Multiplicative loops of 2-dimensional topological quasifields

Giovanni Falcone, Ágota Figula and Karl Strambach

Abstract

We determine the algebraic structure of the multiplicative loops for locally compact 2-dimensional topological connected quasifields. In particular, our attention turns to multiplicative loops which have either a normal subloop of positive dimension or which contain a 1 dimensional compact subgroup. In the last section we determine explicitly the quasifields which coordinatize locally compact translation planes of dimension 4 admitting an at least 7 -dimensional Lie group as collineation group.

Keywords: Multiplicative loops of locally compact quasifields, sections in Lie groups, collineation groups, translation planes and speads
2010 Mathematics Subject Classification: 20N05, 22A30, 12K99, 51A40, 57M60

1. Introduction

Locally compact connected topological non-desarguesian translation planes have been a popular subject of geometrical research since the seventies of the last century ([18], [2]-[9], [13], [15]). These planes are coordinatized by locally compact quasifields Q such that the kernel of Q is either the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers (cf. [11], IX.5.5 Theorem, p. 323). If the quasifield Q is 2-dimensional, then its kernel is \mathbb{R}.

The classification of topological translation planes \mathcal{A} was accomplished by reconstructing the spreads corresponding to \mathcal{A} from the translation complement which is the stabilizer of a point in the collineation group of \mathcal{A}. In this way all planes \mathcal{A} having an at least 7 -dimensional collineation group have been determined ([3]-[8], [15]).

Although any spread gives the lines through the origin and hence the multiplication in a 2 -dimensional quasifield Q coordinatizing the plane \mathcal{A}, to the algebraic structure of the multiplicative loop Q^{*} of a proper quasifield Q
is not given special attention apart from the facts that the group topologically generated by the left translations of Q^{*} is the connected component of $\mathrm{GL}_{2}(\mathbb{R})$, the group topologically generated by the right translations of Q^{*} is an infinite-dimensional Lie group (cf. [14], Section 29, p. 345) and any locally compact 2-dimensional semifield is the field of complex numbers ([17]).

Since in the meantime some progress in the classification of compact differentiable loops on the 1 -sphere has been achieved (cf. [10]), we believe that loops could have more space in the research concerning 4-dimensional translation planes. Using the images of differentiable sections $\sigma: G / H \rightarrow$ G, where $H=\left\{\left(\begin{array}{cc}a & b \\ 0 & a^{-1}\end{array}\right), a>0, b \in \mathbb{R}\right\}$, we classify the C^{1}-differentiable multiplicative loops Q^{*} of 2-dimensional locally compact quasifields Q by functions, the Fourier series of which are described in [10].

The multiplicative loops Q^{*} of 2-dimensional locally compact left quasifields Q for which the set of the left translations of Q^{*} is the product $\mathcal{T K}$ with $|\mathcal{T} \cap \mathcal{K}| \leq 2$, where \mathcal{T} is the set of the left translations of a 1-dimensional compact loop and \mathcal{K} is the set of the left translations of Q^{*} corresponding to the kernel K_{r} of Q, form an important subclass of loops, that we call decomposable loops. Namely, if Q^{*} has a normal subloop of positive dimension or if it contains the group $\mathrm{SO}_{2}(\mathbb{R})$, then Q^{*} is decomposable. Moreover, we show that any 1 -dimensional C^{1}-differentiable compact loop is a factor of a decomposable multiplicative loop of a locally compact connected quasifield coordinatizing a 4 -dimensional translation plane. A 2-dimensional locally compact quasifield Q is the field of complex numbers if and only if the multiplicative loop Q^{*} contains a 1-dimensional normal compact subloop.

Till now mainly those simple loops have been studied for which the group generated by their left translations is a simple group. If the group generated by the left translations of a loop L is simple, then L is also simple (cf. Lemma 1.7 in [14]). The multiplicative loops Q^{*} of 2 -dimensional locally compact quasifields show that there are many interesting 2-dimensional locally compact quasi-simple loops for which the group generated by their left translations has a one-dimensional centre.

In the last section we use Betten's classification to determine in our framework the multiplicative loops Q^{*} of the quasifields which coordinatize the 4-dimensional non-desarguesian translation planes \mathcal{A} admitting an at least seven-dimensional collineation group and to study their properties. The results obtained there yield the following
Theorem Let \mathcal{A} be a 4-dimensional locally compact non-desarguesian translation plane which admits an at least 7 -dimensional collineation group Γ. If the quasifield Q coordinatizing \mathcal{A} is constructed with respect to two lines such that their intersection points with the line at infinity are contained in the

1-dimensional orbit of Γ or contain the set of the fixed points of Γ, then the multiplicative loop Q^{*} of Q is decomposable if and only if one of the following cases occurs:
(a) Γ is 8 -dimensional, the translation complement C is the group $\mathrm{GL}_{2}(\mathbb{R})$ and acts reducibly on the translation group \mathbb{R}^{4};
(b) Γ is 7 -dimensional, the translation complement C fixes two distinct lines of \mathcal{A} and leaves on one of them, one or two 1-dimensional subspaces invariant;
(c) Γ is 7 -dimensional, the translation complement C fixes two distinct lines $\{S, W\}$ through the origin and acts transitively on the spaces P_{S} and P_{W} but does not act transitively on the product space $P_{S} \times P_{W}$, where P_{S} and P_{W} are the sets of all 1-dimensional subspaces of S, respectively of W.

2. Preliminaries

A binary system (L, \cdot) is called a quasigroup if for any given $a, b \in L$ the equations $a \cdot y=b$ and $x \cdot a=b$ have unique solutions which we denote by $y=a \backslash b$ and $x=b / a$. If a quasigroup L has an element 1 such that $x=1 \cdot x=x \cdot 1$ holds for all $x \in L$, then it is called a loop and 1 is the identity element of L. The left translations $\lambda_{a}: L \rightarrow L, x \mapsto a \cdot x$ and the right translations $\rho_{a}: L \rightarrow L, x \mapsto x \cdot a, a \in L$, are bijections of L. Two loops $\left(L_{1}, \circ\right)$ and $\left(L_{2}, *\right)$ are called isotopic if there exist three bijections $\alpha, \beta, \gamma: L_{1} \rightarrow L_{2}$ such that $\alpha(x) * \beta(y)=\gamma(x \circ y)$ holds for all $x, y \in L_{1}$. A binary system (K, \cdot) is called a subloop of (L, \cdot) if $K \subset L$, for any given $a, b \in K$ the equations $a \cdot y=b$ and $x \cdot a=b$ have unique solutions in K and $1 \in K$. The kernel of a homomorphism $\alpha:(L, \cdot) \rightarrow\left(L^{\prime}, *\right)$ of a loop L into a loop L^{\prime} is a normal subloop N of L, i.e. a subloop of L such that

$$
\begin{equation*}
x \cdot N=N \cdot x,(x \cdot N) \cdot y=x \cdot(N \cdot y),(N \cdot x) \cdot y=N \cdot(x \cdot y) \tag{1}
\end{equation*}
$$

