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Abstract. Let O be an order, that is a commutative ring with 1 whose addi-

tive structure is a free Z-module of finite rank. A generalized number system
(GNS for short) over O is a pair (p,D) where p ∈ O[x] is monic with constant

term p(0) not a zero divisor of O, and where D is a complete residue system

modulo p(0) in O containing 0. We say that (p,D) is a GNS over O with
the finiteness property if all elements of O[x]/(p) have a representative in D[x]

(the polynomials with coefficients in D). Our purpose is to extend several of

the results from a previous paper of Pethő and Thuswaldner, where GNS over
orders of number fields were considered. We prove that it is algorithmically

decidable whether or not for a given order O and GNS (p,D) over O, the pair
(p,D) admits the finiteness property. This is closely related to work of Vince

on matrix number systems.

Let F be a fundamental domain for O⊗Z R/O and p ∈ O[X] a monic
polynomial. For α ∈ O, define pα(x) := p(x+ α) and DF,p(α) := p(α)F ∩ O.

Under mild conditions we show that the pairs (pα,DF,p(α)) are GNS over
O with finiteness property provided α ∈ O in some sense approximates a

sufficiently large positive rational integer. In the opposite direction we prove
under different conditions that (p−m,DF,p(−m)) does not have the finiteness

property for each large enough positive rational integer m.

We obtain important relations between power integral bases of étale orders
and GNS over Z. Their proofs depend on some general effective finiteness

results of Evertse and Győry on monogenic étale orders.

1. Introduction

Decimal and sexagesimal representations of the positive integers have been used
since the times of antiquity. A computer’s “native language” consists of the binary
strings, which can be interpreted among others as binary representations of integers.
Starting with the pioneering work of V. Grünwald [5] many generalizations have
been established. For an overview we refer to the papers [1, 11] and to the book [4].

In the present paper, O will denote an order, that is a commutative ring with
1 whose additive group is free abelian of finite rank. We identify m ∈ Z with
m · 1, and thus assume Z ⊂ O. The order O may be given explicitly by a basis
{1 = ω1, ω2, . . . , ωd} and a multiplication table

(1.1) ωiωj =

d∑
l=1

aijlωl (i, j = 2, . . . , d) with aijl ∈ Z,
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satisfying the commutativity and associativity rules. A generalized number system
over O (GNS over O for short) is a pair (p,D), where p ∈ O[x] is a monic polynomial
such that p(0) is not a zero divisor of O, and where D is a (necessarily finite)
complete residue system of O modulo p(0) containing 0.

An element a ∈ O[x] is representable in (p,D) if there exist an integer L ≥ 0
and a0, . . . , aL ∈ D such that

(1.2) a ≡
L∑
j=0

ajx
j (mod p),

i.e., if there is q ∈ O[x] such that a + qp has its coefficients in D. Our condition
that p(0) not be a zero divisor of O implies that a representation of a (mod p)
as in (1.2), if it exists, is unique (except for “leading zeros”). If all a ∈ O[x] are
representable in (p,D), then (p,D) is called a GNS with the finiteness property.
This concept was introduced for O = Z by Pethő [10] and extended to orders O in
number fields by Pethő and Thuswaldner [11].

GNS over orders may be viewed as special cases of matrix number systems,
which were introduced by Vince [13]. A matrix number system is a triple (Λ, ϕ,D),
consisting of a free abelian group Λ of finite rank, an injective homomorphism
ϕ : Λ→ Λ, and a complete residue system D for Λ/ϕ(Λ) with 0 ∈ D. Then a GNS
(p,D) over O may be viewed as a matrix number system with Λ = O[x]/(p), ϕ : f
(mod p) 7→ x · f (mod p), and D = D.

We briefly recall some of the results from the paper [11] of Pethő and Thuswald-
ner, but reformulate them in terms of the language of the present paper. Let O be
an order of a number field. We embed O in the R-algebra O⊗ZR and view O as a
full rank sublattice of O⊗ZR. The real innovation of [11] is to consider parametrized
classes of GNS over O determined by a monic polynomial p ∈ O[x] and a funda-
mental domain F of O⊗ZR/O with 0 ∈ F , i.e., F is a subset of O⊗ZR consisting of
precisely one element from every residue class of O⊗ZR modulo O. More precisely,
one considers GNS of the type (pα,DF,p(α)) (α ∈ O), where pα(x) := p(x + α)
and DF,ϑ := ϑF ∩ O for a non-zero element ϑ of O. In their paper, Pethő and
Thuswaldner proved that it is algorithmically decidable whether a given GNS (p,D)
over O has the finiteness property. Under mild conditions on F they were able to
prove that (pα,DF,p(α)) is a GNS with the finiteness property provided that there

is a large positive rational integer m such that m−1α is close to 1 (with respect
to any vector norm on O⊗ZR). Under different conditions on F they proved that
(p−m,DF,p(−m)) does not have the finiteness property if m is a sufficiently large
positive rational integer. These are far reaching generalizations of results of Kovács
and Pethő [9]. The purpose of the present paper is to extend the results mentioned
above from GNS over orders of number fields to GNS over arbitrary orders. In
particular, that for a given GNS the finiteness property is effectively decidable is
an easy consequence of general work of Vince [13] on matrix number systems.

Outline of the paper. Let O be an arbitrary order. In Section 2 we show that
the finiteness property of a given GNS (p,D) over O is effectively decidable by
applying some of Vince’s results on matrix number systems [13]. In Section 3 we
define the digit sets DF,ϑ using fundamental domains F of O⊗ZR/O and prove a
sufficient condition for a GNS over O to admit the finiteness property (cf. Theorem
3.4). In Section 4 we prove that if p ∈ O[x] and the fundamental domain F satisfies
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some mild condition then the pairs (pα,DF,p(α)) are always GNS with the finiteness

property provided there is a large positive rational integer m such that m−1α is
close to 1 (this is the content of Theorem 4.1).

