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Abstract. We prove that any topological loop homeomorphic to a sphere or to a real projective
space and having a compact-free Lie group as the inner mapping group is homeomorphic to the circle.
Moreover, we classify the differentiable 1-dimensional compact loops explicitly using the theory of
Fourier series.
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Introduction

The only known proper topological compact connected loops such that the
groups G topologically generated by their left translations are locally compact
and the stabilizers H of their identities in G have no non-trivial compact subgroups
are homeomorphic to the 1-sphere. In [8], [9], [7], [10] it is shown that the dif-
ferentiable 1-dimensional loops can be classified by pairs of real functions which
satisfy a differential inequality containing these functions and their first deriva-
tives. A main goal of this paper is to determine the functions satisfying this in-
equality explicitly in terms of Fourier series.

If L is a topological loop homeomorphic to a sphere or to a real projective
space and having a Lie group G as the group topologically generated by the left
translations such that the stabilizer of the identity of L is a compact-free Lie sub-
group of G, then L is the 1-sphere and G is isomorphic to a finite covering of the
group PSL2ðRÞ (cf. Theorem 4).

To decide which sections � : G=H ! G, where G is a Lie group and H is a
(closed) subgroup of G containing no normal subgroup 6¼ 1 of G correspond to
loops we use systematically a theorem of Baer (cf. [3] and [8], Proposition 1.6,
p. 18). This statement says that � corresponds to a loop if and only if the image
�ðG=HÞ is also the image for any section G=Ha ! G, where Ha ¼ a�1Ha and
a2G. As one of the applications of this we derive in a different way the differen-
tial inequality in [8], p. 238, in which the necessary and sufficient conditions for
the existence of 1-dimensional differentiable loops are hidden.



Basic facts in loop theory

A set L with a binary operation ðx; yÞ 7! x � y : L�L ! L and an element e2L
such that e � x ¼ x � e ¼ x for all x2L is called a loop if for any given a; b2L
the equations a � y ¼ b and x � a ¼ b have unique solutions which we denote by
y ¼ anb and x ¼ b=a. Every left translation �a : y 7! a � y : L ! L, a2L, is a bi-
jection of L and the set � ¼ f�a; a2Lg generates a group G such that � forms a
system of representatives for the left cosets fxH; x2Gg, where H is the stabilizer
of e2L in G. Moreover, the elements of � act on G=H ¼ fxH; x2Gg such that
for any given cosets aH and bH there exists precisely one left translation �z with
�zaH ¼ bH.

Conversely, let G be a group, H be a subgroup containing no normal subgroup
6¼ 1 of G and let � : G=H ! G be a section with �ðHÞ ¼ 12G such that the set
�ðG=HÞ of representatives for the left cosets of H in G generates G and acts
sharply transitively on the space G=H (cf. [8], p. 18). Such a section we call a
sharply transitive section. Then the multiplication defined by xH � yH ¼ �ðxHÞyH
on the factor space G=H or by x � y ¼ �ðxyHÞ on �ðG=HÞ yields a loop Lð�Þ.
The group G is isomorphic to the group generated by the left translations of Lð�Þ.

We call the group generated by the mappings �x;y ¼ ��1
xy �x�y : L ! L, for all

x; y2L, the inner mapping group of the loop L (cf. [8], Definition 1.30, p. 33).
According to Lemma 1.31 in [8], p. 33, this group coincides with the stabilizer H
of the identity of L in the group generated by the left translations of L.

A locally compact loop L is almost topological if it is a locally compact space
and the multiplication � : L� L ! L is continuous. Moreover, if the maps
ða; bÞ 7! b=a and ða; bÞ 7! anb are continuous, then L is a topological loop. An
(almost) topological loop L is connected if and only if the group topologically
generated by the left translations is connected. We call the loop L strongly almost
topological if the group topologically generated by its left translations is locally
compact and the corresponding sharply transitive section � : G=H ! G, where H
is the stabilizer of e2L in G, is continuous.

If a loop L is a connected differentiable manifold such that the multiplication
� : L� L ! L is continuously differentiable, then L is an almost C1-differentiable
loop (cf. Definition 1.24 in [8], p. 31). Moreover, if the mappings ða; bÞ 7! b=a and
ða; bÞ 7! anb are also continuously differentiable, then the loop L is a C1-differ-
entiable loop. If an almost C1-differentiable loop has a Lie group G as the group
topologically generated by its left translations, then the sharply transitive sec-
tion � : G=H ! G is C1-differentiable. Conversely, any continuous, respectively
C1-differentiable sharply transitive section � : G=H ! G yields an almost topo-
logical, respectively an almost C1-differentiable loop.

It is known that for any (almost) topological loop L homeomorphic to a con-
nected topological manifold there exists a universal covering loop eLL such that
the covering mapping p : eLL ! L is an epimorphism. The inverse image p�1ðeÞ ¼
KerðpÞ of the identity element e of L is a central discrete subgroup Z of eLL and it
is naturally isomorphic to the fundamental group of L. If Z 0 is a subgroup of Z,
then the factor loop eLL=Z 0 is a covering loop of L and any covering loop of L is
isomorphic to a factor loop eLL=Z 0 with a suitable subgroup Z 0 (see [5]).
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If L0 is a covering loop of L, then Lemma 1.34 in [8], p. 34, clarifies the relation
between the group topologically generated by the left translations of L0 and the
group topologically generated by the left translations of L:

Let L be a topological loop homeomorphic to a connected topological mani-
fold. Let the group G topologically generated by the left translations �a; a2L,
of L be a Lie group. Let eLL be the universal covering of L and Z � eLL be the fundamen-
tal group of L. Then the group eGG topologically generated by the left translationse��u; u2eLL, of eLL is the covering group of G such that the kernel of the covering map-

ping ’ : eGG ! G is Z� ¼ fe��z; z2Zg and Z� is isomorphic to Z. If we identify eLL and
L with the homogeneous spaces eGG= eHH and G=H, where H or eHH is the stabilizer of

the identity of L in G or of eLL in eGG, respectively, then ’ð eHHÞ ¼ H, eHH \ Z� ¼ f1g,
and eHH is isomorphic to H.