hold for all $x, y \in L$. A loop L is called simple if $\{1\}$ and L are its only normal subloops.
A loop L is called topological, if it is a topological space and the binary operations $(a, b) \mapsto a \cdot b,(a, b) \mapsto a \backslash b,(a, b) \mapsto b / a: L \times L \rightarrow L$ are continuous. Then the left and right translations of L are homeomorphisms of L. If L is a connected differentiable manifold such that the loop multiplication and the left division are continuously differentiable mappings, then we call L an almost \mathcal{C}^{1}-differentiable loop. If also the right division of L is continuously differentiable, then L is a \mathcal{C}^{1}-differentiable loop. A connected topological loop is quasi-simple if it contains no normal subloop of positive dimension. Every topological, respectively almost \mathcal{C}^{1}-differentiable, connected loop L having a Lie group G as the group topologically generated by the left trans-
lations of L corresponds to a sharply transitive continuous, respectively \mathcal{C}^{1} differentiable section $\sigma: G / H \rightarrow G$, where $G / H=\{x H \mid x \in G\}$ consists of the left cosets of the stabilizer H of $1 \in L$ such that $\sigma(H)=1_{G}$ and $\sigma(G / H)$ generates G. The section σ is sharply transitive if the image $\sigma(G / H)$ acts sharply transitively on the factor space G / H, i.e. for given left cosets $x H, y H$ there exists precisely one $z \in \sigma(G / H)$ which satisfies the equation $z x H=y H$.

A (left) quasifield is an algebraic structure $(Q,+, \cdot)$ such that $(Q,+)$ is an abelian group with neutral element $0,(Q \backslash\{0\}, \cdot)$ is a loop with identity element 1 and between these operations the (left) distributive law $x \cdot(y+z)=$ $x \cdot y+x \cdot z$ holds. A locally compact connected topological quasifield is a locally compact connected topological space Q such that $(Q,+)$ is a topological group, $(Q \backslash\{0\}, \cdot)$ is a topological loop, the multiplication $\cdot: Q \times Q \rightarrow Q$ is continuous and the mappings $\lambda_{a}: x \mapsto a \cdot x$ and $\rho_{a}: x \mapsto x \cdot a$ with $0 \neq a \in Q$ are homeomorphisms of Q. If for any given $a, b, c \in Q$ the equation $x \cdot a+x \cdot b=c$ with $a+b \neq 0$ has precisely one solution, then Q is called planar. A translation plane is an affine plane with transitive group of translations; this is coordinatized by a planar quasifield (cf. [16], Kap. 8).

The kernel K_{r} of a (left) quasifield Q is a skewfield defined by
$K_{r}=\{k \in Q ;(x+y) \cdot k=x \cdot k+y \cdot k$ and $(x \cdot y) \cdot k=x \cdot(y \cdot k)$ for all $x, y \in Q\}$.
In this paper we consider left quasifields Q. Then Q is a right vector space over K_{r}. Moreover, for all $a \in Q$ the map $\lambda_{a}: Q \rightarrow Q, x \mapsto a \cdot x$ is K_{r}-linear. According to [12], Theorem 7.3, p. 160, every quasifield that has finite dimension over its kernel is planar.

Let F be a skewfield and let V be a vector space over F. A collection \mathcal{B} of subspaces of V with $|\mathcal{B}| \geq 3$ is called a spread of V if for any two different elements $U_{1}, U_{2} \in \mathcal{B}$ we have $V=U_{1} \oplus U_{2}$ and every vector of V is contained in an element of \mathcal{B}.

If S and W are different subspaces of the spread \mathcal{B}, then V can be coordinatized in such a way that $S=\{0\} \times X$ and $W=X \times\{0\}$. Any spread of $V=X \times X$ can be described by a collection \mathcal{M} of linear mappings $X \rightarrow X$ satisfying the following conditions:
$\left(M_{1}\right)$ For any $\omega_{1} \neq \omega_{2} \in \mathcal{M}$ the mapping $\omega_{1}-\omega_{2}$ is bijective.
$\left(M_{2}\right)$ For all $x \in X \backslash\{0\}$ the mapping $\phi_{x}: \mathcal{M} \rightarrow X: \omega \mapsto \omega(x)$ is surjective. Namely, if \mathcal{M} is a collection of linear mappings satisfying $\left(M_{1}\right)$ and $\left(M_{2}\right)$, then the sets $U_{\omega}=\{(x, \omega(x)), x \in X\}$ and $\{0\} \times X$ yield a spread of $V=X \times X$. Conversely, every component $U \in \mathcal{B} \backslash\{S\}$ of V is the graph of a linear mapping $\omega_{U}: W \rightarrow S$ and the set of ω_{U} gives a collection \mathcal{M} of linear mappings of X satisfying $\left(M_{1}\right)$ and (M_{2}) (cf. [13], Proposition 1.11.).

The mapping ω_{W} is the zero mapping. For this reason any collection \mathcal{M} of linear mappings of X which satisfy $\left(M_{1}\right)$ and M_{2} is called a spread set of X. Every translation plane can be obtained from a spread set of a suitable vector space $V=X \times X$ (cf. [13], Theorem 1.5, p. 7, and [1]). As every translation plane can be coordinatized by a quasifield and a quasifield contains 0 and 1 , the associated spread set contains the zero endomorphism and the identity map. This is not true for arbitrary spread sets \mathcal{M}, but if $\omega_{0}, \omega_{1} \in \mathcal{M}$ are distinct, then $\mathcal{M}^{\prime}=\left\{\left(\omega-\omega_{0}\right)\left(\omega_{1}-\omega_{0}\right)^{-1}, \omega \in \mathcal{M}\right\}$ is a normalized spread set of X, i.e. a spread set which contains the zero and the identity map. The translation planes obtained from \mathcal{M} and \mathcal{M}^{\prime} are isomorphic (cf. [13], Lemma 1.15, p. 13). Let \mathcal{M} be a normalized spread set of $X, e \in X \backslash\{0\}$ and let $\phi_{e}: \mathcal{M} \rightarrow X$ be defined by $\phi_{e}(\omega)=\omega(e)$. Then the multiplication ० : $X \times X \rightarrow X$ defined by $m \circ x=\left(\phi_{e}^{-1}(m)\right)(x)$ yields a multiplicative loop of a left quasifield Q coordinatizing the translation plane \mathcal{A} belonging to the spread \mathcal{M} of X.
If we fix a basis of Q over its kernel K_{r} and identify X with the vector space of pairs $\left\{(x, y)^{t}, x, y \in K_{r}\right\}$, then the set \mathcal{M} consists of matrices $C(\alpha, \beta, \gamma, \delta)=$ $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right), \alpha, \beta, \gamma, \delta \in K_{r}$. If $e=(1,0)^{t}$, then we get $\phi_{e}(C(\alpha, \beta, \gamma, \delta))=$ $C(\alpha, \beta, \gamma, \delta)(e)=(\alpha, \gamma)^{t}$. Since \mathcal{M} is a spread of X the set of vectors $(\alpha, \gamma)^{t}$ consists of all vectors of X. Hence if $(\alpha, \gamma)^{t}$ is an element of X, then there exists a unique matrix of \mathcal{M} having $(\alpha, \gamma)^{t}$ as the first column.