Section 5 is devoted to GNS without the finiteness property. The main result
is Theorem 5.2 which states that (p−m,DF,p(−m)) does not have the finiteness
property for all large enough positive rational integers m.

Using some general effective finiteness results of Evertse and Győry [4, Corollary
8.4.7] on monogenic orders in étale algebras (cf. also Proposition 6.1 in Section 6
below), we obtain important relations between power integral bases and number
systems in étale orders (see Theorem 6.2), which in turn can be interpreted as GNS
over Z.

2. Connection with matrix number systems

Recall that a matrix number system is a triple (Λ, ϕ,D), consisting of a free
abelian group Λ of finite rank, an injective Z-linear homomorphism ϕ : Λ → Λ,
and a complete residue system D for Λ/ϕ(Λ), containing 0. The rank of this matrix
number system is the rank of Λ, and its determinant is the cardinality of Λ/ϕ(Λ)
(which is equal to the absolute value of the determinant of ϕ). Denote by χϕ the
characteristic polynomial of ϕ, i.e., det(x · id−ϕ). This characteristic polynomial is
monic of degree equal to the rank of Λ, with coefficients in Z and non-zero constant
term ±detϕ.

We say that (Λ, ϕ,D) has the finiteness property if every v ∈ Λ can be expressed

as a finite sum
∑L
i=0 ϕ

idi, with di ∈ D for i = 0, . . . , L. Such systems were
introduced by Vince [13] (he used a different terminology). We recall some of
Vince’s results.

Let (Λ, ϕ,D) be a matrix number system. Here, and similarly in other situations
below, we identify elements of Λ with their images in the real vector space Λ⊗ZR
under the canonical embedding. Thus, we view Λ as a lattice (discrete subgroup of
maximal rank) in Λ⊗ZR, and if {a1, . . . ,ad} is a Z-basis of Λ, it is also an R-vector
space basis of Λ⊗ZR. We endow Λ⊗ZR with a vector norm ‖ · ‖; this induces a
norm on Λ.

Proposition 2.1. Assume that (Λ, ϕ,D) has the finiteness property. Then χϕ is
expansive, i.e., all its complex roots have absolute value > 1.

Proof. See Vince [13, p. 508, Prop. 4]. �

Assume henceforth that χϕ is expansive. For v ∈ Λ, we define the sequences
(vi)

∞
i=0 in Λ and (di)

∞
i=0 in D inductively by

v0 := v;

di ∈ D is the representative of vi(mod ϕ(Λ)),

vi+1 := ϕ−1(vi − di) (i = 0, 1, 2, . . .).

In an appropriate completion of Λ we can now write v =
∑∞
i=0 ϕ

idi and call this the
(ϕ,D)-expansion of v. Vince [13, p. 511 Algorithm A and p. 512, Lemma 2] observes
that there is an effectively computable number C > 0 depending on Λ, ϕ,D,v
such that ‖vi‖ ≤ C for all i. This implies that the sequences (vi)

∞
i=0 and (di)

∞
i=0

are ultimately periodic, where for both sequences the sum of the lengths of the
preperiod and period is bounded above by the number R of points in Λ of norm at
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most C. Further, it is clear that v has a finite (ϕ,D)-expansion v =
∑L
i=0 ϕ

idi if
and only if vi = di = 0 for i > L. So we may take L < R. This shows that for
given v ∈ Λ, we can effectively decide whether it has a finite (ϕ,D)-expansion, and
if such an expansion exists, it has length ≤ R.

The following result implies that it can be effectively decided whether (Λ, ϕ,D)
has the finiteness property.

Proposition 2.2. Let (Λ, ϕ,D) be a matrix number system. There is an effectively
computable number C ′ > 0 depending on Λ, ϕ,D such that the following are equiv-
alent:
(i) (Λ, ϕ,D) has the finiteness property;
(ii) χϕ is expansive, and every v ∈ Λ with ‖v‖ ≤ C ′ has a finite (ϕ,D)-expansion.

Proof. See Vince [13, p. 513, Theorem 4]. �

We now specialize the above to generalized number systems. Let O be an order,
and (p,D) a GNS over O.

Let D[x] denote the set of polynomials with coefficients in D, and R(p,D) the
set of a ∈ O[x] such that a ≡ b (mod p) for some b ∈ D[x].

With the usual identification of an element of O with its canonical image in the
R-algebra O⊗ZR, we view O as a full rank lattice in O⊗ZR.

We endow the R-algebra O⊗ZR with a vector norm ‖ · ‖. For instance, fixing
a Z-module basis {1 = ω1, ω2, . . . , ωd} of O, we can express every α ∈ O⊗ZR
as
∑d
i=1 xiωi for some x1, . . . , xd ∈ R and we may take ‖α‖ := maxi |xi|. The

elements of O are those with x1, . . . , xd ∈ Z, hence for given C, the set of α ∈ O
with ‖α‖ ≤ C is finite and effectively determinable. But in what follows the choice
of norm doesn’t matter. We define the norm ‖a‖ of a ∈ O[x] to be the maximum
of the norms of its coefficients.

As already mentioned in Section 1, we can view the GNS (p,D) as a matrix
number system (Λ, ϕ,D), where Λ = O[x]/(p), ϕ : f (mod p) 7→ x · f (mod p)
and D = D. To see this, observe that Λ/ϕ(Λ) ∼= O[x]/(p, x) ∼= O/p(0)O, so that
indeed D is a complete residue system for Λ/ϕ(Λ). Further, one easily verifies

that a congruence a ≡
∑L
i=0 dix

i (mod p) translates into a (mod p) =
∑L
i=0 ϕ

idi.
Using what we observed above for matrix number systems, this shows that for given

a ∈ O[x] it can be decided effectively whether it has a finite expansion
∑L
i=0 dix

i

(mod p). Further, (p,D) has the finiteness property if and only if (Λ, ϕ,D) has the
finiteness property.

