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Abstract. We give a necessary modification of Proposition 1.18 in Nagy and Strambach
(Loops in Group Theory and Lie Theory. de Gruyter Expositions in Mathematics Berlin,
New York, 2002) and close the gap in the classification of differentiable Bol loops given
in Figula (Manuscrp Math 121:367–385, 2006). Moreover, using the factorization of Lie
groups we determine the simple differentiable proper Bol loops L having the direct product
G1 × G2 of two groups with simple Lie algebras as the group topologically generated by
their left translations such that the stabilizer of the identity element of L is the direct product
H1 × H2 with Hi < Gi . Also if G1 = G2 = G is a simple permutation group containing
a sharply transitive subgroup A, then an analogous construction yields a simple proper Bol
loop. If A is cyclic and G is finite and primitive, then all such loops are classified.

1. Introduction

In [12] the loops L are consistently considered as sharply transitive sections σ :
G/H → G, where G is the group generated by the left translations of L and H is
the stabilizer of the identity element e of L in G.

This point of view is applied there for a classification of differentiable loops of
low dimension. Using the methods of [12] in [3] a classification of differentiable
Bol loops having an at most nine-dimensional semi-simple Lie group as the group
topologically generated by their left translations is given.

A useful tool proving this classification was Proposition 1.18 in [12]: If the group
G generated by the left translations of a loop L is the direct product G = G1 × G2
and for the stabilizer H of e ∈ L in G one has H = H1 × H2 with Hi < Gi , then
L is a product of two loops L1 and L2. But the further claim of this proposition
that the loop Li , i = 1, 2, is isomorphic to a loop having Gi as the group generated
by its left translations and Hi as the stabilizer of the identity needs a modification
(see Proposition 1). Namely, there are loops L = L1L2, which we call subloop
incompatible loops such that at least one of the subgroups generated by the left
translations of Li , i = 1, 2, is a proper subgroup of Gi .
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Due to this fact the classification of differentiable Bol loops L given in Main
Theorem in [3, pp. 367–368], is complete under the following additional assump-
tion:
(∗) If L is a connected differentiable Bol loop having a semi-simple Lie group
G = G1 × · · · × Gn with the non-trivial simple direct factors Gi as the group
topologically generated by its left translations and σ : G/H → G as the corre-
sponding section, then σ(G/H) = σ1(G/H) × · · · × σn(G/H), where σi is the
projection of σ(G/H) into Gi , and σi (G/H) generates Gi for all i = 1, . . . , n.

One aim of this paper is to classify connected differentiable Bol loops which
do not satisfy the condition (∗) and have an at most nine-dimensional semi-sim-
ple Lie group G as the group topologically generated by their left translations (cf.
Theorems 5, 12 and 13). These loops are subloop incompatible.

Our investigation shows that subloop incompatible differentiable Bol loops L
which have a semi-simple Lie group as the group topologically generated by the
left translations occur only if the section corresponding to L has as direct factor
a simple symmetric space generating a non-simple group of displacements. This
allows to determine all simple differentiable proper Bol loops L having the direct
product G1 ×G2 of two groups with simple Lie algebras as the group topologically
generated by their left translations such that the stabilizer of e ∈ L in G is the direct
product H1 × H2 with Hi < Gi . These loops are products of two Lie groups (cf.
Theorem 4). To classify these loops we essentially use results on factorizations of
simple Lie groups (cf. [14,13]).

Proposition 2 and Lemma 2 in [11] are, as the author there shows, powerful
tools for a general construction of simple proper Bol loops. We use this construction
for simple permutation groups G acting on a set � and having a sharply transitive
subgroup C . Let S be the stabilizer of a point p ∈ � in G. Then there is a simple
proper Bol loop L having G × G as the group generated by its left translations.
The stabilizer H of the identity e ∈ L has the form H = C × S and L is a product
of the groups S and C . If G is a finite primitive permutation group and C is cyclic,
then using [7] we obtain that G must be one of the following groups: the alternating
group A2k+1, k ≥ 2, the group P SL2(11), the Mathieu group M11 or M23 and the
group P SLd(q)with d ≥ 2, (d, q) /∈ {(2, 2), (2, 4)} such that the greatest common
divisor of d and q − 1 equals 1 (cf. Corollary 9). Moreover, for every such G we
determine the stabilizer H and the corresponding loop L .

2. Notation

Let G be a connected semi-simple Lie group with trivial centre. A decomposition
G = G1 · G2, where Gi , i = 1, 2, are closed connected subgroups is called an
Iwasawa decomposition if G1 is a maximal compact subgroup of G and G2 has
only trivial compact subgroups. One has G1 ∩ G2 = {1}. If ˜G is a covering group
of G, then an Iwasawa decomposition is given by ˜G = ˜G1 · ˜G2, where ˜G1 is a
covering group of G1 and ˜G2 is isomorphic to G2.

Let G1 and G2 be groups and let ϕ : G1 → G2 be a homomorphism. Then we
distinguish between the following two subgroups of G1 × G2:
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G1 × ϕ(G1) = {(x1, ϕ(x2)); x1, x2 ∈ G1}
and

(G1, ϕ(G1)) = {(x, ϕ(x)); x ∈ G1}.
Let G2 be a group, H2 be a subgroup of G2 and let L2 be a loop realized on the

factor space G2/H2 with respect to the section σ2 : G2/H2 → G2 the image of
which is the set M ⊂ G2. A loop L is a Scheerer extension of the group G1 by the
loop L2 if L is realized on G/H , where G is the direct product G1 × G2, H is the
subgroup (ρ(H2), H2) with a homomorphism ρ : H2 → G1 and L corresponds to
the sharply transitive section σ : G/H → G with σ(G/H) = G1 × M .

2.1 If the group G is locally isomorphic to P SL2(R), then we choose as a real basis
of the Lie algebra sl2(R) always

e1 =
(

1 0
0 −1

)

, e2 =
(

0 1
1 0

)

, e3 =
(

0 1
−1 0

)

(cf. [4, pp. 19–20]). An element X = λ1e1 + λ2e2 + λ3e3 ∈ sl2(R) is elliptic,
parabolic or hyperbolic depending on whether

k(X, X) = λ2
1 + λ2

2 − λ2
3 is smaller, equal, or greater 0,

(cf. [4, p. 20], where k is called the normalized Cartan-Killing form of sl2(R)).
The basis elements e1, e2 are hyperbolic, e3 is elliptic and the elements e2 + e3,
e1 +e3 are both parabolic. The group G contains 3 conjugate classes of 1-parameter
subgroups; the parabolic 1-parameter subgroups corresponding to the subalgebra
R(e2 + e3), the hyperbolic 1-parameter subgroups corresponding to Re1 and the
elliptic 1-parameter subgroups belonging to Re3. An element g ∈ G is called
parabolic, hyperbolic or elliptic depending on whether g is contained in a para-
bolic, hyperbolic or elliptic subgroup. Moreover, the group G contains precisely
one conjugacy class C of 2-dimensional subgroups; as a representative of C we
choose

L2 =
{(

a b
0 a−1

)

; a > 0, b ∈ R

}

.