We consider multiplicative loops of locally compact connected topological quasifields Q of dimension 2 coordinatizing 4 -dimensional non-desarguesian topological translation planes. Then the kernel K_{r} of Q is isomorphic to the field of the real numbers, $(Q,+)$ is the vector group \mathbb{R}^{2} and the multiplicative loop $(Q \backslash\{0\}, \cdot)$ is homeomorphic to $\mathbb{R} \times S^{1}$, where S^{1} is the circle.

4. Multiplicative loops of 2-dimensional quasifields

Let $(Q,+, *)$ be a real topological (left) quasifield of dimension 2. Let e_{1} be the identity element of the multiplicative loop $Q^{*}=(Q \backslash\{0\}, *)$ of Q, which generates the kernel $K_{r}=\mathbb{R}$ of Q as a vector space and let $B=\left\{e_{1}, e_{2}\right\}$ be a basis of the right vector space Q over K_{r}. Once we fix B, we identify Q with the vector space of pairs $(x, y)^{t} \in \mathbb{R}^{2}$ and K_{r} with the subspace of pairs $(x, 0)^{t}$. The element $(1,0)^{t}$ is the identity element of Q^{*}. According to [14], Theorem 29.1 , p. 345, the group G topologically generated by the left translations of Q^{*} is the connected component of the group $\mathrm{GL}_{2}(\mathbb{R})$. As $\operatorname{dim} Q^{*}=2$ and the stabilizer of the identity element of Q^{*} in G does not contain any non-trivial normal subgroup of G we may replace the stabilizer of the identity by the subgroup $H=\left\{\left(\begin{array}{cc}a & b \\ 0 & a^{-1}\end{array}\right), a>0, b \in \mathbb{R}\right\}$. The elements g of G have a
unique decomposition as the product

$$
g=\left(\begin{array}{cc}
u \cos t & u \sin t \\
-u \sin t & u \cos t
\end{array}\right)\left(\begin{array}{cc}
k & l \\
0 & k^{-1}
\end{array}\right)
$$

with suitable elements $u>0, k>0, l \in \mathbb{R}, t \in[0,2 \pi)$. Hence the loop Q^{*} corresponds to a continuous section $\sigma: G / H \rightarrow G$;

$$
\left(\begin{array}{cc}
u \cos t & u \sin t \tag{2}\\
-u \sin t & u \cos t
\end{array}\right) H \mapsto\left(\begin{array}{cc}
u \cos t & u \sin t \\
-u \sin t & u \cos t
\end{array}\right)\left(\begin{array}{cc}
a(u, t) & b(u, t) \\
0 & a^{-1}(u, t)
\end{array}\right)
$$

where the pair of continuous functions $a(u, t), b(u, t): \mathbb{R}_{>0} \times[0,2 \pi) \rightarrow \mathbb{R}$, where $\mathbb{R}_{>0}$ is the set of positive numbers, satisfies the following conditions:

$$
a(u, t)>0, \quad a(1,0)=1, \quad b(1,0)=0 .
$$

As Q is a left quasifield, any $(x, y)^{t} \in Q^{*}$ induces a linear transformation $M_{(x, y)} \in \sigma(G / H)$. More precisely one has

$$
\binom{x}{y} *\binom{u}{v}=M_{(x, y)}\binom{u}{v}=\left(\begin{array}{cc}
r \cos \varphi & r \sin \varphi \tag{3}\\
-r \sin \varphi & r \cos \varphi
\end{array}\right)\left(\begin{array}{cc}
a(r, \varphi) & b(r, \varphi) \\
0 & a^{-1}(r, \varphi)
\end{array}\right)\binom{u}{v}
$$

where $x=r \cos (\varphi) a(r, \varphi), y=-r \sin (\varphi) a(r, \varphi)$. The kernel K_{r} of Q consists of $(0,0)^{t}$ and $(r \cos (k \pi) a(r, k \pi), 0)^{t}, r>0, k \in\{0,1\}$, such that the matrices corresponding to the elements $(r \cos (k \pi) a(r, k \pi), 0)^{t}$ have the form

$$
M(r \cos (k \pi) a(r, k \pi), 0)=\left(\begin{array}{cc}
r \cos (k \pi) a(r, k \pi) & r \cos (k \pi) b(r, k \pi) \\
0 & r \cos (k \pi) a^{-1}(r, k \pi)
\end{array}\right)
$$

The identity matrix I corresponds to the identity $(1,0)^{t}$ of Q^{*}. As to each real number $r \cos (k \pi) a(r, k \pi)$ belongs precisely one matrix

$$
M(r \cos (k \pi) a(r, k \pi), 0)
$$

the functions $f_{1}(r)=r a(r, 0), r>0$ and $f_{2}(r)=-r a(r, \pi), r>0$ are strictly monotone. If the functions $a(r, 0), a(r, \pi)$ are differentiable, then for every $r>0$ the derivatives $a(r, 0)+r a^{\prime}(r, 0)$ and $-a(r, \pi)-r a^{\prime}(r, \pi)$ are either always positive or negative. This is equivalent to the fact that the derivatives $[\ln (a(r, 0))]^{\prime},[\ln (a(r, \pi))]^{\prime}$ are always greater or smaller than $-r^{-1}$. Since the matrix $M(r \cos (k \pi) a(r, k \pi), 0)$ is isomorphic to the group $(\mathbb{R},+)$ the function $a(r, 0)$ is a homomorphism and for the function $b(r, 0)$ the identity $b\left(r_{1} r_{2}, 0\right)=$ $a\left(r_{1}, 0\right) b\left(r_{2}, 0\right)+b\left(r_{1}, 0\right) a^{-1}\left(r_{2}, 0\right)$ is satisfied for all $r_{1}, r_{2}>0$.

Remark 1. The set $\mathcal{K}=\{M(r \cos (k \pi) a(r, k \pi), 0) ; r>0, k \in\{0,1\}\}$ of the left translations of Q^{*} corresponding to the kernel K_{r} of Q is

$$
\left\{\left(\begin{array}{cc}
r & 0 \\
0 & r
\end{array}\right), r \in \mathbb{R} \backslash\{0\}\right\}
$$

if and only if one has $a(r, k \pi)=1, b(r, k \pi)=0$ for all $r>0, k \in\{0,1\}$.

The section σ given by (2) is sharply transitive precisely if for all pairs $\left(u_{1}, t_{1}\right),\left(u_{2}, t_{2}\right)$ in $\mathbb{R}_{>0} \times[0,2 \pi)$ there exists precisely one $(u, t) \in \mathbb{R}_{>0} \times[0,2 \pi)$ and $k>0, l \in \mathbb{R}$ such that

$$
\begin{gather*}
\left(\begin{array}{cc}
u \cos t & u \sin t \\
-u \sin t & u \cos t
\end{array}\right)\left(\begin{array}{cc}
a(u, t) & b(u, t) \\
0 & a^{-1}(u, t)
\end{array}\right)\left(\begin{array}{cc}
u_{1} \cos t_{1} & u_{1} \sin t_{1} \\
-u_{1} \sin t_{1} & u_{1} \cos t_{1}
\end{array}\right)= \\
\left(\begin{array}{cc}
u_{2} \cos t_{2} & u_{2} \sin t_{2} \\
-u_{2} \sin t_{2} & u_{2} \cos t_{2}
\end{array}\right)\left(\begin{array}{cc}
k & l \\
0 & k^{-1}
\end{array}\right) . \tag{4}
\end{gather*}
$$

