P-Berwald manifolds

By SÁNDOR BÁCSÓ (Debrecen) and ZOLTÁN SZILASI (Debrecen)

Dedicated to Professor Lajos Tamássy on the occasion of his 85th birthday

Abstract

We introduce a new class of special Finsler manifolds, the class of pBerwald manifolds. P-Berwald manifolds are defined as Finsler manifolds for which the projected Berwald curvature vanishes. We show that an at least 3-dimensional Finsler manifold is a p-Berwald manifold if and only if it is a weakly Berwald Douglas manifold. 2-dimensional p-Berwald manifolds are characterized by means of a differential equation concerning the main scalar. We prove that a p-Berwald manifold is R-quadratic if and only if its stretch tensor vanishes.

1. Introduction

By a p-Berwald manifold we mean a Finsler manifold whose projected Berwald curvature vanishes. The concept of a "projected Finsler tensor" was first systematically investigated by M. Matsumoto under the quite strange term "indicatorizaion", using the arsenal of classical tensor calculus [8]. An index-free description of Matsumoto's indicatorization was presented by Sz. Vattamány [18], working on $T T M$ and using the Frölicher-Nijenhuis calculus of vector-valued forms. It seems to us that the pull-back bundle $\stackrel{\circ}{\tau}^{*} T M$ is a more economical framework for these constructions, and the Berwald derivative arising naturally from a Finsler structure is an adequate tool for calculations in this setting. For the

[^0]readers' convenience, we briefly summarize these basic technicalities in Section 2, and, partly, in Section 3. We follow the notation and conventions of reference [17] and, with some modifications, [5]. These papers also give some links to the classical approach. In Section 4 we discuss basic curvature relations in a Finsler manifold. The most interesting is formulated in Proposition 4.2; it has a "converse" (see (25)) in p-Berwald manifolds. In Section 5 it turns out that in $n>2$ dimensions p-Berwald manifolds form the intersection of the class of Douglas manifolds and the class of weakly Berwald manifolds - of two classes of special Finsler manifolds which have been investigated extensively [1]-[4], [6].

2. Preliminaries

Throughout the paper M will be an n-dimensional ($n \geq 1$), second countable, Hausdorff, smooth manifold. $C^{\infty}(M)$ is the ring of real-valued smooth functions on M; the $C^{\infty}(M)$-module of smooth vector fields on M is denoted by $\mathfrak{X}(M)$. d is the operator of exterior derivative, i_{X} is the substitution operator induced by $X \in \mathfrak{X}(M)$.

If $T M$ is the $2 n$-dimensional manifold of all tangent vectors to M, and τ : $T M \rightarrow M$ is the natural projection, the "foot map", then τ is said to be the tangent bundle of $M, T M$ is the total space of the tangent bundle. The complete lift of a function $f \in C^{\infty}(M)$ is

$$
f^{c}: v \in T M \longmapsto f^{c}(v):=v(f) .
$$

The complete lift of a vector field $X \in \mathfrak{X}(M)$ is the unique vector field $X^{c} \in$ $\mathfrak{X}(T M)$ such that

$$
X^{c} f^{c}=(X f)^{c}, \quad f \in C^{\infty}(M) .
$$

Let $\widetilde{T M} \subset T M$ be an open subset satisfying $\tau(\widetilde{T M})=M$, and let $\widetilde{\tau}:=\tau \upharpoonright$ $\widetilde{T M}$. If

$$
\widetilde{\tau}^{*} T M=: \widetilde{T M} \times{ }_{M} T M:=\{(u, v) \in \widetilde{T M} \times T M \mid \widetilde{\tau}(u)=\tau(v)\}
$$

and $\widetilde{\pi}(u, v):=u$ for $(u, v) \in \widetilde{\tau}^{*} T M$, then $\widetilde{\pi}$ is a vector bundle of rank n, the pull-back of τ over $\widetilde{\tau}$. The most important special cases arise when $\widetilde{T M}:=T M$, $\widetilde{\tau}:=\tau$ and $\widetilde{T M}:=\stackrel{\circ}{T} M:=T M \backslash o(M)(o \in \mathfrak{X}(M)$ is the zero vector field $)$, $\widetilde{\tau}:=\stackrel{\circ}{\tau}:=\tau \upharpoonright \stackrel{\circ}{T} M$. Then we get the pull-back bundles $\pi: T M \times{ }_{M} T M \rightarrow T M$ and $\stackrel{\circ}{\pi}: \stackrel{\circ}{T} M \times{ }_{M} T M \rightarrow \stackrel{\circ}{T} M$.

We denote by $\Gamma(\widetilde{\pi})$ the $C^{\infty}(\widetilde{T M})$-module of smooth sections of $\widetilde{\pi}$. A typical
element of $\Gamma(\widetilde{\pi})$ is of the form

$$
\widetilde{X}: v \in \widetilde{T M} \longmapsto \widetilde{X}(v)=(v, \underline{X}(v)) \in \widetilde{T M} \times_{M} T M,
$$

where $\underline{X}: \widetilde{T M} \rightarrow T M$ is a smooth map such that $\tau \circ \underline{X}=\widetilde{\tau}$. Any vector field X on M yields a section

$$
\widehat{X}: v \in \widetilde{T M} \longmapsto \widehat{X}(v)=(v, X \circ \widetilde{\tau}(v)) \in \widetilde{T M} \times_{M} T M,
$$

of $\widetilde{\pi}$, called a basic vector field. Basic vector fields generate the $C^{\infty}(\widetilde{T M})$-module $\Gamma(\widetilde{\pi})$. The canonical section δ of $\widetilde{\pi}$ sends $v \in \widetilde{T M}$ to $(v, v) \in \widetilde{\tau}^{*} T M$.

We denote by $\mathcal{T}_{l}^{k}(\widetilde{\pi})$ the $C^{\infty}(\widetilde{T M})$-module of all tensors of type (k, l) over $\Gamma(\widetilde{\pi})\left((k, l) \in \mathbb{N} \times \mathbb{N} ; \mathcal{T}_{0}^{0}(\widetilde{\pi}):=C^{\infty}(\widetilde{T M})\right)$. Elements of $\mathcal{T}_{l}^{1}(\widetilde{\pi})$ may naturally be interpreted as $\Gamma(\widetilde{\pi})$-valued $C^{\infty}(\widetilde{T M})$-multilinear maps. The unit tensor in $\mathcal{T}_{1}^{1}(\widetilde{\pi})$ will simply be denoted by $\mathbf{1}$. We note that $\mathcal{T}_{l}^{k}(\pi)$ may (and will) be considered as a submodule of $\mathcal{T}_{l}^{k}(\stackrel{\circ}{\pi})$.
\mathbf{i} denotes the canonical bundle injection $\widetilde{T M} \times_{M} T M \rightarrow T \widetilde{T M}, \mathbf{j}$ is the canonical bundle surjection of $T \widetilde{T M}$ onto $\widetilde{T M} \times{ }_{M} T M$. Then $\mathbf{j} \circ \mathbf{i}=0$, while $\mathbf{J}:=\mathbf{i} \circ \mathbf{j}$ is another canonical bundle map, the vertical endomorphism of $T \widetilde{T M}$. \mathbf{i}, \mathbf{j} and \mathbf{J} induce the $C^{\infty}(\widetilde{T M})$-homomorhpisms