The Lie algebra of L2 is generated by the elements e1, e2 + e3.

2.2 In the direct product L2 × L2 there is precisely one conjugacy class of
3-dimensional connected subgroups having no 1-dimensional direct factor, namely
the direct product L2 × L2 with amalgamated commutator factor subgroups. This
subgroup has the form

{((

a b
0 a−1

)

,

(

a c
0 a−1

))

; a > 0, b, c ∈ R

}

(see [6, 9.11 Satz, p. 50]).
Other basic notions used in this paper are contained in Sect. 2 in [3, pp.

368–372].
For Lie groups having a simple Lie algebra we use the notation of [16].
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3. Bol loops corresponding to the direct product of two groups

First we give the necessary modification of Proposition 1.18 in [12].

Proposition 1. (a) Let L be a loop, G be the group generated by the left transla-
tions of L and let H be the stabilizer of the identity e ∈ L in G. If G and H are
the direct products G = G1 ×G2 and H = H1 × H2 with Hi < Gi (i = 1, 2),
then L is the product of two loops L1 and L2. Let σ : G/H → G1 × G2 be
the section corresponding to L and let σi = pi ◦ σ , where pi is the natural
projection G → Gi (i = 1, 2). The loop L1, respectively the loop L2 is a
normal subloop of L if and only if

σ2(g1 H1, g2 H2) = σ2(H1, g2 H2),

respectively

σ1(g1 H1, g2 H2) = σ1(g1 H1, H2)

for all g1 ∈ G1, g2 ∈ G2.
(b) The image of the section belonging to the subloop L1 is the set S1 = {σ1((g1, 1)

(H1, H2)); g1 ∈ G1} and the image of the section corresponding to the sub-
loop L2 is the set S2 = {σ2((1, g2)(H1, H2)); g2 ∈ G2}. Moreover, one has
L1 ∩ L2 = {e ∈ L}.

(c) The loop Li is isomorphic to a loop ̂Li (i = 1, 2) having the group ̂Gi/Ni as
the group generated by the left translations of ̂Li , where ̂Gi is the subgroup of
Gi generated by Si and Ni is a normal subgroup of ̂Gi with Ni < Hi which
is maximal with respect to this property. The stabilizer of e ∈ ̂Li in ̂Gi is
isomorphic to the group ̂Hi = (Hi ∩ ̂Gi )/Ni (i = 1, 2).

Proof. The restriction of σ1, respectively σ2 to the subsets (G1 × H2)/(H1 × H2),
respectively (H1 × G2)/(H1 × H2) of (G1 × G2)/(H1 × H2) yields that L1 =
{(g1, 1)(H1, H2); g1 ∈ G1} with the multiplication

(g1, 1)(H1, H2) ∗ (k1, 1)(H1, H2) = (σ1((g1, 1)(H1, H2))k1 H1, H2)

and L2 = {(1, g2)(H1, H2); g2 ∈ G2} with the multiplication

(1, g2)(H1, H2) ∗ (1, k2)(H1, H2) = (H1, σ2((1, g2)(H1, H2))k2 H2)

are subloops of L(σ ) (see Proposition 1.18 in [12, p. 27]). This proves (a) and (b).
Because of

(G1 × H2)/H2 ∼= G1, (H1 × H2)/H2 ∼= H1,

(H1 × G2)/H1 ∼= G2, (H1 × H2)/H1 ∼= H2

one can define the sharply transitive sections

ρ̂ : G1/H1 → G1 by ρ̂(g1 H1) = σ1((g1, 1)(H1, H2)); g1 ∈ G1
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and

τ̂ : G2/H2 → G2 by τ̂ (g2 H2) = σ2((1, g2)(H1, H2)); g2 ∈ G2.

The section ρ̂ determines a loop ̂L1 on the factor space G1/H1 by the rule g1 H1 ◦
k1 H1 = ρ̂(g1 H1)k1 H1 and the section τ̂ determines a loop ̂L2 on the factor space
G2/H2 by the rule g2 H2 ◦k2 H2 = τ̂ (g2 H2)k2 H2. A direct computation shows that
the mapping ϕ1 : (g1 H1, H2) 	→ g1 H1 with g1 ∈ G1 is an isomorphism of the
loop (L1, ∗) onto the loop (̂L1, ◦) and the mapping ϕ2 : (H1, g2 H2) 	→ g2 H2 with
g2 ∈ G2 is an isomorphism of the loop (L2, ∗) onto the loop (̂L2, ◦). Let ̂G1 be the
subgroup of G1 generated by {ρ̂(g1 H1); g1 ∈ G1} = S1 and ̂G2 be the subgroup
of G2 generated by {̂τ(g2 H2); g2 ∈ G2} = S2. It follows from Proposition 1.13 in
[12, p. 25], that the group generated by the left translations of the loop ̂Li and the
stabilizer of the identity of ̂Li (i = 1, 2) has the form as in the assertion (c). 
�
Proposition 1(c) differs from Proposition 1.18 in [12] only in the conclusion that the
groups ̂Gi and ̂Hi , i = 1, 2, can be proper subgroups of Gi , respectively Hi . The
group ̂Gi coincides with Gi for i = 1, 2, if σ(G/H) = M1 × M2 with Mi ⊂ Gi

(cf. Proposition 1.19 in [12, p. 28]), but not in general. This is already the case for
many examples contained in [12] (see [12, pp. 50–51, pp. 190–193 and Theorem
16.7, p. 198]). More precisely we have the following

Remark 2. Let the group G be the direct product K1 × K2 × K2 such that there is a
non-trivial homomorphism ϕ : K2 → K1. Then there is a Scheerer extension L of
the group K1 by the group K2. This extension L is defined on the factor space G/H ,
where H = {(ϕ(k2), 1, k2); k2 ∈ K2}, and belongs to the section σ : G/H → G
such that σ(G/H) is the set {(k1, k2, k−1

2 ); k1 ∈ K1, k2 ∈ K2} (see Proposition
15.15 in [12, p. 190]).

Since G = G1 × G2 with G1 = K1 × {1} × K2, G2 = {1} × K2 × {1} and
H = H1 × H2, where H1 = H , H2 = {(1, 1, 1)}, the loop L is a product of
a normal subgroup L1 isomorphic to K1 with a group L2 isomorphic to K2 and
L1 ∩ L2 = {1}. The subgroup L1 corresponds to the section σ1 : G1/H1 → G1
the image of which is the set {(k1, 1, 1); k1 ∈ K1} and the subgroup L2 belongs to
the section σ2 : G2/H2 → G2 the image of which is the set {(1, k2, 1); k2 ∈ K2}
(see Proposition 1 and Proposition 2.14 in [12, p. 51]). Hence the group L1 cannot
generate the group G1.