As the determinant of the matrices on both sides of (4) are equal we get that $u=u_{1}^{-1} u_{2}$. Therefore the system (4) of equations is uniquely solvable if and only if for any fixed $u>0$ the mapping

$$
\sigma_{u}:\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) H \mapsto\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
a(u, t) & b(u, t) \\
0 & a^{-1}(u, t)
\end{array}\right)
$$

determines a quasigroup F_{u} homeomorphic to S^{1}. One may take as the points of F_{u} the vectors $\left(u a(u, t) a^{-1}(u, 0) \cos t,-u a(u, t) a^{-1}(u, 0) \sin t\right)^{t}$ and as the section the mapping

$$
\begin{gather*}
\sigma_{u}:\binom{u a(u, t) a^{-1}(u, 0) \cos t}{-u a(u, t) a^{-1}(u, 0) \sin t} \mapsto\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
a(u, t) a^{-1}(u, 0) & b(u, t) \\
0 & a^{-1}(u, t) a(u, 0)
\end{array}\right)= \\
\left(\begin{array}{c}
a(u, t) a^{-1}(u, 0) \cos t \\
-a(u, t) a^{-1}(u, 0) \sin t
\end{array} \begin{array}{cc}
-b(u, t) \cos t+a^{-1}(u, t) a(u, 0) \sin t+a^{-1}(u, t) a(u, 0) \cos t
\end{array}\right) . \tag{5}
\end{gather*}
$$

In this way we see that the quasigroup F_{u} has the right identity $(u, 0)^{t}$ since

$$
\sigma_{u}\binom{u a(u, t) a^{-1}(u, 0) \cos t}{-u a(u, t) a^{-1}(u, 0) \sin t} \cdot\binom{u}{0}=\binom{u a(u, t) a^{-1}(u, 0) \cos t}{-u a(u, t) a^{-1}(u, 0) \sin t} .
$$

The quasigroup F_{u} is a loop, i.e. $(u, 0)^{t}$ is the left identity of F_{u}, if and only if

$$
\sigma_{u}\binom{u}{0}=\left(\begin{array}{cc}
a(u, 0) a^{-1}(u, 0) \cos 0 & b(u, 0) \cos 0 \\
0 & a^{-1}(u, 0) a(u, 0) \cos 0
\end{array}\right)=\left(\begin{array}{cc}
1 & b(u, 0) \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

which means $b(u, 0)=0$ for all $u>0$. The almost \mathcal{C}^{1}-differentiable loop Q^{*} belonging to the sharply transitive \mathcal{C}^{1}-differentiable section σ given by (2) is \mathcal{C}^{1}-differentiable precisely if the mapping $(x H, y H) \mapsto z: G / H \times$ $G / H \rightarrow \sigma(G / H)$ determined by $z x H=y H$ is \mathcal{C}^{1}-differentiable (cf. [14], p. 32), i.e. the solutions $u>0, t \in[0,2 \pi)$ of the matrix equation (4) are continuously differentiable functions of $u_{1}, u_{2} \in \mathbb{R}_{>0}, t_{1}, t_{2} \in[0,2 \pi)$. The function $u=u_{1}^{-1} u_{2}$ is continuously differentiable. If for each fixed $u>0$ the section σ_{u} given by (5) yields a 1 -dimensional \mathcal{C}^{1}-differentiable compact loop, then the function $t\left(u_{1}, u_{2}, t_{1}, t_{2}\right)=t_{\left(u_{1}, u_{2}\right)}\left(t_{1}, t_{2}\right)$ is continuously differentiable (cf. [14], Examples 20.3, p. 258). Indeed, the function $t_{\left(u_{1}, u_{2}\right)}\left(t_{1}, t_{2}\right)$ is determined implicitly by equations which depend continuously differentiably also on the parameters u_{1} and u_{2}. Applying the above discussion we can prove the following:

Theorem 2. Let Q^{*} be the \mathcal{C}^{1}-differentiable multiplicative loop of a locally compact 2-dimensional connected topological quasifield Q. Then Q^{*} is diffeomorphic to $S^{1} \times \mathbb{R}$ and belongs to a \mathcal{C}^{1}-differentiable sharply transitive section σ of the form

$$
\left(\begin{array}{cc}
u \cos t & u \sin t \\
-u \sin t & u \cos t
\end{array}\right) H \mapsto\left(\begin{array}{cc}
u \cos t & u \sin t \\
-u \sin t & u \cos t
\end{array}\right) \cdot\left(\begin{array}{cc}
a(u, t) & b(u, t) \\
0 & a^{-1}(u, t)
\end{array}\right),
$$

with $b(u, 0)=0$ for all $u>0$ if and only if for each fixed $u>0$ the function $a_{u}^{-1}(t):=a(u, 0) a^{-1}(u, t)$ has the shape

$$
a_{u}^{-1}(t)=e^{t}\left(1-\int_{0}^{t} R(s) e^{-s} d s\right)
$$

where $R(s)$ is a continuous function, the Fourier series of which is contained in the set \mathcal{F} of Definition 1 in [10] and converges uniformly to R. Moreover, $b_{u}(t):=b(u, t)$ is a periodic \mathcal{C}^{1}-differentiable function with $b_{u}(0)=b_{u}(2 \pi)=0$ such that

$$
b_{u}(t)>-a_{u}(t) \int_{0}^{t} \frac{\left(a_{u}^{2}(s)-a_{u}^{\prime 2}(s)\right)}{a_{u}^{4}(s)} d s \text { for all } t \in(0,2 \pi)
$$

Proof. The section σ_{u} given by (5) yields a 1 -dimensional \mathcal{C}^{1}-differentiable compact loop having the group $\mathrm{SL}_{2}(\mathbb{R})$ as the group topologically generated by its left translations if and only if for each fixed $u>0$ the continuously differentiable functions $a(u, 0) a^{-1}(u, t):=\bar{a}_{u}(t),-b(u, t):=\bar{b}_{u}(t)$ satisfy the conditions

$$
\begin{equation*}
\bar{a}_{u}^{\prime 2}(t)+\bar{b}_{u}(t) \bar{a}_{u}^{\prime}(t)+\bar{b}_{u}^{\prime}(t) \bar{a}_{u}(t)-\bar{a}_{u}^{2}(t)<0, \bar{b}_{u}^{\prime}(0)<1-\bar{a}_{u}^{\prime 2}(0) \tag{6}
\end{equation*}
$$

(cf. [14], Section 18, (C), p. 238, [10], pp. 132-139). The solution of the differential inequalities (6) is given by Theorem 6 in [10], pp. 138-139. This proves the assertion.

Proposition 3. Let Q^{*} be the \mathcal{C}^{1}-differentiable multiplicative loop of a locally compact 2-dimensional connected topological quasifield Q. Assume that for each fixed $u>0$ the function $a_{u}(t):=a^{-1}(u, 0) a(u, t)$ is the constant function 1 and that $b(u, 0)=0$ is satisfied for all $u>0$. Then Q^{*} belongs to a $\mathcal{C}^{1}-$ differentiable sharply transitive section σ of the form (2) if and only if for each fixed $u>0$ one has $b_{u}(t):=b(u, t)>-t$ for all $0<t<2 \pi$.