$$
\begin{aligned}
\Gamma(\widetilde{\pi}) & \longrightarrow \mathfrak{X}(T M), & \widetilde{X} \longmapsto \mathbf{i} \tilde{X}:=\mathbf{i} \circ \tilde{X} \\
\mathfrak{X}(\widetilde{T M}) & \longrightarrow \Gamma(\pi), & \xi \longmapsto \mathbf{j} \xi:=\mathbf{j} \circ \xi \\
\mathfrak{X}(\widetilde{T M}) & \longrightarrow \mathfrak{X}(T M), & \xi \longmapsto \mathbf{J} \xi:=\mathbf{J} \circ \xi
\end{aligned}
$$

Then

$$
\mathfrak{X}^{\vee}(\widetilde{T M}):=\mathbf{i}(\Gamma(\widetilde{\pi}))=\operatorname{Im}(\mathbf{J})=\operatorname{Ker}(\mathbf{J})
$$

is the $C^{\infty}(\widetilde{T M})$-module of vertical vector fields on $\widetilde{T M}, X^{\vee}:=\mathbf{i} \widehat{X}$ is the vertical lift of $X \in \mathfrak{X}(M) . C:=\mathbf{i} \delta$ is a canonical vertical vector field on $\widetilde{T M}$, the Liouville vector field. For any vector field X on M we have

$$
\begin{equation*}
\left[C, X^{\vee}\right]=-X^{\vee}, \quad\left[C, X^{\mathrm{c}}\right]=0 \tag{1}
\end{equation*}
$$

We define the vertical differential $\nabla^{\mathrm{v}} F \in \mathcal{T}_{1}^{0}(\widetilde{\pi})$ of a function $F \in C^{\infty}(\widetilde{T M})$ by

$$
\begin{equation*}
\nabla^{\vee} F(\widetilde{X}):=(\mathbf{i} \widetilde{X}) F, \quad \widetilde{X} \in \Gamma(\widetilde{\pi}) \tag{2}
\end{equation*}
$$

The vertical differential of a section $\widetilde{Y} \in \Gamma(\widetilde{\pi})$ is the $(1,1)$ tensor $\nabla^{\vee} \widetilde{Y} \in \mathcal{T}_{1}^{1}(\widetilde{\pi})$ given by

$$
\begin{equation*}
\nabla^{\vee} \widetilde{Y}(\widetilde{X})=: \nabla_{\tilde{X}}^{\vee} \widetilde{Y}:=\mathbf{j}[\mathbf{i} \widetilde{X}, \eta], \quad \widetilde{X} \in \Gamma(\widetilde{\pi}) \tag{3}
\end{equation*}
$$

where $\eta \in \mathfrak{X}(\widetilde{T M})$ is such that $\mathbf{j} \eta=\widetilde{Y}$. (It is easy to check that the result does not depend on the choice of η.) Using the Leibnizian product rule as a guiding principle, the operators $\nabla_{\widetilde{X}}^{v}$ may uniquely be extended to a tensor derivation of the tensor algebra of $\Gamma(\widetilde{\pi})$. Forming the vertical differential of a tensor over $\Gamma(\widetilde{\pi})$, we use the following convention: if, e.g., $\mathbf{A} \in \mathcal{T}_{2}^{1}(\widetilde{\pi})$, then $\nabla^{\vee}(\mathbf{A}) \in \mathcal{T}_{3}^{1}(\widetilde{\pi})$, given by

$$
\nabla^{\vee} \mathbf{A}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}):=\left(\nabla_{\widetilde{X}}^{\vee} \mathbf{A}\right)(\widetilde{Y}, \widetilde{Z})=\nabla_{\widetilde{X}}^{\vee} \mathbf{A}(\widetilde{Y}, \widetilde{Z})-\mathbf{A}\left(\nabla_{\widetilde{X}}^{\vee} \widetilde{Y}, \widetilde{Z}\right)-\mathbf{A}\left(\widetilde{Y}, \nabla_{\widetilde{X}}^{\vee} \widetilde{Z}\right)
$$

3. Finsler functions and associated objects

Let m_{λ}, where λ is a real number, denote the map $v \in T M \mapsto \lambda v \in T M$. By a Finsler function we mean a function $F: T M \rightarrow \mathbb{R}$ satisfying:
(F1) F is smooth on $\stackrel{\circ}{T} M$.
(F2) $F \circ m_{\lambda}=\lambda F$ for all real numbers $\lambda \geq 0$.
(F3) $F \geq 0$ and equals 0 only on $o(M)$.
(F4) The $(0,2)$ tensor $g:=\frac{1}{2} \nabla^{\vee} \nabla^{\vee} F^{2} \in \mathcal{T}_{2}^{0}(\underset{\pi}{\circ})$ is (fibrewise) positive definite.
A Finsler manifold is a pair (M, F) consisting of a manifold M and a Finsler function on $T M$. By Euler's theorem on homogeneous functions, condition (F2) may equivalently be written in the form $C F=F . E:=\frac{1}{2} F^{2}$ is the energy function of the Finsler manifold. It is positive-homogeneous of degree 2 , i.e., $C E=2 E$, smooth on $\stackrel{\circ}{T} M$ and identically zero on $o(M)$. It may be shown (see e.g. [19]) that, actually, E is C^{1} on $T M$ and is C^{2}, if and only if, E is the norm associated with a Riemannian structure on M in which case E is smooth on $T M . g=\nabla^{\vee} \nabla^{\vee} E$ is said to be the metric tensor of (M, F). For any vector fields X, Y on M we have

$$
\begin{equation*}
g(\widehat{X}, \widehat{Y})=X^{\vee}\left(Y^{\vee} E\right) \tag{4}
\end{equation*}
$$

Since $\left[X^{\vee}, Y^{\vee}\right]=0$, this implies that g is symmetric. It would have been sufficient to assume only the (fibrewise) non-singularity of this tensor for positive definiteness is then a consequence of the other conditions on F.