Compact topological loops on the 3-dimensional sphere

Proposition 1. There is no almost topological proper loop L homeomorphic to
the 3-sphere S3 or to the 3-dimensional real projective space P3 such that the
group G topologically generated by the left translations of L is isomorphic to the
group SL2ðCÞ or to the group PSL2ðCÞ, respectively.

Proof. We assume that there is an almost topological loop L homeomorphic to
S3 such that the group topologically generated by its left translations is isomor-
phic to G ¼ SL2ðCÞ. Then there exists a continuous sharply transitive section
� : SL2ðCÞ=H ! SL2ðCÞ, where H is a connected compact-free 3-dimensional
subgroup of SL2ðCÞ. According to [2], pp. 273–278, there is a one-parameter
family of connected compact-free 3-dimensional subgroups Hr, r2R, of SL2ðCÞ
such that Hr1 is conjugate to Hr2 precisely if r1 ¼ r2. Hence we may assume that
the stabilizer H has one of the folowing shapes

Hr ¼
��

exp½ðri� 1Þa� b

0 exp½ð1� riÞa�

�
; a2R; b2C

�
; r2R;

(cf. Theorem 1.11 in [8], p. 21). For each r2R the section �r : G=Hr ! G corre-
sponding to a loop Lr is given by�

x y

��yy �xx

�
Hr 7!

�
x y

��yy �xx

��
exp½ðri� 1Þf ðx; yÞ� gðx; yÞ

0 exp½ð1� riÞf ðx; yÞ�

�
;

where x; y2C, x�xxþ y�yy ¼ 1 such that f ðx; yÞ : S3 ! R, gðx; yÞ : S3 ! C are con-
tinuous functions with f ð1; 0Þ ¼ 0 ¼ gð1; 0Þ. Since �r is a sharply transitive section
for each r2R the image �rðG=HrÞ forms a system of representatives for all cosets
xH�

r , �2G. This means for all given c; d2C2, c�ccþ d �dd ¼ 1 each coset�
u v

��vv �uu

��
c d

� �dd �cc

�
Hr

�
�cc �d
�dd c

�
;

where u; v2C, u�uuþ v�vv ¼ 1, contains precisely one element of �rðG=HrÞ. This is
the case if and only if for all given c; d; u; v2C with u�uuþ v�vv ¼ 1 ¼ c�ccþ d �dd there
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exists a unique triple ðx; y; qÞ2C3 with x�xxþ y�yy ¼ 1 and a real number m such that
the following matrix equation holds:�
�uu�cc� �vvd �ud � v�cc

�vvcþ �uu �dd uc� v �dd

��
x y

��yy �xx

��
exp½ðri� 1Þf ðx; yÞ� gðx; yÞ

0 exp½ð1� riÞf ðx; yÞ�

�

¼
�
exp½ðri� 1Þm� q

0 exp½ð1� riÞm�

��
�cc �d

�dd c

�
: ð1Þ

The (1, 1)- and (2, 1)-entry of the matrix equation (1) give the following system A
of equations:

½ð�uuxþ v�yyÞ�ccþ ðu�yy� �vvxÞd� exp½ðri� 1Þf ðx; yÞ� ¼ exp½ðri� 1Þm��ccþ q �dd ð2Þ

½ð�vvx� u�yyÞcþ ð�uuxþ v�yyÞ �dd� exp½ðri� 1Þf ðx; yÞ� ¼ exp½ð1� riÞm� �dd: ð3Þ
If we take c and d as independent variables, the system A yields the following sys-
tem B of equations:

ð�uuxþ v�yyÞ exp½ir f ðx; yÞ� exp½�f ðx; yÞ� ¼ expðirmÞ expð�mÞ ð4Þ

ðu�yy� �vvxÞ exp½ðri� 1Þf ðx; yÞ�d ¼ �ddq ð5Þ

ð�uuxþ v�yyÞ exp½irf ðx; yÞ� exp½�f ðx; yÞ� ¼ expðmÞ expð�irmÞ: ð6Þ
Since Eq. (5) must be satisfied for all d2C we obtain q ¼ 0. From Eq. (4) it follows

�uuxþ v�yy ¼ expðirmÞ expð�mÞ exp½�ir f ðx; yÞ� exp½f ðx; yÞ�: ð7Þ
Putting (7) into (6) one obtains

expðirmÞ expð�mÞ ¼ expðmÞ expð�irmÞ ð8Þ
which is equivalent to

exp½2ðir � 1Þm� ¼ 1: ð9Þ
Equation (9) is satisfied if and only if m ¼ 0. Hence the matrix equation (1) re-
duces to the matrix equation�

x y

��yy �xx

��
exp½ðri� 1Þf ðx; yÞ� gðx; yÞ

0 exp½ð1� riÞf ðx; yÞ�

�
¼

�
u v

��vv �uu

�
and therefore the matrix

M ¼
�
exp½ðri� 1Þf ðx; yÞ� gðx; yÞ

0 exp½ð1� riÞf ðx; yÞ�

�
is an element of SU2ðCÞ. This is the case if and only if f ðx; yÞ ¼ 0 ¼ gðx; yÞ for all
ðx; yÞ2C2 with x�xxþ y�yy ¼ 1. Since for each r2R the loop Lr is isomorphic to the
loop Lrð�rÞ, hence to the group SU2ðCÞ, there is no connected almost topological
proper loop L homeomorphic toS3 such that the group topologically generated by
its left translations is isomorphic to the group SL2ðCÞ.

The universal covering of an almost topological proper loop L homeo-
morphic to the real projective space P3 is an almost topological proper loop
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eLL homeomorphic to S3. If the group topologically generated by the left trans-
lations of L is isomorphic toPSL2ðCÞ, then the group topologically generated by the
left translations of eLL is isomorphic to SL2ðCÞ. Since no proper loop eLL exists the
Proposition is proved. &

Proposition 2. There is no almost topological proper loop L homeomorphic to
the 3-dimensional real projective space P3 or to the 3-sphere S3 such that the
group G topologically generated by the left translations of L is isomorphic to the
group SL3ðRÞ or to the universal covering group gSL3ðRÞSL3ðRÞ, respectively.