Proof. If for each fixed $u>0$ the function $a(u, 0) a^{-1}(u, t)=a_{u}^{-1}(t)=\bar{a}_{u}(t)$ is constant with value 1 , then the section σ_{u} given by (5) yields a \mathcal{C}^{1} differentiable compact loop L if and only if for each fixed $u>0$ the continuously differentiable function $\bar{b}_{u}(t):=-b_{u}(t)$ satisfies the differential inequality $\bar{b}_{u}^{\prime}(t)<1$ with the initial condition $\bar{b}_{u}^{\prime}(0)<1$ (cf. (6)). This is the case precisely if one has $b_{u}(t)>-t$ for all $0<t<2 \pi$.

Proposition 4. Let Q^{*} be the \mathcal{C}^{1}-differentiable multiplicative loop of a locally compact 2-dimensional connected topological quasifield Q. Assume that for each fixed $u>0$ the function $b(u, t)$ is the constant function 0 . Then Q^{*} belongs to a \mathcal{C}^{1}-differentiable sharply transitive section σ of the form (2) precisely if for each fixed $u>0$ one has $e^{-t}<a(u, t) a^{-1}(u, 0)<e^{t}$ for all $0<t<2 \pi$.

Proof. If for each fixed $u>0$ the function $b(u, t)=-\bar{b}_{u}(t)$ is constant with value 0 , then the section σ_{u} given by (5) determines a \mathcal{C}^{1}-differentiable compact loop L if and only if for each fixed $u>0$ the following inequalities are satisfied:

$$
\left(\bar{a}_{u}^{\prime}(t)-\bar{a}_{u}(t)\right)\left(\bar{a}_{u}^{\prime}(t)+\bar{a}_{u}(t)\right)<0, \quad 0<1-\bar{a}_{u}^{\prime 2}(0),
$$

where $\bar{a}_{u}(t)=a(u, 0) a^{-1}(u, t)$. This is the case precisely if either one has $\bar{a}_{u}^{\prime}(t)-\bar{a}_{u}(t)<0$ and $\bar{a}_{u}^{\prime}(t)+\bar{a}_{u}(t)>0$ or one has $\bar{a}_{u}^{\prime}(t)-\bar{a}_{u}(t)>0$ and $\bar{a}_{u}^{\prime}(t)+\bar{a}_{u}(t)<0$. Now we consider the first case. Then the function $\bar{a}_{u}(t)$ determines a loop if and only if for each fixed $u>0$ it is a subfunction of a differentiable function $h_{u}(t):=h(u, t)$ with $h_{u}(0)=1, h_{u}^{\prime 2}(0)=1$, $h_{u}^{\prime}(t)=h_{u}(t)$ and an upper function of a differentiable function $l_{u}(t):=l(u, t)$ with $l_{u}(0)=1, l_{u}^{\prime 2}(0)=1, l_{u}^{\prime}(t)=-l_{u}(t)$ (cf. [19], p. 66). Hence for each fixed $u>0$ the function $\bar{a}_{u}(t)$ is a subfunction of the function e^{t} and an upper function of the function e^{-t} for all $t \in(0,2 \pi)$. Therefore, any continuously differentiable function $\bar{a}_{u}(t)$ such that for each fixed $u>0$ and for all $t \in(0,2 \pi)$ one has $e^{-t}<\bar{a}_{u}(t)^{-1}<e^{t}$ determines a \mathcal{C}^{1}-differentiable compact loop L.

In the second case an analogous consideration as in the first case gives that for all fixed $u>0$ the function $a(u, t) a^{-1}(u, 0)$ must be a subfunction of the function e^{-t} and an upper function of the function e^{t} for all $t \in(0,2 \pi)$. Hence in this case the function $a(u, t) a^{-1}(u, 0)$ does not exist.
Proposition 5. Let

$$
\left(\begin{array}{cc}
u \cos t & u \sin t \\
-u \sin t & u \cos t
\end{array}\right) H \mapsto\left(\begin{array}{cc}
u & 0 \\
0 & u
\end{array}\right)\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
a(1, t) & b(u, t) \\
0 & a^{-1}(1, t)
\end{array}\right), u>0, t \in[0,2 \pi)
$$

with $b(u, 0)=0$ for all $u>0$ be a section belonging to a multiplicative loop Q^{*} of a locally compact 2-dimensional connected topological quasifield Q. Then Q^{*} contains for any $u>0$ a 1-dimensional compact subloop.

Proof. The image of the section (7) acts sharply transitively on the point set $\mathbb{R}^{2} \backslash\left\{(0,0)^{t}\right\}$. Since the subgroup $\left\{\left(\begin{array}{cc}u & 0 \\ 0 & u\end{array}\right), u>0\right\}$ leaves any line through $(0,0)^{t}$ fixed, the subset

$$
\mathcal{T}=\left\{\left(\begin{array}{cc}
\cos t & \sin t \tag{8}\\
-\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
a(1, t) & b(u, t) \\
0 & a^{-1}(1, t)
\end{array}\right), t \in[0,2 \pi)\right\}
$$

acts sharply transitively on the oriented lines through $(0,0)^{t}$ for any $u>0$. Therefore \mathcal{T} corresponds to a 1 -dimensional compact loop since $b(u, 0)=0$ for all $u>0$.

As \mathcal{T} given by (8) is the image of a section corresponding to a 1-dimensional compact subloop of Q^{*}, every element of \mathcal{T} is elliptic.

Proposition 6. Every element of the set \mathcal{T} given by (8) is elliptic if and only if the following holds: $a(1, k \pi)=1$ for $k \in\{0,1\}$:

1) if for all $t \in[0,2 \pi)$ and $u>0$ one has $b(u, t)=0$, then the function $a(1, t)$ satisfies the inequalities:

$$
\begin{equation*}
\frac{1-|\sin (t)|}{|\cos (t)|} \leq a(1, t) \leq \frac{1+|\sin (t)|}{|\cos (t)|} \tag{9}
\end{equation*}
$$

2) if the function $b(u, t)$ is different from the constant function 0 , then for $\sin (t)>0$ one has

$$
\begin{equation*}
\frac{\left(a(1, t)+a(1, t)^{-1}\right) \cos (t)-2}{\sin (t)}<b(u, t)<\frac{\left(a(1, t)+a(1, t)^{-1}\right) \cos (t)+2}{\sin (t)} \tag{10}
\end{equation*}
$$

for $\sin (t)<0$ we have

$$
\begin{equation*}
\frac{\left(a(1, t)+a(1, t)^{-1}\right) \cos (t)+2}{\sin (t)}<b(u, t)<\frac{\left(a(1, t)+a(1, t)^{-1}\right) \cos (t)-2}{\sin (t)} \tag{11}
\end{equation*}
$$

