/H
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with respect to the multiplication xH · yH = σ(xH)yH. Here H plays the
role of the identity element e ∈ L. If the image σ(G/H) generates the group
G, then G is the group topologically generated by the left translations of
(L, ·).

There are many examples of compact connected loops having a non-simple
compact connected Lie group as the group topologically generated by their
left translations (cf. [9], Theorem 16.7, p. 198 and Section 14.3, pp. 170-
173). A particular simple general construction for proper loops such that the
group generated by their left translations is the direct product of at least
three factors is given in Section 3.

In contrast to this in this paper we prove that any connected topological
loop L homeomorphic to a quasi-simple Lie group G and having a compact
Lie group as the group topologically generated by its left translations must
coincide with G (cf. Theorem 8). Similarly, any connected topological loop L
homeomorphic to the 7-sphere and having a compact Lie group as the group
topological generated by its left translations is either the Moufang loop O of
octonions of norm 1 or the factor loop O/Z, where Z is the centre of O (cf.
Theorem 6). With these results the Scheerer’s question concerning loops is
answered (cf. [10], Section 2, p. 152).

2 Prerequisites

A set L with a binary operation (x, y) 7→ x · y is called a loop if there exists
an element e ∈ L such that x = e · x = x · e holds for all x ∈ L and the
equations a · y = b and x · a = b have precisely one solution which we denote
by y = a\b and x = b/a. The left translation λa : y 7→ a · y : L → L is a
bijection of L for any a ∈ L.

The kernel of a homomorphism α : (L, ◦) → (L′, ∗) of a loop L into a
loop L′ is a normal subloop N of L, i.e. a subloop of L such that

x ◦N = N ◦ x, (x ◦N) ◦ y = x ◦ (N ◦ y), x ◦ (y ◦N) = (x ◦ y) ◦N

holds for all x, y ∈ L. A loop (L, ·) is a product of two subloops L1 and L2

if any element x of L has a representation x = a · b, a ∈ L1 and b ∈ L2.
A loop (L, ·) is called a Moufang loop if for all x, y, z ∈ L the identity
(x · y) · (z · x) = [x · (y · z)] · x holds.

Let L be a topological space. Then (L, ·) is a topological loop if the maps
(x, y) 7→ x · y, (x, y) 7→ x\y, (x, y) 7→ y/x : L2 → L are continuous. If
only the multiplication and the left division are continuous, then the loop
L is called almost topological. An almost topological loop is topological if
the group generated by its left translations is a connected Lie group (see
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[9], Corollary 1.22). A loop L is almost differentiable if L is a differentiable
manifold and the multiplication as well as the left division are differentiable.

Let G be a compact connected Lie group, H be a connected Lie subgroup
of G containing no non-trivial normal subgroup of G and G/H = {xH, x ∈
G}. Let σ : G/H → G be a continuous map with σ(H) = 1 ∈ G such that
the set σ(G/H) is a system of representatives for G/H which generates G
and acts sharply transitively on G/H. The last property means that to any
given left cosets xH and yH there exists precisely one z ∈ σ(G/H) with
zxH = yH. Then the multiplication xH · yH = σ(xH)yH on the factor
space G/H, respectively x · y = σ(xyH) on the set σ(G/H) yields a compact
topological loop having G as the group topologically generated by the left
translations λxH : yH 7→ σ(xH)yH, respectively λx : y 7→ σ(xyH).

If L is a compact topological loop such that the group topologically gen-
erated by all left translations of L is a compact connected Lie group, then the
set {λa, a ∈ L} forms a sharply transitive continuous section σ : G/Ge → G
with σ(λaGe) = λa, where Ge is the stabilizer of e ∈ L in G.

If the section σ : G/H → G is differentiable, then the loop L is almost
differentiable.

A quasi-simple compact Lie group is a compact Lie group G containing a
normal finite central subgroup N such that the factor group G/N is simple.
A semisimple connected compact group G is a Lie group containing a normal
finite central subgroup N such that the factor group G/N is a direct product
of simple Lie groups. A connected compact Lie group is an almost direct
product of compact semisimple Lie groups if its universal covering (cf. [2],
Appendix A) is a direct product of simply connected quasi-simple Lie groups.

For connected and locally simply connected topological loops there exist
universal covering loops (cf. [3], [4], [6], IX.1). This yields the following

Lemma 1. The universal covering loop L̃ of a connected and locally simply
connected topological loop L is simply connected and L is isomorphic to a
factor loop L̃/N , where N is a central subgroup of L̃.