Proof. First we assume that there exists an almost topological loop L homeo-
morphic toP3 such that the group topologically generated by its left translations is
isomorphic to G ¼ SL3ðRÞ. Then there is a continuous sharply transitive section
� : SL3ðRÞ=H ! SL3ðRÞ, where H is a connected compact-free 5-dimensional sub-
group of SL3ðRÞ. According to Theorem 2.7, p. 187, in [4] and to Theorem 1.11,
p. 21, in [8] we may assume that

H ¼
a k v

0 b l

0 0 ðabÞ�1

0
@

1
A; a> 0; b> 0; k; l; v2R

8<
:

9=
;: ð10Þ

Using Euler angles, every element of SO3ðRÞ can be represented by the
following matrix

gðt;u;zÞ :¼
cost sint 0

�sint cost 0

0 0 1

0
B@

1
CA

1 0 0

0 cosz sinz

0 �sinz cosz

0
B@

1
CA

cosu sinu 0

�sinu cosu 0

0 0 1

0
B@

1
CA

¼
cost cosu� sint cosz sinu cost sinuþ sint cosz cosu sint sinz

�sint cosu� cost cosz sinu �sint sinuþ cost cosz cosu cost sinz

sinz sinu �sinz cosu cosz

0
B@

1
CA;

where t; u2 ½0; 2�� and z2 ½0; ��.
The section � : SL3ðRÞ=H ! SL3ðRÞ is given by

gðt; u; zÞH 7! gðt; u; zÞ
f1ðt; u; zÞ f2ðt; u; zÞ f3ðt; u; zÞ

0 f4ðt; u; zÞ f5ðt; u; zÞ
0 0 f�1

1 ðt; u; zÞf�1
4 ðt; u; zÞ

0
@

1
A; ð11Þ

where t; u2 ½0; 2��, z2 ½0; �� and fiðt; u; zÞ : ½0; 2�� � ½0; 2�� � ½0; �� ! R are contin-
uous functions such that for i2f1; 4g the functions fi are positive with fið0; 0; 0Þ ¼ 1
and for j ¼ f2; 3; 5g the functions fjðt; u; zÞ satisfy that fjð0; 0; 0Þ ¼ 0. As � is sharply
transitive the image �ðSL3ðRÞ=HÞ forms a system of representatives for all cosets
xH�, �2SL3ðRÞ. Since the elements x and � can be chosen in the group SO3ðRÞ we
may take x as the matrix

cosq cos r� sinq sin r cosp cosq sin rþ sinq cos r cosp sinq sinp

� sinq cos r� cosq sin r cosp � sinq sin rþ cosq cos r cosp cosq sinp

sinp sin r � sinp cos r cosp

0
@

1
A
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and � as the matrix

cos� cos�� sin� sin� cos� cos� sin�þ sin� cos� cos� sin� sin�
�sin� cos�� cos� sin� cos� �sin� sin�þ cos� cos� cos� cos� sin�

sin� sin� �sin� cos� cos�

0
@

1
A;

where q; r; �; �2 ½0; 2�� and p; �2 ½0; ��. The image �ðSL3ðRÞ=HÞ forms for all
given �2SO3ðRÞ and x2SO3ðRÞ a system of representatives for the cosets xH� if
and only if there exists unique angles t; u2 ½0; 2�� and z2 ½0; �� and unique positive
real numbers a; b as well as unique real numbers k; l; v such that the following
equation holds

�x�1gðt; u; zÞf ¼ h�; ð12Þ
where the matrices �; x; gðt; u; zÞ have the form as above,

f ¼
f1ðt; u; zÞ f2ðt; u; zÞ f3ðt; u; zÞ

0 f4ðt; u; zÞ f5ðt; u; zÞ
0 0 f�1

1 ðt; u; zÞf�1
4 ðt; u; zÞ

0
@

1
A

and

h ¼
a k v

0 b l

0 0 ðabÞ�1

0
@

1
A:

Comparing the first column of the left and the right side of the Eq. (12) we
obtain the following three equations:

f1ðt;u; zÞf½ðcos� cos�� sin� sin� cos�Þðcos r cosq� sin r sinq cospÞ
þ ðcos� sin�þ sin� cos� cos�Þð sin r cosqþ cos r sinq cospÞ
þ sin� sin� sinp sinq�ðcos t cosu� sin t sinu cos zÞ
� ½�ðcos� cos�� sin� sin� cos�Þðcos r sinqþ sin r cosq cospÞ
þ ðcos� sin�þ sin� cos� cos�Þð� sin r sinqþ cos r cosq cospÞ
þ sin� sin� sinpcosq�ð sin t cosuþ cos t sinu cos zÞ
þ ½ðcos� cos�� sin� sin� cos�Þ sin r sinp

�ðcos� sin�þ sin� cos� cos�Þcos r sinpþ sin� sin� cosp� sin z sinug
¼ aðcos� cos�� sin� sin� cos�Þ� kð sin� cos�þ cos� sin� cos�Þ
þ v sin� sin�;

f1ðt; u; zÞf½�ð sin� cos� þ cos� sin� cos �Þð cos r cos q� sin r sin q cos pÞ
� ð� sin� sin� þ cos� cos � cos �Þð sin r cos qþ cos r sin q cos pÞ
þ cos� sin � sin p sin q�ð cos t cos u� sin t sin u cos zÞ
� ½ð sin� cos � þ cos� sin� cos �Þð cos r sin qþ sin r cos q cos pÞ
þ ð� sin� sin� þ cos� cos � cos �Þð� sin r sin qþ cos r cos q cos pÞ
þ cos� sin � sin p cos q�ð sin t cos uþ cos t sin u cos zÞ
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þ ½�ð sin� cos� þ cos� sin� cos �Þ sin r sin p� ð cos� cos � cos �

� sin� sin�Þ cos r sin pþ cos� sin � cos p� sin z sin ug
¼ �bð sin� cos� þ cos� sin� cos �Þ þ l sin � sin�;

f1ðt;u; zÞf½ðcos r cosq� sin r sinq cospÞ sin� sin�

�ð sin r cosqþ cos r sinq cospÞ sin� cos�þ cos� sinp sinq�
�ðcos t cosu� sin t sinu cos zÞþ ½ðcos r sinqþ sin r cosq cospÞ sin� sin�

þð� sin r sinqþ cos r cosq cospÞ sin� cos�� cos� sinpcosq�
�ð sin t cosuþ cos t sinu cos zÞ
þ ½ð sin� sin� sin r sinpþ sin� cos� cos r sinpÞþ cos� cosp� sin z sinug

¼ ðabÞ�1
sin� sin�:

If we take sin � sin� and cos � as independent variables the third equation
turns to the following equations

0 ¼ f1ðt; u; zÞ½ sin p sin qð cos t cos u� sin t sin u cos zÞ
� sin p cos qð sin t cos uþ cos t sin u cos zÞ þ cos p sin z sin u� ð13Þ

ðabÞ�1 ¼ f½ð cos r cos q� sin r sin q cos pÞð cos t cos u� sin t sin u cos zÞ
þ ð cos r sin qþ sin r cos q cos pÞð sin t cos uþ cos t sin u cos zÞ

þ sin r sin p sin z sin u� � cos�

sin�
½ð sin r cos qþ cos r sin q cos pÞ

� ð cos t cos u� sin t sin u cos zÞ � ð� sin r sin qþ cos r cos q cos pÞ
� ð sin t cos uþ cos t sin u cos zÞ � cos r sin p sin z sin u�g f1ðt; u; zÞ:

ð14Þ
If we take cos� sin� cos � and sin� sin � as independent variables it fol-

lows from the second equation that

l ¼ cos�

sin�
f1ðt;u; zÞ½ sin p sinqð cos t cos u� sin t sin u cos zÞ

� sin p cos qð sin t cosuþ cos t sin u cos zÞ þ cos p sin z sinu� ð15Þ
�b ¼ f½�ð cos r cos q� sin r sin q cospÞð cos t cos u� sin t sin u cos zÞ

� ð cos r sinqþ sin r cosq cos pÞð sin t cosuþ cos t sin u cos zÞ

� sin r sin p sin z sinu� � cos�

sin�
½ð sin r cosqþ cos r sin q cospÞ

� ð cos t cos u� sin t sinu cos zÞ � ð� sin r sin qþ cos r cosq cospÞ
� ð sin t cos uþ cos t sinu cos zÞ � cos r sin p sin z sinu�g f1ðt; u; zÞ: ð16Þ

If we choose sin� sin� cos �, sin� sin � as independent variables the first
equation yields

v¼ sin�

sin�
f1ðt;u;zÞ½sinp sinqðcos t cosu� sin t sinu coszÞ

� sinp cosqðsin t cosuþ cos t sinu coszÞþ cosp sin z sinu� ð17Þ
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aþ k
cos�

sin�
¼ f½ðcos r cosq� sin r sinq cospÞð cos t cosu� sin t sinu cos zÞ

� ðcos r sinqþ sin r cosq cospÞð sin t cosuþ cos t sinu cos zÞ

þ sin r sinp sin z sinu� � cos�

sin�
½ð sin r cosqþ cos r sinq cospÞ

�ð cos t cosu� sin t sinu cos zÞ � ð� sin r sinqþ cos r cosq cospÞ
�ð sin t cosuþ cos t sinu cos zÞ � cos r sinp sin z sinu�gf1ðt;u; zÞ:

ð18Þ
Since f1ðt; u; zÞ> 0 it follows from Eq. (13) that

0 ¼ sin p sin qð cos t cos u� sin t sin u cos zÞ
� sin p cos qð sin t cos uþ cos t sin u cos zÞ þ cos p sin z sin u: ð19Þ

Using this, it follows from (15) that l ¼ 0 holds and from Eq. (17) that v ¼ 0.
Since the Eq. (14) must be satisfied for all �2 ½0; 2��, we have

ðabÞ�1 ¼ ½ð cos r cos q� sin r sin q cos pÞð cos t cos u� sin t sin u cos zÞ
þ ð cos r sin qþ sin r cos q cos pÞð sin t cos uþ cos t sin u cos zÞ
þ sin r sin p sin z sin u� f1ðt; u; zÞ ð20Þ

0 ¼ ½ð sin r cos qþ cos r sin q cos pÞð cos t cos u� sin t sin u cos zÞ
� ð� sin r sin qþ cos r cos q cos pÞð sin t cos uþ cos t sin u cos zÞ
� cos r sin p sin z sin u�: ð21Þ

Using Eq. (21) and comparing the Eqs. (20) and (16), we obtain that
ðabÞ�1 ¼ b. With Eq. (21) the Eq. (18) turns to

aþ k
cos�

sin�
¼ ½ð cos r cos q� sin r sin q cos pÞð cos t cos u� sin t sin u cos zÞ

� ð cos r sin qþ sin r cos q cos pÞð sin t cos uþ cos t sin u cos zÞ
þ sin r sin p sin z sin u� f1ðt; u; zÞ: ð22Þ

Since the Eq. (22) must be satisfied for all �2 ½0; 2��, we obtain k ¼ 0. Using
this, the Eqs. (22) and (20) yield ðabÞ�1 ¼ a. Since 1 ¼ abðabÞ�1 ¼ a3 it follows
that a ¼ 1 and hence the matrix h is the identity. But then the matrix equation (12)
turns to the matrix equation

gðt; u; zÞf ¼ x:

As x and gðt; u; zÞ are elements of SO3ðRÞ one has f ¼ g�1ðt; u; zÞx2SO3ðRÞ. But
then f is the identity, which means that

f1ðt; u; zÞ ¼ 1 ¼ f4ðt; u; zÞ; f2ðt; u; zÞ ¼ f3ðt; u; zÞ ¼ f5ðt; u; zÞ ¼ 0;

for all t; u2 ½0; 2�� and z2 ½0; ��. Since the loop L is isomorphic to the loop Lð�Þ
and Lð�Þ ffi SO3ðRÞ there is no connected almost topological proper loop L ho-
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meomorphic to P3 such that the group topologically generated by its left transla-
tions is isomorphic to SL3ðRÞ.

