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Abstract. We prove that any topological loop homeomorphic to a sphere or to a real projective
space and having a compact-free Lie group as the inner mapping group is homeomorphic to the circle.
Moreover, we classify the differentiable 1-dimensional compact loops explicitly using the theory of
Fourier series.
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Introduction

The only known proper topological compact connected loops such that the
groups G topologically generated by their left translations are locally compact
and the stabilizers H of their identities in G have no non-trivial compact subgroups
are homeomorphic to the 1-sphere. In [8], [9], [7], [10] it is shown that the dif-
ferentiable 1-dimensional loops can be classified by pairs of real functions which
satisfy a differential inequality containing these functions and their first deriva-
tives. A main goal of this paper is to determine the functions satisfying this in-
equality explicitly in terms of Fourier series.

If L is a topological loop homeomorphic to a sphere or to a real projective
space and having a Lie group G as the group topologically generated by the left
translations such that the stabilizer of the identity of L is a compact-free Lie sub-
group of G, then L is the 1-sphere and G is isomorphic to a finite covering of the
group PSL,(R) (cf. Theorem 4).

To decide which sections o : G/H — G, where G is a Lie group and H is a
(closed) subgroup of G containing no normal subgroup # 1 of G correspond to
loops we use systematically a theorem of Baer (cf. [3] and [8], Proposition 1.6,
p. 18). This statement says that o corresponds to a loop if and only if the image
o(G/H) is also the image for any section G/H* — G, where H* = a~'Ha and
a € G. As one of the applications of this we derive in a different way the differen-
tial inequality in [8], p. 238, in which the necessary and sufficient conditions for
the existence of 1-dimensional differentiable loops are hidden.
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Basic facts in loop theory

A set L with a binary operation (x,y)—x*y : L x L — L and an element e € L
such that exx = xxe =x for all xeL is called a loop if for any given a,b€L
the equations a*y = b and x*a = b have unique solutions which we denote by
y =a\b and x = b/a. Every left translation \, : yr>axy: L — L, a€L, is a bi-
jection of L and the set A = {)\,, a €L} generates a group G such that A forms a
system of representatives for the left cosets {xH, x € G}, where H is the stabilizer
of e L in G. Moreover, the elements of A act on G/H = {xH, x€ G} such that
for any given cosets aH and bH there exists precisely one left translation A\, with
A aH = bH.

Conversely, let G be a group, H be a subgroup containing no normal subgroup
#1 of G and let 0 : G/H — G be a section with o(H) = 1€ G such that the set
0(G/H) of representatives for the left cosets of H in G generates G and acts
sharply transitively on the space G/H (cf. [8], p. 18). Such a section we call a
sharply transitive section. Then the multiplication defined by xH * yH = o(xH)yH
on the factor space G/H or by x*y = o(xyH) on o(G/H) yields a loop L(0o).
The group G is isomorphic to the group generated by the left translations of L(o).

We call the group generated by the mappings A, = )\;yl AcAy 1 L — L, for all
x,y €L, the inner mapping group of the loop L (cf. [8], Definition 1.30, p. 33).
According to Lemma 1.31 in [8], p. 33, this group coincides with the stabilizer H
of the identity of L in the group generated by the left translations of L.

A locally compact loop L is almost topological if it is a locally compact space
and the multiplication % : L x L — L is continuous. Moreover, if the maps
(a,b)—b/a and (a,b)— a\b are continuous, then L is a topological loop. An
(almost) topological loop L is connected if and only if the group topologically
generated by the left translations is connected. We call the loop L strongly almost
topological if the group topologically generated by its left translations is locally
compact and the corresponding sharply transitive section o : G/H — G, where H
is the stabilizer of e € L in G, is continuous.

If a loop L is a connected differentiable manifold such that the multiplication
* : L x L — L is continuously differentiable, then L is an almost 4 !_differentiable
loop (cf. Definition 1.24 in [8], p. 31). Moreover, if the mappings (a, b) — b/a and
(a,b)+ a\b are also continuously differentiable, then the loop L is a %'-differ-
entiable loop. If an almost %' -differentiable loop has a Lie group G as the group
topologically generated by its left translations, then the sharply transitive sec-
tion 0 : G/H — G is I_differentiable. Conversely, any continuous, respectively
%'-differentiable sharply transitive section o : G/H — G yields an almost topo-
logical, respectively an almost %'-differentiable loop.