Let L be a connected topological loop belonging to the section σ : G/H → G
and let M := σ(G/H). Let ˜L be the universal covering of L corresponding to
the section σ ∗ : G∗/H∗ → G∗, where G∗ is the group topologically generated
by the left translations of ˜L and H∗ be the stabilizer of e ∈ ˜L in G∗. Then G∗
is a covering group of G such that for the covering map ρ : G∗ → G one has
ρ(σ ∗(G∗/H∗)) = M , ρ(H∗) = H and the kernel of ρ is the subgroup Z∗ of
σ ∗(G∗/H∗) which is isomorphic to the fundamental group Z of L . Moreover
H∗ ∩ Z∗ = {1} and hence H∗ is isomorphic to H (cf. Lemma 1.34 in [12, p. 34]).

Let L be a connected differentiable Bol loop having a semi-simple Lie group
G with trivial centre as the group topologically generated by its left translations.
Then the image M = σ(G/H) of the section σ : G/H → G corresponding to L
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has the form M = K × V1 × · · · × Vs , where K is a direct factor of G and Vi are
submanifolds of G corresponding to simple symmetric spaces. Moreover, G is the
direct product K × I (V1)×· · ·× I (Vs), where I (Vi ) is the group of displacements
of the symmetric space Vi ([12, Proposition 6.6 and Lemma 6.7, p. 85], [10, pp.
424–425], and [12, Theorem 13.14, p. 163]). By Proposition 1.2, in [9, p. 141], the
group I (Vi ) of the simple symmetric space Vi is either simple or it is the direct
product S × S of two simple isomorphic direct factors and the symmetric space Vi

has the form {(x, x−1); x ∈ S}.
If each group I (Vi ) is simple, then for the projection σi = pi ◦ σ of M into

I (Vi ) one has σi (G/H) = Vi and M = K × σ1(G/H)× · · · × σs(G/H). In this
case the loop L corresponding to this section σ satisfies (∗).

If ˜G is the universal covering of the group G, then ˜G = ˜K × Ĩ (V1)×· · ·× Ĩ (Vs),
where ˜K is the universal covering of K and Ĩ (Vi ) is the universal covering group

of I (Vi ). The preimage ρ−1(σi (G/H)) = ˜σi (G/H) of σi (G/H) with respect to
the covering homomorphism ρ : ˜G → G generates Ĩ (Vi ). If G ′ is the group
topologically generated by the left translations of a covering loop L ′ of the loop
L corresponding to σ , then there exists a covering homomorphism ρ′ : ˜G → G ′

such that ρ′( ˜σi (G/H)) generates ρ′( Ĩ (Vi )) for all i = 1, . . . , s. Hence with L also
L ′ satisfies the condition (∗).

Using Proposition 1.2 in [9, p. 141], the previous discussion gives

Lemma 3. Let L be a connected differentiable Bol loop such that for the Lie alge-
bra g of the group G topologically generated by the left translations of L one has
k ⊕ g1 ⊕ · · · ⊕ gs, where k is semi-simple and each gi is a simple Lie algebra. Let
m = k ⊕ v1 ⊕ · · · ⊕ vl be the tangent space of the image of the section belonging
to L, where vi is the tangent space of a simple symmetric space. If L is subloop
incompatible, then one has l < s and there exists an involutory automorphism
α of g and two isomorphic subalgebras gi and g j , i, j ∈ {1, 2, . . . , s} such that
α(gi ) = g j and mL = {X − α(X); X ∈ gi }.
Now we describe all subloop incompatible connected differentiable Bol loops for
which the group G topologically generated by their left translations has the form
G = G1 × G2, where the Lie algebra gi of Gi is simple and the stabilizer H of
e ∈ L in G has the form H1 × H2 with Hi < Gi , i = 1, 2.

Theorem 4. Let L be a subloop incompatible simply connected differentiable Bol
loop. Assume that the group G topologically generated by its left translations is the
direct product G1 × G2, where the Lie algebra gi of Gi is simple, and the stabilizer
H of e ∈ L in G is the direct product H = H1 × H2 with Hi < Gi , i = 1, 2. Then:

(a) The group G1 is simply connected and there is a covering map ρ : G1 → G2
such that G2 is abstract simple. The preimage ρ−1(H2) is a connected sub-
group of G1 and G1 = ρ−1(H2) · H1 forms a factorization of G1 such that
ρ−1(H2)∩H1 = {1} and no element ofρ−1(H2)\{1} is conjugate to an element
of H1. Moreover, the group G is not compact.

(b) The simply connected loop L is the product of a Lie group isomorphic to
ρ−1(H2) with a Lie group isomorphic to H1.
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(c) Then the loop L/Z, where Z is the centre of L, is a simple Bol loop which
is the product of a Lie group isomorphic to H2 with a Lie group isomorphic
to H1.

Proof. According to Lemma 3 the tangent space of the image M of the section
belonging to L has the form m = {(X,−X); X ∈ g1}, where g1 is the Lie algebra
of G1 and the Lie algebra g2 of G2 is isomorphic to g1. Since dim M = dim G1 = n
the stabilizer H of e ∈ L has also dimension n. Every element of the Lie alge-
bra g = g1 ⊕ g2 of G has a unique decomposition as the direct sum m + h with
m ∈ m and h ∈ h = h1 ⊕ h2, where hi is the Lie algebra of Hi . In particular
for (0, a) one has (x,−x) + (h1, h2), where (x,−x) ∈ m and (h1, h2) ∈ h. It
follows that x = −h1 and a = h1 + h2. Therefore the Lie algebra g2 is the direct
sum of the vector subspaces h1 and h2. The group G = G1 × G2 is homeomor-
phic to L × H1 × H2. As H1 × H2 is homeomorphic to G2 the simply connected
loop L is homeomorphic to G1 and hence G1 is simply connected. Therefore
there exists a covering map ρ : G1 → G2. The intersection H1 ∩ ρ−1(H2) is
trivial; otherwise M = {(x, ρ(x)−1); x ∈ G1} would contain an element of H .
Moreover, H = H1 × H2 contains no element h �= 1 which is conjugate to
an element of M . Therefore, no element of ρ−1(H2)\{1} is conjugate to an ele-
ment of H1. Every element of G = G1 × G2 has a unique decomposition as a
product m · h, where m ∈ M and h ∈ H . Then for every a ∈ G1 there exist
elements x ∈ G1 and hi ∈ Hi , i = 1, 2, such that (a, 1) = (x, ρ(x)−1) · (h1, h2).
This yields that a = ρ−1(h2)h1 and hence we have G1 = ρ−1(H2) · H1. As
H = H1 × H2 does not contain any non-trivial normal subgroup of G one has
H2 ∩ Z∗ = H1 ∩ Z∗ = {1}, where Z∗ is the centre of G. Therefore the group
G2 = ρ(G1) = ρ(ρ−1(H2) · H1) = H2 · ρ(H1) ∼= H2 · H1 is abstract simple.