Now we assume that there is an almost topological loop L homeomorphic to
S3 such that the group G topologically generated by its left translations is iso-

morphic to the universal covering group ŜL3ðRÞ. Then the stabilizer H of the
identity of L may be chosen as the group (10). Then there exists a local section
� : U=H ! G, where U is a suitable neighbourhood of H in G=H which has the
shape (11) with sufficiently small t; u2 ½0; 2��, z2 ½0; �� and continuous functions
fiðt; u; zÞ : ½0; 2�� � ½0; 2�� � ½0; �� ! R satisfying the same conditions as there.
The image �ðU=HÞ is a local section for the space of the left cosets fxH�;
x2G; �2Gg precisely if for all suitable matrices x :¼ gðq; r; pÞ with sufficiently
small ðq; r; pÞ2 ½0; 2�� � ½0; 2�� � ½0; �� there exist a unique element gðt; u; zÞ2
Spin3ðRÞ with sufficiently small ðt; u; zÞ2 ½0; 2�� � ½0; 2�� � ½0; �� and unique pos-
itive real numbers a; b as well as unique real numbers k; l; v such that the matrix Eq.
(12) holds. Then we see as in the case of the group SL3ðRÞ that for small x and
gðt; u; zÞ the matrix f is the identity. Therefore any subloop T of L which is homeo-
morphic to S1 is locally commutative. Then according to [8], Corollary 18.19,
p. 248, each subloop T is isomorphic to a 1-dimensional torus group. It follows
that the restriction of the matrix f to T is the identity. Since L is covered by such 1-
dimensional tori the matrix f is the identity for all elements ofS3. Hence there is no
proper loop L homeomorphic to S3 such that the group G topologically generated

by its left translations is isomorphic to the universal covering group ŜL3ðRÞ. &

Compact loops with compact-free inner mapping groups

Proposition 3. Let L be an almost topological loop homeomorphic to a com-
pact connected Lie group K. Then the group G topologically generated by the left
translations of L cannot be isomorphic to a split extension of a solvable group R
homeomorphic to Rn ðn5 1Þ by the group K.

Proof. Denote by H the stabilizer of the identity of L in G. If G has the
structure as in the assertion, then the elements of G can be represented by the
pairs ðk; rÞ with k2K and r2R. Since L is homeomorphic to K the loop L is
isomorphic to the loop Lð�Þ given by a sharply transitive section � : G=H ! G the
image of which is the set S ¼ fðk; f ðkÞÞ; k2Kg, where f is a continuous function
from K into R with f ð1Þ ¼ 12R. The multiplication of ðLð�Þ; � Þ on S is given by
ðx; f ðxÞÞ � ðy; f ðyÞÞ ¼ �ððxy; f ðxÞf ðyÞÞHÞ.

Let T be a 1-dimensional torus of K. Then the set fðt; f ðtÞÞ; t2Tg topologi-
cally generates a compact subloop eTT of Lð�Þ such that the group topologically
generated by its left translations has the shape TU with T \ U ¼ 1, where U is a
normal solvable subgroup of TU homeomorphic to Rn for some n5 1. The mul-
tiplication � in the subloop eTT is given by

ðx; f ðxÞÞ � ðy; f ðyÞÞ ¼ �ððxy; f ðxÞf ðyÞÞHÞ ¼ ðxy; f ðxyÞÞ;
where x; y2T . Hence eTT is a subloop homeomorphic to a 1-sphere which has a
solvable Lie group S as the group topologically generated by the left trans-
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lations. It follows that eTT is a 1-dimensional torus group since otherwise the
group S would be not solvable (cf. [8], Proposition 18.2, p. 235). As f : eTT !
U is a homomorphism and U is homeomorphic to Rn it follows that the
restriction of f to eTT is the constant function f ðeTTÞ ¼ 1. Since the exponential
map of a compact group is surjective any element of K is contained in a one-
parameter subgroup of K. It follows f ðKÞ ¼ 1 and L is the group K which is a
contradiction. &

Theorem 4. Let L be an almost topological proper loop homeomorphic to a
sphere or to a real projective space. If the group G topologically generated by the
left translations of L is a Lie group and the stabilizer H of the identity of L in G is a
compact-free subgroup of G, then L is homeomorphic to the 1-sphere and G is a
finite covering of the group PSL2ðRÞ.

Proof. If dim L ¼ 1 then according to Brouwer’s theorem (cf. [11], 96.30,
p. 639) the transitive group G on S1 is a finite covering of PSL2ðRÞ.

Now let dim L> 1. Since the universal covering of the n-dimensional real
projective space is the n-sphere Sn we may assume that L is homeomorphic to
Sn, n5 2. Since L is a multiplication with identity e on Sn one has n2f3; 7g (cf.
[1]).

Any maximal compact subgroup K of G acts transitively on L (cf. [11],
96.19, p. 636). As H \ K ¼ f1g the group K operates sharply transitively on
L. Since there is no compact group acting sharply transitively on the 7-sphere
(cf. [11], 96.21, p. 637), the loop L is homeomorphic to the 3-sphere. The only
compact group homeomorphic to the 3-sphere is the unitary group SU2ðCÞ. If
the group G were not simple, then G would be a semidirect product of the at
most 3-dimensional solvable radical R with the group SU2ðCÞ (cf. [4], p. 187 and
Theorem 2.1, p. 180). But according to Proposition 3 such a group cannot be the
group topologically generated by the left translations of L. Hence G is a non-
compact Lie group the Lie algebra of which is simple. But then G is isomorphic
either to the group SL2ðCÞ or to the universal covering of the group SL3ðRÞ. It
follows from Proposition 1 and 2 that no of these groups can be the group
topologically generated by the left translations of an almost topological proper
loop L. &

The classification of 1-dimensional compact connected C1-loops

If L is a connected strongly almost topological 1-dimensional compact loop,
then L is homeomorphic to the 1-sphere and the group topologically generated by
its left translations is a finite covering of the group PSL2ðRÞ (cf. Proposition 18.2
in [8], p. 235). We want to classify explicitly all 1-dimensional C1-differentiable
compact connected loops which have either the group PSL2ðRÞ or SL2ðRÞ as the
group topologically generated by the left translations.