It is known that for any (almost) topological loop L homeomorphic to a con-
nected topological manifold there exists a universal covering loop L such that
the covering mapping p : L — L is an epimorphism. The inverse image ple) =
Ker(p) of the identity element e of L is a central discrete subgroup Z of L and it
is naturally isomorphic to the fundamental group of L. If Z’ is a subgroup of Z,
then the factor loop L/Z’ is a covering loop of L and any covering loop of L is
isomorphic to a factor loop L/Z' with a suitable subgroup Z' (see [5]).
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If L' is a covering loop of L, then Lemma 1.34 in [8], p. 34, clarifies the relation
between the group topologically generated by the left translations of L' and the
group topologically generated by the left translations of L:

Let L be a topological loop homeomorphic to a connected topological mani-
fold. Let the group G topologically generated by the left translations \,, a€L,
of L be a Lie group. Let L be the universal covering of Land Z C L be the Sfundamen-
tal group of L. Then the group G topologically generated by the left translations
)x,,, uel, of L is the covering group of G such that the kernel of the covering _map-
ping ¢ : G—GisZ* = {)\,, z€Z} and Z* is isomorphic to Z. . If we identify L and
L with the homogeneous spaces G/H and G/H, where H or H is the stabilizer of
the identity of L in G or of L in G, respectively, then o(H) = H, HNZ* = {1},
and H is isomorphic to H.

Compact topological loops on the 3-dimensional sphere

Proposition 1. There is no almost topological proper loop L homeomorphic to
the 3-sphere S5 or to the 3-dimensional real projective space P53 such that the
group G topologically generated by the left translations of L is isomorphic to the
group SLy(C) or to the group PSL(C), respectively.

Proof. We assume that there is an almost topological loop L homeomorphic to
&3 such that the group topologically generated by its left translations is isomor-
phic to G = SL,(C). Then there exists a continuous sharply transitive section
0 :SL,(C)/H — SL,(C), where H is a connected compact-free 3-dimensional
subgroup of SL,(C). According to [2], pp. 273-278, there is a one-parameter
family of connected compact-free 3-dimensional subgroups H,, r € R, of SL,(C)
such that H,, is conjugate to H,, precisely if r; = r,. Hence we may assume that
the stabilizer H has one of the folowing shapes

H,:{(eXpKri)_l)a] exp[(lb—ri)a});GER’bEC}’ reR,

(cf. Theorem 1.11 in [8], p. 21). For each r € R the section o, : G/H, — G corre-
sponding to a loop L, is given by

(—xy fz)H"H(—xy §><exp[(ri_ol)f(x’y)] exp[(lgfx?»%}(x,y)])’

where x,y € C, xx +yy = 1 such that f(x,y) : > — R, g(x,y) : $* — C are con-
tinuous functions with f(1,0) = 0 = g(1,0). Since o, is a sharply transitive section
for each r € R the image o,(G/H,) forms a system of representatives for all cosets
xH, v€G. This means for all given c,d € C2, ¢c¢ +dd = 1 each coset

(e )l nli &)

where u,v€ C, uit + v0 = 1, contains precisely one element of o,(G/H,). This is
the case if and only if for all given c,d, u,v € C with uut + vv = 1 = ¢¢ + dd there
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exists a unique triple (x,y, q) € C* with xX + yy = 1 and a real number m such that
the following matrix equation holds:

(v wema )5 D )

B <exp[(ﬂ0_ " exp[(lq— rz')m]) (fi _cd)' (M)

The (1, 1)- and (2, 1)-entry of the matrix equation (1) give the following system A
of equations:

[(x + vy)e + (uy — vx)d] exp[(ri — 1)f (x,y)] = exp[(ri — 1)m]¢c + qd (2)

[(ox — uy)c + (ux + vy)d] exp[(ri — 1)f (x,y)] = exp[(1 — ri)m]d. ~ (3)

If we take ¢ and d as independent variables, the system A yields the following sys-
tem B of equations:

(x + vy) explir f (x,y)] exp[—f (x,y)] = exp(irm) exp(—m) (4)

(uy — vx) exp(ri — 1)f (x,y)]d = dgq (5)

(iwx + vy) explirf (x, y)] exp[—f (x,y)] = exp(m) exp(—irm). (6)

Since Eq. (5) must be satisfied for all d € C we obtain ¢ = 0. From Eq. (4) it follows
ux + vy = exp(irm) exp(—m) exp[—irf(x,y)] exp[f(x, y)]. (7)

Putting (7) into (6) one obtains
exp(irm) exp(—m) = exp(m) exp(—irm) (8)
which is equivalent to
exp[2(ir — 1)m] = 1. 9)

Equation (9) is satisfied if and only if m = 0. Hence the matrix equation (1) re-
duces to the matrix equation

<_Xy D(eXp[(n’ —Ol)f(x,y)] exp[(lgﬁx;iy)}(x’y)]) _ <_u1_) Z)

and therefore the matrix

_ (expl(ri — 1)f (x,y)] g(x,y)
M= ( 0 exp[(1 — ri)f(x,y)]>

is an element of SU,(C). This is the case if and only if f(x,y) = 0 = g(x, y) for all
(x,y) € C* with xx + yy = 1. Since for each r € R the loop L, is isomorphic to the
loop L,(o,), hence to the group SU,(C), there is no connected almost topological
proper loop L homeomorphic to .3 such that the group topologically generated by
its left translations is isomorphic to the group SL;(C).