Any factorization S = S1 · S2 with S1 ∩ S2 = {1} of a compact connected semi-
simple Lie group S is isomorphic to the direct product S = S1 × S2 (cf. [8,15], also
Theorem 4.4 in [14], p. 531). This is a contradiction to the condition that the Lie
algebra gi of Gi , i = 1, 2, is simple. Hence G is not compact (which follows also
from Theorem 16.7 and Corollary 16.9 in [12]). With this the proof of the assertion
(a) is complete.

According to Proposition 1 the loop L is the product of two loops L1 and L2.
As every element g1 ∈ G1 has the form g1 = ρ−1(h2)h1, where hi ∈ Hi , i = 1, 2,
the unique element (x, ρ(x)−1) ∈ M containing in the left coset (g1, 1)(H1, H2) =
(ρ−1(h2), 1)(H1, H2) has the form (ρ−1(h2), h−1

2 ). Hence the subloop L1 which
belongs to {σ1(g1 H1, H2); g1 ∈ G1} is isomorphic to the Lie group ρ−1(H2).
A similar consideration yields that the subloop L2 belonging to {σ2(H1, g2 H2); g2 ∈
G2} is isomorphic to the Lie group ρ(H1) ∼= H1. Hence the assertion (b) is proved.

The centre Z∗ of G has the form {(z, 1); z ∈ Z1}, where Z1 is the centre of G1.
One can define the subgroup Z∗ and the section σ corresponding to L in the factor
group G/Z∗ in a natural way, which determine a Bol loop L∗ with a surjective homo-
morphism L → L∗. The kernel of this homomorphism is central and isomorphic to
Z∗ (cf. [12, Lemma 1.34, p. 34]). Hence the subgroup Z∗ corresponds to a central
subgroup Z of L . The loop L/Z has the group G/Z∗ = G1/Z1 × G2 as the group
topologically generated by the left translations. The group G1/Z1 can be identified
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with the group G2. Therefore the mapping (a, b) 	→ (b, a); a ∈ G1/Z1, b ∈ G2,
may be seen as an involutory automorphism τ of G/Z∗ which leaves the image of
the section corresponding to L/Z invariant. Since the group G/Z∗ has no proper
τ -invariant normal subgroups the loop L/Z is simple (cf. Lemma 2 in [11, p. 83])
and the assertion (c) follows. 
�
Now we determine all subloop incompatible connected differentiable Bol loops L
having an at most nine-dimensional Lie group G = G1 × G2 with simple Lie alge-
bra gi of Gi , i = 1, 2, as the group topologically generated by their left translations.
These loops shape up as minimal examples of subloop incompatible differentiable
Bol loops of Theorem 4.

Theorem 5. Let L be a connected differentiable Bol loop such that for the at most
9-dimensional Lie group G topologically generated by its left translations one has
G = G1 × G2, where both factors Gi , i = 1, 2, have simple Lie algebras. If L is
subloop incompatible, then G1 is isomorphic to a covering of P SL2(R), the group
G2 is isomorphic to P SL2(R), the stabilizer H is the direct product L2 × SO2(R)

and the loop L is the product of a covering of SO2(R) with a group isomorphic
to L2.

Proof. By Lemma 3 the Lie groups G1 and G2 have isomorphic Lie algebras and the
tangent space m of the image of the section belonging to L is {(X,−X); X ∈ g1}.
It follows from Proposition 2 d) in [2, p. 435] that G1 and G2 are locally isomorphic
to P SL2(R). According to [2, pp. 442–444] the 3-dimensional stabilizer H has the
form H1 × H2 with 1 �= Hi < Gi . Up to automorphisms of G we may assume
that H1 is the 2-dimensional Lie group L2 and H2 is isomorphic to a 1-dimensional
subgroup of G2. By Theorem 4 the subgroup H2 cannot be conjugate to a subgroup
of L2. Hence the group H2 is locally isomorphic to the group SO2(R) and in view
of Theorem 4 the assertion follows. 
�
Let S be a connected non-compact Lie group having a simple Lie algebra. Follow-
ing [13, Sect. 2], we call a factorization S = S1S2 into closed subgroups S1 and S2
intersection-free factorization if S1 ∩ S2 = {1}. An intersection-free factorization
of S yields a subloop incompatible loop L of Theorem 4 (cf. [11, Proposition 2,
p. 85]).

Proposition 6. Let G be a connected non-compact Lie group with a simple Lie
algebra. Then:

(a) Any Iwasawa decomposition of G gives a loop of Theorem 4.
(b) The Iwasawa decompositions are the only intersection-free factorizations of

G if G is either a complex Lie group or it is locally isomorphic to one of the
following groups: SLn+1(R) (n �= 3), SLm+1(H) (m ≥ 1), SO2n+1(R, 1)
(n > 2), SO2n(R, 1) (n > 3), the exceptional group F4 with maximal com-
pact subgroups of type B4, the exceptional group E6 with maximal compact
subgroups of type either F4 or C4, the exceptional group E7 with maximal com-
pact subgroups of type A7, the exceptional group E8 with maximal compact
subgroups of type D8.
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Proof. The claim (a) is clear. The maximal compact subgroups K of the groups
listed in (b) have simple Lie algebras (cf. [16]). Let G = G1 · G2 be an inter-
section-free factorization of G different from an Iwasawa decomposition. Then a
maximal compact subgroup K of G has a factorization K = K1 · K2 such that
K1 ∩ K2 = {1}, where 1 �= Ki ≤ Gi , i = 1, 2, is a maximal compact subgroup
of Gi (cf. Lemma 1.2 in [14, p. 520]). Since K has simple Lie algebra we obtain a
contradiction to Theorem 4.4 in [14, p. 531]. 
�

In Sect. 2 of [13] the intersection-free decompositions of classical Lie groups are
determined. In particular, if G = G1 · G2 is such a factorization, then either G1 or
G2, say G2, is compact. More precisely, for intersection-free factorizations which
are not Iwasawa decompositions we have:

(1) Let G be locally isomorphic to SUn+1(C, h), where n > 1 and the hermi-
tian form h has index i with 1 ≤ i ≤ [ n+1

2 ]. Then there are intersection-free
factorizations G = G1 · G2 such that:

(i) G2 is locally isomorphic to SUn+1−i (C)× SO2(R), where i > 1 and
the maximal compact subgroups K1 of G1 are locally isomorphic to
SUi (C).

(ii) G2 is locally isomorphic to SUn+1−i (C), i > 1 and the maximal com-
pact subgroups K1 of G1 are locally isomorphic to SUi (C)× SO2(R).

(iii) G2 is locally isomorphic to SUn+1−i (C) × SUi (C) and the maximal
compact subgroups K1 of G1 are locally isomorphic to SO2(R).