We may view O[x] as a free Z[x]-module of finite rank, and a 7→ p · a as a Z[x]-
linear map from O[x] to itself. The determinant of this Z[x]-linear map is a monic
polynomial in Z[x], which we denote by Np.

Lemma 2.3. Np = χϕ.

Proof. Let d = rankO, n = deg p. Pick a Z-basis 1 = ω1, ω2, . . . , ωd of O. Let
p = xn + pn−1x

n−1 + · · · + p0. For i = 0, . . . , n − 1, let Pi be the matrix of the
Z-linear map α 7→ piα from O to O with respect to the basis of O just chosen.
Clearly, {ωixj : i = 1, . . . , d, j = 0, . . . , n − 1} is a Z-basis of Λ = O[x]/(p). A
straightforward computation shows that the matrix of ϕ with respect to this basis
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is 
0 · · · 0 −P0

I 0 −P1

. . .
...

0 I −Pn−1

 ,

where each entry represents a d×d integer matrix and I denotes the identity matrix
of order d. Hence

χϕ =

∣∣∣∣∣∣∣∣∣
xI P0

−I xI P1

. . .
...

−I xI + Pn−1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
0 · · · 0 xnI + xn−1Pn−1 + · · ·+ P0

−I 0 ∗
. . .

...
0 −I ∗

∣∣∣∣∣∣∣∣∣
= det(xnI + xn−1Pn−1 + · · ·+ xP1 + P0) = Np.

�

Using division with remainder, it follows that every element of Λ = O[x]/(p) can
be represented by a polynomial in O[x] of degree < n. Using this and Lemma 2.3,
the following effective finiteness criterion for a GNS having the finiteness property
is a straightforward translation of Proposition 2.2.

Theorem 2.4. Let (p,D) be a GNS over O with deg p = n ≥ 1. Then there is an
effectively computable number C ′′, depending on O, p and D, such that the following
are equivalent:
(i) (p,D) has the finiteness property;
(ii) the polynomial Np is expansive, and every a ∈ O[x] with ‖a‖ ≤ C ′′, deg a < n
belongs to R(p,D).

If O is an order in a number field K, p = xn + pn−1x
n−1 + · · · + p0 ∈ O[x],

and α 7→ α(i) (i = 1, . . . , d) are the embeddings of K in C, then Np =
∏d
i=1(xn +

p
(i)
n−1x

n−1 + · · · + p
(i)
0 ). Thus Theorem 2.4 is a generalization of Theorem 2.9 of

Pethő and Thuswaldner [11].

3. Digit sets defined by fundamental domains

Let O be an order of rank d. We view O as a full rank sublattice of the R-algebra
O⊗ZR. We frequently use the simple fact that an element ϑ ∈ O is not a zero
divisor of O if and only if it is invertible in O⊗ZR (consider the map α 7→ ϑα).

Recall that a fundamental domain for O⊗ZR/O is a subset of O⊗ZR containing
precisely one element from every residue class of O⊗ZR modulo O. For a funda-
mental domain F for O⊗ZR/O with 0 ∈ F and ϑ ∈ O which is not a zero divisor,
we define

DF,ϑ := ϑF ∩O = {α ∈ O : ϑ−1α ∈ F}.
The following two lemmas are easy generalizations of [11, Lemmas 2.3, 2.4].

Lemma 3.1. Let F be a fundamental domain for O⊗ZR/O with 0 ∈ F and
ϑ ∈ O not a zero divisor. Then DF,ϑ is a complete residue system for O modulo ϑ
containing 0.
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Proof. Let α ∈ O. Then ϑ−1α = ξ + β with ξ ∈ F and β ∈ O. Thus, α = ϑξ + ϑβ
with ϑξ ∈ DF,ϑ. If δ1, δ2 are two elements of DF,ϑ with δ1 − δ2 ∈ ϑO, then
ϑ−1δ1, ϑ

−1δ2 are elements of F whose difference lies in O, so δ1 = δ2. This proves
Lemma 3.1. �

Lemma 3.2. Let ϑ ∈ O not be a zero divisor and let D be a complete residue
system for O modulo ϑ with 0 ∈ D. Then there is a bounded fundamental domain
F of O⊗ZR/O such that D = DF,ϑ.

Proof. Let 1 = ω1, ω2, . . . , ωd be a Z-basis of O, and set G := {u1ϑ
−1ω1 + · · · +

udϑ
−1ωd : 0 ≤ uj < 1, j = 1, . . . d}. Then G is a bounded fundamental domain for

O⊗ZR/ϑ−1O with 0 ∈ G. The set

F :=
⋃
δ∈D

(ϑ−1δ + G)

is obviously bounded. We see that it satisfies the other requirements of the lemma.
First observe that

DF,ϑ = ϑF ∩O =
⋃
δ∈D

(δ + ϑG) ∩ O = D,

for (δ + ϑG) ∩ O = {δ} for every δ ∈ O since ϑG is a fundamental domain for
O⊗ZR/O containing 0.

It remains to show that F is a fundamental domain for O⊗ZR/O. We can express
any η ∈ O⊗ZR as η = ξ + ϑ−1α with ξ ∈ G, α ∈ O, and we have α = δ + ϑβ with
δ ∈ D, β ∈ O, thus,

η = (ϑ−1δ + ξ) + β = ζ + β with ζ ∈ F , β ∈ O.
Further, if ζ1, ζ2 are elements of F with ζ1 − ζ2 ∈ O, then writing ζi = ϑ−1δi + ξi
with δi ∈ D, ξi ∈ G for i = 1, 2, we see that

ζ1 − ζ2 = ϑ−1(δ1 − δ2) + (ξ1 − ξ2).