The universal covering of an almost topological proper loop L homeo-
morphic to the real projective space 23 is an almost topological proper loop
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L homeomorphic to .#3. If the group topologically generated by the left trans-
lations of L is isomorphic to PSL,(C), then the group topologically generated by the
left translations of L is isomorphic to SL,(C). Since no proper loop L exists the
Proposition is proved. O

Proposition 2. There is no almost topological proper loop L homeomorphic to
the 3-dimensional real projective space 25 or to the 3-sphere &3 such that the
group G topologically generated by the left translations of L is isomorphic to the
group SL3(R) or to the universal covering group SL3(R), respectively.

Proof. First we assume that there exists an almost topological loop L homeo-
morphic to #5 such that the group topologically generated by its left translations is
isomorphic to G = SL3(R). Then there is a continuous sharply transitive section
o :SL3(R)/H — SL3(R), where H is a connected compact-free 5-dimensional sub-
group of SL3(R). According to Theorem 2.7, p. 187, in [4] and to Theorem 1.11,
p- 21, in [8] we may assume that

a k v
H=S[0 b I |;a>0b>0,klveR,. (10)
0 0 (ab)™

Using Euler angles, every element of SO;(R) can be represented by the
following matrix

cost sint 0 1 0 0 cosu sinu 0
g(t,u,z):=| —sinz cost 0 0 cosz sing —sinu cosu 0
0 0 1 0 —sinz cosz 0 0 1

COSf cosu— sint cosz sinu  cost sinu - sinf cosz cosu  sint sinzg
= | —sinf cosu — cOSt coSz sinu —sinf sinu-+ cost cosz cosu cost sinz |,
sinz sinu —sinz cosu cosz

where #,u €[0,27] and z€ [0, 7.
The section o : SL3(R)/H — SL3(R) is given by

filt,u,2) fo(tu,z) f3(t,u,2)
g(t,u,2)H — g(t,u,2) 0 fa(t,u,2) fs(tu Z) . (1)
O O flﬁl(tvuvz)fzt (t,M,Z)

where 1, u € [0, 27], z€ [0, 7] and f;(t, u, z) : [0, 27] x [0,27] x [0, 7] — R are contin-
uous functions such that for i € {1,4} the functions f; are positive with f;(0,0,0) = 1
and for j = {2,3, 5} the functions f;(z, u, z) satisfy that f;(0,0,0) = 0. As ¢ is sharply
transitive the image o(SL3(R)/H) forms a system of representatives for all cosets
xH°, § € SL3(R). Since the elements x and & can be chosen in the group SO3(R) we
may take x as the matrix

Ccosq cosr— sing sinr cosp  cosq sinr+ sing cosr cosp  sing sinp
—sing cosr — cosq sinr cosp —sing sinr+ cosg COSr COSp COsq sinp
sinp sinr —sinp cosr cosp
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and 6 as the matrix

cosa cosfF—sina sin3 cosy  cosa sin(3+ sina cosF cosy  sina sin-y
—sina cosF— cosa sinf3 cosy —sina sin 3+ cosa cos3 cosy cosa sinvy |,
sin-y sinf3 —sin~y cos 3 cos~y

where ¢, r,«, 3€[0,2n] and p,~y € [0, n]. The image o(SL3(R)/H) forms for all
given 6 € SO3(R) and x € SO3(R) a system of representatives for the cosets xH° if
and only if there exists unique angles 7, u € [0, 2] and z € [0, 7] and unique positive
real numbers a,b as well as unique real numbers k, [, v such that the following
equation holds

ox g (t,u,2)f = hé, (12)
where the matrices 6, x, g(, u, z) have the form as above,

f1<t>u)z) fZ(ta”aZ) f3(tauvz)

f: 0 f4(t,u,z) fs(t,u,Z)
O 0 fl_l(t,u,z)f4_1(t,u,z)
and
a k v
h=10 b l
0 0 (ab)’

Comparing the first column of the left and the right side of the Eq. (12) we
obtain the following three equations:

fi(t,u,2){[(cosa cos 3 — sina sin 3 cos~y)(cosr cosg — sinr sing cosp)
+ (cosa sin 3+ sina cos 3 cosy)(sinr cosg+ cosr sing cosp)
+ sinasinysinpsing|(cost cosu — sint sinu cosz)
—[~(cosa cos 3 — sina sinf3 cos+y)(cosr sing+ sinr cosg cosp)
+ (cosa sin 3+ sina cos 3 cosy)(—sinr sing + cosr cosq cosp)
+ sinasinysinpcosg|(sint cosu+ cost sinu cosz)
+ [(cosa cos 3 — sina sin 3 cos~y)sinr sinp
— (cosa sinff+ sina cos 3 cosy)cosrsinp + sina sin-y cosp|sinz sinu}
=a(cosa cos3— sina sin 3 cosy) — k(sina cos 3+ cosa sin3 cosv)

+ vsin-y sin g3,

filt,u,z){[—(sinc cos B+ cosa sinf cosy)(cosr cosg — sinr sing cosp)
— (—sina sin G+ cosa cosf cosy)(sinr cosg+ cosr sing cosp)
+ cosasinysinp sing](cost cosu — sinz sinu cosz)
— [(sinaw cos B+ cosa sin3 cosy)(cosr sing + sinr cosg cosp)
+ (—sina sin 3+ cosa cos 3 cosy)(—sinr sing + cosr cosg cosp)

