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Abstract

Using the relations between the theory of differentiable Bol loops
and the theory of affine symmetric spaces we classify all connected dif-
ferentiable Bol loops having an at most 9-dimensional semi-simple Lie
group as the group topologically generated by their left translations.
We show that all these Bol loops are isotopic to direct products of
Bruck loops of hyperbolic type or to Scheerer extensions of Lie groups
by Bruck loops of hyperbolic type.
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1 Introduction

In [15] and [17] the authors have thoroughly studied the relations between smooth Bol loops
and homogeneous spaces of Lie groups. Using their point of view we treat the connected
differentiable Bol loops L as images of global differentiable sections σ : G/H → G, where G
is a connected Lie group, H is a closed subgroup containing no non-trivial normal subgroup
of G and for all r, s ∈ σ(G/H) the element rsr lies in σ(G/H). The differentiable Bruck
loops, these are Bol loops L satisfying the identity (xy)−1 = x−1y−1, x, y ∈ L, have
realizations on differentiable affine symmetric spaces G/H, where H is the set of fixed
elements of an involutory automorphism of G and σ(G/H) is the exponential image of
the (−1)-eigenspace of the corresponding automorphism of the Lie algebra g of G. An
impotant subclass of Bruck loops are the Bruck loops of hyperbolic type which correspond
to Lie groups G and involutions τ fixing elementwise a maximal compact subgroup of G
(cf. [4], 64.9, 64.10). With this notions our main result reads as follows.

Main Theorem Let L be a connected differentiable Bol loop having an at most 9-
dimensional semi-simple Lie group G as the group topologically generated by its left trans-
lations. Then L is isotopic to a direct product of Bruck loops of hyperbolic type or to a
Scheerer extension of a Lie group by a Bruck loop of hyperbolic type.
If dim G ≤ 5 then L is isotopic to the hyperbolic plane loop H2 and G is isomorphic to
PSL2(R) (cf. [17], Sec. 22).
If dim G = 6 then L is isotopic either to the direct product H2×H2 or to the 3-dimensional
hyperbolic space loop H3 (cf. [3], p. 446) or to a Scheerer extension of a 3-dimensional
simple Lie group G1 by H2. In the first case G is isomorphic to PSL2(R)× PSL2(R), in
the second case to PSL2(C), in the third case to PSL2(R)×G1.
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If 7 ≤ dim G ≤ 8 then either L is isotopic to the complex hyperbolic plane loop having
PSU3(C, 1) as the group topologically generated by its left translations (cf. [14], Prop.
5.1, p.152) or L is isotopic to the 5-dimensional Bruck loop of hyperbolic type having the
group PSL3(R) as the group topologically generated by its left translations.
If dim G = 9 then L is isotopic either to H2 × H2 × H2 or to H2 × H3 or to a Scheerer
extension of a 6-dimensional semi-simple Lie group G2 by H2 or to a Scheerer extension of
a 3-dimensional simple Lie group G1 by H2×H2 respectively by H3. In the first case G is
isomorphic to PSL2(R)×PSL2(R)×PSL2(R), in the second case to PSL2(R)×PSL2(C),
in the third case to PSL2(R) × G2 and in the fourth case to PSL2(R) × PSL2(R) × G1

respectively to PSL2(C)×G1.

All known differentiable connected Bol loops having a semi-simple Lie group as the group
topologically generated by their left translations are isotopic to direct products of Bruck
loops of hyperbolic type or to Scheerer extensions of Lie groups by Bruck loops of hyper-
bolic type since they are constructed using Cartan involutions.

For the classification of differentiable Bol loops L up to isotopisms we proceed in the
following way ([15], pp. 424-425, [17], pp. 78-79 and Proposition 1.6, p. 18). In the Lie
algebra g of the group G topologically generated by the left translations of L we determine
the (−1)-eigenspaces m for all involutory automorphisms of g. After this we seek for any
m a system of representatives h∗ of the sets {Adgh; g ∈ G} which consists of subalgebras
with g = m⊕Adgh = m⊕h∗. Any triple (G, exph∗, expm) determines a local Bol loop.
Global differentiable Bol loops L correspond precisely to those exponential images of m,
which form a system of representatives for the cosets of exph in G. To show which local
Bol loop is extendible to a global one we need a futher analytic treatment since there are
much more local than global differentiable Bol loops.

I would thank to the referee for his useful remarks.

2 Some basic notions of the theory of Bol loops

A binary system (L, ·) is called a loop if there exists an element e ∈ L such that x = e ·x =
x · e holds for all x ∈ L and the equations a ·y = b and x ·a = b have precisely one solution
which we denote by y = a\b and x = b/a. Two loops (L1, ◦) and (L2, ∗) are called isotopic
if there are three bijections α, β, γ : L1 → L2 such that α(x) ∗ β(y) = γ(x ◦ y) holds for
any x, y ∈ L1. Isotopism of loops is an equivalence relation. Let (L1, ·) and (L2, ∗) be
two loops. The set L = L1 × L2 = {(a, b) | a ∈ L1, b ∈ L2} with the componentwise
multiplication is again a loop, which is called the direct product of L1 and L2, and the
loops (L1, ·), (L2, ∗) are subloops of L.

A loop L is called a Bol loop if for any two left translations λa, λb the product λaλbλa is
again a left translation of L. If L1 and L2 are Bol loops, then the direct product L1 ×L2

is again a Bol loop. Every subloop of a Bol loop satisfies the Bol identity.

The theory of differentiable loops L is essentially the theory of the smooth binary opera-
tions (x, y) 7→ x·y, (x, y) 7→ x/y, (x, y) 7→ x\y on the connected differentiable manifold L.
If L is a connected differentiable Bol loop then the left translations λa = y 7→ a·y : L→ L,
a ∈ L, which are diffeomorphisms of L, topologically generate a connected Lie group G
(cf. [17], p. 33; [15], pp. 414-416). Moreover the manifold L is parallelizable since the set
of the left translations is sharply transitive.

Every connected differentiable Bol loop is isomorphic to a loop L realized on the homo-
geneous space G/H, where G is a connected Lie group, H is a connected closed subgroup
which is not allowed to contain a non-trivial normal subgroup of G and σ : G/H → G
is a differentiable section with σ(H) = 1 ∈ G such that the subset σ(G/H) generates G
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and for all r, s ∈ σ(G/H) the element rsr is contained in σ(G/H) (cf. [17], p. 18 and
Lemma 1.3, p. 17, [9], Corollary 3.11, p. 51). The multiplication of L on the space G/H
is defined by xH ∗ yH = σ(xH)yH and the group G is the group topologically generated
by the left translations of L.
Let m = T1σ(G/H) be the tangent space of σ(G/H) at 1 ∈ G. If (g, [., .]) respectively h
denotes the Lie algebra of G respectively of H then one has g = m⊕h,

[
[m,m],m

]
⊆m

and m generates g. ¿From every Bol triple ((g, [., .]), h, m) we can obtain with a canon-
ical construction a triple ((g∗, [., .]∗),h∗,m∗), such that m∗ is the (−1)-eigenspace of an
involutory automorphism of g∗ and the subalgebra h∗ complements m∗ in g∗ (cf. [15],
pp. 424-425). If the Lie algebra g is semi-simple then it is isomorphic to g∗ and it is
the Lie algebra of the displacement group for the symmetric space belonging to the Lie
triple system A :=

(
m, (., ., .)