(2) Let G be locally isomorphic to SOn(R, h), where n > 4 and h is a quadratic
form of index 2 ≤ i ≤ [ n

2 ]. Then there exist intersection-free factorizations
G = G1 ·G2 such that G2 is locally isomorphic to SOn−i (R) and the maximal
compact subgroups K1 of G1 are locally isomorphic to SOi (R).
If i = 3 and n = 7 as well as if i = 4, then G2 can be also locally isomorphic
to SO3(R)×SOn−4(R) and the maximal compact subgroups of G1 are locally
isomorphic to SO3(R).

(3) Let G be locally isomorphic to SαUn(H, h), where h is a quaternional anti-
hermitean form of index [ n

2 ]. Then there are intersection-free factorizations
G = G1 · G2 such that G2 is locally isomorphic to SUn(C) and the maximal
compact subgroups K1 of G1 are locally isomorphic to SO2(R).

(4) Let G be locally isomorphic to Sp2n(R), n ≥ 3. Then there exist intersec-
tion-free factorizations G = G1 · G2 such that G2 is locally isomorphic to
SUn(R) and the maximal compact subgroups K1 of G1 are locally isomorphic
to SO2(R).

(5) Let G be locally isomorphic to SUn(H, h), where h is a quaternional hermitean
form of index i ∈ {3, 4, . . . , [ n

2 ]}. Then there are intersection-free factoriza-
tions G = G1 · G2 such that G2 is locally isomorphic to SUn−i (H) and the
maximal compact subgroups K1 of G1 are locally isomorphic to SUi (H).

For more information about the structure of the groups G1 consult [13, Theorems
2.1, 2.2].

The following proposition is a consequence for Lie groups of Proposition 2 in
[11, p. 85].
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Proposition 7. Any intersection-free factorization of a classical Lie group G yields
a subloop incompatible Bol loop of Theorem 4.

Proposition 8. Let G be a simple group which has a representation on a set �
as a permutation group containing a sharply transitive subgroup C. Let S be the
stabilizer of a point of � in G. Then there exists a simple proper Bol loop L hav-
ing the group G̃ = G1 × G2 with G1 = G2 = G as the group generated by its
left translations, the group H = C × S with C ⊂ G1 and S ⊂ G2 as the sta-
bilizer of the identity of L in G̃ and corresponding to the section with the image
M = {(x, x−1), x ∈ G}. The loop L is a product of the groups S and C.

Proof. Proposition 2 in [11] yields that the loop L is a proper Bol loop. Since the
only non-trivial proper normal subgroups of G̃ are G1 ×{1} and {1}×G2 it follows
from Lemma 4 in [11] that G̃ is the group generated by the left translations of L .
The map τ : (a, b) 	→ (b, a), a ∈ G1, b ∈ G2 is an involutory automorphim of
G̃ leaving M invariant. Since G̃ does not contain a non-trivial normal subgroup
invariant under τ the loop L is simple (cf. Lemma 2 in [11]). Moreover, it follows
from Proposition 1 that L is a product of the groups S and C . 
�
Using the classification of finite primitive groups G containing a sharply transitive
cyclic subgroup (cf. [7]) and some informations on P SLd(q) as well as on the
Mathieu groups (cf. [1] and [6], Satz 6.14, p. 183 and Satz 8.28, p. 214) we obtain
as a consequence of the preceding proposition the following

Corollary 9. Let G be a finite simple group which has a representation on a set �
as a primitive permutation group containing a sharply transitive cyclic subgroup C.
Let L be a simple Bol loop constructed as in preceding proposition. Then precisely
one of the following cases occurs:

(1) G is the alternating group A2k+1, k ≥ 2, the loop L is a product of the alter-
nating group A2k with the cyclic group of order 2k + 1 and has order (2k+1)!

2 .
(2) G is the group P SLd(q) with d ≥ 2, (d, q) /∈ {(2, 2), (2, 4)} and the greatest

common divisor of d and q −1 equals 1, the loop L is a product of the group of
affinities of the (d − 1)-dimensional affine space over G F(q) with the cyclic

group of order qd−1
q−1 and has order q

1
2 d(d−1)∏d−1

i=1 (q
i+1 − 1).

(3) G is the group P SL2(11), the loop L is a product of the alternating group A5
with the cyclic group of order 11 and has order 660.

(4) G is the Mathieu group M11, the loop L is a product of the Mathieu group M10
with the cyclic group of order 11 and has order 7920.

(5) G is the Mathieu group M23, the loop L is a product of the Mathieu group M22
with the cyclic group of order 23 and has order 10200960.

In the cases (2) till (5) in Corollary 9 the condition that C is cyclic can be
replaced by the condition that C is abelian since any abelian transitive subgroup
in these groups is cyclic (for the case (2) cf. [7, Theorem 1]). In contrast to this
in suitable alternating groups there are transitive abelian subgroups which are not
cyclic and which can be taken as the subgroup C . This yields further simple Bol
loops which are products of groups. The simplest examples of this type can be
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realized in alternating groups A2k+1, where 2k + 1 = n2. In such a group let α
respectively β be the element with the following cycle representation:

α= (12 . . . n)((n+1)(n + 2) . . . (2n)) . . . (((n−1)n+1)((n−1)n+2) . . . (n2))

β= (1 (n+1) . . . ((n−1)n+1))(2(n+2) . . . ((n−1)n+2)) . . . (n(2n) . . . (n2)).

Since αβ = βα the group C generated by α and β is the direct product of two
cyclic groups of order n and acts transitively.

4. Bol loops having a Lie group with three simple factors as the left
translation group

We remark that a differentiable Bol loop L having the direct product K1 × K2 × K3
with simple Lie algebras of Ki , i = 1, 2, 3, as the group G topologically generated
by its left translations is subloop incompatible precisely if the direct product Ki ×K j

of two factors of G is the group of displacements of a simple symmetric space (cf.
Lemma 3). A construction of sections which define subloop incompatible differ-
entiable Bol loops is difficult already for the case that K1 = K2 = K3 = K . But
if K has dimension 3, then only the following example yields a new phenomenon
with respect to the Main Theorem of [3].