Now we list some basic data arising immediately from a Finsler function.
(i) $\delta_{b}: \widetilde{X} \in \Gamma(\stackrel{\circ}{\pi}) \longmapsto \delta_{b}(\widetilde{X}):=g(\widetilde{X}, \delta)$ - the canonical 1-form of (M, F),
(ii) $\ell:=\frac{1}{F} \delta \in \Gamma(\stackrel{\circ}{\pi})$ - the normalized support element field,
(iii) $\ell_{b}:=\frac{1}{F} \delta_{b} \in \mathcal{T}_{1}^{0}(\underset{\pi}{\pi})$ - the dual form of ℓ,
(iv) $\eta:=g-\ell_{b} \otimes \ell_{b}$ - the angular metric tensor.

We have the following relation:

$$
\begin{equation*}
\delta_{b}=F \nabla^{\vee} F=\nabla^{\vee} E . \tag{5}
\end{equation*}
$$

Proof. For any vector field X on $M, \delta_{b}(\widehat{X}):=g(\widehat{X}, \delta)=g(\delta, \widehat{X})=$ $\nabla^{\vee} \nabla^{\vee} E(\delta, \widehat{X})=\nabla_{\delta}^{\vee} \nabla^{\vee} E(\widehat{X})=C\left(X^{\vee} E\right)-\nabla^{\vee} E\left(\nabla_{\delta}^{\vee} \widehat{X}\right) \stackrel{(3)}{=}\left[C, X^{\vee}\right] E+X^{\vee}(C E)-$ $\nabla^{\vee} E\left(\mathbf{j}\left[C, X^{\mathrm{c}}\right]\right) \stackrel{(1)}{=}-X^{\vee} E+2 X^{\vee} E=\frac{1}{2} X^{\vee} F^{2}=F\left(X^{\vee} F\right) \stackrel{(3)}{=} F \nabla^{\vee} F(\widehat{X})$, which proves the formula.

From this observation relations

$$
\begin{gather*}
g(\delta, \delta)=\delta_{b}(\delta)=F^{2}, \quad \ell_{b}(\ell)=g(\ell, \ell)=1, \tag{6}\\
\eta=g-\nabla^{\vee} F \otimes \nabla^{\vee} F \tag{7}
\end{gather*}
$$

are immediately deduced.
If (M, F) is a Finsler manifold, then there is a unique vector field S on $T M$ defined to be zero on $o(M)$, and defined on $\stackrel{\circ}{T} M$ to be the unique vector field such that

$$
i_{S} d\left(\nabla^{\vee} F^{2} \circ \mathbf{j}\right)=-d F^{2} .
$$

Then S is C^{1} on $T M$, smooth on $\stackrel{\circ}{T} M$ and has the properties

$$
\begin{equation*}
J S=C, \quad[C, S]=S, \tag{8}
\end{equation*}
$$

therefore S is a spray, called the canonical spray of the Finsler manifold. It is less known, but a proof of this really fundamental fact may also be found in Warner's above cited paper [19].

The canonical spray induces an Ehresmann connection $\mathcal{H}: \stackrel{\circ}{T} M \times{ }_{M} T M \longrightarrow$ $T \stackrel{\circ}{T} M$ such that for any vector field X on M,

$$
\begin{equation*}
X^{\mathrm{h}}:=\mathcal{H} \widehat{X}:=\mathcal{H} \circ \widehat{X}:=\frac{1}{2}\left(X^{\mathrm{c}}+\left[X^{\mathrm{v}}, S\right]\right) . \tag{9}
\end{equation*}
$$

\mathcal{H} is said to be the Barthel connection of $(M, F), X^{h}$ is the horizontal lift of X. \mathcal{H} is homogeneous in the sense that

$$
\begin{equation*}
\left[C, X^{\mathrm{h}}\right]=0, \quad X \in \mathfrak{X}(M) \tag{10}
\end{equation*}
$$

Indeed, $2\left[C, X^{\mathrm{h}}\right]=\left[C, X^{\mathrm{c}}\right]+\left[C,\left[X^{\mathrm{v}}, S\right]\right] \stackrel{(1)}{=}\left[C,\left[X^{\mathrm{v}}, S\right]\right]=-\left[X^{\mathrm{v}},[S, C]\right]-$ $\left[S,\left[C, X^{\vee}\right]\right] \stackrel{(1)),((8)}{=}\left[X^{\vee}, S\right]+\left[S, X^{\vee}\right]=0$.

An important property of the Barthel connection is that the Finsler function is a first integral for the horizontal lifts, i.e.,

$$
\begin{equation*}
X^{\mathrm{h}} F=0, \quad X \in \mathfrak{X}(M) \tag{11}
\end{equation*}
$$

Equivalently, $d F \circ \mathcal{H}=0$. For a recent, simple proof of this fact we refer to [16].
To the Barthel connection (as to any Ehresmann connection) we associate
(i) the horizontal projector $\mathbf{h}:=\mathcal{H} \circ \mathbf{j}$,
(ii) the vertical projector $\mathbf{v}:=1_{T \overparen{T} M}-\mathbf{h}$,
(iii) the vertical map $\mathcal{V}: T \stackrel{\circ}{T} M \rightarrow \stackrel{\circ}{T} M \times_{M} T M$ such that $\mathbf{i} \circ \mathcal{V}=\mathbf{v}$.

We define the h-Berwald differentials $\nabla^{\mathrm{h}} F \in \mathcal{T}_{1}^{0}(\stackrel{\circ}{\pi})\left(F \in C^{\infty}(\stackrel{\circ}{T} M)\right)$ and $\nabla^{\mathrm{h}} \tilde{Y} \in \mathcal{T}_{1}^{1}(\stackrel{\circ}{\pi})(\tilde{Y} \in \Gamma(\stackrel{\circ}{\pi}))$ by the following rules:

$$
\begin{gather*}
\nabla^{\mathrm{h}} F(\widetilde{X}):=(\mathcal{H} \tilde{X}) F, \quad \widetilde{X} \in \Gamma(\stackrel{\circ}{\pi}) \tag{12}\\
\nabla^{\mathrm{h}} \widetilde{Y}(\widetilde{X}):=\nabla_{\widetilde{X}}^{\mathrm{h}} \widetilde{Y}:=\mathcal{V}[\mathcal{H} \widetilde{X}, \mathbf{i} \widetilde{Y}], \quad \widetilde{X} \in \Gamma(\stackrel{\circ}{\pi}) . \tag{13}
\end{gather*}
$$