+ cosasinysinpcosg|(sint cosu + cost sinu cosz)
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+ [—(sina cos B+ cosa sin3 cosy)sinr sinp — (cosa cos 3 cosy
— sina sin3) cosrsinp + cosa siny cosp|sinz sinu}

= —b(sina cosf+ cosa sinf cos~y) + Isin~y sin 3,
fi(t,u,z){[(cosr cosq — sinr sing cosp)sin~y sin 3
sinr cosq + cosr sing cosp)siny cos 3+ cos~ysinpsing]
cost cosu — sinf sinu cosz) + [(cosr sing+ sinr cosg cosp)sin~y sin 3

—(
x (
+ (—sinr sing+ cosr cosq cosp)siny cos /3 — cos~ysinpcosq|
X (sinf cosu+ cost sinu cosz)

+[

(sin~y sin3 sinr sinp + sin-y cos 3 cosr sinp) + cos-ycosp]|sinz sinu}
= (ab)~ " sin~y sin .
If we take sin+y sin(3 and cos~y as independent variables the third equation
turns to the following equations
0 =fi(t,u,z)[sinp sing(cost cosu — sint sinu cosz)
— sinp cosg(sint cosu + cost sinu cosz) + cosp sinz sinu] (13)
(ab)™" = {[(cosr cosq — sinr sing cosp)(cost cosu — sins sinu cosz)
+ (cosr sing + sinr cosq cosp)(sint cosu + cost sinu cosz)

o o cosf3 . . .
+ sinr sinp sinz sinu] —7[(smr cosq + cosr sing cosp)
sin
x (cost cosu — sint sinu cosz) — (—sinr sing + cosr cosg cosp)
X (sint cosu+ cost sinu cosz) — cosr sinp sinz sinul}fi(t,u,z).

(14)

If we take cos« sinf3 cos+~ and sin( sin+y as independent variables it fol-
lows from the second equation that

cos
= afl(t u,z)[sinp sing(cost cosu — sint sinu cosz)

sin 3

— sinp cosg(sinz cosu+ cost sinu cosz)+ cosp sinz sinu (15)
—b ={[—(cosr cosq — sinr sing cosp)(cost cosu — sint sinu cosz)
— (cosr sing + sinr cosg cosp)(sint cosu + cost sinu cosz)

. . L cos , .
— sinr sinp sinz sinu| — —g[( sinr cosq+ cosr sing cosp)
sin

X (cost cosu — sint sinu cosz) — (—sinr sing + cosr cosq cosp)

X (sint cosu+ cost sinu cosz) — cosr sinp sinz sinu]}fi(t,u,z). (16)
If we choose sina sin3 cos<y, sinf sin-y as independent variables the first
equation yields

sin
v= 1 afl(t u,z)[sinp sing(cost cosu — sint sinu cosz)

sin 3

— sinp cosg(sint cosu+ cost sinu cosz) + cosp sinz sinu] (17)
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+kCOSOé

—— = {[(cosr cosq — sinr sing cosp)(cost cosu — sint sinu cosz)
sina

— (cosr sing + sinr cosg cosp)(sint cosu+ cost sinu cosz)

: : . cos . .
+ sinr sinp sinz sinu| — [(sinr cosqg + cosr sing cosp)

sin 3
X (cost cosu — sint sinu cosz) — (—sinr sing+ cosr cosg cosp)
X (sint cosu+ cost sinu cosz) — cosr sinp sinz sinu]}f; (¢, u,z).
(18)
Since fi(t,u,z) >0 it follows from Eq. (13) that
0 = sinp sing(cost cosu — sinz sinu cosz)
— sinp cosq(sint cosu+ cost sinu cosz) + cosp sinz sinu.  (19)

Using this, it follows from (15) that / = 0 holds and from Eq. (17) that v = 0.
Since the Eq. (14) must be satisfied for all 3 € [0, 27|, we have

(ab)™" = [(cosr cosq— sinr sing cosp)(cost cosu — sinz sinu cosz)
+ (cosr sing + sinr cosq cosp)(sint cosu + cost sinu cosz)
+ sinr sinp sinz sinufi(t,u,z) (20)
0 =|(sinr cosq+ cosr sing cosp)(cost cosu — sint sinu cosz)
— (—sinr sing + cosr cosqg cosp)(sins cosu + cost sinu cosz)
— cosr sinp sinz sinu. (21)
Using Eq. (21) and comparing the Egs. (20) and (16), we obtain that
(ab)~" = b. With Eq. (21) the Eq. (18) turns to

cos «
k

—— = [(cosr cosq — sinr sing cosp)(cost cosu — sint sinu cosz)
sin

— (cosr sing + sinr cosq cosp)(sint cosu+ cost sinu cosz)

+ sinr sinp sinz sinu|fi(t,u,z). (22)

Since the Eq. (22) must be satisfied for all o € [0, 27], we obtain k = 0. Using

this, the Egs. (22) and (20) yield (ab)~' = a. Since 1 = ab(ab)™" = a? it follows

that @ = 1 and hence the matrix 4 is the identity. But then the matrix equation (12)
turns to the matrix equation

g(t,u,2)f = x.