Thus, ξ1−ξ2 ∈ ϑ−1O, hence ξ1 = ξ2, hence ϑ−1(δ1−δ2) ∈ O, therefore δ1 = δ2, and
finally, ζ1 = ζ2. So indeed F is a bounded fundamental domain for O⊗ZR/O. �

We choose any vector norm on O⊗ZR and endow O⊗ZR with the corresponding
topology; this topology does not depend on the chosen norm. Given a subset S of
O⊗ZR, we denote by S the closure of S with respect to this topology.

Let F be a fundamental domain for O⊗ZR/O with 0 ∈ F and such that F is
bounded. We call two elements α, β of O F-neighbours of one another if (α+F)∩
(β + F) 6= ∅. Let ∆F ⊂ O be the set of all F-neighbours of 0; this set contains in
particular 0 itself. Further, if α ∈ ∆F , then so is −α.

Lemma 3.3. The set of F-neighbors ∆F of 0 contains a Z-basis of O.

Proof. See [11, Lemma 2.6] for the case that O is an order in a number field. The
proof given there works in the same way for arbitrary orders, replacing Zk, N by
O, ∆F . �

Let p = xn + pn−1x
n−1 + · · ·+ p0 ∈ O[x] such that p0 is not a zero divisor of O,

and put pn := 1. We define the set

(3.1) ZF,p :=

{ n∑
j=1

δjpj : δj ∈ ∆F

}
.



NUMBER SYSTEMS OVER GENERAL ORDERS 7

Theorem 3.4. Let (p,D), with p = xn + pn−1x
n−1 + · · · + p0 ∈ O[x] be a GNS

over O and let F be a bounded fundamental domain for O⊗ZR/O with DF,p0 = D.
Assume that the following conditions hold (setting pn := 1):

(i) ZF,p +D ⊂
⋃
δ∈∆F

(D + p0δ),

(ii) ZF,p ⊂ D ∪ (D − p0),

(iii)
{∑

j∈J pj : J ⊆ {1, . . . , n}
}
⊆ D.

Then (p,D) is a GNS over O with the finiteness property.

Proof. See [11, Theorem 3.1] for a proof in the case that O is an order in a number
field. The proof carries over without modifications to arbitrary orders. �

Remark 3.5. For p ∈ Z[x] denote by L(p) the sum of the absolute values of the
coefficients of p. Akiyama and Rao [2, Theorem 3.2] as well as Scheicher and
Thuswaldner [12, Theorem 5.8] proved that if p is a monic polynomial with non-
negative integer coefficients and such that L(p) < 2p(0) then

(
p, {0, 1, . . . , p(0)−1}

)
is a GNS over Z with the finiteness property. We show that Theorem 3.4 is a
generalization of this assertion.

Indeed, with O = Z the set F = [0, 1) is a fundamental domain for O⊗ZR/O.
Moreover

DF,p(0) = p(0) · [0, 1) ∩ Z = {0, 1, . . . , p(0)− 1},
which we denote by D. We have ∆F = {−1, 0, 1}, thus

(3.2)
⋃

δ∈∆F

(D + p(0)δ) = [−p(0), 2p(0)− 1] ∩ Z

and

(3.3) D ∪ (D − p(0)) = [−p(0), p(0)− 1] ∩ Z.
Let p = pnx

n + pn−1x
n−1 + . . . + p0 with pn = 1. As all coefficients of p are

non-negative we have

max{|w| : w ∈ ZF,p} =

n∑
j=1

pj = L(p)− p(0) < p(0)

by our assumption. This together with (3.3) implies immediately (ii). We have also
the inequalities

−p(0) + 1 ≤ minZF,p +D < maxZF,p +D ≤ 2p(0)− 2.

Comparing this with (3.2) we obtain (i). Finally let J ⊆ {1, . . . , n}. Then 0 ≤∑
j∈J pj ≤ p(0)− 1, thus (iii) holds too and our claim is proved.

4. The finiteness property for large constant terms

B. Kovács [8, Section 3] proved that if p(x) ∈ Z[x] is monic and irreducible, then
p(x+m) is a CNS polynomial for all sufficiently large integers m. Pethő [10] pointed
out that the irreducibility assumption is not essential. Pethő and Thuswaldner [11]
proved a generalization of Kovács’ result for GNS over orders in algebraic number
fields. In this section, we generalize their result further to GNS over arbitrary
orders.

Let O be an order of rank d. We endow O⊗ZR with a submultiplicative vector
norm ‖ · ‖, i.e., ‖α · β‖ ≤ ‖α‖ · ‖β‖ for α, β ∈ O⊗ZR. For instance, if we choose
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a Z-basis {1 = ω1, ω2, . . . , ωd} of O, then it is also an R-basis of O⊗ZR, and we
may represent α ∈ O⊗ZR by the matrix Mα of the linear map x 7→ α · x with
respect to this basis. Then we may choose as norm ‖α‖ =

∑
i,j |aij | where the

aij are the entries of Mα. But in fact, in our arguments below, the choice of the
submultiplicative norm doesn’t matter.

For a subset S ⊂ O⊗ZR and ε > 0, we define the ε-neighborhood of S by

(S)ε := {ξ ∈ O⊗ZR : ‖ξ − η‖ < ε for some η ∈ S}.

Let F be a bounded fundamental domain for O⊗ZR/O with 0 ∈ F . Let p ∈ O[x]
be a monic polynomial of degree n. For α ∈ O we define pα(x) := p(x + α). Let
Gp,F be the family of GNS, consisting of those pairs (pα,DF,p(α)) such that p(α) is
not a zero divisor of O.

With this notation we prove the following theorem on Gp,F , which is a general-
ization of [11, Theorem 4.1]. As usual, we identify r ∈ R with r · 1 where 1 is the
unit element of O, and thus view R as a subfield of O⊗ZR.