3 Loops corresponding to products of groups

Let G = K×P×S be a group, where K is a group, P is a non-abelian group.
Let g : K → S be a map which is not a homomorphism but g(1) = 1, the set
{(k, 1, g(k)); k ∈ K} generates the group K×{1}×S and S is isomorphic to a
subgroup of P having with the centre of P trivial intersection. Hence there is
a monomorphism from S into P and we may assume H = {(1, x, x); x ∈ S}.
Moreover, we put M = {(k, lg(k), g(k)); k ∈ K, l ∈ P}. Every element
(a, b, c) ∈ G may be uniquely decomposed as (a, b, c) = (a, bc−1, 1)(1, c, c)
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with (1, c, c) ∈ H. For all a ∈ K, b ∈ P there are unique elements m =
(a, bg(a), g(a)) ∈ M and h = (1, g(a)−1, g(a)−1) ∈ H such that (a, b, 1) =
mh. Hence the set M determines the section σ : G/H → G; (x, y, 1)H 7→
σ((x, y, 1)H) = (x, yg(x), g(x)). The set M acts sharply transitively on the
left cosets {(a, b, 1)H; a ∈ K, b ∈ P} since for given a1, a2 ∈ K, b1, b2 ∈ P
the equation

(k, lg(k), g(k))(a1, b1, 1) = (a2, b2, 1)(1, d, d)

has the unique solution k = a2a
−1
1 , l = b2g(a2a

−1
1 )b−11 g(a2a

−1
1 )−1 with d =

g(a2a
−1
1 ) ∈ P . As the group H contains no normal subgroup of G the map

σ corresponds to a loop L having the group G = K × P × S as the group
generated by its left translations, the subgroup H as the stabilizer of e ∈ L
and the set M as the set of all left translations of L. The multiplication of
L = (L, ∗) can be defined on the set {(a, b, 1)H; a ∈ K, b ∈ P} by

(a1, b1, 1)H ∗ (a2, b2, 1)H = (a1a2, b1g(a1)b2g(a1)
−1, 1)H. (1)

Since (1, l1, 1)H ∗ (1, l2, 1)H = (1, l1l2, 1)H for all l1, l2 ∈ P holds (N, ∗) =
({(1, l, 1)H; l ∈ P}, ∗) is a subgroup of (L, ∗) isomorphic to P . As G is the
direct product G = G1×G2, where G1 = K×{1}×S and G2 = {1}×P×{1},
and σ(G/H) = M = M1 × G2 with M1 = {(k, 1, g(k)); k ∈ K} ⊂ G1

Proposition 2.4 in [9], p. 44, yields that the group (N, ∗) is normal in the
loop (L, ∗). Moreover, for all k1, k2 ∈ K one has (k1, 1, 1)H ∗ (k2, 1, 1)H =
(k1k2, 1, 1)H. Hence (K, ∗) = ({(k, 1, 1)H; k ∈ K}, ∗) is a subgroup of (L, ∗)
isomorphic to K. Therefore the loop (L, ∗) defined by (1) is a semidirect
product of the normal subgroup (N, ∗) by the subgroup (K, ∗).
The loop L is a group if the multiplication (1) is associative, i.e.

((a1, b1, 1)H ∗ (a2, b2, 1)H) ∗ (a3, b3, 1)H =

(a1, b1, 1)H ∗ ((a2, b2, 1)H ∗ (a3, b3, 1)H).

This identity holds if and only if for all ai ∈ K and bi ∈ P one has

(a1a2a3, b1g(a1)b2g(a1)
−1g(a1a2)b3g(a1a2)

−1, 1)H =

(a1a2a3, b1g(a1)b2g(a2)b3g(a2)
−1g(a1)

−1, 1)H

or equivalently g(a1)g(a2)b3g(a2)
−1g(a1)

−1 = g(a1a2)b3g(a1a2)
−1. This is a

contradiction since g is not a homomorphism. Therefore L is a proper loop.

If K, P and S are connected Lie groups and the function g is continuous, then
L has continuous multiplication and left division (cf. [9], p. 29). Hence L
is a connected locally compact topological proper loop. If g is differentiable,
then L is a connected almost differentiable proper loop (cf. [9], p. 32).

The constructed examples show the following
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Remark 1. There exist proper loops with normal connected subgroups having
a compact connected Lie group G as the group topologically generated by the
left translations if G = G1×G2×G3, where G3 is isomorphic to a subgroup
of G2 having with the centre of G2 trivial intersection.