As x and g(t,u, z) are elements of SO3(R) one has f = g~ !(t,u,z)x € SO3(R). But
then f is the identity, which means that

filtbu,z) =1 =fa(t,u,2), folt,u,2) = f5(t,u,z) = f5(t,u,z) =0,

for all ¢,u €]0,27] and z € [0, 71]. Since the loop L is isomorphic to the loop L(0)
and L(0) = SO3(R) there is no connected almost topological proper loop L ho-
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meomorphic to 23 such that the group topologically generated by its left transla-
tions is isomorphic to SL3(R).

Now we assume that there is an almost topological loop L homeomorphic to
3 such that the group G topologically geg@\r_aied by its left translations is iso-
morphic to the universal covering group SL3(R). Then the stabilizer H of the
identity of L may be chosen as the group (10). Then there exists a local section
o: U/H — G, where U is a suitable neighbourhood of H in G/H which has the
shape (11) with sufficiently small 7, u € [0, 27], z€ [0, 7] and continuous functions
filt,u,2) : [0,27] x [0,27] x [0, 7] — R satisfying the same conditions as there.
The image o(U/H) is a local section for the space of the left cosets {xH’;
x€ G, b€ G} precisely if for all suitable matrices x := g(g, r,p) with sufficiently
small (g, r,p)€[0,27] x [0,27] x [0, 7] there exist a unique element g(r,u,z) €
Spins (R) with sufficiently small (¢, u, z) € [0, 27| x [0, 27] x [0, 7] and unique pos-
itive real numbers a, b as well as unique real numbers k, /, v such that the matrix Eq.
(12) holds. Then we see as in the case of the group SL3(R) that for small x and
g(t,u, z) the matrix f is the identity. Therefore any subloop T of L which is homeo-
morphic to & is locally commutative. Then according to [8], Corollary 18.19,
p- 248, each subloop T is isomorphic to a 1-dimensional torus group. It follows
that the restriction of the matrix f to T is the identity. Since L is covered by such 1-
dimensional tori the matrix f is the identity for all elements of .#’3. Hence there is no
proper loop L homeomorphic to .%’3 such that the group G topologically generated

by its left translations is isomorphic to the universal covering group SL3(R). [

Compact loops with compact-free inner mapping groups

Proposition 3. Let L be an almost topological loop homeomorphic to a com-
pact connected Lie group K. Then the group G topologically generated by the left
translations of L cannot be isomorphic to a split extension of a solvable group R
homeomorphic to R" (n = 1) by the group K.

Proof. Denote by H the stabilizer of the identity of L in G. If G has the
structure as in the assertion, then the elements of G can be represented by the
pairs (k,r) with k€ K and r€R. Since L is homeomorphic to K the loop L is
isomorphic to the loop L(o) given by a sharply transitive section o : G/H — G the
image of which is the set © = {(k,f(k)); k€ K}, where f is a continuous function
from K into R with f(1) = 1 € R. The multiplication of (L(c), % ) on & is given by
(x,f(x)) * 0. f(y) = o((xy, f(x)f (v)H).

Let T be a 1-dimensional torus of K. Then the set {(z,f(¢)); t€T} topologi-
cally generates a compact subloop T of L(c) such that the group topologically
generated by its left translations has the shape T7U with TN U = 1, where U is a
normal solvable subgroup of 7U homeomorphic to R" for some n > 1. The mul-
tiplication * in the subloop T is given by

(6. f (1) * (1 () = o((y, f () W)H) = (ey,.f (x9)),

where x,y€T. Hence Tisa subloop homeomorphic to a 1-sphere which has a
solvable Lie group S as the group topologically generated by the left trans-
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lations. It follows that T is a 1-dimensional torus group since otherwise the
group S would be not solvable (cf. [8], Proposition 18.2, p. 235). As f: T —
U is a homomorphism and U is homeomorphic to R" it follows that the
restriction of f to T is the constant function f(7) = 1. Since the exponential
map of a compact group is surjective any element of K is contained in a one-
parameter subgroup of K. It follows f(K) = 1 and L is the group K which is a
contradiction. O]

Theorem 4. Let L be an almost topological proper loop homeomorphic to a
sphere or to a real projective space. If the group G topologically generated by the
left translations of L is a Lie group and the stabilizer H of the identity of Lin G is a
compact-free subgroup of G, then L is homeomorphic to the 1-sphere and G is a
finite covering of the group PSL,(R).

Proof. If dim L =1 then according to Brouwer’s theorem (cf. [11], 96.30,
p. 639) the transitive group G on %y is a finite covering of PSL,(R).

Now let dim L> 1. Since the universal covering of the n-dimensional real
projective space is the n-sphere ., we may assume that L is homeomorphic to
S n, n = 2. Since L is a multiplication with identity e on %, one has n€ {3,7} (cf.
(1.