Then the operators $\nabla_{\tilde{X}}^{\mathrm{h}}(\tilde{X} \in \Gamma(\stackrel{\circ}{\pi}))$ may uniquely be extended to the whole tensor algebra of $\Gamma(\stackrel{\circ}{\pi})$ as tensor derivations. Forming the h-Berwald differential of an arbitrary tensor, we adopt the same convention as in the vertical case. We note that the homogeneity of the Barthel connection implies

$$
\begin{equation*}
\nabla^{\mathrm{h}} \delta=0 \tag{14}
\end{equation*}
$$

From the operators ∇^{v} and ∇^{h} we build the Berwald derivative

$$
\nabla:(\xi, \tilde{Y}) \in \mathfrak{X}(\stackrel{\circ}{T} M) \times \Gamma(\stackrel{\circ}{\pi}) \longmapsto \nabla_{\xi} \widetilde{Y}:=\nabla_{\mathcal{V} \xi}^{\vee} \tilde{Y}+\nabla_{\mathbf{j} \xi}^{\mathrm{h}} \widetilde{Y} \in \operatorname{Gamma}(\stackrel{\circ}{\pi})
$$

Then, by (3) and (13),

$$
\nabla_{\xi} \widetilde{Y}=\mathbf{j}[\mathbf{v} \xi, \mathcal{H} \widetilde{Y}]+\mathcal{V}[\mathbf{h} \xi, \mathbf{i} \widetilde{Y}]
$$

In particular,

$$
\begin{array}{lll}
\nabla_{\mathbf{i} \widetilde{X}} \tilde{Y}=\nabla_{\widetilde{X}}^{\vee} \tilde{Y}, & \nabla_{\mathcal{H} \widetilde{X}} \tilde{Y}=\nabla_{\widetilde{X}}^{\mathcal{H}} \tilde{Y} ; & \widetilde{X}, \tilde{Y} \in \Gamma(\stackrel{\circ}{\pi}) \\
\nabla_{X^{\vee}} \widehat{Y}=0, & \nabla_{X^{\mathrm{h}}} \widehat{Y}=\mathcal{V}\left[X^{\mathrm{h}}, Y^{\vee}\right] ; & \tag{15}
\end{array}
$$

4. Curvature properties

We assume for the remainder of the paper that (M, F) is a fixed n-dimensional Finsler manifold. To introduce some curvature data in (M, F), we start from the classical curvature tensor R^{∇} of the Berwald derivative on M given by

$$
R^{\nabla}(\xi, \eta) \widetilde{Z}:=\nabla_{\xi} \nabla_{\eta} \widetilde{Z}-\nabla_{\eta} \nabla_{\xi} \widetilde{Z}-\nabla_{[\xi, \eta]} \widetilde{Z}, \quad(\xi, \eta \in \mathfrak{X}(\stackrel{\circ}{T} M), \widetilde{Z} \in \Gamma(\stackrel{\circ}{\pi}))
$$

By the affine curvature tensor of (M, F) we mean the tensor $\mathbf{H} \in \mathcal{T}_{3}^{1}(\stackrel{\circ}{\pi})$ given by

$$
\mathbf{H}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}:=R^{\nabla}(\mathcal{H} \widetilde{X}, \mathcal{H} \widetilde{Y}) \widetilde{Z} ; \quad \widetilde{X}, \widetilde{Y}, \widetilde{Z} \in \Gamma(\stackrel{\circ}{\pi})
$$

Here we followed L. Berwald's terminology. According to Z. Shen's usage, we say that (M, F) is R-quadratic if $\nabla^{\vee} \mathbf{H}=0$, i.e., the affine curvature "depends only on the position".

The type $(1,3)$ tensor \mathbf{B} given by

$$
\mathbf{B}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}:=R^{\nabla}(\mathbf{i} \widetilde{X}, \mathcal{H} \widetilde{Y}) \widetilde{Z} ; \quad \widetilde{X}, \widetilde{Y}, \widetilde{Z} \in \Gamma(\stackrel{\circ}{\pi})
$$

is said to be the Berwald curvature of (M, F). Evaluating on basic vector fields, we find that

$$
\mathbf{B}(\widehat{X}, \widehat{Y}) \widehat{Z}=\mathcal{V}\left[X^{\vee},\left[Y^{\mathrm{h}}, Z^{\vee}\right]\right] \quad \text { or } \quad \mathbf{i B}(\widehat{X}, \widehat{Y}) \widehat{Z}=\left[X^{\vee},\left[Y^{\mathrm{h}}, Z^{\vee}\right]\right]
$$

It is then a straightforward matter to check that \mathbf{B} is totally symmetric. We also have:

$$
\begin{equation*}
\delta \in\{\widetilde{X}, \widetilde{Y}, \widetilde{Z}\} \Rightarrow \mathbf{B}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}=0 \tag{16}
\end{equation*}
$$

A Finsler manifold is said to be a Berwald manifold if its Berwald curvature vanishes. (M, F) is a weakly Berwald manifold provided $\operatorname{tr} \mathbf{B}=0$, where tr denotes the trace of the $C^{\infty}(\stackrel{\circ}{T} M)$-linear map $\widetilde{X} \mapsto \mathbf{B}(\widetilde{X}, \tilde{Y}) \widetilde{Z}$.

We shall need the following Bianchi identity:

$$
\begin{equation*}
\nabla^{\mathrm{v}} \mathbf{H}(\tilde{X}, \tilde{Y}, \widetilde{Z}, \widetilde{U})+\nabla^{\mathrm{h}} \mathbf{B}(\tilde{Y}, \tilde{Z}, \tilde{X}, \widetilde{U})-\nabla^{\mathrm{h}} \mathbf{B}(\widetilde{Z}, \tilde{Y}, \tilde{X}, \widetilde{U})=0 \tag{17}
\end{equation*}
$$

$(\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{U} \in \Gamma(\stackrel{\circ}{\pi})) ;$ see [14], p. 1331.
The Landsberg tensor of (M, F) is

$$
\begin{equation*}
\mathbf{P}:=-\frac{1}{2} \nabla^{\mathrm{h}} g \tag{18}
\end{equation*}
$$

As a special case of 2.50 , Lemma 5 in [14], we obtain

Lemma 4.1. The Berwald curvature and the Landsberg tensor of a Finsler manifold are related by

$$
\begin{equation*}
\nabla^{\vee} E \circ \mathbf{B}=-2 \mathbf{P} \tag{19}
\end{equation*}
$$

where E is the energy function.
Notice that relation (19) implies immediately that Berwald manifolds have vanishing Landsberg tensor.

By the stretch tensor of (M,F) we mean the tensor $\boldsymbol{\Sigma} \in \mathcal{T}_{4}^{0}(\stackrel{\circ}{\pi})$ given by

$$
\begin{equation*}
\frac{1}{2} \boldsymbol{\Sigma}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{U}):=\nabla^{\mathrm{h}} \mathbf{P}(\tilde{X}, \tilde{Y}, \widetilde{Z}, \widetilde{U})-\nabla^{\mathrm{h}} \mathbf{P}(\tilde{Y}, \tilde{X}, \widetilde{Z}, \widetilde{U}) \tag{20}
\end{equation*}
$$

The next important observation gives an index-free reformulation of relation (3.3.2.5) in [10]. For completeness we present an immediate (and also index-free) proof, which differs essentially from Matsumoto's argument based on classical tensor calculus.