Example. Let G be the group P SL2(R)× P SL2(R)× P SL2(R) and let H < G
be the direct product H1 × H2, where H1 = {(k, 1, k); k ∈ P SL2(R)} and
H2 = {(1, s, 1); s ∈ SO2(R)}. Moreover, let the image of the section σ :
G/H → G be the set σ(G/H) = {(x, x−1, y); x ∈ P SL2(R), y ∈ F1},
where F1 =

{(

m + n z
z m − n

)

; m ≥ 1, n, z ∈ R,m2 − n2 − z2 = 1

}

. The set

σ(G/H) is the symmetric space of G corresponding to the involutory automor-
phism τ : (u, v, z) 	→ (v, u, α(z)), u, v, z ∈ P SL2(R), where α is the involutory
automorphism of P SL2(R) fixing the subgroup SO2(R) elementwise. The factor
space G/H = {gH ; g ∈ G} has the form

{(1, l, g3)H ; l ∈ L2, g3 ∈ P SL2(R)}.
The section σ determines a global differentiable Bol loop Ľ if and only if every left
coset (1, l, g3)H contains precisely one element of the set σ(G/H) (cf. Proof of
Lemma 1.3 in [12, p. 17]). This happens precisely if for every given p, q, r, s ∈ R

with ps − qr = 1 and a > 0, b ∈ R the equation

(

x, x−1, y
)

=
(

1,

(

a b
0 a−1

)

,±
(

p q
r s

)) (

k,±
(

c d
−d c

)

, k

)

(1)

has a unique solution x ∈ P SL2(R), y ∈ F1 for suitable k ∈ P SL2(R), c, d ∈ R

with c2 + d2 = 1. We obtain that x = k = ±
(

c −d
d c

)(

a−1 −b
0 a

)

and

y =
(

m + n z
z m − n

)

= ±
(

p q
r s

)[

±
(

c −d
d c

)] (

a−1 −b
0 a

)

. (2)
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Comparing the (1, 2)- and (2, 1)-entries of both sides of Eq. (2) we have

z = −p(cb + da)+ q(−db + ca) = rca−1 + sda−1. (3)

From Eq. (3) we get the equation

c(qa2 − pab − r) = d(pa2 + qab + s). (4)

If qa2 − pab − r = 0, then ps − qr = 1 yields pa2 + qab + s �= 0. In this case
from equation (4) it follows that d = 0 and c = ±1. If qa2 − pab − r �= 0, then

we have c = d[pa2+qab+s]
qa2−pab−r

. Using the relation c2 + d2 = 1 we obtain that

|c| = pa2 + qab + s
√

(pa2 + qab + s)2 + (qa2 − pab − r)2
,

|d| = qa2 − pab − r
√

(pa2 + qab + s)2 + (qa2 − pab − r)2
.

The Eq. (4) holds precisely if sign c = sign d. The values c and d determine the
elements y ∈ F1, x ∈ P SL2(R) in a unique way since m and n of Eq. (2) as
well as x can be computed knowing c and d. Hence the loop Ľ belonging to the
triple (G, H, σ (G/H)) is a proper differentiable Bol loop. This loop is a product
of a normal 3-dimensional Bol loop L1 having SO2(R) × {1} × P SL2(R) as the
group topologically generated by the left translations and {(s, 1, s); s ∈ SO2(R)}
as the stabilizer of the identity of L1 and a Bol loop L2 isotopic to the hyperbolic
plane loop H2 (see Proposition 1 and Sect. 22 in [12]). According to Theorem 6 in
[2, p. 448] the loop L1 is a Scheerer extension of the Lie group SO2(R) by H2.

Remark 10. Let ˜L be the universal covering of the loop Ľ in Example. If G∗ is
the group topologically generated by the left translations of ˜L , then G∗ = (˜G1 ×
G2 × ˜G3)/N such that ˜G1 = ˜G3 is the universal covering of P SL2(R) and N =
{(z, 1, z); z ∈ Z}, where Z is the centre of ˜G1. The stabilizer H∗ of e ∈ ˜L is the
subgroup {(k, s, k); k ∈ ˜G1, s ∈ SO2(R)}/N of G∗.

Now we classify subloop incompatible connected differentiable Bol loops such that
the Lie algebra of the group G topologically generated by their left translations is
the direct sum of three 3-dimensional simple Lie algebras.

Lemma 11. Let G = G1 × G2, where G1, G2 are locally isomorphic to the simple
Lie groups P SL2(R) or SO3(R). Let H be a 4-dimensional connected subgroup
of G. Then one has H = H1 × H2 with Hi ≤ Gi .

Proof. Let pi : G → Gi be the natural projections of G onto the i-th components
Gi of G and write Hi = pi (H). If dim(H1) ≤ 2 and dim(H2) ≤ 2, then we are
done. Hence we may assume that dim(H1) = 3 which yields H1 = G1. In this
case if dim(H2) = 1, then we obtain the assertion. If dim(H2) = 2, then H2 is
isomorphic to L2 and G2 is locally isomorphic to P SL2(R). Since there is only
trivial homomorphism from a 3-dimensional simple Lie group G1 into L2, we have
a contradiction. The case that dim(H2) = 3 is impossible since in this case the
dimension of H is equal 6 or 3. 
�
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Theorem 12. Let L be a connected differentiable Bol loop such that for the Lie
algebra g of the group G = G1 × G2 × G3 topologically generated by its left
translations one has g = g1 ⊕ g2 ⊕ g3, where gi, i = 1, 2, 3, are 3-dimensional
simple Lie algebras corresponding to Gi and g1 is isomorphic to g2, but g3 is not
isomorphic to g1. If L is subloop incompatible, then L is a Scheerer extension of the
group G3 by a Bol loop ̂L of Theorem 5. In this case G1 is isomorphic to a covering
of P SL2(R), the group G2 is isomorphic to P SL2(R) and G3 is isomorphic either
to SO3(R) or to Spin3(R).

Proof. As the Lie algebra g1 is isomorphic to g2 by Lemma 3 the tangent space m
of the image M of the section belonging to L has the form m = m1 ⊕ m2 with
m1 = {(X,−X); X ∈ g1} and m2 ⊂ g3. Moreover, dim m2 ≥ 2 (see Lemma 15
in [3, p. 379]).

First we treat the case that g1 = g2 is the Lie algebra so3(R) and g3 is the Lie
algebra sl2(R). If dim(m) = 6, then one has dim(h) = 3. If dim(m) = 5, then we
have dim(h) = 4. In the first case we obtain h = h1 ⊕ h2 with h1 ⊂ g1 ⊕ g1 and
h2 ⊂ g3, since any homomorphism of a 3-dimensional subgroup of G1 × G1 into
G3 is trivial and no element of m is conjugate to an element of h. In the second case
if h is not the direct product h1 ⊕ h2 with h1 ⊂ g1 ⊕ g1 and h2 ⊂ g3, then h would
have the form ((g1 ⊕ a), ϕ(g1 ⊕ a)), where the homomorphism ϕ is not trivial and
a is a 1-dimensional Lie algebra of so3(R) (see Lemma 11). Since the kernel of ϕ
contains as direct factor g1, the Lie algebra of h must contain an ideal of g. This is
a contradiction. By Proposition 1.19 in [12, p. 28] the Bol loop L corresponding to
the triple (G, H,M) is the direct product of Bol loops L1 and L2. The loop L1 is
realized on the manifold S/H1, where S is the direct product of two groups locally
isomorphic to SO3(R). But such a Bol loop does not exist (see Theorem 16.7 in
[12, p. 198]).