Proof. Any element of (8) is elliptic if and only if the inequality

$$
\begin{equation*}
\left|\cos (t)\left(a(1, t)+a(1, t)^{-1}\right)-\sin (t) b(u, t)\right| \leq 2 \tag{12}
\end{equation*}
$$

holds, where the equality sign occurs only for $t=k \pi, k \in\{0,1\}$. Hence $a(1, k \pi)=1$. If $b(u, t)=0$, then inequality (12) reduces to $a^{2}(1, t)|\cos (t)|-$ $2 a(1, t)+|\cos (t)| \leq 0$ which is equivalent to inequalities (9). If $b(u, t) \neq 0$, then inequality (12) is equivalent for all $t \neq k \pi, k \in\{0,1\}$, to

$$
\begin{equation*}
\left(a(1, t)+a(1, t)^{-1}\right)^{2} \cos ^{2}(t)-2\left(a(1, t)+a(1, t)^{-1}\right) \sin (t) \cos (t) b(u, t)+\sin ^{2}(t) b^{2}(u, t)<4 \tag{13}
\end{equation*}
$$

Solving the quadratic equation

$$
\begin{equation*}
\left(a(1, t)+a(1, t)^{-1}\right)^{2} \cos ^{2}(t)-2\left(a(1, t)+a(1, t)^{-1}\right) \sin (t) \cos (t) x+\sin ^{2}(t) x^{2}=4 \tag{14}
\end{equation*}
$$

we get

$$
x=\frac{2\left(a(1, t)+a(1, t)^{-1}\right) \cos (t) \sin (t) \pm 4 \sin (t)}{2 \sin ^{2}(t)}=\frac{\left(a(1, t)+a(1, t)^{-1}\right) \cos (t) \pm 2}{\sin (t)}
$$

Comparing (13) and (14) one obtains

$$
\left(b(u, t)-\frac{\left(a(1, t)+a(1, t)^{-1}\right) \cos (t)-2}{\sin (t)}\right)\left(b(u, t)-\frac{\left(a(1, t)+a(1, t)^{-1}\right) \cos (t)+2}{\sin (t)}\right)<0
$$

which yields inequalities (10) and (11).
Proposition 7. Let Q^{*} be the multiplicative loop of a locally compact quasifield Q of dimension 2 containing a 1-dimensional compact normal subloop. The quasifield Q is the field \mathbb{C} of complex numbers if and only if \mathcal{T} is a normal subset in the set of all left translations of Q^{*}.

Proof. If Q is the field of complex numbers, then Q^{*} is the group $\mathrm{SO}_{2}(\mathbb{R}) \times \mathbb{R}$ and the assertion is true. If the set \mathcal{T} is a normal subset in the set of the left translations of a proper loop Q^{*}, then it is normal in the connected component $\mathrm{GL}_{2}^{+}(\mathbb{R})$ of the group $\mathrm{GL}_{2}(\mathbb{R})$ because $\mathrm{GL}_{2}^{+}(\mathbb{R})$ is the group topologically generated by the left translations of Q^{*} (cf. [14], Section 29, p. 345). If \mathcal{T} is normal in $\mathrm{GL}_{2}^{+}(\mathbb{R})$, then for $D=\left(\begin{array}{cc}\cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi\end{array}\right)$ one has that

$$
\begin{gathered}
D^{-1}\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) D D^{-1}\left(\begin{array}{cc}
a(1, t) & b(1, t) \\
0 & a^{-1}(1, t)
\end{array}\right) D= \\
\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) D^{-1}\left(\begin{array}{cc}
a(1, t) & b(1, t) \\
0 & a^{-1}(1, t)
\end{array}\right) D=\left(\begin{array}{ccc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
a(1, t) & b(1, t) \\
0 & a^{-1}(1, t)
\end{array}\right)
\end{gathered}
$$

is satisfied for all $\varphi \in[0,2 \pi)$ if and only if $a(1, t)=1$ and $b(1, t)=0$ or equivalently $\mathcal{T}=\mathrm{SO}_{2}(\mathbb{R})$. But the compact group $\mathrm{SO}_{2}(\mathbb{R})$ is not normal in $\mathrm{GL}_{2}^{+}(\mathbb{R})$. Hence Q^{*} is not proper and the assertion follows.

Lemma 8. If the multiplicative loop Q^{*} of a 2-dimensional locally compact connected topological quasifield Q is not quasi-simple, then the set $\mathcal{K}=$ $\{M(r \cos (k \pi) a(r, k \pi), 0) ; r>0, k \in\{0,1\}\}$ of the left translations of Q^{*} belonging to the kernel K_{r} of Q has the form $\mathcal{K}=\left\{\left(\begin{array}{cc}r & 0 \\ 0 & r\end{array}\right), 0 \neq r \in \mathbb{R}\right\}$, which is a normal subgroup of the set $\Lambda_{Q^{*}}$ of all left translations of Q^{*}.

Proof. If Q is the field of complex numbers, then the assertion is true. If the loop Q^{*} is proper and not quasi-simple, then by Lemma 1.7, p. 19, in [14], the left translations of a normal subloop of Q^{*} generate a normal subgroup N of $\mathrm{GL}_{2}^{+}(\mathbb{R})$ which is the group topologically generated by all left translations
of Q^{*}. Hence the set $\Lambda_{Q^{*}}$ of the left translations of Q^{*} must contain the group $C=\left\{\left(\begin{array}{cc}u & 0 \\ 0 & u\end{array}\right), 0<u \in \mathbb{R}\right\}$ as a normal subgroup. It follows that the set \mathcal{K} of the left translations corresponding to the elements of the kernel K_{r} of Q contained in $\Lambda_{Q^{*}}$ has the form given in the assertion and $\mathcal{K} \cap \Lambda_{Q^{*}}$ is a normal subgroup of $\Lambda_{Q^{*}}$.

Assume that the set \mathcal{K} of the left translations of the loop Q^{*} having $(1,0)^{t}$ as identity corresponding to the elements of the kernel K_{r} of Q has the form given in Lemma 8. According to (3) the element

$$
\left(\begin{array}{cc}
r a(r, \varphi) \cos \varphi & r b(r, \varphi) \cos \varphi+r a^{-1}(r, \varphi) \sin \varphi \\
-r a(r, \varphi) \sin \varphi & -r b(r, \varphi) \sin \varphi+r a^{-1}(r, \varphi) \cos \varphi
\end{array}\right)
$$

corresponds to the left translation of $(r a(r, \varphi) \cos \varphi,-r a(r, \varphi) \sin \varphi)^{t}, r>0$, $\varphi \in[0,2 \pi)$. Let N^{*} be the subgroup of Q^{*} corresponding to the normal subgroup \mathcal{K} of $\Lambda_{Q^{*}}$. We show that $N^{*}:=\left\{(\hat{s}, 0)^{t}, \hat{s} \in \mathbb{R} \backslash\{0\}\right\}$ is normal in Q^{*}. For all elements $x:=(\cos \varphi,-\sin \varphi)^{t}, y:=(u, v)^{t}$ of Q^{*} the condition $\left(N^{*} * x\right) * y=N^{*} *(x * y)$ of (1) is satisfied if and only if we have

$$
\left[\binom{\hat{s}}{0} *\binom{\text { coss }}{-\sin \varphi}\right] *\binom{u}{v}=\binom{s^{\prime}}{0} *\left[\binom{\text { cos } \varphi}{-\sin \varphi} *\binom{u}{v}\right]
$$