Theorem 4.1. Let O be an order, p ∈ O[x] a monic polynomial of degree n, and
F a bounded fundamental domain for O⊗ZR/O. Choose a submultiplicative norm
‖ · ‖ on O⊗ZR. Suppose that there is ε > 0 such that

{ξ ∈ O⊗ZR : ‖ξ‖ < ε} ⊂ F ∪ (F − 1);(4.1)

{ξ ∈ O⊗ZR : there is r ∈ R with 0 < r < ε, ‖r−1ξ − 1‖ < ε} ⊂ F .(4.2)

Then there is η > 0 such that (pα,DF,p(α)) is a GNS with the finiteness property
whenever

(4.3) α ∈ O, ‖m−1α− 1‖ < η for some rational integer m > η−1.

The somewhat more complicated condition (4.2) means that F contains a cone
emanating from 0 around a small piece of the positive real line.

Remark 4.2. This implies that if F is a fundamental domain for O⊗ZR satisfying
(4.1) and (4.2), then the family GF contains infinitely many GNS with the finiteness
property.

Remark 4.3. Condition (4.3) cannot be weakened to say ‖α‖ being sufficiently large.
For instance, let O be an order in a number field K not equal to Q or an imaginary
quadratic field, and choose any bounded fundamental domain F with 0 ∈ F for
O⊗ZR/O. For α ∈ O define ‖α‖ to be the maximum of the absolute values of the
conjugates of α. This defines a submultiplicative norm on O, which we extend to
O⊗ZR. Let p ∈ Z[x] be a monic polynomial with p(0) = 0. For α ∈ O, denote

by α(1), . . . , α(d) the conjugates of α. Then Npα =
∏d
i=1 p(x + α(i)). If one of

the conjugates of α has absolute value ≤ 1 then Npα is not expansive and hence
(pα,DF,p(α)) cannnot have the finiteness property. But O has elements α with one
of the conjugates of absolute value ≤ 1 and ‖α‖ arbitrarily large.

We assume that rankO = d, deg p = n. By Taylor’s formula,

pα(x) = xn + pn−1(α)xn−1 + · · ·+ p0(α)(4.4)

where pj(α) :=
p(j)(α)

j!
for j = 0, . . . , n− 1.

Note that pj(α) ∈ O for j = 0, . . . , n− 1.
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By expressions O(r), with r a positive real, we denote elements ξ of O⊗ZR such
that ‖ξ‖ ≤ C · r, where C is a constant depending only on O, p, F and ‖ · ‖.

We start with a simple lemma.

Lemma 4.4. For η sufficiently small in terms of O,F , p, ‖·‖ we have the following:
if α ∈ O satisfies (4.3) for some positive integer m, then

pj(α) =
(
n
j

)
mn−j(1 +O(η)) for j = 0, . . . , n− 1,

p(α) is not a zero divisor of O, i.e., invertible in O⊗ZR.

Proof. Write α = m+ β. Then ‖β‖ < ηm and m > η−1. Assume η < 1 as we may.
Then since p is monic of degree n, we have

p0(α) = p(α) = p(m) +O(βmn−1 + β2mn−2 + · · ·+ βn)

= mn +O(mn−1 + βmn−1 + β2mn−2 + · · ·+ βn)

= mn +O(ηmn) = mn(1 +O(η)),

using (4.3). Here the constants implied by the O-terms depend on the norms of the
coefficients of p. The identities for j > 0 are proved in the same manner. To prove

that p(α) has an inverse in O⊗ZR, write
p(α)
mn = 1 + γ. Assuming η is sufficiently

small we have ‖γ‖ < 1. The series (1 + γ)−1 =
∑∞
k=0(−1)kγk converges in O⊗ZR,

since ‖γk‖ ≤ ‖γ‖k for k ≥ 0. So
p(α)
mn is invertible in O⊗ZR. Hence p(α) is invertible

in O⊗ZR. �

Proof of Theorem 4.1. We proceed to show that if η is sufficiently small, and α ∈ O
satisfies (4.3), then (pα,DF,p(α)) satisfies conditions (i),(ii),(iii) of Theorem 3.4,
with pα, pj(α), DF,pα instead of p, pj , D. This implies that (pα,DF,p(α)) is a GNS
with the finiteness property. We first observe that by the definition of F-neighbours,

F ∩
( ⋃
δ∈O\∆F

(F + δ)
)

= ∅.

From this fact and the boundedness of F we infer that after shrinking the ε from
conditions (4.1), (4.2) if necessary,

(F)ε ∩
( ⋃
δ∈O\∆F

(F + δ)
)

= ∅.

The set O⊗ZR is a disjoint union of all the translates F + δ with δ ∈ O since F is
a fundamental domain for O⊗ZR/O. So in addition to (4.1), (4.2) we have

(4.5) (F)ε ⊆
⋃

δ∈∆F

(F + δ).

We observe that if there is ε > 0 for which (4.1), (4.2) and (4.5) hold, then it can
be chosen to depend only on O, F , p and ‖ · ‖.

Let α ∈ O satisfy (4.3) for some positive integer m, where η is a real that is
sufficiently small in terms of O, F , p, ‖ · ‖. Note that condition (i) of Theorem 3.4
(with p, pj ,D replaced by pα, pj(α),DF,p(α) = p(α)F ∩O) is equivalent to( n∑

j=1

δjpj(α)
)

+ p(α)F ∩O ⊂
⋃

δ∈∆F

(
p(α)δ + p(α)F ∩O

)
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for all δj ∈ ∆F for j = 1, . . . , n. This follows, once we have established that( n∑
j=1

δjpj(α)
)

+ p(α)F ⊂
⋃

δ∈∆F

(
p(α)δ + p(α)F

)
which in turn is equivalent to

(4.6)
( n∑
j=1

δj ·
pj(α)

p(α)

)
+ F ⊂

⋃
δ∈∆F

(
F + δ

)
for all δj ∈ ∆F , j = 1, . . . , n. Here we have used that by Lemma 4.4 p(α) has an
inverse in O⊗ZR. So in order to deduce (i) of Theorem 3.4 it suffices to deduce
(4.6). But from Lemma 4.4 and condition (4.3) it follows that

(4.7)

n∑
j=1

δj ·
pj(α)

p(α)
= O(m−1) = O(η)

and for η sufficiently small in terms of O, F , p, ‖ · ‖ and ε, the left-hand side has
norm smaller than ε. So (4.6) follows from (4.5). Hence condition (i) of Theorem
3.4 is satisfied.