Proposition 4.2. For any sections $\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{U}$ in $\Gamma(\stackrel{\circ}{\pi})$,

$$
\begin{equation*}
\nabla^{\vee} E \circ \nabla^{\vee} \mathbf{H}(\tilde{X}, \tilde{Y}, \widetilde{Z}, \tilde{U})=\boldsymbol{\Sigma}(\tilde{Y}, \tilde{X}, \tilde{Z}, \tilde{U}) \tag{21}
\end{equation*}
$$

Proof. It is enough to check the relation for basic vector fields $\widehat{X}, \widehat{Y}, \widehat{Z}, \widehat{U}$.

$$
\begin{aligned}
\nabla^{\vee} E\left(\nabla^{\vee} \mathbf{H}(\widehat{X}, \widehat{Y}, \widehat{Z}, \widehat{U})\right) & \stackrel{(2)}{=}\left(\mathbf{i} \nabla^{\vee} \mathbf{H}(\widehat{X}, \widehat{Y}, \widehat{Z}, \widehat{U})\right) E \\
& \stackrel{(17)}{=} \mathbf{i}\left(-\nabla^{\mathrm{h}} \mathbf{B}(\widehat{Y}, \widehat{Z}, \widehat{X}, \widehat{U})+\nabla^{\mathrm{h}} \mathbf{B}(\widehat{Z}, \widehat{Y}, \widehat{X}, \widehat{U})\right) E
\end{aligned}
$$

Here

$$
\begin{aligned}
\nabla^{\mathrm{h}} \mathbf{B}(\widehat{Y}, \widehat{Z}, \widehat{X}, \widehat{U})= & \left(\nabla_{Y^{\mathrm{h}}} \mathbf{B}\right)(\widehat{Z}, \widehat{X}, \widehat{U})=\nabla_{Y^{\mathrm{h}}} \mathbf{B}(\widehat{Z}, \widehat{X}) \widehat{U} \\
& -\mathbf{B}\left(\nabla_{Y^{\mathrm{h}}} \widehat{Z}, \widehat{X}\right) \widehat{U}-\mathbf{B}\left(\widehat{Z}, \nabla_{Y^{\mathrm{h}}} \widehat{X}\right) \widehat{U}-\mathbf{B}(\widehat{Z}, \widehat{X}) \nabla_{Y^{\mathrm{h}}} \widehat{U}
\end{aligned}
$$

and by (15)

$$
\nabla_{Y^{\mathrm{h}}} \mathbf{B}(\widehat{Z}, \widehat{X}) \widehat{U}=\mathcal{V}\left[Y^{\mathrm{h}}, \mathbf{i} \mathbf{B}(\widehat{Z}, \widehat{X}) \widehat{U}\right]
$$

Therefore, applying (19) we get

$$
\begin{aligned}
\mathbf{i} \nabla^{\mathrm{h}} \mathbf{B}(\widehat{Y}, \widehat{Z}, \widehat{X}, \widehat{U}) E= & {\left[Y^{\mathrm{h}}, \mathbf{i B}(\widehat{Z}, \widehat{X}) \widehat{U}\right] E+2 \mathbf{P}\left(\nabla_{Y^{\mathrm{h}}} \widehat{Z}, \widehat{X}, \widehat{U}\right) } \\
& +2 \mathbf{P}\left(\widehat{Z}, \nabla_{Y^{\mathrm{h}}} \widehat{X}, \widehat{U}\right)+2 \mathbf{P}\left(\widehat{Z}, \widehat{X}, \nabla_{Y^{\mathrm{h}}} \widehat{U}\right)
\end{aligned}
$$

Since $Y^{\mathrm{h}} E=0$ by (11), at the right-hand side the first term is

$$
Y^{\mathrm{h}}((\mathbf{i B}(\widehat{Z}, \widehat{X}) \widehat{U}) E) \stackrel{(19)}{=}-2 Y^{\mathrm{h}} \mathbf{P}(\widehat{Z}, \widehat{X}, \widehat{U})
$$

therefore the right-hand side is just $-2 \nabla^{\mathrm{h}} \mathbf{P}(\widehat{Y}, \widehat{Z}, \widehat{X}, \widehat{U})$. In the same way we find that

$$
\mathbf{i} \nabla^{\mathrm{h}} \mathbf{B}(\widehat{Z}, \widehat{Y}, \widehat{X}, \widehat{U}) E=-2 \nabla^{\mathrm{h}} \mathbf{P}(\widehat{Z}, \widehat{Y}, \widehat{X}, \widehat{U})
$$

Hence

$$
\begin{aligned}
\nabla^{\mathrm{v}} E\left(\nabla^{\mathrm{v}} \mathbf{H}(\widehat{X}, \widehat{Y}, \widehat{Z}, \widehat{U})\right) & =2\left(\nabla^{\mathrm{h}} \mathbf{P}(\widehat{Y}, \widehat{Z}, \widehat{X}, \widehat{U})-\nabla^{\mathrm{h}} \mathbf{P}(\widehat{Z}, \widehat{Y}, \widehat{X}, \widehat{U})\right) \\
& \stackrel{(20)}{=} \boldsymbol{\Sigma}(\widehat{Y}, \widehat{Z}, \widehat{X}, \widehat{U})
\end{aligned}
$$

as was to be proved.
Corollary 4.3. R-quadratic Finsler manifolds have vanishing stretch tensor.

5. p-Berwald manifolds

Lemma 5.1. If

$$
\begin{equation*}
\mathbf{p}:=\mathbf{1}-\frac{1}{2 E} \nabla^{\vee} E \otimes \delta \tag{22}
\end{equation*}
$$

then $\mathbf{p}(\delta)=0$, and \mathbf{p} is a projection operator on $\Gamma(\stackrel{\circ}{\pi})$, i.e., $\mathbf{p}^{2}=\mathbf{p}$.
Proof. Since the energy function is positive-homogeneous of degree 2,

$$
\mathbf{p}(\delta):=\delta-\frac{1}{2 E} \nabla^{\vee} E(\delta) \delta=\delta-\frac{1}{2 E}(C E) \delta=\delta-\delta=0
$$