Now we consider the case that g1 = g2 is the Lie algebra sl2(R) and g3 is
the Lie algebra so3(R). First we assume that the tangent space m has the form
m = m1 ⊕ m2 such that m2 ⊂ so3(R) and dim m2 = 2. Then the Lie algebra
h has dimension 4. Since all 1-dimensional subalgebras of so3(R) are conjugate
and m2 contains 1-dimensional subalgebras one has h ∩ g3 = 0. As h does not
contain any non-trivial ideal of g it follows that h = (l2 ⊕ l2, ϕ(l2 ⊕ l2)), where l2
is the Lie algebra of L2 and ϕ is a homomorphism from l2 ⊕ l2 into so3(R). Since
the kernel of ϕ contains the Lie algebra of the commutator subgroup of L2 × L2,
the intersection h ∩ m1 is not trivial.

Finally let m = m1 ⊕g3. Then the stabilizer H of e ∈ L in G is 3-dimensional.
Since H ∩ G3 = {1} the stabilizer H has the form (H1, ϕ(H1)), where H1 is a
3-dimensional subgroup of G1 × G2 and ϕ : H1 → G3 is a homomorphism. The
subgroup H1 is either the direct product L2 × L2 with amalgamated commutator
factor subgroups F (see 2.2) or H1 = L2× A, where A is a 1-dimensional subgroup
of G2. If H1 contains F or A is not elliptic, then H1 contains a subgroup K × K ,
where K is a 1-dimensional parabolic or hyperbolic subgroup of G1. But then there
is an element of M which is conjugate to an element of H .

If A is a 1-dimensional elliptic subgroup of G2 and ϕ : L2 × A → G3 is a
homomorphism, then L is a Scheerer extension of the Lie group G3 by a Bol loop
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̂L of Theorem 5 (cf. Proposition 2.4, and 2.5 in [12, pp. 44–45]). In particular, if
the homomorphism ϕ is trivial, then by Proposition 1.19 in [12, p. 28], the loop L

is the direct product of ̂L with the group SO3(R), respectively Spin3(R). If ˜L is
the universal covering of a loop L , then the group G∗ topologically generated by
the left translations of ˜L is isomorphic to the group ˜G1 × G2 × ˜G3, where ˜G1 is
the universal covering of P SL2(R), G2 is the group P SL2(R) and ˜G3 is the group
Spin3(R). 
�
Theorem 13. Let L be a connected differentiable Bol loop such that for the Lie
algebra g of the group G topologically generated by its left translations one has
g = g1 ⊕g2 ⊕g3, where g1 = g2 = g3 = g∗ is a 3-dimensional simple Lie algebra.
If L is subloop incompatible, then one of the following holds:

(i) L is either isomorphic to a Scheerer extension of a Lie group G ′ by a Lie
group G ′′ both belonging to the Lie algebra g∗ or a Scheerer extension of
a Lie group G3 corresponding to the Lie algebra sl2(R) by a Bol loop ̂L of
Theorem 5.

(ii) L is isomorphic to the direct product of a Bol loop ̂L in Theorem 5 with the
hyperbolic plane loop H2.

(iii) L is a covering of the loop Ľ in Example.

Proof. We may assume that the tangent space m of the image M of the section
belonging to the loop L has the form m1 ⊕m2 such that m1 = {(X,−X); X ∈ g1}
(cf. Lemma 3) and m2 ⊆ g3. By Lemma 15 in [3] one has dim m2 ≥ 2.

If m2 = g3, then for the Lie algebra h of the stabilizer H of e ∈ L one has
h ∩ g3 = 0. Therefore h has the form (h1, ϕ(h1)), where h1 is a 3-dimensional
subalgebra of g1 ⊕ g2 and ϕ : h1 → g3 is a homomorphism. The loop L belonging
to the triple (G, H,M) is a Scheerer extension of a group G3 belonging to the Lie
algebra g3 by a Bol loop L ′. The loop L ′ corresponds to a sharply transitive section
σ1 : (G1 × G2)/H1 → G1 × G2 the image of which is M1 = exp m1, where
G1 × G2, respectively H1 belongs to g1 ⊕ g2, respectively h1 (see Propositions 2.4
and 2.5 in [12]). The group H1 has either the form G1×{1} and ϕ is an isomorphism
or it is the direct product L2 × A with a 1-dimensional elliptic subgroup A of G2.
In the first case L is isomorphic to a Scheerer extension of a group G3 by a group
G1 both having the Lie algebra g∗ (see Remark 2). In the latter case L is a Scheerer
extension of G3 belonging to the Lie algebra sl2(R) by a Bol loop ̂L in Theorem 5.
This is the case (i) of the assertion.

Now we consider the case that dim m2 = 2. Then one has dim h = 4.
If g∗ = so3(R), then the fundamental group π1 of the group G is finite.

Every 4-dimensional core-free subgroup H of G is a direct product SO2(R) ×
{(x, ϕ(x)); x ∈ G∗}, where ϕ is a non-trivial homomorphism of a 3-dimensional
Lie group G∗ which Lie algebra is so3(R). As the group G is homeomorphic to the
topological product σ(G/H)×H one hasπ1(G) = π1(K ) ∼= π1(σ (G/H)×H) ∼=
π1(σ (G/H))×π1(K1), where K respectively K1 is a maximal compact subgroup
of G respectively of H (cf. [5, Theorem 2.1, p. 144]). Since π1(SO2(R)) is iso-
morphic to Z we obtain a contradiction. Hence one has g∗ = sl2(R).

If m2 is the tangent space of the simple symmetric space M2 corresponding
to an involutory automorphism fixing a 1-dimensional hyperbolic subgroup
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elementwise (cf. Lemma 15 in [3, p. 379]), then m2 contains 1-dimensional sub-
algebra of any conjugate class of sl2(R) (see 2.1). It follows that the intersection
h ∩ g3 is trivial since otherwise m2 contains an element which is conjugate to
an element of h. Therefore the Lie algebra h has the form (h1, ϕ(h1)), where
h1 is a 4-dimensional subalgebra of g1 ⊕ g2 and ϕ : h1 → g3 is a homomor-
phism. The subgroup H1 is isomorphic either to L2 × L2 or to G1 × A, where
A is a 1-dimensional subgroup of G2 (cf. Lemma 11). Since H does not contain
any normal subgroup of G, the group H contains in both cases elements of type
(a−1, a, ϕ(a−1, a)); (a−1, a) ∈ H1 which are conjugate to an element of M .

Finally we consider the case that m2 is the tangent space of the simple symmet-
ric space belonging to an involutory automorphism fixing a 1-dimensional elliptic
subgroup elementwise (cf. Lemma 15 in [3, p. 379]). Then m2 contains only hyper-
bolic elements. We have dim (H ∩ G3) ≤ 1 since otherwise m2 would contain an
element which is conjugate to an element of h.