for all $\varphi \in[0,2 \pi),(u, v) \in \mathbb{R}^{2} \backslash\{(0,0)\}$ with suitable $\hat{s}, \hat{s}^{\prime} \in \mathbb{R} \backslash\{0\}$ such that $\hat{s}=s \cos (k \pi), \hat{s}^{\prime}=s^{\prime} \cos (k \pi)$, where $s, s^{\prime}>0, k \in\{0,1\}$. This is the case precisely if one has

$$
\begin{gathered}
\binom{u s a(s, \varphi+k \pi) \cos (\varphi+k \pi)+v s b(s, \varphi+k \pi) \cos (\varphi+k \pi)+v s a^{-1}(s, \varphi+k \pi) \sin (\varphi+k \pi)}{-u s a(s, \varphi+k \pi) \sin (\varphi+k \pi)-v s b(s, \varphi+k \pi) \sin (\varphi+k \pi)+v a^{-1}(s, \varphi+k \pi) \cos (\varphi+k \pi)}= \\
\binom{s^{\prime} \cos (k \pi)\left(u a(1, \varphi) \cos \varphi+v b(1, \varphi) \cos \varphi+v a^{-1}(1, \varphi) \sin \varphi\right)}{s^{\prime} \cos (k \pi)\left(-u a(1, \varphi) \sin \varphi-v b(1, \varphi) \sin \varphi+v a^{-1}(1, \varphi) \cos \varphi\right)}
\end{gathered}
$$

or equivalently for all $\varphi \in[0,2 \pi),(u, v) \in \mathbb{R}^{2} \backslash\{(0,0)\}$ we have

```
[(ua(s,\varphi+k\pi)+vb(s,\varphi+k\pi))\operatorname{cos}(\varphi+k\pi)+v\mp@subsup{a}{}{-1}(s,\varphi+k\pi)\operatorname{sin}(\varphi+k\pi)]\cdot[(-ua(1,\varphi)-vb(1,\varphi)))\operatorname{sin}\varphi+v\mp@subsup{a}{}{-1}(1,\varphi)\operatorname{cos}\varphi]=
[(-ua(s,\varphi+k\pi)-vb(s,\varphi+k\pi))\operatorname{sin}(\varphi+k\pi)+v\mp@subsup{a}{}{-1}(s,\varphi+k\pi)\operatorname{cos}(\varphi+k\pi])]:[(ua(1,\varphi)+vb(1,\varphi))}\operatorname{cos}\varphi+v\mp@subsup{a}{}{-1}(1,\varphi)\operatorname{sin}\varphi]
```

The last equation holds if and only if one has

$$
\left(a(s, \varphi+k \pi) a^{-1}(1, \varphi)-a^{-1}(s, \varphi+k \pi) a(1, \varphi)\right) u v+\left(b(s, \varphi+k \pi) a^{-1}(1, \varphi)-a^{-1}(s, \varphi+k \pi) b(1, \varphi)\right) v^{2}=0 .
$$

Therefore we obtain $a(s, \varphi+k \pi) a^{-1}(1, \varphi)-a^{-1}(s, \varphi+k \pi) a(1, \varphi)=0$ and $b(s, \varphi+k \pi) a^{-1}(1, \varphi)-a^{-1}(s, \varphi+k \pi) b(1, \varphi)=0$. As $a(s, \varphi)$ is positive we have $a(s, \varphi+k \pi)=a(1, \varphi), b(s, \varphi+k \pi)=b(1, \varphi)$ for all $s>0, \varphi \in[0,2 \pi)$, $k \in\{0,1\}$. By (1) the group N^{*} is a normal subgroup of Q^{*} if and only if for all $\varphi \in[0,2 \pi),(u, v) \in \mathbb{R}^{2} \backslash\{(0,0)\}$ one has

$$
\left[\binom{\cos \varphi}{-\sin \varphi} *\binom{\hat{s}}{0}\right] *\binom{u}{v}=\binom{\cos \varphi}{-\sin \varphi} *\left[\binom{s^{\prime}}{0} *\binom{u}{v}\right] \text { or }
$$

$$
\begin{gathered}
\left(\begin{array}{cc}
s a(1, \varphi) a(1, \varphi) \cos (\varphi+k \pi) & \operatorname{sa}(1, \varphi) b(1, \varphi) \cos (\varphi+k \pi)+\sin (\varphi+k \pi) \\
-s a(1, \varphi) a(1, \varphi) \sin (\varphi+k \pi) & -\operatorname{sa}(1, \varphi) b(1, \varphi) \sin (\varphi+k \pi)+s \cos (\varphi+k \pi)
\end{array}\right)\binom{u}{v}= \\
\left(\begin{array}{cc}
a(1, \varphi) \cos \varphi & b(1, \varphi) \cos \varphi+a^{-1}(1, \varphi) \sin \varphi \\
-a(1, \varphi) \sin \varphi & -b(1, \varphi) \sin \varphi+a^{-1}(1, \varphi) \cos \varphi
\end{array}\right)\binom{s^{\prime} \cos (k \pi) u}{s^{\prime} \cos (k \pi) v}
\end{gathered}
$$

for suitable $\hat{s}, \hat{s}^{\prime} \in \mathbb{R} \backslash\{0\}$ such that $\hat{s}=s \cos (k \pi), \hat{s}^{\prime}=s^{\prime} \cos (k \pi)$, where $s, s^{\prime}>0, k \in\{0,1\}$. This is equivalent to

$$
\begin{aligned}
& \binom{\operatorname{sua}(1, \varphi)^{2} \cos (\varphi+k \pi)+\operatorname{sv[a(1,\varphi)b(1,\varphi)\operatorname {cos}(\varphi +k\pi)+\operatorname {sin}(\varphi +k\pi)]}}{-\operatorname{sua}(1, \varphi)^{2} \sin (\varphi+k \pi)+\operatorname{sv}[-a(1, \varphi) b(1, \varphi) \sin (\varphi+k \pi)+\cos (\varphi+k \pi)]}= \\
& \binom{u s^{\prime} a(1, \varphi) \cos (\varphi+k \pi)+s^{\prime} v\left[b(1, \varphi) \cos (\varphi+k \pi)+a^{-1}(1, \varphi) \sin (\varphi+k \pi)\right]}{-s^{\prime} a(1, \varphi) \sin (\varphi+k \pi)+s^{\prime} v\left[-b(1, \varphi) \sin (\varphi+k \pi)+a^{-1}(1, \varphi) \cos (\varphi+k \pi)\right]} .
\end{aligned}
$$

A direct computation yields that the above equality is true for all $(u, v) \in$ $\mathbb{R}^{2} \backslash\{(0,0)\}, \varphi \in[0,2 \pi), k \in\{0,1\}$.

Using Proposition 7, Lemma 8 and the discussion above we have the following
Theorem 9. The multiplicative loop Q^{*} of a locally compact 2-dimensional quasifield Q with $(1,0)^{t}$ as identity of Q^{*} is not quasi-simple if and only if for all $r>0, \varphi \in[0,2 \pi), k \in\{0,1\}$ one has $a(r, k \pi)=1, b(r, k \pi)=0$, $a(r, \varphi+k \pi)=a(1, \varphi)$ and $b(r, \varphi+k \pi)=b(1, \varphi)$. Then Q^{*} is a split extension of a 1-dimensional normal subgroup N^{*} by a subloop homeomorphic to the 1-sphere. Moreover, one has
a) N^{*} is isomorphic to $\mathbb{R} \times Z_{2}$, where Z_{2} is the group of order 2 .
b) This extension is the direct product precisely if Q is the field \mathbb{C}.