The aim of the paper is to demonstrate that this is a typical situation for con-
nected compact Lie groups G being groups generated by the left translations
of a proper loop.

4 Results

Lemma 2. Any one-dimensional connected topological loop having a compact
Lie group as the group topologically generated by its left translations is the
orthogonal group SO2(R).

Proof. See in [9], Proposition 18.2, p. 235.

Lemma 3. Let G be a connected semisimple compact Lie group. Assume
that G is the group topologically generated by the left translations of a com-
pact simply connected loop L homeomorphic to a semisimple Lie group K1.
Then G has the form K1 × ρ(H1), where H1 is a subgroup of K1 and ρ is a
monomorphism. For the stabilizer H of e ∈ L one has H = (H1, ρ(H1)) =
{(x, ρ(x)), x ∈ H1} and H1 has with the centre Z1 of K1 a trivial intersection.

Proof. Since G/H is homeomorphic to K1 the group G is homeomorphic to
K1 × H. According to [10] or to Theorem 16.1 in [9], p. 195, the group G
has the form G = K1×K2 and the stabilizer H of e ∈ L is H = (H1, ρ(H1)),
where K2 is a Lie group isomorphic to H and ρ is a monomorphism. From
this it follows that G = K1 × ρ(H1). If Z1 ∩ H1 6= 1, then H has with the
centre Z of G a non-trivial intersection. But this is a contradiction to the
fact that H has no normal subgroup 6= 1 of G.

Lemma 3 yields

Corollary 4. Let G = K1 × K2 be a connected compact semisimple Lie
group such that K1 is semisimple and H1 is a subgroup of K1 isomorphic to
K2. Let H be the subgroup (H1, ρ(H1)) of G, where ρ is a monomorphism
H1 → K2. If H1 intersects the centre of K1 non trivially, then there does
not exist any proper loop L homeomorphic to K1 having G as the group
topologically generated by the left translations of L and H as the stabilizer of
e ∈ L.
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Corollary 5. Let G be a connected semisimple compact Lie group having a
covering K1 of a product of the groups SO3(R) as a proper direct factor. Then
there does not exist any connected topological proper loop L homeomorphic to
K1 and having G as the group topologically generated by the left translations
of L.

Proof. We may assume that L is simply connected. Hence K1 is a direct
product of groups isomorphic to Spin3(R). Then the group G topologically
generated by the left translations of L has the form K1 × ρ(H1), where H1

is a subgroup of K1, the map ρ is a monomorphism, and the stabilizer H of
e ∈ L is the subgroup (H1, ρ(H1)) ofG (cf. Lemma 3). Since any subgroupH1

intersects the centre of K1 non trivially Corollary 4 yields the assertion.

Theorem 6. Let L be a topological loop homeomorphic to the 7-sphere or
to the 7-dimensional real projective space such that the group G topologically
generated by the left translations of L is a compact Lie group. Then L is one
of the two 7-dimensional compact Moufang loops, G is locally isomorphic to
PSO8(R) and the stabilizer H of e ∈ L is isomorphic to SO7(R).

Proof. We may assume that L is simply connected. Since G is a compact
Lie group, using Proposition 2.4 in [7] and Ascoli’s Theorem, from IX.2.9
Theorem of [6] it follows that the loop L has a left invariant uniformity.
Therefore IX.3.14 Theorem in [6] yields that L is the multiplicative loop
O of octonions having norm 1. Then G is isomorphic to SO8(R) and the
stabilizer H of e ∈ L is isomorphic to SO7(R) (cf. [10]).

If L is homeomorphic to the 7-dimensional real projective space, then the
universal covering L̃ of L is a Moufang loop homeomorphic to the 7-sphere.
It follows from [6], p. 216, that the loop L is a factor loop L̃/N , where N
is a central subgroup of L̃ of order 2. Lemma 1.33 in [9] yields that L is
the Moufang loop O/Z, where Z is the centre of the multiplicative loop of
octonions having norm 1.

If L is a differentiable loop homeomorphic to the 7-sphere and if we assume
that the group G topologically generated by the left translations of L is a
quasi-simple compact Lie group, then G is isomorphic to SO8(R) and the
stabilizer H of e ∈ L is isomorphic to SO7(R). This allows us to obtain the
assertion of Theorem 6 also in the following way. We identify the set G/H of
the left cosets with the set S of the left translations of the Moufang loop O.
The section σ : G/H → G belonging to L has the form σ(xH) = xφ(x), where
x ∈ S and φ is a differentiable map from S to H. Since any two elements of
S are contained in a subgroup D isomorphic to Spin3(R) the restriction of φ
to D is a homomorphism (Corollary 5). Hence L is a diassociative Lie loop
([6], IX.6.42) and Theorem 16.10 in [9] yields the assertion of Theorem 6.
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Theorem 7. Let G be a compact Lie group which is the group topologically
generated by the left translations of a proper topological loop L homeomor-
phic to a connected semisimple compact Lie group. Then G is a connected
semisimple Lie group.