)
, with (., ., .) =

[
[., .], .

]
(cf. [13], pp. 78-79). Hence one has

g = m⊕ [m,m] (cf. [17], Section 6).

Remark. Let g be the Lie algebra of the group topologically generated by the left trans-
lations of a connected differentiable Bol loop L such that g is the direct sum g1 ⊕ g2 of
Lie algebras gi, i = 1, 2. If an involutory automorphism τ of g has the shape (τ1, id),
where τ1 is an involutory automorphism of g1 and id : g2 → g2 is the identity map, then
one has m = m1 ⊕ g2 and h = h1 ⊕ {0}, where m1 is the (−1)-eigenspace and h1 the
(+1)-eigenspace of τ1. The Bol loop L corresponding to such a triple (g,h,m) is the
direct product of a Bol loop L̃ isotopic to the Bruck loop realized on the symmetric space
expg1/ exph1 and the Lie group expg2.

Let L1 be a loop defined on the factor space G1/H1 with respect to a section σ1 : G1/H1 →
G1 the image of which is the set M1 ⊂ G1. Let G2 be a group, let ϕ : H1 → G2 be a
homomorphism and (H1, ϕ(H1)) = {(x, ϕ(x)) | x ∈ H1}. A loop L is called a Scheerer
extension of G2 by L1 if the loop L is defined on the factor space (G1 ×G2)/(H1, ϕ(H1))
with respect to the section σ : (G1 × G2)/(H1, ϕ(H1)) → G1 × G2 the image of which is
the set M1 ×G2.

Lemma 1. Let g be the Lie algebra of the group topologically generated by the left trans-
lations of a connected differentiable Bol loop L such that dim L ≥ 4 and the tangent space
T1L does not contain a Lie algebra as a direct factor. Let g be the direct product of simple
Lie algebras with dim g ≤ 9.
i) If dim g = 6 then dim L = 4.
ii) If dim g = 9 then dim L ∈ {5, 6}.

Proof. Let τ be the involutory automorphism corresponding to L. Neither the (−1)-
eigenspace nor the (+1)-eigenspace of τ can contain a simple direct factor of g. The
(−1)-eigenspace of each involutory automorphism of a 3-dimensional simple Lie algebra
is 2-dimensional (cf. [5], pp. 44-45). Hence if g = g1 ⊕ g2 with simple 3-dimensional Lie
algebras gi then dim L = 4. If g = g1⊕g2⊕g3 with 3-dimensional simple Lie algebras gi,
(i = 1, 2, 3) then the (+1)-eigenspace of an involutory automorphism of g has dimension
either 3 or 4. Let g = g1 ⊕ g2, where gi are simple Lie algebras with dim g1 = 6 and
dim g2 = 3. The dimension of a (−1)-eigenspace of an involutory automorphism of g1 is
either 3 or 4 (cf. [14], p. 153). Hence dim L /∈ {4, 7, 8}.

¿From topological reasons we obtain

Lemma 2. Let G be isomorphic to the Lie group G1 ×G2, such that G2
∼= SO3(R) and

for the subgroup H of G one has H = H1 ×H2 with 1 6= H2 ≤ G2. Then G cannot be the
group topologically generated by the left translations of a topological loop.

Proof. The factor space G/H is a topological product of spaces having as a factor the
2-sphere or the projective plane, which are not parallelizable.
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Lemma 3. Let G be a Lie group isomorphic to K × SO3(R) × SO3(R) and let H be a
subgroup of G such that H = H1 × {(a, a) | a ∈ SO3(R)} with H1 ≤ K. Then there is no
Bol loop L corresponding to the pair (G,H).

Proof. The loop L would be a product of a loop L1 corresponding to the factor space
K/H1 with a compact proper loop L2 having SO3(R)×SO3(R) as the group topologically
generated by its left translations (cf. [17], Proposition 1.18, p. 26). But such a loop L2

does not exist (cf. [17], Corollary 16.9, p. 204).

Proposition 4. There is no connected differentiable Bol loop such that the group G
topologically generated by its left translations is a compact Lie group G with dim G ≤ 9.

Proof. If G is a quasi-simple Lie group then it admits a continuous section if and only
if G is locally isomorphic to SO8(R) (cf. [18], pp. 149-150). Since dim L ≥ 4 ([17],
Corollary 16.8, p. 204) it follows from [17], Theorem 16.1 that G is locally isomorphic
to SO3(R) × SO3(R) × SO3(R). This is excluded by Theorem 16.7 in [17], p. 198 and
Lemmata 2 and 3.

An important tool to eliminate certain stabilizers H is the fundamental group π1 of a
connected topological space.

Lemma 5. Denote by G a connected Lie group and by H a connected subgroup of G.
Let σ : G/H → G be a global section. Then π1(K) ∼= π1(σ(G/H)) × π1(K1), where K
respectively K1 is a maximal compact subgroup of G respectively of H.

Proof. Since G respectively H is homeomorphic to a topological product K × Rn re-
spectively to K1 × Rn (cf. [16], p. 178) one has π1(G) = π1(K) and π1(H) = π1(K1).
The group G is homeomorphic to the topological product σ(G/H) ×H. Hence π1(G) =
π1(K) ∼= π1(σ(G/H))×H) ∼= π1(σ(G/H))× π1(K1) (cf. [7], Theorem 2.1, p. 144).

Since the Bol loops are strongly left alternative (Definition 5.3. in [17]) every global Bol
loop L contains the exponential image of the tangent space m at e ∈ L. In the discussion
which submanifolds expm can be extended to a global section we use the following Lemma
of [3].

Lemma 6. Let L be a differentiable loop and denote by m the tangent space T1σ(G/H),
where σ : G/H → G is the section corresponding to L. Then m does not contain any
element of Adgh for some g ∈ G. Moreover, every element of G can be uniquely written
as a product of an element of σ(G/H) with an element of H.

Lemma 7. Let σ : G/H → G be a continuous section, where G ∼= PSL2(R) and H is the

group

{(
l b
0 l−1

)
; b ∈ R

}
such that either l = 1 for all b ∈ R or 0 < l ∈ R. Then the

image σ(G/H) cannot contain the manifold M =

{(
x+ y z
z x− y

)
; y, z ∈ R, x ≥ 1, x2 − y2 − z2 = 1

}
.

Proof. The coset g(c)H =

(
1 + c 1
c 1

)
H, c > −1, contains the element s(c) =(

1 + c c

c c2+1
1+c

)
∈ M. But lim

c→−1
σ(g(c)H) should be lim

c→−1
s(c) which is a contradic-

tion.

Remark. If the Lie group G is the group topologically generated by the left translations
of two Bol loops L1 and L2 such that the corresponding symmetric spaces are isomorphic
then L1 and L2 are isotopic (cf. [17], Theorem 1.11, pp. 21-22).