By a similar argument as above, it follows that condition (ii) of Theorem 3.4
follows, once we have

(4.8)

n∑
j=1

δj ·
pj(α)

p(α)
∈ F ∪ (F − 1)

for all δj ∈ ∆F , j = 1, . . . , n. But this clearly follows from (4.7) and (4.1) if η is
sufficiently small in terms of O, F , p, ‖ · ‖ and ε. This establishes condition (ii) of
Theorem 3.4.

Finally, condition (iii) of Theorem 3.4 follows once we have shown that

(4.9) ξ :=
∑
j∈J

pj(α)

p(α)
∈ F

for every non-empty subset J of {1, . . . , n}. By Lemma 4.4,

(4.10) ξ =
(∑
j∈J

(
n
j

)
m−j

)
(1 +O(η)).

Let r :=
∑
j∈J
(
n
j

)
m−j . Assuming η is sufficiently small, and using m−1 ≤ η by

(4.3), we get 0 < r < ε and ‖r−1ξ − 1‖ < ε, which by (4.2) implies ξ ∈ F . So
condition (iii) of Theorem 3.4 is also satisfied.

It follows that (pα,DF,p(α)) has the finiteness property. �

Theorem 4.1 has the following variation.

Theorem 4.5. Let O be an order, p ∈ O[x] a monic polynomial of degree n, and
F a bounded fundamental domain for O⊗ZR/O. Choose a submultiplicative norm
‖ · ‖ on O⊗ZR. Suppose that 0 is an interior point of F . Then there is η > 0 such
that (pα,DF,p(α)) is a GNS with the finiteness property whenever

(4.11) α ∈ O, ‖m−1α− 1‖ < η for some rational integer m with |m| > η−1.
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Proof. The proof is exactly the same as that of Theorem 4.1, except for the proof
of (4.9). To prove this, let ε > 0 be such that F contains all the elements of O⊗ZR
of norm smaller than ε. Pick α ∈ O satisfying (4.11). Then estimate (4.10) implies
that if η is sufficiently small, then the ξ from (4.9) has norm smaller than ε, hence
lies in F . �

Remark 4.6. Under the conditions of Theorem 4.1 there exists a positive integer
N such that (pm,DF,p(m)) is a GNS with the finiteness property for m ≥ N , while
under the more restrictive conditions of Theorem 4.5 there exists a positive integer
N such that (p±m,DF,p(±m)) are GNS with the finiteness property for m ≥ N .

Example 4.7. Let O = Z × Z = Z2 with coordinatewise addition and multipli-
cation, zero element (0, 0) and unit element (1, 1). Note that O⊗ZR = R2 with
coordinatewise addition and multiplication. Endow R2 with the maximum norm.
Take

F = {(x, y) ∈ R2 : 0 ≤ x < 1, − 1
2 ≤ y − x <

1
2}

= {x(1, 1) + z(0, 1) : 0 ≤ x < 1, − 1
2 ≤ z <

1
2}.

Then F is a fundamental domain for R2/Z2. Let p ∈ O[x] be a monic polynomial
of degree n. The coefficients of p are pairs (a, b) ∈ Z2, its leading coefficient being
the unit element (1, 1) of Z2. Thus we can write p = (p1, p2), where p1, p2 are
monic polynomials in Z[x] of degree n. It is easy to see that if the integer m is
large enough then p1(m), p2(m) > 0 and the corresponding digit set is

DF,p(m) = {(x, y) ∈ Z2 : 0 ≤ x < p1(m), − 1
2 ≤ p2(m)−1y − p1(m)−1x < 1

2}.

One easily verifies that F satisfies conditions (4.1), (4.2), but note that the inequal-
ity ‖r−1ξ − 1‖ < ε in (4.2) has to be interpreted as ‖r−1ξ − (1, 1)‖ < ε, as (1, 1) is
the unit element of O. So by Theorem 4.1, (pm,DF,p(m)) has the finiteness prop-
erty for every sufficiently large m. This means that for every pair of polynomials
a1, a2 ∈ Z[x] there are L > 0 and pairs (di, d

′
i) ∈ DF,p(m) for i = 1, . . . , L, such that

a1 ≡
L∑
i=0

dix
i (mod p1,m), a2 ≡

L∑
i=0

d′ixi (mod p2,m),

where pi,m(x) = pi(x+m) for i = 1, 2.

Example 4.8. Let O, p be as above but now take F = [0, 1) × [0, 1). This F is a
fundamental domain for R2/Z2, but it does not satisfy condition (4.1), so Theorem
4.1 is not directly applicable. However, the corresponding digit set can be expressed
as a cartesian product

DF,p(m) = D[0,1),p1(m) ×D[0,1),p2(m) = {0, . . . , p1(m)− 1} × {0, . . . , p2(m)− 1}.

The interval [0, 1) does satisfy (4.1), (4.2), with O = Z. So by Theorem 4.1, for
every sufficiently large positive integer m, both GNS over Z, (pi,m,D[0,1),pi(m))
(i = 1, 2) have the finiteness property. Now (pm,DF,p(m)) is the cartesian product
of these two GNS (we assume the meaning of this is obvious), and it easily follows
that it has the finiteness property for every sufficiently large integer m.