Proof. Since L is connected also G is connected. By Hofmann-Scheerer Split-
ting Theorem (cf. [2], p. 474) the group G is isomorphic to a semidirect
product G = G′ o T , where G′ is the semisimple commutator subgroup of
G and T is a torus. The group G′ is isomorphic to an almost direct prod-
uct G′ = K1 · · ·Km of quasi-simple compact Lie groups Ki, i = 1, · · · ,m.
The loop L is homeomorphic to a connected semisimple compact Lie group
K = K1 · · ·Ks with s ≤ m. We may assume that L and hence also K are
simply connected. Since the universal covering G̃′ of G′ is the direct product
of K and the universal covering S̃ of S = Ks+1 · · ·Km, the group G′ is the
direct product of K and S. As L is homeomorphic to the image of the section
σ : G/H → G, where H is the stabilizer of e ∈ L, the set σ(G/H) has the
form {(x, α(x))}, where x ∈ K and α is a continuous mapping from K into
SoT . The group T = T1× · · ·×Th is the direct product of one-dimensional
tori Ti.

Let π be the projection from SoT into T along S and ιi be the projection
from T into Ti along the complement

∏
j 6=i Tj. As σ(G/H) is a compact

connected homogeneous space and Ti is a 1-sphere for all i any ιiπα(K) is
either constant or surjective. Since σ(G/H) generates G there exists one i
such that ιiπα(K) is different from {1}. As the group T is the direct product
of 1-dimensional tori Ti the Bruschlinsky group B (cf. [8], p. 47) of K is not
trivial. By Theorem 7.1 in [8], p. 49, B is isomorphic to the first cohomology
group H1(K). The graded cohomology algebra of the compact Lie group K
is the tensor product of the cohomology algebras H1(Ki) of the quasi-simple
factors Ki of K, i = 1, · · · , s. Since H1(Ki) has no generators of degree 1 and
2 ([1], pp. 126-127) also the cohomology algebra H1(K) has no generators
of degree 1 and 2. Hence the Poincare polynomial ψ(K) has no linear and
quadratic monomials, which is a contradiction.

Remark 2. If a topological loop L is homeomorphic to a non semisimple com-
pact connected Lie group, then in contrast to Theorem 7 the group topolog-
ically generated by the left translations of L may be non semisimple.

Let T1 be a torus of dimension m ≥ 1, P be a connected semisimple
compact Lie group and T2 be a torus of dimension s with 1 ≤ s ≤ m such that
there exists a monomorphism ϕ : T2 → P with ϕ(T2) ∩ Z(P ) = {1}, where
Z(P ) is the centre of P . Further let g : T1 → T2 be a continuous surjective
mapping which is not a homomorphism but g(1) = 1. Then according to
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Section 3 there exists a proper connected loop L homeomorphic to T1 ×
P having the direct product G = T1 × P × T2 as the group topologically
generated by the left translations of L and H = {(1, ϕ(x), x);x ∈ T2} < G
as the stabilizer of e ∈ L.

Theorem 8. There does not exist any proper topological loop which is home-
omorphic to a connected quasi-simple Lie group and has a compact Lie group
as the group topologically generated by its left translations.