In our computations we often use the following facts.
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As a real basis of sl2(R) we choose

(1) e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
1 0

)
, e3 =

(
0 1
−1 0

)
(cf. [6], pp. 19-20).

Then the Lie algebra multiplication is given by

[e1, e2] = 2e3, [e1, e3] = 2e2, [e3, e2] = 2e1.

An element X = λ1e1 + λ2e2 + λ3e3 ∈ sl2(R) is elliptic, parabolic or hyperbolic according
to whether

k(X,X) = λ2
1 + λ2

2 − λ2
3 is smaller, equal, or greater 0.

1.1 The basis elements e1, e2 are hyperbolic, e3 is elliptic and the elements e2 +e3, e1 +e3
are both parabolic. All elliptic elements are conjugate under Ad G to e3, all hyperbolic
elements to e1 and all parabolic elements to e2 + e3 (cf. [6], p. 23). There is precisely one
conjugacy class C of the two dimensional subgroups of PSL2(R); as a representative of C
we choose

L2 =

{(
a b
0 a−1

)
; a > 0, b ∈ R

}
.

The Lie algebra of L2 is generated by the elements e1, e2 + e3.

1.2 As a real basis of the Lie algebra so3(R) ∼= su2(C) we may choose the basis elements
{ie1, ie2, e3}, where i2 = −1. Every elements of so3(R) is conjugate to e3.

3 Bruck loops of hyperbolic type

Now we give a procedure to construct many Bruck loops having a non-compact Lie group
as the group topologically generated by the left translations.

Theorem 8. Let G be a simple non-compact Lie group, let H be a maximal compact
subgroup of G and let τ be the involutory automorphism of the Lie algebra g of G such
that the Lie algebra h of H is the (+1)-eigenspace of τ .

a) The factor space G/H is a Riemannian symmetric space diffeomorphic to the manifold
expm, where m is the (−1)-eigenspace of τ . The group G is the group of displacements
of G/H and expm = {σxHσH}, where σxH is the reflection at the point xH. Any coset
xH contains precisely one element of expm.

b) The section σ : G/H → G assigning to the coset xH the element of expm contained in
xH defines a global Bruck loop L on G/H by (xH) ∗ (yH) = σ(G/H)yH.

Proof. According to [13], Proposition 1.7, p. 148, the factor space G/H is a Riemannian
symmetric space having the groupG as its group of displacements, such that expm consists
of the products of the reflection at H and a reflection at arbitrary point (cf. [13], p. 64 and
Proposition 3.2, p. 95 and Theorem 1.3, p. 73). It follows from [13], Theorem 3.2, p. 165,
that G/H is diffeomorphic to expm, any coset xH contains precisely one element of expm
and the section σ : G/H → G is differentiable. For elements r = σxHσH , s = σyHσH
of expm one has rsr = (σxHσH)(σyHσH)(σxHσH) = (σxH(σHσyHσH)σxH)σH ∈ expm.
Hence the multiplication ∗ : G/H ×G/H → G/H defines on G/H a global differentiable
Bruck loop L (cf. [17], Proposition 9.25, p. 118).

Another proof of this theorem is given in [10], Theorem 3.3, p. 319.

Any simple non-compact Lie group G admits an involutory automorphism τ the centralizer
of which is a maximal compact subgroup of G. This Cartan involution τ determines a
symmetric space S(τ) of hyperbolic type (cf. [4], 64.9, p. 375). For this reason we call
the Bruck loop realized on S(τ) a differentiable Bruck loop of hyperbolic type.
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4 Bol loops corresponding to simple Lie groups

First we investigate the Lie groups locally isomorphic to PSL2(C). A real basis of the Lie
algebra sl2(C) is given by {e1, e2, e3, ie1, ie2, ie3}, where {e1, e2, e3} is the basis of sl2(R)
described by (1).

According to [14], p. 153, there is only one conjugacy class of involutory automorphisms
of G = PSL2(C) leaving an at most 2-dimensional subgroup H of G elementwise fixed. A
representative of this class is the map τ : PSL2(C)→ PSL2(C) : X 7→ A−1XA with A =

±
(

0 1
−1 0

)
. The centralizer of τ is the groupH =

{
±
(

a b
−b a

)
, a, b ∈ C, a2 + b2 = 1

}
.

The Lie algebra h ofH is generated by e3, ie3 and the tangent space m of the corresponding
4-dimensional symmetric space has as basis elements e1, e2, ie1, ie2.

Lemma 9. Let g be the Lie algebra sl2(C). Any 2-dimensional subalgebra h of g has (up
to conjugation) one of the following forms:

h1 = 〈e3, ie3〉, h2 = 〈e1, e2 + e3〉, h3 = 〈i(e2 + e3), e2 + e3〉.

The element e2+e3 ∈ h2 as well as i(e2+e3) ∈ h3 is conjugate under Ad G to e1+ie2 ∈m.
The element e3 ∈ h1 respectively ie3 ∈ h1 is conjugate to ie1 ∈m respectively to −e1 ∈m.

Proof. The first assertion follows from Theorem 15 in [12], p. 129.
Futhermore one has Adg1(e2 + e3) = e1 + ie2, Adg2(i(e2 + e3)) = e1 + ie2, Adg3(e3) = ie1,

Adg3(ie3) = −e1, where g1 = ±
(
−1 + i 0
− 1

2
+ 1

2
i − 1

2
− 1

2
i

)
, g2 = ±

(
− 2√

2
0

1√
2
i − 1√

2

)
and

g3 = ±
(

1 1
2
i

i 1
2

)
.

Lemma 9 yields the

Proposition 10. There is no at least 4-dimensional Bol loop having a group locally iso-
morphic to PSL2(C) as the group topologically generated by its left translations.

Now let G be locally isomorphic to the non-compact Lie group PSU3(C, 1). The Lie
algebra g = su3(C, 1) of G can be treated as the Lie algebra of matrices

(λ1e1 + λ2e2 + λ3e3 + λ4e4 + λ5e5 + λ6e6 + λ7e7 + λ8e8) 7→ −λ1i −λ2 − λ3i λ4 + λ5i
λ2 − λ3i λ1i + λ6i λ7 + λ8i
λ4 − λ5i λ7 − λ8i −λ6i

 ;λj ∈ R, j = 1, · · · , 8.

Then the multiplication in g is given by the following:

[e1, e6] = 0, [e3, e2] = 2e1, [e4, e5] = 2(e1 − e6), [e8, e7] = 2e6,

[e6, e3] = [e7, e4] = [e8, e5] =
1

2
[e1, e3] = e2,

[e2, e6] = [e4, e8] = [e7, e5] =
1

2
[e2, e1] = e3,

[e7, e2] = [e3, e8] = [e5, e6] = [e1, e5] = e4,

[e8, e2] = [e7, e3] = [e6, e4] = [e4, e1] = e5,

[e2, e4] = [e3, e5] = [e8, e1] =
1

2
[e8, e6] = e7,
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[e2, e5] = [e4, e3] = [e1, e7] =
1

2
[e6, e7] = e8.