First we classify the 1-dimensional compact connected loops having G ¼
SL2ðRÞ as the group topologically generated by their left translations. Since
the stabilizer H is compact-free and may be chosen as the group of upper tri-
angular matrices (see Theorem 1.11, in [8], p. 21) this is equivalent to the clas-
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sification of all loops Lð�Þ belonging to the sharply transitive C1-differentiable
sections

� :

�
cos t sin t

� sin t cos t

���
a b

0 a�1

�
; a> 0; b2R

�

!
�

cos t sin t

� sin t cos t

��
f ðtÞ gðtÞ
0 f�1ðtÞ

�
with t2R: ð23Þ

Definition 1. Let F be the set of series

a0 þ
X1
k¼1

ðak cos kt þ bk sin ktÞ; t2R;

such that

1� a0 ¼
X1
k¼1

ak þ kbk

1þ k2
; ðiÞ

a0 >
X1
k¼1

kak � bk

1þ k2
sin kt � ak þ kbk

1þ k2
cos kt for all t2 ½0; 2��; ðiiÞ

2a0 5
X1
k¼1

ða2k þ b2kÞ
k2 � 1

k2 þ 1
: ðiiiÞ

Remark. The conditions ðiÞ and ðiiiÞ of Definition 1 are equivalent to the
condition X1

k¼1

ða2k þ b2kÞðk2 � 1Þ þ 2ðak þ kbkÞ
1þ k2

4 2: ðivÞ

With a0 ¼ 1�
P1

k¼1
ðakþkbkÞ
1þk2

if ak, bk are non-negative, bk 4 kak for all k5 1 and

X1
k¼1

ðk þ 2Þak þ ð2k � 1Þbk
1þ k2

< 1; ðvÞ

the inequality ðiiÞ is satisfied since from ðvÞ it followsX1
k¼1

ðkak � bkÞ
1þ k2

þ
X1
k¼1

ðak þ kbkÞ
1þ k2

< a0

and ����X1
k¼1

kak � bk

1þ k2
sin kt � ak þ kbk

1þ k2
cos kt

����4 a0 for all t2 ½0; 2��:

In particular, taking
P1

k¼1 ak 4
2
5
, bk ¼ ak

k
, we see that the inequalities ðivÞ and

ðvÞ are satisfied. Hence the set F contains a multitude of trigonometric series.

Lemma 5. The set F consists of Fourier series of continuous functions.
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Proof. Since
P1

k¼2 a
2
k þ b2k <

10
3
a0 it follows from [14], p. 4, that any series in

F converges uniformly to a continuous function f and hence it is the Fourier series
of f (cf. [14], Theorem 6.3, p. 12). &

Let � be a sharply transitive section of the shape (23). Then f ðtÞ, gðtÞ are pe-
riodic continuously differentiable functions R ! R, such that f ðtÞ is strictly posi-
tive with f ð2k�Þ ¼ 1 and gð2k�Þ ¼ 0 for all k2Z.

As � is sharply transitive the image �ðG=HÞ forms a system of representatives
for the cosets xH� for all �2G (cf. [3]). All conjugate groups H� can be already
obtained if � is an element of

K ¼
��

cos t sin t

� sin t cos t

�
; t2R

�
:

Since K	H	 ¼ KH	 for any 	2K the group K forms a system of representatives
for the left cosets xH	.

We want to determine the left coset xðtÞH	 containing the element

’ðtÞ ¼
�

cos t sin t

� sin t cos t

��
f ðtÞ gðtÞ
0 f�1ðtÞ

�
;

where

	 ¼
�

cos � sin�
� sin� cos�

�
and xðtÞ ¼

�
cos 
ðtÞ sin 
ðtÞ
� sin 
ðtÞ cos 
ðtÞ

�
:

The element ’ðtÞ lies in the left coset xðtÞH	 if and only if ’ðtÞ	
�1

2 xðtÞ	
�1

H ¼
xðtÞH. Hence we have to solve the following matrix equation�

cos t sin t

� sin t cos t

��
	

�
f ðtÞ gðtÞ
0 f�1ðtÞ

�
	�1

�

¼
�

cos 
ðtÞ sin 
ðtÞ
� sin 
ðtÞ cos 
ðtÞ

��
a b

0 a�1

�
ð24Þ

for suitable a> 0; b2R. Comparing both sides of the matrix equation (24) we
have

f ðtÞ cos�ð sin t cos� � cos t sin�Þ � gðtÞ sin�ð sin t cos� � cos t sin�Þ
þ f ðtÞ�1

sin�ð sin t sin� þ cos t cos �Þ ¼ sin 
ðtÞa
and

f ðtÞ cos�ð cos t cos� þ sin t sin�Þ � gðtÞ sin�ð cos t cos� þ sin t sin�Þ
þ f ðtÞ�1

sin�ð cos t sin� � sin t cos �Þ ¼ cos 
ðtÞa:
From this it follows that

tan 
�ðtÞ ¼
ðf ðtÞ � gðtÞ tan �Þð tan t � tan�Þ þ f�1ðtÞ tan �ð1þ tan t tan�Þ
ðf ðtÞ � gðtÞ tan �Þð1þ tan t tan�Þ þ f�1ðtÞ tan�ð tan� � tan tÞ :

Since � can be chosen in the intervall 04�< �
2
and �

2
<�<�, we may replace

the parameter tan� by any w2R.
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A C1-differentiable loop L corresponding to � exists if and only if the function
t 7! 
wðtÞ is strictly increasing, i.e. if 
0wðtÞ> 0 (cf. Proposition 18.3, p. 238, in [8]).
The function awðtÞ : t 7! tan 
wðtÞ : R ! R [ f�1g is strictly increasing if and
only if 
0wðtÞ> 0 since

d

dt
tan ð
wðtÞÞ ¼

1

cos 2ð
wðtÞÞ

0wðtÞ:

A straightforward calculation shows that

d

dt
tan ð
wðtÞÞ ¼

w2 þ 1

cos 2ðtÞ ½w
2ðg0ðtÞf ðtÞ þ gðtÞf 0ðtÞ þ g2ðtÞf 2ðtÞ þ 1Þ

þ wð�2f ðtÞf 0ðtÞ � 2gðtÞf 3ðtÞÞ þ f 4ðtÞ�: ð25Þ

Hence the loop Lð�Þ exists if and only if for all w2R the inequality

0<w2ðg0ðtÞf ðtÞ þ gðtÞf 0ðtÞ þ g2ðtÞf 2ðtÞ þ 1Þ
þ wð�2f ðtÞf 0ðtÞ � 2gðtÞf 3ðtÞÞ þ f 4ðtÞ ð26Þ

holds. For w ¼ 0 the expression (26) equals to f 4ðtÞ> 0. Therefore the inequality
(26) is satisfied for all w2R if and only if one has

f 02ðtÞ þ gðtÞf 2ðtÞf 0ðtÞ � g0ðtÞf 3ðtÞ � f 2ðtÞ< 0 and g0ð0Þ< f 02ð0Þ � 1 ð27Þ
for all t2R. Putting f ðtÞ ¼ f̂f �1ðtÞ and gðtÞ ¼ �ĝgðtÞ these conditions are equiva-
lent to the conditions

f̂f 02ðtÞ þ ĝgðtÞf̂f 0ðtÞ þ ĝg0ðtÞf̂f ðtÞ � f̂f 2ðtÞ< 0 and ĝg0ð0Þ< 1� f̂f 02ð0Þ ð28Þ
(cf. [8], Section 18, (C), p. 238).