Proof. By Lemma 1 we may assume that L is a proper loop homeomorphic to
a simply connected quasi-simple compact Lie group K1. Then the stabilizer
H of e ∈ L has the form H = (H1, ρ(H1)) = {(x, ρ(x));x ∈ H1}, where
ρ is a monomorphism and the group G topologically generated by the left
translations of L has the form G = K1 × ρ(H1) (cf. Lemma 3). Identifying
the space G/H with K1 one has that the image σ(K1) of the section σ :
K1 → G intersects H trivially. As ρ is a monomorphism we may assume
that H = {(x, x);x ∈ H1}. The restriction of σ to a one-dimensional torus
subgroup A ofH1 yields σ(A) = {(u, f(u))}, where f is a continuous function.
Since the compact loop σ(A) is a group (cf. Lemma 2) the map f is a
homomorphism. It follows that σ(A) has the form {(u, un)} with fixed n ∈ Z.
Since {(u, un);u ∈ A ∼= SO2(R)}∩H = {1} the equation xn = x, x ∈ A, can
be satisfied only for x = 1. Equivalently, x 7→ xn−1 is an automorphism of
SO2(R). Besides the identity the only automorphism of the group SO2(R)
is the map x 7→ x−1. Therefore we obtain n ∈ {0, 2}. Let C1 be a 3-
dimensional subgroup of H1. By Corollary 5 any 3-dimensional compact
loop havig a compact Lie group as the group topologically generated by its
left translations is a group. Hence the set C = σ(C1) = (C1, ψ(C1)) is
locally isomorphic to SO3(R) and ψ is a homomorphism of C1. Besides a
homomorphism with finite kernel any continuous homomorphism of SO3(R)
is an automorphism induced by a conjugation with elements of the orthogonal
group O3(R). Hence none of the 1-dimensional subgroups A of C1 satisfies
that σ(A) = {(x, x2), x ∈ A}. As in compact groups the exponential map is
surjective the compact group C is the union of the one-dimensional connected
subgroups σ(A) = {(x, 1), x ∈ A}. Therefore C has the form (C1, 1). Since
the 3-dimensional subgroups of H1 covers H1 (cf. [5], Propositions 6.45 and
6.46) for the continuous section σ one has σ(H1) = (H1, 1).

Let Bi be a one-dimensional torus subgroup of K1 such that σ(Bi) =
(Bi, 1). The union B =

⋃
Bi of the one-dimensional subgroups Bi of K1 is a

subgroup of K1 containing H1.
Let Fi be a 1-dimensional torus subgroup of K1 such that σ(Fi) 6= (Fi, 1).

Then one has σ(Fi) = {(x, xn);x ∈ Fi}, where n ∈ Z \ {0}. Since any 1-
dimensional subgroup of K1 is contained in a 3-dimensional subgroup of K1
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(cf. [5], Propositions 6.45 and 6.46) and any 3-dimensional loop homeomor-
phic to a cover of SO3(R) is a group (cf. Corollary 5), besides a homomor-
phism with finite kernel we obtain that x 7→ xn is either an isomorphism
or an anti-isomorphism of SO3(R). Hence one has n = 1 or −1. It follows
that either σ(Fi) = {(x, x);x ∈ Fi} or σ(Fi) = {(x, x−1);x ∈ Fi} for any
1-dimensional torus Fi of K1 with σ(Fi) 6= (Fi, 1). The union F of such
1-dimensional tori Fi of K1 is isomorphic to the group ρ(H1) ∼= H1.

The subgroups F and B yield a factorization of K1 such that the inter-
section F ∩ B is discrete. This contradicts the fact that K1 is quasi-simple
(cf. Theorem 4.6 in [1], p. 145).

Corollary 9. Let L be a proper topological loop homeomorphic to a product of
quasi-simple compact Lie groups and having a compact connected Lie group G
as the group topologically generated by its left translations. Then the minimal
dimension of G is 14. In this case G is locally isomorphic to Spin3(R) ×
SU3(C)× Spin3(R) and L is homeomorphic to a group locally isomorphic to
Spin3(R)× SU3(C).

Proof. We assume that the loop L is simply connected. Then L is homeo-
morphic to the direct product K1 of at least two quasi-simple simply con-
nected factors (cf. Theorem 8). According to Theorem 7 the connected
group G is semisimple. By Lemma 3 the stabilizer H of e ∈ L has the
form (H1, ρ(H1)) = {(x, ρ(x)), x ∈ H1} and G = K1 × ρ(H1), where H1

is a subgroup of K1 and ρ is a monomorphism. Therefore G has at least
three quasi-simple factors such that one of these is different from Spin3(R)
(cf. Corollary 5). Since any quasi-simple compact Lie group different from
Spin3(R) is at least 8-dimensional (cf. [11]), the group G has dimension at
least 14. If dim(G) = 14, then by Section 3 the group K1 coincides with
K × P = Spin3(R) × SU3(C) and G = K × P × S has the form as in the
assertion. The loop L exists since for the function g : K → S in Section 3
one can choose the function x 7→ xn with n ∈ Z \ {−1, 0, 1}.

Remark 3. Euclidean and hyperbolic symmetric spaces correspond to global
differentiable loops (cf. [9], Theorem 11.8, p. 135). In contrast to this,
compact simple symmetric spaces which are not Lie groups yield only local
Bol loops L since for L the exponential map is not a diffeomorphism (cf. [9],
Proposition 9.19, p. 115).
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