We will see in the next section that if we impose some other conditions on F ,
then (p−m,DF,p(−m)) does not have the finiteness property for large m.
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Example 4.9. Let O, p be as above, but now take F = [− 1
2 ,

1
2 ) × [− 1

2 ,
1
2 ); then F

is again a fundamental domain for R2/Z2. Let m be a positive integer. Then the
corresponding digit set is

DF,p(±m) =

{
−
⌊
|p1(±m)|

2

⌋
, . . . ,

⌊
|p1(±m)| − 1

2

⌋}
×

×
{
−
⌊
|p2(±m)|

2

⌋
, . . . ,

⌊
|p2(±m)| − 1

2

⌋}
,

which is the product of two symmetric digit sets. The zero element (0, 0) of Z2 is
obviously an interior point of F , hence, by Theorem 4.5 the pairs (p±m,DF,p(±m))
are GNS with the finiteness property for all large enough m.

5. GNS without the finiteness property

We now prove a negative result on the finiteness property for GNS over arbitrary
orders O. We start with a simple lemma that was proved in [11, Lemma 5.1]. We
state it here in a more general form.

Lemma 5.1. Let O be an order and (p,D) a GNS over O. If there exist a positive
integer h, elements d0, d1, . . . , dh−1 of D not all 0 and q1, q2 ∈ O[x] with

(5.1)

h−1∑
j=0

djx
j = (xh − 1)q1(x) + q2(x)p(x),

then (p,D) does not have the finiteness property.

Proof. Verbatim the same as the proof of Lemma 5.1 of [11]. �

We can now prove the main result of the present section. Recall that p−m(x) :=
p(x − m) and DF,p(−m) := p(−m)F ∩ O. We view R as a subfield of O⊗ZR by
identifying r ∈ R with r · 1, where 1 is the unit element of O.

Theorem 5.2. Let O be an order, ‖ · ‖ a submultiplicative norm on O⊗ZR, and
F a bounded fundamental domain for O⊗ZR/O such that 0 ∈ F and there is ε > 0
such that

(5.2) {ξ ∈ O⊗ZR : there is r ∈ R with 0 < r < ε, ‖r−1(1− ξ)− 1‖ < ε} ⊆ F .
Let p ∈ O[x] be a monic polynomial. Then there exists a positive integer N such
that for every m > N , (p−m,DF,p(−m)) does not have the finiteness property.

Condition (5.2) means that F contains a cone emanating from 1, around the piece
of the real line consisting of all reals slightly smaller than 1.

Proof. Let d = rankO, n = deg p. We claim that if m is a large enough positive
rational integer, then p−m(0) = p(−m) ∈ DF,p(−m−1).

Assume that our claim is true. Performing Euclidean division of p−m−1 by x−1
we obtain a polynomial sm+1 ∈ O[x] such that

p−m−1 = (x− 1)sm+1 + p(−m).

By the claim p(−m) belongs to the digit set DF,p(−m−1) if m is large enough.
Applying Lemma 5.1 with h = 1, d0 = p(−m), q1 = −sm+1, q2 = 1, p = p−m−1

and D = DF,p(−m−1) we conclude that (p−m−1,DF,p(−m−1)) is not a GNS with the
finiteness property whenever m is large enough.



NUMBER SYSTEMS OVER GENERAL ORDERS 13

Now we turn to prove the claim. Write p = xn + pn−1x
n−1 + · · ·+ p0. Note that

p(−m) = (−m)n + pn−1(−m)n−1 +O(mn−2)(5.3)

= (−m)n
(
1 + pn−1m

−1 +O(m−2)
)
.

This implies that for m sufficiently large, we have
p(−m)
(−m)n = 1 + γ with ‖γ‖ < 1.

The quantity 1 + γ is invertible in O⊗ZR with inverse 1− γ + γ2 − · · · , so p(−m)
is invertible in O⊗ZR and

p(−m)−1 = (−m)−n(1− γ + γ2 − · · · )(5.4)

= (−m)−n
(
1− pn−1m

−1 +O(m−2)
)
.

Establishing our claim means proving that p(−m) ∈ p(−m− 1)F ∩ O for every
sufficiently large m. For this, it suffices to show that

(5.5)
p(−m)

p(−m− 1)
∈ F

for every sufficiently large m. By (5.3) and (5.4) we have

ξm :=
p(−m)

p(−m− 1)
=

mn

(m+ 1)n
· (1 + pn−1m

−1 +O(m−2)) ·

·(1− pn−1(m+ 1)−1 +O(m−2))

=
mn

(m+ 1)n
(
1 +O(m−2)) = 1− n ·m−1 +O(m−2).

It is clear that for every sufficiently large m, ξm belongs to the set on the left-hand
side of (5.2), hence ξm ∈ F . This establishes assertion (5.5), hence our claim and
our theorem. �

Example 5.3. We continue the examination of the GNS given in Examples 4.7, 4.8.
As can be verified, the fundamental domains F from both examples satisfy (5.2)
(the inequality ‖r−1(1− ξ)− 1‖ < ε being interpreted as ‖r−1(1− ξ)− (1, 1)‖ < ε).
Hence in both cases, (p−m,DF,p(−m)) does not have the finiteness property for every
sufficiently large m. Of course in the case of Example 4.8, we can alternatively
appeal to a Cartesian product type argument.

6. Relation between power integral bases and GNS

The theory of generalized number systems started with investigations in the ring
of integers of algebraic number fields (see e.g. Brunotte, Huszti, and Pethő [3] for an
overview and a list of relevant literature). This inspired [11, Theorem 6.2], which
states if O is a monogenic order of a number field, then all but finitely many among
the α with Z[α] = O generate a number system with the finiteness property in O.
(All the exceptions are computable effectively.) This result forms an analogue of
Kovács and Pethő [9, Theorem 5] and is based on a result by Győry [6, 7] on the
monogeneity of orders in number fields. We generalize this to étale Q-algebras.