Any maximal compact subgroup K of G acts transitively on L (cf. [11],
96.19, p. 636). As HNK = {1} the group K operates sharply transitively on
L. Since there is no compact group acting sharply transitively on the 7-sphere
(cf. [11], 96.21, p. 637), the loop L is homeomorphic to the 3-sphere. The only
compact group homeomorphic to the 3-sphere is the unitary group SU,(C). If
the group G were not simple, then G would be a semidirect product of the at
most 3-dimensional solvable radical R with the group SU,(C) (cf. [4], p. 187 and
Theorem 2.1, p. 180). But according to Proposition 3 such a group cannot be the
group topologically generated by the left translations of L. Hence G is a non-
compact Lie group the Lie algebra of which is simple. But then G is isomorphic
either to the group SL,(C) or to the universal covering of the group SL;(R). It
follows from Proposition 1 and 2 that no of these groups can be the group
topologically generated by the left translations of an almost topological proper
loop L. O

The classification of 1-dimensional compact connected %'-loops

If L is a connected strongly almost topological 1-dimensional compact loop,
then L is homeomorphic to the 1-sphere and the group topologically generated by
its left translations is a finite covering of the group PSL,(R) (cf. Proposition 18.2
in [8], p. 235). We want to classify explicitly all 1-dimensional %"-differentiable
compact connected loops which have either the group PSL,(R) or SL,(R) as the
group topologically generated by the left translations.

First we classify the 1-dimensional compact connected loops having G =
SL,(R) as the group topologically generated by their left translations. Since
the stabilizer H is compact-free and may be chosen as the group of upper tri-
angular matrices (see Theorem 1.11, in [8], p. 21) this is equivalent to the clas-
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sification of all loops L(c) belonging to the sharply transitive %'-differentiable

sections
cost  sint a b
o: . , |;a>0,beR
—sint cost 0 a

H( cost sint>(f(t) 8(1) ) with € R. (23)

—sint  cost 0 f
Definition 1. Let # be the set of series

ap + Z(ak coskt + by sinkt), t€R,

k=1
such that

> ay + kbk .
l_aOZkEZIH—Icz7 (1)

o kay — by . ay + kb ..
ap > sin kt — coskt for all r€(0,2n], (ii)

; 1+ & e
> k-1

2

2ay > ,;:1 a; + b}) kz 1 (iii)

Remark. The conditions (i) and (iii) of Definition 1 are equivalent to the
condition

X (a2 + b)) (k> — 1) +2 kb
Z (ak + k)( ) + (ak + k) < 2 (1V)
1+ k2
Withap =1->",7, (“ﬁ’:z’k) if ax, by are non-negative, by < kay for all k > 1 and
X (k+2 2k — 1)b
— 1+k

the inequality (ii) is satisfied since from (v) it follows

Z kak + - ak +kbk
ao
— l—i—k2 — 1 + k2
and
“~kay — b kb,
;% sin kt — % coskt| < ap for all 1€ |0, 27].
In particular, taking " | ax < 2, by = %, we see that the inequalities (1v) and

(v) are satisfied. Hence the set # contains a multltude of trigonometric series.

Lemma 5. The set F consists of Fourier series of continuous functions.
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Proof. Since >, ai + by < P ay it follows from [14], p. 4, that any series in
& converges uniformly to a continuous function f and hence it is the Fourier series
of f (cf. [14], Theorem 6.3, p. 12). O]

Let o be a sharply transitive section of the shape (23). Then f(¢), g(z) are pe-
riodic continuously differentiable functions R — R, such that f(¢) is strictly posi-
tive with f(2k7) = 1 and g(2kw) = 0 for all k€ Z.

As o is sharply transitive the image o(G/H) forms a system of representatives
for the cosets xH” for all p€ G (cf. [3]). All conjugate groups H” can be already
obtained if p is an element of

cost  sint
K= . JER .
—sint cost

Since K"H" = KH" for any x € K the group K forms a system of representatives
for the left cosets xH".
We want to determine the left coset x(z)H" containing the element

e = (Y )

[ cos@ sinf _( cos n(t) sin n(t)
e (—sinﬁ cosﬁ) and - x(1) = (—sin n(t) cos n(t))'

The element ¢(7) lies in the left coset x(#)H" if and only if <p(t)*f1 ex(t)" H=
x(¢t)H. Hence we have to solve the following matrix equation

cost sint) f() g .
) K K
—sint  cost 0
cos n(t sin 7(¢ b
:( : n(t) n())(a 1) (24)
—sin n(t) cos n(t)/\0 a
for suitable a >0,b € R. Comparing both sides of the matrix equation (24) we
have

where

f(#) cos B(sintcos 3 — costsin3) — g(t) sin B(sintcos 3 — costsin 3)
+£(¢)"" sin 3(sinzsin 3+ costcos §) = siny(t)a
and
f(t)cos B(costcos 3+ sintsin ) — g(t) sin B(costcos 3+ sintsin [3)
+f(2)"" sin B(costsin f — sintcos ) = cosn(t)a.
From this it follows that