There are two conjugacy classes of involutory automorphism of G with 4-dimensional
centralizers (see [14] (p. 155)). The centralizers of suitable representatives of these
classes are isomorphic either to H1 = Spin3 × SO2(R)/〈(−1,−1)〉 or to H2 = SL2(R) ×
SO2(R)/〈(−1,−1)〉. Moreover, the (−1)-eigenspaces mi, i = 1, 2 of these representatives
are

m1 = 〈e4, e5, e7, e8〉, m2 = 〈e1, e3, e4, e5〉.

An Iwasawa decomposition (cf. [8], Theorem 6, p. 530) of the Lie algebra su3(C, 1) is
given by

su3(C, 1) = k + a + n,

where k = 〈e1, e2, e3, e6〉 is compact, n = 〈e4−e3, e5 +e2, e6 +e7〉 is nilpotent and a = 〈e8〉.
Using this decomposition and the classification in [2], Chap. 5, p. 276, we obtain that the
conjugacy classes of the 4-dimensional subalgebras of su3(C, 1) are the following

h1 = so3(R)⊕ so2(R) = 〈e1, e2, e3, e6〉, h2 = sl2(R)⊕ so2(R) = 〈e2, e6, e7, e8〉,

h3 = 〈e4 − e3, e2 + e5, e6 + e7, e8〉.

The intersection of the subspace m2 with the subalgebras hi, i = 1, 3 as well as the
intersection of m1 with the subalgebras hj , j = 2, 3 is not trivial. Moreover, the subgroup
H2 can not be the stabilizer of the identity of a 4-dimensional differentiable loop L (see
Lemma 5). Hence it remains to prove the triple (G,H1, expm1).
The group H1 is a maximal compact subgroup of G hence there is a global differentiable
Bruck loop L0 of hyperbolic type having G ∼= PSU3(C, 1) as the group topologically
generated by its left translations. The loop L0 is realized on the complex hyperbolic plane
geometry (cf. [14], p. 152). Since only groups conjugate to H1 can be complements of
expm1 = exp{λ4e4 + λ5e5 + λ7e7 + λ8e8; λi ∈ R} there is precisely one isotopism class C
of differentiable Bol loops which are sections in PSU3(C, 1). As a representative of C we
can choose the loop L0 which we call the complex hyperbolic plane loop.

The adjoint map τ : X 7→ (X̄)t can be chosen as a representative of involutions of
g = su3(C, 1) fixing elementwise a 3-dimensional subalgebra. The centralizer of τ is the
subalgebra h = 〈e2, e4, e7〉 ∼= sl2(R). The tangent space m of the 5-dimensional symmetric
space corresponding to τ is generated by the basis elements e1, e3, e5, e6, e8.
Using the Iwasawa decomposition of su3(C, 1) and the classification in [2], Chap. 5, p.
276, we see that every 3-dimensional subalgebra h of g has one of the following shapes:

h1
∼= su2(C), h2

∼= sl2(R),

h3 = 〈e5 + e2, e6 + e7, e8〉, h4 = 〈e4 − e3 + be8, e5 + e2, e6 + e7〉,

h5 = 〈e4 − e3 + b(e5 + e2), e6 + e7, e8 + c(e5 + e2)〉,

h6 = 〈e1 − 1
2
e6 + 3

2
c(e4 − e3)− 3

2
b(e5 + e2), e8 + b(e4 − e3) + c(e5 + e2),

e6 + e7〉, where b, c ∈ R.

Since the subalgebras of su3(C, 1) isomorphic to so3(R) are conjugate under Ad G (cf. [2],
Chap. 5, p. 276) we may assume that h1 = 〈e1, e2, e3〉. The subalgebras of su3(C, 1)
isomorphic to sl2(R) form two conjugacy classes. As representatives of these conjugacy
classes we can choose the subalgebras h2,1 = 〈e2, e4, e7〉 and h2,2 = 〈e6, e7, e8〉. The
subalgebras h1 and h2,1 contain the compact element e2 which is conjugate to e1 ∈ m.
The element e6 + e7 ∈ h2,2 ∩h3 ∩h4 ∩h5 ∩h6 is conjugate to e6 + e8 ∈m since both are
hyperbolic elements in the same Lie subalgebras isomorphic to sl2(R).
The above considerations yield the
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Theorem 11. All Bol loops having a group locally isomorphic to PSU3(C, 1) as the group
topologically generated by its left translations are isotopic to the complex hyperbolic plane
loop.

Let now G be isomorphic to SL3(R). According to [14], p. 155, all involutory auto-
morphisms of SL3(R) are induced by reflections or polarities of the real projective plane
P2(R). The Lie algebra g = sl3(R) is isomorphic to the Lie algebra of matrices

(λ1e1 + λ2e2 + λ3e3 + λ4e4 + λ5e5 + λ6e6 + λ7e7 + λ8e8) 7→ −λ5 − λ8 λ1 λ2

λ3 λ5 λ6

λ4 λ7 λ8

 ;λi ∈ R, i = 1, · · · , 8.

Then the Lie multiplication of g is given by

[e1, e2] = [e1, e7] = [e2, e6] = [e3, e4] = [e3, e6] = [e4, e7] = [e5, e8] = 0,

[e1, e6] = [e2, e5] =
1

2
[e2, e8] = e2, [e1, e8] = [e2, e7] =

1

2
[e1, e5] = e1,

[e4, e6] = [e3, e8] =
1

2
[e3, e5] = −e3, [e3, e7] = [e4, e5] =

1

2
[e4, e8] = −e4,

[e6, e8] = [e5, e6] = [e3, e2] = e6, [e1, e4] = [e5, e7] = [e7, e8] = −e7,
[e1, e3] = −e5, [e2, e4] = −e8, [e6, e7] = e5 − e8.

We choose an elliptic polarity in P2(R) such that the corresponding involution τ1 induces
on sl3(R) the automorphism τ∗1 : sl3(R) → sl3(R);X 7→ −Xt. The Lie algebra so3(R) =
〈e1 − e3, e2 − e4, e7 − e6〉 is the (+1)-eigenspace of τ∗1 . The tangent space m1 ⊂ sl3(R)
of the 5-dimensional symmetric space belonging to τ∗1 has as generators e5, e8, e1 + e3,
e2 +e4, e6 +e7. We can choose a hyperbolic polarity in P2(R) such that the corresponding
involution τ∗2 of sl3(R) is given by τ∗2 : X 7→ −diag(1, 1,−1)Xt diag(1, 1,−1). The Lie
algebra fixed by τ∗2 elementwise is 〈e1 − e3, e2 + e4, e6 + e7〉. The tangent space m2 of the
corresponding symmetric space is generated by {e1 + e3, e2 − e4, e6 − e7, e5, e8}.
According to Lemma 5 any maximal compact subgroup of the stabilizer H is trivial or
locally isomorphic to SO3(R). Now using the classification of Lie, who has determined
all subalgebras of sl3(R) (cf. [12], pp. 288-289 and [11], p. 384) we obtain that the
3-dimensional subalgebras h of the stabilizer H have one of the following shapes:

h1 = so3(R), h2 = 〈a(e5 + e8) + e6 − e7, e1, e2〉, a > 0, h3 = 〈e1, e2, e6〉,

h4 = 〈e5 − e8, e2 + e3, e6, 〉, h5 = 〈e3, e6, e8 + e2〉, h6 = 〈e2, e6, e5 + e8 − e3〉,

h7 = 〈e5, e8, e6〉, h8 = 〈e2, e5 + e8, e6〉, h9 = 〈e3, e6, e8〉,

h10 = 〈e2, e6, (b− 1)e5 + be8, 〉, b ∈ R, h11 = 〈e3, e6, e5 + ce8〉, c ∈ R.