A finite étale Q-algebra Ω is up to isomorphism a direct product of number fields
K1 × · · · ×K`, with coordinatewise addition and multiplication. The degree of Ω is
the dimension of Ω as a Q-vector space, notation [Ω : Q].

We say that a finite étale Q-algebra Ω is effectively given, if it is given in the
form K1× · · ·×K`, where K1, . . . ,K` are effectively given as finite extensions of Q,
e.g., by minimal polynomials of primitive elements. Further, an element α ∈ Ω is
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said to be effectively given if in α = (α1, . . . , α`) with αi ∈ Ki, the element αi is
effectively given as a Q-linear combination of powers of a given primitive element
of Ki, see [4, Sections 3.7 and 8.4].

An order of a finite étale Q-algebra Ω is an order O ⊂ Ω with rankO = [Ω : Q],
i.e., Ω ∼= O⊗ZQ. An étale order is an order of any finite étale Q-algebra. By
the Artin-Wedderburn Theorem, an order is étale if and only if it has no nilpotent
elements.

We say that an étale order O is effectively given if the étale Q-algebra O⊗ZQ is
effectively given, and if a Z-basis of O is effectively given as a subset of O⊗ZQ.

We say that two elements α, β of an order O are Z-equivalent, if β = α + u
for some u ∈ Z. The order O is called monogenic if O = Z[α] for some α ∈ O.
This is equivalent to O having a power integral basis, i.e., a Z-basis of the form
{1, α, . . . , αM−1} where M = [Ω : Q].

We recall the following fundamental result.

Proposition 6.1. Let O be an effectively given étale order. Then it can be decided
effectively whether O is monogenic or not. Further, if O is monogenic, then there
exist only finitely many Z-equivalence classes of α ∈ O such that O = Z[α], and a
complete set of representatives for these classes can be effectively determined.

Proposition 6.1 does not hold for orders in general. For instance, let O =
Z[x]/(x3) and let α denote the residue class of x. Then O = Z[α + bα2] for every
b ∈ Z.

Proposition 6.1 is a special case of a more general effective result of Evertse
and Győry [4, Corollary 8.4.7] and allows to generalize the above mentioned [11,
Theorem 6.2] from orders in number fields to étale orders.

Let O be an order. Recall that α ∈ O is not a zero divisor of O if and only if its
norm N(α), that is the determinant of the Z-linear map x 7→ αx from O to itself,
is non-zero. A number system for O is a pair (α,D), where α ∈ O is not a zero
divisor, and D is a complete residue system of Z modulo N(α). We say that (α,D)
has the finiteness property if every element of O can be written as a finite sum∑L
i=0 diα

i with di ∈ D for all i. Note that this implies first that O is monogenic,
and second, that Z/N(α)Z ∼= O/αO, so that D is also a complete residue system
of O modulo α. Clearly, if p ∈ Z[x] is the minimal polynomial of α, then (α,D)
has the finiteness property if and only if (p,D) is a GNS over Z with the finiteness
property.

For α ∈ O such that O = Z[α] and a fundamental domain F for R/Z with 0 ∈ F ,
we define DF,α := p(0)F ∩ Z, where p is the minimal polynomial of α over Q.

Theorem 6.2. Let O be an étale order. Assume that O is monogenic. Let a
bounded fundamental domain F for R/Z be given. If 0 is an inner point of F then
every α ∈ O with O = Z[α], with at most finitely many exceptions, gives rise to a
number system (α,DF,α) with the finiteness property.

Proof. The proof is literally the same as the proof of [11, Theorem 6.2]. �

Remark 6.3. In [4], a generalization of the above Proposition 6.1 was proved dealing
with the relative case as well, i.e., with étale orders of the shape O = ZK[α], where
ZK is the ring of integers of a number field K. To generalize Theorem 6.2 to this
situation would require the generalization of Remark 4.6 to all m ∈ O of which
all conjugates of m are large enough. By Remark 4.3 such a generalization is only
possible for special number fields.
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A finite set D of integers can be a complete residue system modulo at most two
integers, namely ±|D|. This does not hold any more for algebraic number fields with
infinitely many units. Indeed, let K be such a field and ZK be its ring of integers.
Let D ⊂ Z be given and assume that there exist α ∈ ZK such that D is a complete
residue system modulo α. Then D is a complete residue system modulo αε for each
unit ε ∈ ZK. From the next theorem it follows that there are only finitely many
ε ∈ ZK such that the number system (αε,D) has the finiteness property.

Theorem 6.4. Let O be an effectively given étale order, and D a given finite subset
of Z containing 0. Then there exist only finitely many, effectively computable α ∈ O
such that the number system (α,D) has the finiteness property.

Proof. Let α ∈ O and D ⊂ Z be such that the number system (α,D) has the
finiteness property. The set D has to be a complete residue system of O modulo
α, which is only possible if |N(α)| = |D|. If there is no such α then we are done.
Otherwise, if O⊗ZQ = K1× . . .×K` and Kh are either the rational or an imaginary
quadratic number field for all h = 1, . . . , ` then there are only finitely many α with
|N(α)| = |D| and our assertion holds again.

We now assume that there are infinitely many α ∈ O such that |N(α)| = |D|. If
(α,D) has the finiteness property then there exist for all γ ∈ O an integer L and
di ∈ D, i = 0, . . . , L such that

γ =

L∑
i=0

diα
i,

hence O is monogenic. By Proposition 6.1 there exist only finitely many Z-equiva-
lence classes of β ∈ O such that O = Z[β]. Hence there is such a β and u ∈ Z with
α = β + u. For fixed β there are only finitely many effectively computable u ∈ Z
with |N(β + u)| = |D|, thus the assertion is proved. �
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algebraic number fields, J. Théor. Nombres Bordeaux, 18 (2006), pp. 537–557.
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