(f(t) — g(t)tan B)(tant — tan 3) + £~ () tan (1 + tanttan 3)
(f(r) — g(r) tan B)(1 + tanztan 8) 4+ f~'(7) tan B( tan 3 — tans)

Since 3 can be chosen in the intervall 0 < 3< 7 and § < 3 <, we may replace
the parameter tan § by any we R.

tan (1) =
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A %'-differentiable loop L corresponding to o exists if and only if the function
t+— n,,(1) is strictly increasing, i.e. if 7/, (r) > 0 (cf. Proposition 18.3, p. 238, in [8]).
The function a,,(7) : 1+ tann,(t) : R — RU{ £ oo} is strictly increasing if and
only if 7/ (1) > 0 since

< tan (. (1)) =

A straightforward calculation shows that

! 70

cos 2(n,(t

WL 0 + ¢ () + AP0 + 1)
W2 (OF (1) — 2807 (0) +F(0) o)

Hence the loop L(o) exists if and only if for all w € R the inequality

0<w(g'(n)f (r) +g(1)f' (1) + (1) *(1) + 1)
w(=2f(0f (1) = 28(1)f* (1)) +f*(1) (26)

holds. For w = 0 the expression (26) equals to f*(¢) > 0. Therefore the inequality
(26) is satisfied for all we R if and only if one has

F20) +gOf (0f (1) = &' (0f* (1) = f*(1) <0 and  g'(0) <f?(0) 1 (27)
for all r€ R. Putting f(r) = f ~'(r) and g(r) = —g(¢) these conditions are equiva-
lent to the conditions

R0 +80f (1) + & (0f (1) = f*(1) <0 and §(0)<1-f%(0)  (28)
(cf. [8], Section 18, (C), p. 238).

Now we treat the differential inequality (28). The solution 4(z) of the linear
differential equation

< tan (. (1)) =

g1
)

+——=—f()=0 (29)

with the initial conditions 2(0) = 0 and #'(0) = 1 — £2(0) is given by

W) =7 ()" j;o”(u) PP )

Since g(0) = h(0) = 0 and g'(0) < #'(0) it follows from VI in [13] (p. 66) that g(¢)
is a subfunction of the differential equation (29), i.e. that g(¢) satisfies the differ-
ential inequality (28). Moreover, according to Theorem V in [13] (p. 65) one has
g(t) <h(r) for all r€(0,27). Since the functions g(¢) and h(r) are continuous
0 = g(2m) < h(27). This yields the following integral inequality

f”(f%) 7P ()i > 0. (30)

0
7). Since f(0) =
'(27) = R(2m).

We consider the real function R(f) defined by R(t) =f(t)—f (
f(2r) =1 and f'(0) = f'(27) we have R(0) = 1 —f'(0) =1 — f
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The linear differential equation
¥ (t) —y(t) + R(t) =0 with y(0) = 1 (31)

has the solution
!

y(t) =€'(1 - J R(u)e "du). (32)

0

This solution is unique (cf. [6], p. 2) and hence 1t is the functlon f (t). The condi-
tion f (27) = 1 is satisfied if and only if Io e "du =1 — 4. Since R(r) has
periode 27 its Fourier series is given by

ag + Z(ak cos kt + by sinkt), (33)
k7

=
where ag =1 0 R(t) dt, a; = %fOZﬂR(I) coskt dt, and by = }TIOZWR(I) sin kt dt.

Partial 1ntegratlon yields

! k — kcoskt e™' — sinkt e

Jsinku e idy =~ ~CH e — S e (34)
0 1+ &2
! 1 + ksinkt e — coskt e

J cosku e "du = TR e coste (35)
0 1+ k2

Using (34) and (35), we obtain by partial integration

t o0 t
J R(u)e™ du = ay — ape™" + Z “ ay cosku e “du + J
k=1 LJO

0 0

!

by sin ku e“du]

_ f‘:ak(l + ksinkt e — coskt e”")
= dog — ape

1 + k2
bi(k — kcoskt e™" — sinkt e ")
. 36
- e (36)
Now, for the real coefficients ag, ax, by (k > 1) it follows that
1 2 u ay + kby, 1
_E:L R(w)e du = <a0+2 e )( —e?)
Hence one has
> ay + kby
=1. 37
ao +; 12 (37)
The function f (¢) is positive if and only if
t
1> J R(w)e “du for all 1€ [0, 27]. (38)
0

Applying (34) and (35) again we see that the inequality (38) is equivalent to

k—b bk
a0>2[ak i kt—a/;—l—Tkgcoskt. (39)
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Since f'(t) + f (t) = 2¢' (1 — [; R(u)e "du) — R(t) the function f (¢) satisfies the
integral inequality (30) if and only if

J(Z)WR(I) [25 (1 - J; R(u)e”du) - R(t)] dt > 0. (40)