The element e8 + e2 ∈ h5 is conjugate to e8 ∈ m1 ∩ m2 under the element g = 0 0 1
0 1 0
−1 0 1

2

. Futhermore the element e5+e8−e3 ∈ h6 is conjugate to e8−2e5 ∈m1∩

m2 under g =

 0 0 1
1 0 0
− 1

3
1 0

 and e2 ∈ h2 ∩h3 is conjugate to e8− e5− (e6− e7) ∈m2

under g =

 0 −1 0
1 0 0
0 1 1

. The intersection of the subspaces m1 and m2 with the sub-

algebras hi, i = 4, 7, 8, 9, 10, 11, as well as the intersection of m2 with the subalgebra h1
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is not trivial. Hence we may suppose that the Bol loop L is realized on expm1 and the
stabilizer of the identity of L has one of the following shapes:

a) H1 = SO3(R),

b) H2 =


 d−2t a b

0 dt cos t dt sin t
0 −dt sin t dt cos t

 ; t ∈ [0, 2π), a, b ∈ R

, with d > 1,

c) H3 =


 1 k l

0 1 m
0 0 1

 ; k, l,m ∈ R

.

Proposition 12. There is no differentiable Bol loop L such that the stabilizer of the
identity e ∈ L is one of the Lie groups Hi, i = 2, 3 given in b) and c).

Proof. The exponential image of the subspace m1 consists of all positive definite matrices
of the shape A =

 a b c
b e d
c d f

 ; detA = 1

.

A differentiable Bol loop L exists if and only if every coset gHi, g ∈ G, i = 2, 3 con-
tains precisely one element m ∈ expm1 (see Lemma 6). For c ∈ R denote by gcHi

the coset

 1 + c 1 0
c 1 0
0 0 1

Hi, i = 2, 3. The coset g1H2 contains different elements

m1 =

 2 1 0
1 1 0
0 0 1

 and m2 =

 2d−4π d−4π 0

d−4π d−4π+d2π

2
0

0 0 d2π

 of expm1. If c > −1 then

any coset gcH3 contains precisely the element

s3(c) =

 (1 + c) c 0

c c2+1
c+1

0

0 0 1

 ∈ σ(G/H3).

But lim
c→−1

σ(gcH3) should be lim
c→−1

s3(c) which is a contradiction.

A reflection τ3 in P2(R) can be chosen in such a way that it induces on sl3(R) the involution
τ∗3 : sl3(R) → sl3(R);X 7→ A−1XA, A = diag (1,−1,−1), which fixes elementwise the
subalgebra 〈e5, e6, e7, e8〉 isomorphic to gl2(R). The tangent space m3 of the corresponding
4-dimensional symmetric space has as generators e1, e2, e3, e4. The group associated with
〈e5, e6, e7, e8〉 is excluded by Lemma 5 and hence the classification of Lie (cf. [12], pp.
288-289 and [11], p. 384) yields that the Lie algebra h of the stabilizer of the identity of
a 4-dimensional Bol loop has (up to conjugation) one of the following forms:

h1 = 〈e1, e2, e6, e5 + ce8〉, h2 = 〈e3, e5, e6, e8〉, h3 = 〈e1, e2, e6, e8〉,

h4 = 〈e2, e5, e6, e8〉, where c ∈ R.

The intersection of all these subalgebras hi, i = 1, · · · , 4 with the subspace m3 is not
trivial.

This contradiction to Lemma 6 and the above considerations yield the main part of the
following

Theorem 13. Every Bol loop with the group SL3(R) as the group topologically generated
by the left translations is isotopic to the 5-dimensional Bruck loop L0 of hyperbolic type
having the group SO3(R) as the stabilizer of e ∈ L0.
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Proof. The group SO3(R) is a maximal compact subgroup of SL3(R). According to
Theorem 8 there is a 5-dimensional Bruck loop L0 of hyperbolic type realized on the
differentiable manifold expm1. Since up to isomorphisms there is only one symmetric
space S having SL3(R) as the group of displacements and SO3(R) as the centralizer of
the involutory automorphism belonging to S there exists precisely one isotopism class C
of differentiable Bol loops corresponding to SL3(R) and L0 is a representative of C.

5 Bol loops corresponding to semi-simple Lie groups

Let G = G1 × G2 be the group topologically generated by the left translations of a
connected differentiable Bol loop L such that M = M1 × M2 holds, where M is the
symmetric space belonging to L. If for the stabilizer H of e ∈ L one has H = H1 × H2

with 1 6= Hi < Gi, i = 1, 2, then L is a direct product of two proper Bol loops L1 and
L2 such that Li is realized on Mi, has Gi as the group topologically generated by the
left translations and Hi as the stabilizer of e ∈ Li, i = 1, 2, (cf. [17], Proposition 1.19,
p.28). If M2

∼= G2 and the stabilizer H of e ∈ L has the shape H = (H1, ϕ(H1)), where
ϕ : H1 → G2 is a homomorphism, then L is a Scheerer extension of the Lie group G2 by
the proper Bol loop L1 (cf. [17], Proposition 2.4, p. 44). If G has dimension ≤ 9 and the
direct factors are simple then Gi is isomorphic either to PSL2(R) or to PSL2(C) or to
SO3(R). There is no proper Bol loop corresponding to SO3(R) (cf. [17], Corollary 16.8,
p. 204) and every proper Bol loop having PSL2(R) respectively PSL2(C) as the group
topologically generated by the left translations is isotopic to the hyperbolic plane loop (cf.
[17], Section 22) respectively to the hyperbolic space loop (cf. [3], Theorem 5, p. 446 and
Proposition 10). This discussion yields

Theorem 14. Let L be a connected differentiable Bol loop having an at most 9-dimensional
semi-simple Lie group G as the group topologically generated by its left translations.
i) If the stabilizer H is a direct product of subgroups 1 6= Hi contained in the simple fac-
tors Gi of G then L is a direct product of proper Bol loops Li isotopic to the hyperbolic
plane loop H2 respectively to the hyperbolic space loop H3. Furthermore, G is isomor-
phic either to PSL2(R)×PSL2(R) or to PSL2(R)×PSL2(R)×PSL2(R) respectively to
PSL2(C)× PSL2(R).

ii) If the stabilizer H is not a direct product of subgroups 1 6= Hi contained in the simple
factors Gi of G then one has G = G1 × S, where G1 is isomorphic either to PSL2(R) or
to PSL2(R) × PSL2(R) respectively to PSL2(C) and S is the complement of G1 in G.
Moreover, the stabilizer H has the shape {(x, ϕ(x)) | x ∈ H1}, where H1 is isomorphic
either to SO2(R) or to SO2(R) × SO2(R) respectively to SO3(R) and the loop L is a
Scheerer extension of S by H2 in the first case, by H2 ×H2 in the second case and by H3

in the third case.