Using this observation, for any section \widetilde{X} in $\Gamma(\stackrel{\circ}{\pi})$,

$$
\mathbf{p}^{2}(\widetilde{X})=\mathbf{p}\left(\widetilde{X}-\frac{1}{2 E}(\mathbf{i} \tilde{X}) E \delta\right)=\mathbf{p}(\widetilde{X})
$$

thus proving the claim.
By the projected tensor of a tensor $\mathbf{K} \in \mathcal{T}_{k}^{0}(\underset{\pi}{\pi})$ or $\mathbf{L} \in \mathcal{T}_{k}^{1}(\underset{\pi}{\circ})$ we mean the tensors $\mathbf{p K}$ and $\mathbf{p L}$ given by

$$
\mathbf{p K}\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{k}\right):=\mathbf{K}\left(\mathbf{p} \widetilde{X}_{1}, \ldots, \mathbf{p} \widetilde{X}_{k}\right)
$$

and

$$
\mathbf{p L}\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{k}\right):=\mathbf{p}\left(\mathbf{L}\left(\mathbf{p} \widetilde{X}_{1}, \ldots, \mathbf{p} \widetilde{X}_{k}\right)\right)
$$

Corollary 5.2. Let $\mathbf{K} \in \mathcal{T}_{k}^{0}(\stackrel{\circ}{\pi}), \mathbf{L} \in \mathcal{T}_{k}^{1}(\stackrel{\circ}{\pi})$. If

$$
\delta \in\left\{\widetilde{X}_{1}, \ldots, \widetilde{X}_{k}\right\} \Rightarrow \mathbf{K}\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{k}\right)=0, \quad \mathbf{L}\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{k}\right)=0
$$

then $\mathbf{p K}=\mathbf{K}, \mathbf{p L}=\mathbf{p} \circ \mathbf{L}$.

Example. The projected tensor of the metric tensor g is the angular metric tensor η. Indeed, for any vector fields X, Y on M,

$$
\begin{aligned}
\mathbf{p} g(\widehat{X}, \widehat{Y}): & g(\mathbf{p}(\widehat{X}), \mathbf{p}(\widehat{Y}))=g\left(\widehat{X}-\frac{1}{2 E}\left(X^{\vee} E\right) \delta, \widehat{Y}-\frac{1}{2 E}\left(Y^{\vee} E\right) \delta\right) \\
= & g(\widehat{X}, \widehat{Y})-\frac{1}{2 E}\left(X^{\vee} E\right) g(\delta, \widehat{Y})-\frac{1}{2 E}\left(Y^{\vee} E\right) g(\widehat{X}, \delta) \\
& +\frac{1}{4 E^{2}}\left(X^{\vee} E\right)\left(Y^{\vee} E\right) g(\delta, \delta) \stackrel{(5),(6)}{=} g(\widehat{X}, \widehat{Y})-\frac{1}{F^{2}}\left(X^{\vee} E\right) \nabla^{\vee} E(\widehat{Y}) \\
& -\frac{1}{F^{2}}\left(Y^{\vee} E\right) \nabla^{\vee} E(\widehat{X})+\frac{1}{F^{2}}\left(X^{\vee} E\right)\left(Y^{\vee} E\right) \\
= & \left(g-\frac{1}{F^{2}} \nabla^{\vee} E \otimes \nabla^{\vee} E\right)(\widehat{X}, \widehat{Y})=\left(g-\nabla^{\vee} F \otimes \nabla^{\vee} F\right)(\widehat{X}, \widehat{Y})=\eta(\widehat{X}, \widehat{Y}) .
\end{aligned}
$$

Lemma 5.3. The projected tensor of the Berwald curvature of a Finsler manifold is

$$
\begin{equation*}
\mathbf{p B}=\mathbf{B}+\frac{1}{E} \mathbf{P} \otimes \delta \tag{23}
\end{equation*}
$$

Proof. By (16) and Corollary 5.2, $\mathbf{p B}=\mathbf{p} \circ \mathbf{B}$. Now, for any vector fields X, Y, Z on M,

$$
\begin{aligned}
&(\mathbf{p B})(\widehat{X}, \widehat{Y}, \widehat{Z})=\mathbf{p}(\mathbf{B}(\widehat{X}, \widehat{Y}) \widehat{Z}) \stackrel{(22)}{=} \mathbf{B}(\widehat{X}, \widehat{Y}) \widehat{Z}-\frac{1}{2 E}(\mathbf{i B}(\widehat{X}, \widehat{Y}) \widehat{Z}) E \delta \\
& \stackrel{(19)}{=} \mathbf{B}(\widehat{X}, \widehat{Y}) \widehat{Z}+\frac{1}{E} \mathbf{P}(\widehat{X}, \widehat{Y}, \widehat{Z}) \delta=\left(\mathbf{B}+\frac{1}{E} \mathbf{P} \otimes \delta\right)(\widehat{X}, \widehat{Y}, \widehat{Z})
\end{aligned}
$$

hence our statement.
Definition. By a p-Berwald manifold we mean a Finsler manifold in which the projected Berwald curvature vanishes, i.e., which has the property

$$
\begin{equation*}
\mathbf{B}+\frac{1}{E} \mathbf{P} \otimes \delta=0 \tag{24}
\end{equation*}
$$

Proposition 5.4. Any p-Berwald manifold is a weakly Berwald manifold.
Proof. We have to show that if (M, F) is a p-Berwald manifold, then $\operatorname{tr} \mathbf{B}=0$. By (24) and Lemma 1 of [15], $\operatorname{tr} \mathbf{B}=-\frac{1}{E} \operatorname{tr}(\mathbf{P} \otimes \delta)=-\frac{1}{E} i_{\delta} \mathbf{P}$. Here $i_{\delta} \mathbf{P}=-\frac{1}{2} i_{\delta} \nabla^{\mathrm{h}} g=0$; for an index-free proof of this well-known fact we refer to [14], 3.11 (p. 1381).

Theorem 5.5. A p-Berwald manifold is R-quadratic, if and only if, its stretch tensor vanishes.

Proof. The necessity of the condition is a consequence of Corollary 4.3. To prove the sufficiency, we show that in a p-Berwald manifold we have

$$
\begin{equation*}
\nabla^{\vee} \mathbf{H}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{U})=\frac{1}{F^{2}} \boldsymbol{\Sigma}(\widetilde{Y}, \widetilde{Z}, \widetilde{X}, \widetilde{U}) \otimes \delta ; \quad \widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{U} \in \Gamma(\stackrel{\circ}{\pi}) \tag{25}
\end{equation*}
$$

Observe first that

$$
\nabla^{\mathrm{h}} \mathbf{B} \stackrel{(24)}{=}-\nabla^{\mathrm{h}}\left(\frac{1}{E} \mathbf{P} \otimes \delta\right) \stackrel{(11),(14)}{=}-\frac{1}{E} \nabla^{\mathrm{h}} \mathbf{P} \otimes \delta
$$