The left side of (40) can be written as

2 r R(t)e'dt — 2 rw R(t)e' ( Jl R(u)e‘“du) dt — rﬁ R*(t)dt. (41)

0 0 0 0
Using partial integration and representing R(«) by a Fourier series (33) we have

rﬁ( eldt = <a0+za’i:ri’;k) 1) (42)

0

From (36) it follows

JzﬂR(t)e’ ( J; R(u)e‘“du) dr

—a rﬂ R(t)édt — ag EWR(I)C” + ki_O:J

>R(t)e‘dt
0 170

(2" [ kay — by , (27 (gt kg
+ZL < s >R(t)s1nktdt—ZJ0 ( e )R(r)cosktdt. (43)

k=1 k=1

2 ay + kby,
1+k%

Substituting for R(¢) its Fourier series and applying the relation (a) in [12] (p. 10)
we have

27
J R(t)dt = 27ay.
0

Futhermore, one has

o0 21 k _ b
ZJ ( & 2k)R(t) sinkt dt
k=1 J0 1 + k
o0 21
kar — b

;J < 611k+ k2k> [ ao + 21: (a;coslt+ b, smlt)] sinkz dt

S kak o0 kak .
“ Z 2 sin et df + Z ajcoslt sinkt dt
! 1+k 1 =1

o0 o0 k _
+ZZJ ( T k2k>blsinlt sinkt dr.

k=1 I=1

00
k=

The relations (a), (b), (c), (d) in [12], p. 10, yield

0 27 0 27
kay — by, . kay — by . 2
E Jo ( e )R(t)smktdt: E Jo ( e )bksm ke dt

k=1 k=1

> kak — bk b
pr— 7T~
e\ 1k )"
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Analogously we obtain that
00 27 0 21
ak-l-kbk) J (kak—f—bk) )
R(t) coskt dt = by cos “kt dt

S, (e >, (i

i (ak + kb, >a -

= kit

c—\ 14K

Using the equality (37) one has

Jz R(1)e' ( JO R(u)e‘“du) dr

Substituting for R(z) its Fourier series we have

2 21 o 27
J R*(1) dt = J ab dt + 2a Z J (arcoskt + by sinkt) dt
0 0 T Jo

Applying the relations (a), (b), (c), (d) in [12] (p. 10) we obtain

2 o)
J R(t) dt = 2mdl + WZ(a,% +b7).
k=1

0
Hence the integral inequality (30) holds if and only if
~ —1

2
2a9 = ; ak +by) k2 1

Since the Fourier series of R(¢) lies in the set # of series the Fourier series of R
converges uniformly to R (Lemma 5).
Summarizing our discussion we obtain the main part of the following

Theorem 6. Let L be a 1-dimensional connected 6'-differentiable loop such
that the group topologically generated by its left translations is isomorphic to the
group SL,(R). Then L is compact and belongs to a ‘gl—diﬁ‘erentiable sharply
transitive section o of the form

cost sin ¢ a b
o . o ;a>0,beR
—sint cost 0 a

_}( cos t sint><f(t) gsf)> with t€R (45)

—sint  cost 0 f'(n
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such that the inverse function f~' has the shape

_ ka — by) sinkt + (ay + kby) cos kt
fl(t) <1—J R(u)e™ du)—a0~|—z k k) 1+]£2k k) 7

(46)

where R(u) is a continuous function the Fourier series of which is contained in the
set F and converges uniformly to R, and g is a periodic €' -differentiable function
with g(0) = g(2m) = 0 such that

1 (12 )
g(t)> —f(1) J UPw) =7 (u) du for all t€(0,2m). (47)
0 f4(u)

Conversely, if R(u) is a continuous function the Fourier series of which is con-
tained in F , then the section o of the form (45) belongs to a loop if f is defined by
(46) and g is a €"-differentiable periodic function with g(0) = g(27) = 0 satisfy-
ing (47).

The isomorphism classes of loops defined by o are in one-to-one correspon-

dence to the 2-sets {(f(1),g(1)), (f(—1),—g(—1))}.

Proof. The only part of the assertion which has to be discussed is the isomor-
phism question. It follows from [7], Theorem 3, p. 3, that any isomorphism class of

the loops L contains precisely two pairs (fi, g1) and (f,g2). If (fi,81) # (f2, 82)
and if (f1, g1) satisfy the inequality (27), then we have

B0+ a(-0F (=0 (=1) = gy (=03 (=1) = £ (~1) <0

since fromf; (t) = fo(—t) and g, (t) = —g2(—1) wehavef{(t) = —f3(—t) and g (1) =
& (=1). O

Remark. A loop L belonging to a section ¢ of shape (45) is a 2-covering of a
%'-differentiable loop L having the group PSL,(R) as the group topological-
ly generated by the left translations if and only if for the functions f and g one
has f (7 )—1 and g(m) =0 (cf. [9], p. 5106). Moreover, L is the factor loop
L/{(5 °);e= £1}. Any n-covering of L is a non-split central extension L of
the cychc group of order n by L. The loop L has the n- covering of PSL,(R) as the
group topologically generated by its left translations.
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