From now we assume that the subgroup H is not decomposable into a direct product.
Denote by pi : G→ Gi the projection of G onto the i-th components Gi of G.

Lemma 15. There is one conjugacy class C1 of involutory automorphisms of so3(R) and
two conjugacy classes C2 and C3 of involutory automorphisms of sl2(R). As a represen-
tative of C1 we can choose one which fixes the 1-dimensional subalgebra 〈e3〉 elementwise.
As a representative of C2 respectively C3 we can choose one fixing 〈e3〉 respectively 〈e2〉
elementwise.

Proof. The assertion follows from [5], pp. 44-45.

Proposition 16. Every connected differentiable Bol loop having a group locally isomorphic
to PSL2(R)×SO3(R) as the group topologically generated by its left translations is isotopic
to a Scheerer extension of SO3(R) by H2.
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Proof. Assume that L is not a Scheerer extension in the assertion. The automorphism
group Γ of the Lie algebra g of G is the direct product of the automorphism group of
sl2(R) and the automorphism group of so3(R). According to Lemma 15 there are two
conjugacy classes of involutory automorphisms of g fixing elementwise a 2-dimensional
subalgebra. The (−1)-eigenspaces of suitable representatives of these classes are

m1 = 〈(e1, 0), (e2, 0), (0, ie1), (0, ie2)〉, m2 = 〈(e1, 0), (e3, 0), (0, ie1), (0, ie2)〉.

Since SO3(R) has no 2-dimensional subgroup we have to investigate the case that dim p1(H) =
2 and dim p2(H) = 1. Then we may assume that p1(h) = 〈e2 + e3, e1〉, p2(h) = 〈e3〉 (see
1.1 and 1.2) and the Lie algebra h has the shape h = 〈(e2 + e3, 0), (e1, e3)〉. The element
(e2 + e3, 0) ∈ h is conjugate to (e1 + e3, 0) ∈m2 (see 1.1). Hence there is no differentiable
Bol loop L with TeL = m2. Since p1(expm1) and p1(exph) satisfy the conditions of
Lemma 7 we have also here a contradiction.

Proposition 17. If the Lie group G′ = G1 × G2 or G′′ = G1 × G2 × G3, where Gi
(i = 1, 2, 3) is locally isomorphic to PSL2(R), is the group topologically generated by the
left translations of a connected differentiable Bol loop L then L is either a direct product
of proper Bol loops isotopic to the hyperbolic plane loop H2 or a Scheerer extension of
PSL2(R) by H2 respectively by H2 ×H2 or a Scheerer extension of PSL2(R)× PSL2(R)
by H2.

Proof. Assume that L has not a form as in the assertion. The automorphism group
Γ of the Lie algebra g′ = sl2(R) ⊕ sl2(R) of G′ is the semidirect product of the normal
automorphism group Γ1×Γ1, where Γ1 is the automorphism group of sl2(R), by the group
generated by σ : sl2(R)→ sl2(R); (u, v) 7→ (v, u). To the symmetric space determined by
σ there corresponds a 3-dimensional Bol loop having PSL2(R) × PSL2(R) as the group
topologically generated by the left translations, but such a Bol loop does not exit (cf. [3],
pp. 442-444). Hence there exist up to automorphisms of G′ precisely three 4-dimensional
symmetric spaces of G′ the tangent spaces of which are given by

m1 = 〈(e1, 0), (e2, 0), (0, e1), (0, e2)〉, m2 = 〈(e1, 0), (e2, 0), (0, e1), (0, e3)〉,
m3 = 〈(e1, 0), (e3, 0), (0, e1), (0, e3)〉.

Moreover, there are up to automorphisms of G′′ four 6-dimensional symmetric spaces in
G′′ the tangent spaces of which are

m̃1 = 〈(e1, 0, 0), (e2, 0, 0), (0, e1, 0), (0, e2, 0), (0, 0, e1), (0, 0, e2)〉,
m̃2 = 〈(e1, 0, 0), (e2, 0, 0), (0, e1, 0), (0, e2, 0), (0, 0, e1), (0, 0, e3)〉,
m̃3 = 〈(e1, 0, 0), (e2, 0, 0), (0, e1, 0), (0, e3, 0), (0, 0, e1), (0, 0, e3)〉,
m̃4 = 〈(e1, 0, 0), (e3, 0, 0), (0, e1, 0), (0, e3, 0), (0, 0, e1), (0, 0, e3)〉.

If L corresponds to G′ then dim H = 2 and H = (ϕ(L2),L2), where ϕ 6= 1 is a homo-
morphism of L2 into PSL2(R). If ϕ is injective then the Lie algebra of H has the shape
h = 〈(e1, e1), (e2 + e3, e2 + e3)〉 and the intersection of h with mi for i = 1, 2, 3, is not
trivial. If ϕ has 1-dimensional kernel then h contains the element (0, e2 + e3) which is
conjugate to (0, e1 + e3) ∈ m2 ∩m3 (see 1.1). Hence the subspaces m2 and m3 cannot
determine a Bol loop. Since p2(expm1) and p2(exph) have a shape as in Lemma 7 we
obtain also a contradiction.

If L corresponds to G′′ then dim H ∈ {3, 4} (see Lemma 1). The dimension of H cannot
be 4 since every 4-dimensional subgroup of G′′ contains a direct factor and there is no
3-dimensional Bol loop corresponding to PSL2(R)× PSL2(R).

Let now dimH = 3 and pi(H) 6= (H∩Gi) for i = 1, 2, 3. If p1(H) is isomorphic to PSL2(R)
then one has pj(H) ∼= PSL2(R) for j = 2, 3 and the Lie algebra h of H contains (e1, e1, e1)
up to conjugacy. If pi(H) is isomorphic to L2 for i = 2, 3 then the projection of H onto
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the first component of G′′ is a non-trivial homomorphic image of L2. In this case the Lie
algebra h contains either the element (e1, e1, e1) or (0, 0, e2 + e3) up to conjugacy. The
first of them lies in m̃i for i = 1, 2, 3, 4 and the second is conjugate to (0, 0, e1 + e3) ∈ m̃i,
i = 2, 3, 4 (see 1.1). Since p3(exp m̃1) and p3(exph) satisfies the conditions of Lemma 7
we have a contradiction and the assertion follows.

Proposition 18. Every connected differentiable Bol loop L having a group locally isomor-
phic either to G′ = PSL2(R)×SO3(R)×SO3(R) or to G′′ = PSL2(R)×PSL2(R)×SO3(R)
as the group topologically generated by its left translations is a Scheerer extension of
SO3(R) × SO3(R) respectively of PSL2(R) × SO3(R) by the hyperbolic plane loop H2

or a Scheerer extension of SO3(R) by H2 ×H2.