Now, applying Bianchi identity (17), we get

$$
\begin{aligned}
\nabla^{ } \mathbf{H}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{U})= & \nabla^{\mathrm{h}} \mathbf{B}(\widetilde{Z}, \widetilde{Y}, \widetilde{X}, \widetilde{U})-\nabla^{\mathrm{h}} \mathbf{B}(\widetilde{Y}, \widetilde{Z}, \widetilde{X}, \widetilde{U})=-\frac{1}{E}\left(\nabla^{\mathrm{h}} \mathbf{P}(\widetilde{Z}, \widetilde{Y}, \widetilde{X}, \widetilde{U})\right. \\
& \left.-\nabla^{\mathrm{h}} \mathbf{P}(\widetilde{Y}, \widetilde{Z}, \widetilde{X}, \widetilde{U})\right) \otimes \delta \stackrel{(20)}{=} \frac{1}{F^{2}} \boldsymbol{\Sigma}(\widetilde{Y}, \widetilde{Z}, \widetilde{X}, \widetilde{U})
\end{aligned}
$$

This proves (25), whence the statement follows.
To give a more precise characterization of p-Berwald manifolds, we need the concept of Douglas manifolds. By the Douglas curvature of a Finsler manifold we mean the tensor

$$
\begin{equation*}
\mathbf{D}:=\mathbf{B}-\frac{1}{n+1}\left(\operatorname{tr} \mathbf{B} \odot \mathbf{1}+\left(\nabla^{\vee} \operatorname{tr} \mathbf{B}\right) \otimes \delta\right) \tag{26}
\end{equation*}
$$

where the symbol \odot denotes symmetric product (without any extra numerical factor). An index-free representation of the Douglas curvature was first presented by J. Szilasi and Sz. Vattamány [13]; formula (26) is just a "pull back version" of formula (6.2 b) of the cited paper. Finsler manifolds with vanishing Douglas curvature were baptized Douglas manifolds by S. BÁcsó and M. Matsumoto, who devoted a series of papers to their thorough investigation [1]-[4]. Observe that in weakly Berwald manifolds, and hence in p-Berwald manifolds the Douglas and Berwald curvature coincide.

Lemma 5.6. The projected tensor of the Douglas curvature is

$$
\begin{equation*}
\mathbf{p} \mathbf{D}=\mathbf{p} \mathbf{B}-\frac{1}{n+1} \operatorname{tr} \mathbf{B} \odot \mathbf{p}=\mathbf{B}+\frac{1}{E} \mathbf{P} \otimes \delta-\frac{1}{n+1} \operatorname{tr} \mathbf{B} \odot \mathbf{p} \tag{27}
\end{equation*}
$$

Proof. First we check that \mathbf{D} satisfies the condition of Corollary 5.2, i.e., $\mathbf{D}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}=0$, if $\delta \in\{\widetilde{X}, \widetilde{Y}, \widetilde{Z}\}$. Let, for example, $\widetilde{X}:=\delta$. Then

$$
\mathbf{D}(\delta, \widetilde{Y}, \widetilde{Z}):=\mathbf{B}(\delta, \widetilde{Y}, \widetilde{Z})-\frac{1}{n+1}(\operatorname{tr} \mathbf{B}(\delta, \widetilde{Y}) \widetilde{Z}+\operatorname{tr} \mathbf{B}(\widetilde{Y}, \widetilde{Z}) \delta+\operatorname{tr} \mathbf{B}(\widetilde{Z}, \delta) \widetilde{Y})
$$

$$
\left.-\frac{1}{n+1}\left(\nabla_{C} \operatorname{tr} \mathbf{B}\right)(\widetilde{Y}, \widetilde{Z}) \delta \stackrel{(16)}{=}-\frac{1}{n+1}\left(\operatorname{tr} \mathbf{B}(\widetilde{Y}, \widetilde{Z}) \delta+\nabla_{C} \operatorname{tr} \mathbf{B}\right)(\widetilde{Y}, \widetilde{Z}) \delta\right)
$$

It is known (see e.g. [13], Proposition 4.4) that \mathbf{B} is homogeneous of degree -1 , i.e., $\nabla_{C} \mathbf{B}=-\mathbf{B}$. Thus $\nabla_{C} \operatorname{tr} \mathbf{B}=\operatorname{tr} \nabla_{C} \mathbf{B}=-\operatorname{tr} \mathbf{B}$, and hence $\mathbf{D}(\delta, \widetilde{Y}, \widetilde{Z})=0$. The other two cases may be handled similarly. Now it follows that

$$
\mathbf{p} \mathbf{D}=\mathbf{p} \circ \mathbf{D}=\mathbf{p} \mathbf{B}-\frac{1}{n+1}\left(\mathbf{p}(\operatorname{tr} \mathbf{B} \odot \mathbf{1})+\mathbf{p}\left(\nabla^{\mathrm{v}} \operatorname{tr} \mathbf{B} \otimes \delta\right)\right.
$$

Here, for any vector fields X, Y, Z on M,

$$
\begin{aligned}
\mathbf{p}(\operatorname{tr} \mathbf{B} \odot \mathbf{1}(\widehat{X}, \widehat{Y}, \widehat{Z})):= & \mathbf{p}(\operatorname{tr} \mathbf{B} \odot \mathbf{1}(\mathbf{p} \widehat{X}, \mathbf{p} \widehat{Y}, \mathbf{p} \widehat{Z})) \stackrel{(16), \stackrel{\operatorname{Cor} .5 .2}{=} \mathbf{p}(\operatorname{tr} \mathbf{B}(\widehat{X}, \widehat{Y}) \mathbf{p}(\widehat{Z})}{ } \\
& +\operatorname{tr} \mathbf{B}(\widehat{Y}, \widehat{Z}) \mathbf{p}(\widehat{X})+\operatorname{tr} \mathbf{B}(\widehat{Z}, \widehat{X}) \mathbf{p}(\widehat{Y}))=\operatorname{tr} \mathbf{B}(\widehat{X}, \widehat{Y}) \mathbf{p}(\widehat{Z}) \\
& +\operatorname{tr} \mathbf{B}(\widehat{Y}, \widehat{Z}) \mathbf{p}(\widehat{X})+\operatorname{tr} \mathbf{B}(\widehat{Z}, \widehat{X}) \mathbf{p}(\widehat{Y}) \\
= & (\operatorname{tr} \mathbf{B} \odot \mathbf{P})(\widehat{X}, \widehat{Y}, \widehat{Z})
\end{aligned}
$$

while

$$
\mathbf{p}\left(\nabla^{\vee} \operatorname{tr} \mathbf{B} \otimes \delta\right)(\widehat{X}, \widehat{Y}, \widehat{Z})=\mathbf{p}\left(\left(\nabla_{\mathbf{p} \hat{X}}^{\vee} \operatorname{tr} \mathbf{B}\right)(\mathbf{p} \widehat{Y}, \mathbf{p} \widehat{Z}) \delta\right)=0
$$

since $\mathbf{p}(\delta)=0$.
This concludes the proof of (27).
Theorem 5.7. If (M, F) is a Finsler manifold of dimension $n>2$, then (M, F) is a p-Berwald manifold, if and only if, it is a weakly Berwald Douglas manifold.