Now we treat the differential inequality (28). The solution hðtÞ of the linear
differential equation

h0ðtÞ þ hðtÞ f̂f
0ðtÞ
f̂f ðtÞ

þ f̂f 02ðtÞ
f̂f ðtÞ

� f̂f ðtÞ ¼ 0 ð29Þ

with the initial conditions hð0Þ ¼ 0 and h0ð0Þ ¼ 1� f̂f 02ð0Þ is given by

hðtÞ ¼ f̂f ðtÞ�1

ðt
0

ðf̂f 2ðuÞ � f̂f 02ðuÞÞdu:

Since ĝgð0Þ ¼ hð0Þ ¼ 0 and ĝg0ð0Þ< h0ð0Þ it follows from VI in [13] (p. 66) that ĝgðtÞ
is a subfunction of the differential equation (29), i.e. that ĝgðtÞ satisfies the differ-
ential inequality (28). Moreover, according to Theorem V in [13] (p. 65) one has
ĝgðtÞ< hðtÞ for all t2ð0; 2�Þ. Since the functions ĝgðtÞ and hðtÞ are continuous
0 ¼ ĝgð2�Þ4 hð2�Þ. This yields the following integral inequalityð2�

0

ðf̂f 2ðtÞ � f̂f 02ðtÞÞdt5 0: ð30Þ

We consider the real function RðtÞ defined by RðtÞ ¼ f̂f ðtÞ � f̂f 0ðtÞ. Since f̂f ð0Þ ¼
f̂f ð2�Þ ¼ 1 and f̂f 0ð0Þ ¼ f̂f 0ð2�Þ we have Rð0Þ ¼ 1� f̂f 0ð0Þ ¼ 1� f̂f 0ð2�Þ ¼ Rð2�Þ.
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The linear differential equation

y0ðtÞ � yðtÞ þ RðtÞ ¼ 0 with yð0Þ ¼ 1 ð31Þ
has the solution

yðtÞ ¼ etð1�
ðt
0

RðuÞe�uduÞ: ð32Þ

This solution is unique (cf. [6], p. 2) and hence it is the function f̂f ðtÞ. The condi-
tion f̂f ð2�Þ ¼ 1 is satisfied if and only if

Ð 2�
0

RðuÞe�udu ¼ 1� 1
e2�
. Since RðtÞ has

periode 2� its Fourier series is given by

a0 þ
X1
k¼1

ðak cos kt þ bk sin ktÞ; ð33Þ

where a0 ¼ 1
�

Ð 2�
0

RðtÞ dt, ak ¼ 1
�

Ð 2�
0

RðtÞ cos kt dt, and bk ¼ 1
�

Ð 2�
0

RðtÞ sin kt dt.
Partial integration yieldsðt

0

sin ku e�udu ¼ k � k cos kt e�t � sin kt e�t

1þ k2
ð34Þðt

0

cos ku e�udu ¼ 1þ k sin kt e�t � cos kt e�t

1þ k2
: ð35Þ

Using (34) and (35), we obtain by partial integrationðt
0

RðuÞe�u du ¼ a0 � a0e
�t þ

X1
k¼1

� ðt
0

ak cos ku e�uduþ
ðt
0

bk sin ku e�udu

�

¼ a0 � a0e
�t þ

X1
k¼1

akð1þ k sin kt e�t � cos kt e�tÞ
1þ k2

þ bkðk � k cos kt e�t � sin kt e�tÞ
1þ k2

: ð36Þ

Now, for the real coefficients a0; ak; bk ðk5 1Þ it follows that

1� 1

e2�
¼

ð2�
0

RðuÞe�udu ¼
�
a0 þ

X1
k¼1

ak þ kbk

1þ k2

��
1� 1

e2�

�
:

Hence one has

a0 þ
X1
k¼1

ak þ kbk

1þ k2
¼ 1: ð37Þ

The function f̂f ðtÞ is positive if and only if

1>

ðt
0

RðuÞe�udu for all t2 ½0; 2��: ð38Þ

Applying (34) and (35) again we see that the inequality (38) is equivalent to

a0 >
X1
k¼1

�
akk � bk

1þ k2
sin kt � ak þ bkk

1þ k2
cos kt

�
: ð39Þ
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Since f̂f 0ðtÞ þ f̂f ðtÞ ¼ 2et
�
1�

Ð t
0
RðuÞe�udu

	
� RðtÞ the function f̂f ðtÞ satisfies the

integral inequality (30) if and only ifð2�
0

RðtÞ
�
2et

�
1�

ðt
0

RðuÞe�udu

�
� RðtÞ

�
dt5 0: ð40Þ

The left side of (40) can be written as

2

ð2�
0

RðtÞetdt � 2

ð2�
0

RðtÞet
�ðt

0

RðuÞe�udu

�
dt �

ð2�
0

R2ðtÞdt: ð41Þ

Using partial integration and representing RðuÞ by a Fourier series (33) we haveð2�
0

RðtÞetdt ¼
�
a0 þ

X1
k¼1

ak � bkk

1þ k2

�
ðe2� � 1Þ: ð42Þ

From (36) it followsð2�
0

RðtÞet
�ðt

0

RðuÞe�udu

�
dt

¼ a0

ð2�
0

RðtÞetdt� a0

ð2�
0

RðtÞdtþ
X1
k¼1

ð2�
0

�
ak þ kbk

1þ k2

�
RðtÞetdt

þ
X1
k¼1

ð2�
0

�
kak � bk

1þ k2

�
RðtÞ sin kt dt�

X1
k¼1

ð2�
0

�
ak þ kbk

1þ k2

�
RðtÞcos kt dt: ð43Þ

Substituting for RðtÞ its Fourier series and applying the relation (a) in [12] (p. 10)
we have ð2�

0

RðtÞdt ¼ 2�a0:

Futhermore, one hasX1
k¼1

ð2�
0

�
kak � bk

1þ k2

�
RðtÞ sin kt dt

¼
X1
k¼1

ð2�
0

�
kak � bk

1þ k2

��
a0 þ

X1
l¼1

ðal cos lt þ bl sin ltÞ
�
sin kt dt

¼ a0
X1
k¼1

ð2�
0

�
kak � bk

1þ k2

�
sin kt dt þ

X1
k¼1

X1
l¼1

ð2�
0

�
kak � bk

1þ k2

�
al cos lt sin kt dt

þ
X1
k¼1

X1
l¼1

ð2�
0

�
kak � bk

1þ k2

�
bl sin lt sin kt dt:

The relations (a), (b), (c), (d) in [12], p. 10, yieldX1
k¼1

ð2�
0

�
kak � bk

1þ k2

�
RðtÞ sin kt dt ¼

X1
k¼1

ð2�
0

�
kak � bk

1þ k2

�
bk sin

2kt dt

¼
X1
k¼1

�
kak � bk

1þ k2

�
bk�:
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Analogously we obtain that

X1
k¼1

ð2�
0

�
ak þ kbk

1þ k2

�
RðtÞ cos kt dt ¼

X1
k¼1

ð2�
0

�
kak þ bk

1þ k2

�
bk cos

2kt dt

¼
X1
k¼1

�
ak þ kbk

1þ k2

�
ak�:

Using the equality (37) one hasð2�
0

RðtÞet
�ðt

0

RðuÞe�udu

�
dt

¼
�
a0 þ

X1
k¼1

ak � kbk

1þ k2

�
ðe2� � 1Þ � �

X1
k¼1

b2k þ a2k
1þ k2

� 2�a20: ð44Þ

Substituting for RðtÞ its Fourier series we haveð2�
0

R2ðtÞ dt ¼
ð2�
0

a20 dt þ 2a0
X1
k¼1

ð2�
0

ðak cos kt þ bk sin ktÞ dt

�
X1
k¼1

X1
l¼1

ð2�
0

ðakal cos kt cos lt þ akbl cos kt sin lt

þ bkal sin kt cos lt þ bkbl sin kt sin ltÞ dt:

Applying the relations (a), (b), (c), (d) in [12] (p. 10) we obtainð2�
0

R2ðtÞ dt ¼ 2�a20 þ �
X1
k¼1

ða2k þ b2kÞ:

Hence the integral inequality (30) holds if and only if

2a0 5
X1
k¼1

ða2k þ b2kÞ
k2 � 1

k2 þ 1
:

Since the Fourier series of RðtÞ lies in the set F of series the Fourier series of R
converges uniformly to R (Lemma 5).

Summarizing our discussion we obtain the main part of the following

Theorem 6. Let L be a 1-dimensional connected C1-differentiable loop such
that the group topologically generated by its left translations is isomorphic to the
group SL2ðRÞ. Then L is compact and belongs to a C1-differentiable sharply
transitive section � of the form

� :

�
cos t sin t

� sin t cos t

���
a b

0 a�1

�
; a> 0; b2R

�

!
�

cos t sin t

� sin t cos t

��
f ðtÞ gðtÞ
0 f�1ðtÞ

�
with t2R ð45Þ
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such that the inverse function f�1 has the shape

f�1ðtÞ ¼ et
�
1�

ðt
0

RðuÞe�u du

�
¼ a0 þ

X1
k¼1

ðkak � bkÞ sin kt þ ðak þ kbkÞ cos kt
1þ k2

;

ð46Þ
where RðuÞ is a continuous function the Fourier series of which is contained in the
set F and converges uniformly to R, and g is a periodic C1-differentiable function
with gð0Þ ¼ gð2�Þ ¼ 0 such that

gðtÞ> � f ðtÞ
ðt
0

ðf 2ðuÞ � f 02ðuÞÞ
f 4ðuÞ du for all t2ð0; 2�Þ: ð47Þ

Conversely, if RðuÞ is a continuous function the Fourier series of which is con-
tained in F, then the section � of the form (45) belongs to a loop if f is defined by
(46) and g is a C1-differentiable periodic function with gð0Þ ¼ gð2�Þ ¼ 0 satisfy-
ing (47).

The isomorphism classes of loops defined by � are in one-to-one correspon-
dence to the 2-sets fðf ðtÞ; gðtÞÞ; ðf ð�tÞ;�gð�tÞÞg.

Proof. The only part of the assertion which has to be discussed is the isomor-
phism question. It follows from [7], Theorem 3, p. 3, that any isomorphism class of
the loops L contains precisely two pairs ðf1; g1Þ and ðf2; g2Þ. If ðf1; g1Þ 6¼ ðf2; g2Þ
and if ðf1; g1Þ satisfy the inequality (27), then we have

f 022 ð�tÞ þ g2ð�tÞf 22 ð�tÞf 02ð�tÞ � g02ð�tÞf 32 ð�tÞ � f 22 ð�tÞ< 0

since from f1ðtÞ ¼ f2ð�tÞ and g1ðtÞ ¼ �g2ð�tÞwe have f 01ðtÞ ¼ �f 02ð�tÞ and g01ðtÞ ¼
g02ð�tÞ. &

Remark. A loop eLL belonging to a section � of shape (45) is a 2-covering of a
C1-differentiable loop L having the group PSL2ðRÞ as the group topological-
ly generated by the left translations if and only if for the functions f and g one
has f ð�Þ ¼ 1 and gð�Þ ¼ 0 (cf. [9], p. 5106). Moreover, L is the factor loopeLL=
� � 0

0 �

	
; � ¼ � 1

�
. Any n-covering of L is a non-split central extension bLL of

the cyclic group of order n by L. The loop bLL has the n-covering of PSL2ðRÞ as the
group topologically generated by its left translations.
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