Proof. Assume that L is not a Scheerer extension in the assertion. Lemmata 1, 2 and 3
exclude the group G′.
According to Proposition 16 and Lemma 2 we may assume that pi(H) 6= (H ∩ Gi),
i = 1, 2, 3. Hence the stabilizer H of the identity of L in G′′ has dimension 3. Moreover,
the Lie algebra of H has the form

h = 〈(e1, e1, e3), (e2 + e3, 0, 0), (0, e2 + e3, 0)〉.

According to Lemma 15 we have four conjugacy classes of involutory automorphisms of
g′′ = sl2(R) ⊕ sl2(R) ⊕ so3(R) which fix elementwise a 3-dimensional subalgebra of g′′.
The (−1)-eigenspaces of suitable representatives of these classes are given by

m1 = 〈(e1, 0, 0), (e2, 0, 0), (0, e1, 0), (0, e2, 0), (0, 0, ie1), (0, 0, ie2)〉,

m2 = 〈(e1, 0, 0), (e2, 0, 0), (0, e1, 0), (0, e3, 0), (0, 0, ie1), (0, 0, ie2)〉,

m3 = 〈(e1, 0, 0), (e3, 0, 0), (0, e1, 0), (0, e2, 0), (0, 0, ie1), (0, 0, ie2)〉,

m4 = 〈(e1, 0, 0), (e3, 0, 0), (0, e1, 0), (0, e3, 0), (0, 0, ie1), (0, 0, ie2)〉.

As the elements e3 and ie1 are conjugate in SO3(R) (see 1.2) the subalgebras mi, i =
1, 2, 3, 4, cannot be the tangent spaces of Bol loops corresponding to G′′.

Proposition 19. Let the group G be locally isomorphic to a direct product G = G1×G2,
where G1

∼= PSL2(C) and G2 is either PSL2(R) or SO3(R). Every connected differ-
entiable Bol loop having G as the group topologically generated by its left translations is
either a direct product of the hyperbolic space loop H3 and the hyperbolic plane loop H2 or
a Scheerer extension of PSL2(C) by H2 or a Scheerer extension of a 3-dimensional simple
Lie group by H3.

Proof. There is precisely one conjugacy class of 4-dimensional subgroups of SL2(C) (see
[1], p. 277). This class can be represented by a subgroup V , the Lie algebra of which is

v = 〈e1, i e1, e2 + e3, i(e2 + e3)〉.

The maximal compact subgroups of V are isomorphic to SO2(R). Representatives of the
3-dimensional subalgebras of SL2(C) (cf. [1], p. 277-278) are given by

so3(R) = 〈ie1, ie2, e3〉, sl2(R) = 〈e1, e2, e3〉,

wr = 〈(ri− 1)e1, e2 + e3, i(e2 + e3)〉, u1 = 〈ie1, e2 + e3, i(e2 + e3)〉.

Any 2-dimensional ideal of the subalgebras wr, r ∈ R, and u1 is isomorphic to 〈e2 +
e3, i(e2 + e3)〉. The maximal compact subgroups of the Lie group corresponding to wr are
trivial for any r ∈ R, whereas the maximal compact subgroups of the Lie group corre-
sponding to u1 are isomorphic to SO2(R).
According to Lemma 1 we have dim L ∈ {5, 6}. If G is locally isomorphic to PSL2(C)×
SO3(R), then dim L 6= 5. Otherwise dim H would be 4 and p1(H) = V which contradicts
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Lemma 5.
There are precisely three classes of involutions of sl2(C) (cf. [14], pp. 152-153). The
(+1)-eigenspaces of suitable representatives of these involutions are h = 〈e3, ie3〉 or
h = 〈e1, e2, e3〉 respectively h = 〈ie1, ie2, e3〉. The automorphism group Γ of the Lie
algebra g′ = sl2(C)⊕ sl2(R) respectively of g′′ = sl2(C)⊕ so3(R) is the direct product of
the automorphism group of sl2(C) and the automorphism group of sl2(R) respectively of
so3(R). According to Lemma 15 there exist precisely two conjugacy classes of involutions
of g′ having 3-dimensional subalgebras as their (+1)-eigenspaces. The (−1)-eigenspaces
of suitable representatives of these classes are given by

m1 = 〈(e1, 0), (e2, 0), (ie1, 0), (ie2, 0), (0, e1), (0, e2)〉,

m2 = 〈(e1, 0), (e2, 0), (ie1, 0), (ie2, 0), (0, e1), (0, e3)〉.

Moreover, there are precisely four conjugacy classes of involutions of g′ leaving 4-dimensional
subalgebras elementwise fix. The tangent spaces mi, i = 3, 4, 5, 6, of the corresponding
symmetric spaces are:

m3 = 〈(ie1, 0), (ie2, 0), (ie3, 0), (0, e1), (0, e2)〉,

m4 = 〈(ie1, 0), (ie2, 0), (ie3, 0), (0, e1), (0, e3)〉,

m5 = 〈(e1, 0), (e2, 0), (ie3, 0), (0, e1), (0, e2)〉,

m6 = 〈(e1, 0), (e2, 0), (ie3, 0), (0, e1), (0, e3)〉.

For g′′ there is one conjugacy class of involutory automorphisms which fix 3-dimensional
subalgebras elementwise. The (−1)-eigenspace of a representative of this class is the
subspace

m̃1 = 〈(e1, 0), (e2, 0), (ie1, 0), (ie2, 0), (0, ie1), (0, ie2)〉.

First we consider the case that G is locally isomorphic to PSL2(C)×SO3(R) and dim H =
3. According to Lemma 5 the projection p1(h) of the Lie algebra h of H onto the first
component is isomorphic either to so3(R) or to a Lie algebra wr, r ∈ R. If p1(h) ∼=
p2(h) ∼= so3(R) then we may assume that h has the shape {(x, x); x ∈ so3(R)}. But
then h ∩ m̃1 is not trivial. If p1(h) is isomorphic to wr, r ∈ R, then up to conjugation
h has the form h = (wr, φ(wr)), where φ is a homomorphism of wr onto so2(R) and
φ−1(0) = 〈(e2 + e3, 0), (i(e2 + e3, 0))〉. Since (e2 + e3, 0) is conjugate to (e1 + ie2, 0) ∈ m̃1

the subspace m̃1 cannot be the tangent space of a differentiable Bol loop.
Now we assume that G is locally isomorphic to PSL2(C) × PSL2(R) and dim H = 3.
If dim p2(h) = 3 then the subgroup H is locally isomorphic to {(x, x); x ∈ PSL2(R)}
and the Lie algebra h of H is generated by (e1, e1), (e2 + e3, e2 + e3), (e3, e3). But then
h ∩mi 6= {0} for i = 1, 2.
If dim p2(h) = 2 then dim p1(h) ∈ {2, 3}. If p1(H) ∼= p2(H) ∼= L2 then the Lie algebra
h has the shape 〈(e1, e1), (e2 + e3, 0), (0, e2 + e3)〉. If p1(h) is a 2-dimensional abelian
subalgebra of sl2(C) then h has the shape h = (K, 0) ⊕ (ϕ(p2(h)), p2(h)), where ϕ is a
homomorphism with the nucleus (0, e2 + e3) and K is a complement of ϕ(p2(h)) in p1(h).
According to Lemma 9 the homomorphism ϕ may be chosen in such a way that ϕ(p2(h))
has one of the following shapes: 〈e3〉, 〈ie3〉, 〈e2 + e3〉, 〈i(e2 + e3)〉. Hence h contains one of
the following 1-dimensional algebras: 〈(e3, e1)〉, 〈(ie3, e1)〉, 〈(e2 +e3, e1)〉, 〈(i(e2 +e3), e1)〉.
But (e1, e1) ∈ h∩m1∩m2 and the element (0, e2+e3) ∈ h is conjugate to (0, e1+e3) ∈m2