In this part of the proof we use the natural projections pi : G → Gi , i = 1, 2, 3,
of G onto Gi .

First we assume that H ∩ G3 is a 1-dimensional subgroup of G3. Since H ∩ G3
is normal in p3(H) one has dim p3(H) ≤ 2.

For dim p3(H) = 1 we have p3(H) = H ∩ G3 and H = H1 × (H ∩ G3) with
H1 < G1 × G2. In this case one has L = L1 × L2 (cf. [12], Lemma 1.19, p. 28),
where L1 is a loop ̂L of Theorem 5 with G1 × G2 as the group topologically gen-
erated by the left translations and L2 is a loop isotopic to the hyperbolic plane loop
H2 with G3 as the group generated by the left translations (cf. [12, Section 22]).
This yields the case (ii) of the assertion.

If dim p3(H) = 2, then p3(H) is isomorphic to L2 and at least one of the
groups pi (H), i = 1, 2, has dimension 2. If both p1(H) and p2(H) are isomor-
phic to L2, then H is isomorphic to the direct product of three groups L2 with
amalgamated commutator factor subgroups (cf. 2.2). In this case H contains an
element of M . If only one of the projections pi (H), i = 1, 2, has dimension 2, then
we may assume that p1(H) is isomorphic to L2 and p2(H) has dimension 1. It
follows that H is isomorphic either to H ′ = (A, 1, B)× (1,C, 1), where A × B is
isomorphic to L2 × L2 with amalgamated commutator factor subgroups (see 2.2)
and C = p2(H), or H ′′ = (F, 1, 1)× (1, ψ(S), S), where F and S are isomorphic
to L2 and ψ(S) = p2(H) is the image of a homomorphism ψ : p3(H) → G2
having the commutator subgroup of L2 as the kernel.

If p2(H) is a parabolic or hyperbolic subgroup of G2, then H contains an ele-
ment which is conjugate to an element of M . If p2(H) is an elliptic subgroup of
G2, then using the real basis {e1, e2, e3} of sl2(R) given by 2.1 the Lie algebra h′
of the stabilizer H ′ has the form

〈V1 = (e1, 0, e1), V2 = (e2 + e3, 0, 0), V3 = (0, e3, 0), V4 = (0, 0, e2 + e3)〉

and the Lie algebra h′′ of the stabilizer H ′′ has the form

〈Z1 = (e1, 0, 0), Z2 = (e2 + e3, 0, 0), Z3 = (0, e3, e1), Z4 = (0, 0, e2 + e3)〉.
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The tangent space m of M is defined by

(∗∗) m = 〈X1 = (e1,−e1, 0), X2 = (e2,−e2, 0), X3 = (e3,−e3, 0),

X4 = (0, 0, e1), X5 = (0, 0, e2)〉.
Since g = h′ ⊕ m = h′′ ⊕ m any element of g has a representation of the form
Y = ∑4

i=1 λi Vi + ∑5
j=1 ν j X j as well as W = ∑4

i=1 λi Zi + ∑5
j=1 ν j X j with

suitable λi , ν j ∈ R. The elements Y = (0, 0,Y3) and W = (0, 0,W3) contained in
g3 have both the form

(0, 0, λ4(e2 + e3)+ ν4e1 + ν5e2), with suitable λ4, ν4, ν5 ∈ R.

The Cartan-Killing form k of sl2(R) yields k(Y3) = k(W3) = ν2
4 + ν2

5 ≥ 0. It
follows that g3 does not contain elliptic elements which is a contradiction.

Let now H ∩ G3 = {1}. Then the loop L is realized on the factor space G1 ×
G2 × G3/(H1, ϕ(H1)), where H1 is a 4-dimensional subgroup of G1 × G2 and
ϕ : H1 → G3 is a homomorphism. In this case H1 is isomorphic either to the
direct product L2 ×L2 or to the direct product G1 × A, where A is a 1-dimensional
subgroup of G2 (cf. Lemma 11).

If H1 contains L2 ×L2 or A is hyperbolic, then there is an element of H which
is conjugate to an element of M .

If A is a parabolic subgroup of G2, then using the real basis of sl2(R) given in
2.1 the Lie algebra h of H has the form

h = 〈U1 = (e1, 0, e1),U2 = (e2, 0, e2),U3 = (e3, 0, e3),U4 = (0, e2 + e3, 0)〉.
According to (∗∗) any element of g = h ⊕ m can be represented as K =
∑4

i=1 λiUi + ∑5
j=1 ν j X j , where λi , ν j ∈ R. The elements K = (0, K2, 0)

contained in g2 have the form (0, λ1e1 + λ2e2 + λ4(e2 + e3), 0) with suitable
λ1, λ2, λ4 ∈ R. The Cartan-Killing form k of K2 satisfies k(K2) = λ2

1 + λ2
2 ≥ 0.

It follows that g2 does not contain elliptic element which is a contradiction.
If A is a 1-dimensional elliptic subgroup of G2 and G1 is isomorphic to

P SL2(R), then H = (G1 × A, ϕ(G1 × A)), where ϕ(G1 × A) ∼= P SL2(R) and
the corresponding Bol loop L is Ľ given in Example. The structure of the coverings
of Ľ and their groups generated by the left translations are given in Remark 10.
This is the case (iii) of the assertion. 
�

If L falls into (ii) in Theorem 13, then the group G∗ topologically generated by
the left translations of the universal covering ˜L of L is isomorphic to ˜G1 ×G1 ×G1,
where G1 is the group P SL2(R), the group ˜G1 is the universal covering of G1 and
the stabilizer H∗ of e ∈ ˜L has the form (L2 × SO2(R))× SO2(R).

Let L be a Scheerer extension of a connected simple Lie group S by S (cf. the
case (i) in Theorem 13). The image of the section belonging to L has the form
Q = {(y, ϕ(y−1), x); x, y ∈ S}, where ϕ is a covering homomorphism. Then Q
generates the group S ×ϕ(S)× S. The group G∗ topologically generated by the left
translations of the universal covering ˜L of L is isomorphic to (˜S × ϕ(S)× ˜S)/N ,
where ˜S is the universal covering of S. The central normal subgroup N has the
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form N = {(z, 1, z); z ∈ Z}, where Z is the centre of ˜S. Moreover, the stabilizer
H∗ of e ∈ ˜L is the group H∗ = {(x, 1, x); x ∈ ˜S}/N .

Let L be a Scheerer extension of a covering group G3 of P SL2(R) by a Bol
loop ̂L of Theorem 5 falling into (i) in Theorem 13. If G∗ is the group topologically
generated by the left translations of the universal covering ˜L of L , then G∗ has
the shape G∗ = ˜G3 × G2 × ˜G3, where ˜G3 is the universal covering of the group
P SL2(R) and G2 is isomorphic to P SL2(R).

Sincere thanks to the referee for the careful reading of our manuscript and for
many improvements.
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