Proof. If (M, F) is a p-Berwald manifold, then it is weakly Berwald by Proposition 5.4, therefore (27) reduces to $\mathbf{p D}=0$. However, by a theorem of T. SAKAGUChi [11] (see also [18]), $\mathbf{p D}=0$ is equivalent to the vanishing of the Douglas tensor under the condition $n>2$.

Conversely, if (M, F) is a weakly Berwald Douglas manifold, then $\mathbf{D}=$ $\mathbf{p D}=0$ and $\operatorname{tr} \mathbf{B}=0$ imply by (27) that (M, F) is a p-Berwald manifold.

Finally, we have a look at the "exceptional case" $\operatorname{dim} M=2$. Then one can choose a section $m \in \Gamma(\stackrel{\circ}{\pi})$ such that

$$
g(\ell, m)=0, \quad g(m, m)=1
$$

the pair (ℓ, m) is said to be a Berwald frame on (M, F). An immediate calculation shows that the only non vanishing component of the tensor $\nabla^{\vee} g$ with respect to (ℓ, m) is the function

$$
I:=\frac{1}{2} \nabla^{\vee} g(m, m, m)
$$

it is called the main scalar of (M, F). For the Landsberg tensor of (M, F) we have the expression

$$
\begin{equation*}
2 \mathbf{P}=\frac{S I}{I} \nabla^{\vee} g \tag{28}
\end{equation*}
$$

where S is the canonical spray. By (16), the only surviving component of the Berwald curvature is $\mathbf{B}(m, m) m$. It may be shown that

$$
\begin{equation*}
\mathbf{B}(m, m) m=-\frac{2 S I}{F} \ell+((\mathbf{i} m)(S I)+(\mathcal{H} m) I) m \tag{29}
\end{equation*}
$$

where \mathcal{H} is the Barthel connection arising from S according to (9). By (28) and (29), condition $\mathbf{B}+\frac{1}{E} \mathbf{P} \otimes \delta=0$ takes the form

$$
\begin{equation*}
\mathbf{B}(m, m) m+\frac{1}{2 E} \frac{S I}{I} \nabla^{\vee} g(m, m, m) \delta=0 \tag{30}
\end{equation*}
$$

Since $\frac{1}{2 E} \frac{S I}{I} \nabla^{\vee} g(m, m, m) \delta=\frac{1}{E}(S I) \delta=\frac{2}{F}(S I) \ell,(29)$ and (30) yield

$$
\begin{equation*}
(\mathbf{i} m) S I+(\mathcal{H} m) I=0 \tag{31}
\end{equation*}
$$

Thus we obtain:
Theorem 5.8. A two-dimensional Finsler manifold is a p-Berwald manifold, if and only if, the main scalar satisfies relation (31).

References

[1] S. BÁcsó and M. Matsumoto, On Finsler spaces of Douglas type. A generalization of the notion of Berwald space, Publicationes Mathematicae Debrecen 51 (1997), 385-406.
[2] S. Bácsó and M. Matsumoto, On Finsler spaces of Douglas type II. Projectively flat spaces, Publicationes Mathematicae Debrecen 53 (1998), 423-438.
[3] S. Bácsó and M. Matsumoto, On Finsler spaces of Douglas type III., in: Finslerian Geometries, (by P. Antonelli, ed.), Kluwer Academic Publishers, 2000, 89-94.
[4] S. Bácsó and M. Matsumoto, On Finsler spaces of Douglas type IV. Projectively flat Kropina spaces, Publicationes Mathematicae Debrecen 56 (2000), 213-221.
[5] S. BÁcsó and Z. Szilasi, On the direction independence of two remarkable Finsler tensors, In: Differential Geometry and its Applications - Proceedings of the 10th International Conference on DGA2007, World Scientific, 2008, 385-394.
[6] S. BÁcsó and R. Yoshikawa, Weakly-Berwald spaces, Publicationes Mathematicae Debrecen 61 (2002), 219-231.
[7] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer Verlag, 2000.
[8] M. Matsumoto, On the indicatrices of a Finsler space, Periodica Mathematica Hungarica 8 (1977), 185-191.
[9] M. Matsumoto, Foundations of Finsler Geometry and special Finsler spaces, Kaiseisha Press, 1986.
[10] M. Matsumoto, Finsler Geometry in the 20th Century, in: Handbook of Finsler Geometry, (by P. Antonelli, ed.), Kluwer Academic Publishers, Dordrecht, 2003.
[11] T. Sakaguchi, On Finsler spaces of scalar curvature, Tensor, N. S. 38 (1982), 211-219.
[12] Z. Shen, Differential Geometry of Spray and Finsler spaces, Kluwer Academic Press, 2001.
[13] J. Szilasi and Sz. Vattamány, Erratum to "On the projective geometry of sprays", Differential Geom. Appl. 13 (2000), 95-118.
[14] J. Szilasi, A Setting for Spray and Finsler Geometry, in: Handbook of Finsler Geometry, (by P. Antonelli, ed.), Kluwer Academic Publishers, Dordrecht, 2003, 1185-1426.
[15] J. Szilasi, Á. Győry, A generalization of Weyl's theorem on projectively related affine connections, Reports on Mathematical Physics 53 (2004), 261-273.
[16] J. Szilasi and R. L. Lovas, Some aspects of Differential Theories, in: Handbook of Global Analysis, Elsevier, 2007, 1071-1116.
[17] J. Szilasi, Calculus along the tangent bundle projection and projective metrizability, In: Differential Geometry and its Applications - Proceedings of the 10th International Conference on DGA2007, World Scientific, 2008, 527-546.
[18] Sz. Vattamány, Projection onto the indicatrix bundle of a Finsler manifold, Publicationes Mathematicae Debrecen 58 (2001), 193-221.
[19] F. W. Warner, The Conjugate Locus of a Riemannian Manifold, American Journal of Mathematics 87 (1965), 575-604.

SÁNDOR BÁCSÓ
INSTITUTE OF INFORMATICS
UNIVERSITY OF DEBRECEN
H-4010 DEBRECEN
HUNGARY
E-mail: bacsos@inf.unideb.hu
ZOLTÁN SZILASI
INSTITUTE OF INFORMATICS
UNIVERSITY OF DEBRECEN
H-4010 DEBRECEN
HUNGARY
(Received September 9, 2008; revised February 16, 2009)

[^0]: Mathematics Subject Classification: 53B40, 53C60.
 Key words and phrases: p-Berwald manifolds, Douglas manifolds, weakly Berwald manifolds, stretch tensor.
 The first author was supported by National Science Research Foundation OTKA No. T48878.