(see 1.1). Since p1(m1) as well as p1(h) have a form as in Lemma 9 these subalgebras h
are excluded.
Let now dim p1(h) = 3 and dim p2(h) ∈ {2, 1}. Then h has the shape h = (p1(h), ϕ(p1(h))),
where ϕ is a homomorphism of a 3-dimensional subalgebra of sl2(C) onto p2(h) with
dim ϕ−1(0) ∈ {2, 1}. Then p2(h) contains the element (e2 + e3, 0) or (i(e2 + e3, 0)).
However, both of them are conjugate to (e1 + ie2, 0) ∈m1 ∩m2 (see Lemma 9).
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Finally let G be locally isomorphic to PSL2(C)× PSL2(R) and let dim H = 4. Since H
does not decompose onto a direct product H1 ×H2 with Hi < Gi we have dim p1(h) +
dim p2(h) ≥ 5 and hence dim p1(h) ≥ 3.
We consider first the case dim p1(h) = 3. The subalgebra p2(h) cannot be sl2(R) since
sl2(R) is simple.
If dim p2(h) = 2 then we may assume that p2(h) = 〈e1, e2 + e3〉 (see 1.1). Then h has
the form (p1(h), ϕ(p1(h))⊕〈(0, e2 + e3)〉, where ϕ is a homomorphism of p1(h) into p2(h)
with dim ϕ−1(0) = 2 and p1(h) is either the subalgebra u1 or wr, r ∈ R. It follows that h
contains the elements (e2+e3, 0) and (i(e2+e3), 0). The element (i(e2+e3), 0) is contained
in mi, i = 3, 4, and (0, e1 + e3) ∈m6 is conjugate to (0, e2 + e3) ∈ h (see 1.1).
Therefore it remains to investigate the triples (G, exphi, expm5), i = 1, 2, with

h1 = 〈(e2 + e3, 0), (i(e2 + e3), 0), ((ri− 1)e1, e1), (0, e2 + e3)〉

h2 = 〈(e2 + e3, 0), (i(e2 + e3), 0), (ie1, e1), (0, e2 + e3)〉.

Let dim p1(h) = 4. Then up to conjugation we have p1(h) = v. Since v is solvable and
sl2(R) is simple it follows dim p2(h) < 3.
If dim p2(h) = 2 then we may assume that p2(h) = 〈e1, e2 + e3〉 (see 1.1) and the
subalgebra h has the form h = (v, ψ(v)), where ψ is a homomorphism from v onto p2(h)
such that ψ−1(0) = 〈e2 + e3, i(e2 + e3)〉. Since the image ψ(wr), r ∈ R, as well as ψ(u1) is
the 1-dimensional ideal 〈e2+e3〉 of p2(h) the subalgebra h would contain ((ri−1)e1, e2+e3)
for all r ∈ R and (ie1, e2 + e3). This contradicts dim h = 4.
Let now dim p2(h) = 1. Then one has h = (v, ϕ(v)), where ϕ is a homomorphism
from v onto a 1-dimensional subalgebras of sl2(R). Since ϕ−1(0) is 3-dimensional the
commutator subalgebra 〈(e2 + e3, 0), (i(e2 + e3), 0)〉 of v is contained in ϕ−1(0). If the
element ((ri − 1)e1, 0) ∈ wr lies in h then for the fourth generator of h we have up to
conjugation the following possibilities: (e1, e1), (e1, e2+e3), (e1, e3), (ie1, e1), (ie1, e2+e3),
(ie1, e3). If h contains the element (ie1, 0) then for the fourth basis element of h we may
choose one of the following: (e1, e1), (e1, e2 + e3), (e1, e3). The element (i(e2 + e3), 0) ∈ h
lies in m3 ∩m4, the elements (e1, e1) and ((ri− 1)e1, 0)− r(ie1, e1) of h are contained in
m5∩m6 and (e1, e3), ((ri−1)e1, 0)−r(ie1, e3) are elements of m6. Moreover, (e1, e2 +e3)
respectively ((ri − 1)e1, 0) − r(ie1, e2 + e3) is conjugate to (e1, e1 + e3) respectively to
(−e1,−r(e1 + e3)) which are elements of m6 (see 1.1).
It remains to investigate the triples (G, exphi, expm5), where hi has one of the following
shapes:

h3 = 〈(e2 + e3, 0), (i(e2 + e3), 0), ((ri− 1)e1, 0), (e1, e2 + e3)〉,

h4 = 〈(e2 + e3, 0), (i(e2 + e3), 0), ((ri− 1)e1, 0), (ie1, e2 + e3)〉,

h5 = 〈(e2 + e3, 0), (i(e2 + e3), 0), ((ri− 1)e1, 0), (e1, e3)〉,

h6 = 〈(e2 + e3, 0), (i(e2 + e3), 0), ((ri− 1)e1, 0), (ie1, e3)〉,

h7 = 〈(e2 + e3, 0), (i(e2 + e3), 0), (ie1, 0), (e1, e2 + e3)〉,

h8 = 〈(e2 + e3, 0), (i(e2 + e3), 0), (ie1, 0), (e1, e3)〉.

The exponential image of the subspace m5 consists of elements((
a1 + a2 b1 + b2i
b1 − b2i a1 − a2

)
,

(
c+ d f
f c− d

))
; a1 ≥ 1, c ≥ 1, a2, b1, b2, d, f ∈ R

with a21 − a22 − b21 − b22 = 1 = c2 − d2 − f2. Since p2(Hi), i = 1, 2, 3, 4, 7, and p2(expm5)
satisfy the conditions of Lemma 7 the subalgebras Hi for i = 1, 2, 3, 4, 7 cannot occur as
the stabilizer of identity for a Bol loop.

The first component of exphi, i = 5, 6, 8, has the form

(
exp v z

0 exp −v

)
, where z ∈ C,
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and v = (ri− 1)x+ εy, x, y ∈ R with ε = 1 for j = 5 and ε = i in the case j = 6, whereas
v = ix+ y for j = 8.

The cosets

((
5 1
4 1

)
, 1

)
Hi, i = 5, 6, 8, contain the different elementsm1 =

((
5
4

1
1 8

5

)
, 1

)
and m2 =

((
5 4
4 17

5

)
, 1

)
of expm5 which is a contradiction to Lemma 7.
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