Proof. We have only to prove a) and b). According to Lemma 8 and the above discussion the only possibility for a normal subloop of positive dimension is the group N^{*}. The intersection of a compact subloop of Q^{*} with N^{*} has cardinality 2 (cf. Proposition 5 and Lemma 8). Hence the claim a) is proved. The claim of b) follows from Proposition 7.

From Proposition 7 and Theorem 9 it follows:
Corollary 10. The multiplicative loop Q^{*} of a locally compact 2-dimensional quasifield Q with $(1,0)^{t}$ as identity of Q^{*} is the direct product of the group \mathbb{R} and a subloop homeomorphic to the 1 -sphere if and only if Q is the field of complex numbers.

The set $\Lambda_{Q^{*}}$ of the left translations of Q^{*} with a normal subloop of positive dimension and with $(1,0)^{t}$ as identity can be written into the form

$$
\left\{\left(\begin{array}{cc}
\cos t & \sin t \tag{15}\\
-\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
u a(1, t) & u b(1, t) \\
0 & u a^{-1}(1, t)
\end{array}\right), u>0, t \in[0,2 \pi)\right\}
$$

with $a(1, k \pi)=1, b(1, k \pi)=0, k \in\{0,1\}$.

5. Decomposable multiplicative loops of 2-dimensional quasifields

Definition 1. We call the multiplicative loop Q^{*} of a locally compact connected topological 2-dimensional quasifield Q decomposable, if the set of all left translations of Q^{*} is a product $\mathcal{T} \mathcal{K}$ with $|\mathcal{T} \cap \mathcal{K}| \leq 2$, where \mathcal{T} is the set of all left translations of a 1-dimensional compact loop of the form (8) and \mathcal{K} is the set of all left translations of Q^{*} belonging to the kernel K_{r} of Q.
If the loop Q^{*} is decomposable, then it contains compact subloops for any $u>0$ corresponding to the section (7). From now on we choose $u=1$. Then the compact loop F_{u} of Q^{*} has identity $(1,0)^{t}$ and one has

$$
\begin{align*}
& \left(\begin{array}{rr}
\cos t a(1, t) & \cos t b(1, t)+\sin t a^{-1}(1, t) \\
-\sin t a(1, t) & -\sin t b(1, t)+\cos t a^{-1}(1, t)
\end{array}\right)\left[\left(\begin{array}{cc}
r \cos (k \pi) a(r, k \pi) & r \cos (k \pi) b(r, k \pi) \\
0 & r \cos (k \pi) a^{-1}(r, k \pi)
\end{array}\right)\binom{1}{0}\right]= \\
& \quad=\left(\begin{array}{rr}
r \cos (t+k \pi) a(r, t+k \pi) & r \cos (t+k \pi) b(r, t+k \pi)+r \sin (t+k \pi) a^{-1}(r, t+k \pi) \\
-r \sin (t+k \pi) a(r, t+k \pi) & -r \sin (t+k \pi) b(r, t+k \pi)+r \cos (t+k \pi) a^{-1}(r, t+k \pi)
\end{array}\right)\binom{1}{0} \tag{16}
\end{align*}
$$

Equation (16) yields that $a(r, t+k \pi)=a(1, t) a(r, k \pi)$.
Now we give sufficient and necessary conditions for the loop Q^{*} to be decomposable.

Proposition 11. The multiplicative loop Q^{*} of a locally compact connected topological 2-dimensional quasifield Q with $(1,0)^{t}$ as identity of Q^{*} is decomposable if and only if for all $r>0, t \in[0,2 \pi), k \in\{0,1\}$ one has
$a(r, t+k \pi)=a(1, t) a(r, k \pi), b(r, t+k \pi)=a(1, t) b(r, k \pi)+a^{-1}(r, k \pi) b(1, t)$.
Proof. The point $(x, y)^{t}$ is the image of the point $(1,0)^{t}$ under the linear mapping $M_{(x, y)}$ and the set $\left\{M_{(x, y)} ;(x, y)^{t} \in Q^{*}\right\}$ acts sharply transitively on Q^{*}. The matrix equation

$$
\left.\left.\begin{array}{l}
\left(\begin{array}{rrr}
\cos t a(1, t) & \cos t b(1, t)+\sin t a^{-1}(1, t) \\
-\sin t a(1, t) & -\sin t b(1, t)+\cos t a^{-1}(1, t)
\end{array}\right)\left[\left(\begin{array}{rr}
r \cos (k \pi) a(r, k \pi) & r \cos (k \pi) b(r, k \pi) \\
0 & r \cos (k \pi) a^{-1}(r, k \pi)
\end{array}\right)\binom{u \cos \varphi a(u, \varphi)}{-u \sin \varphi a(u, \varphi)}\right.
\end{array}\right]=\begin{array}{r}
r \cos (t+k \pi) a(r, t+k \pi) \\
=\left(r \cos (t+k \pi) b(r, t+k \pi)+r \sin (t+k \pi) a^{-1}(r, t+k \pi)\right. \\
-r \sin (t+k \pi) a(r, t+k \pi)
\end{array} \quad-r \sin (t+k \pi) b(r, t+k \pi)+r \cos (t+k \pi) a^{-1}(r, t+k \pi) . \begin{array}{r}
u \cos \varphi a(u, \varphi) \\
-u \sin \varphi a(u, \varphi)
\end{array}\right) \quad(17) .
$$

holds precisely if the identities of the assertion are satisfied.
If Q^{*} is decomposable such that its compact subloop has identity $(1,0)^{t}$, then $|\mathcal{T} \cap \mathcal{K}|=2$ because one has $\mathcal{T} \cap \mathcal{K}=\left\{I,\left(\begin{array}{cc}-1 & -b(1, \pi) \\ 0 & -1\end{array}\right)\right\}$. In this case the set of all left translations of Q^{*} is a product $\mathcal{T} \mathcal{W}$ with $\mathcal{T} \cap \mathcal{W}=I$, where \mathcal{W} is the set of all left translations corresponding to the connected component of the kernel K_{r} of Q.

Theorem 12. If the multiplicative loop Q^{*} of a locally compact connected topological 2-dimensional quasifield Q with $(1,0)^{t}$ as identity of Q^{*} is not quasi-simple, then Q^{*} is decomposable.

Proof. By Theorem 9 the loop Q^{*} is not quasi-simple if and only if for all $r>0, t \in[0,2 \pi), k \in\{0,1\}$ one has $a(r, k \pi)=1, b(r, k \pi)=0, a(r, t+k \pi)=$ $a(1, t)$ and $b(r, t+k \pi)=b(1, t)$. Therefore the identities given in the assertion of Proposition 11 are satisfied.

Proposition 13. The \mathcal{C}^{1}-differentiable multiplicative loop Q^{*} of a locally compact connected topological 2-dimensional quasifield Q with $(1,0)^{t}$ as identity of Q^{*} is decomposable precisely if for the inverse function $\bar{a}(1, t)=$ $a^{-1}(1, t)$ and for $\bar{b}(1, t)=-b(1, t)$ the differential inequalities

$$
\begin{equation*}
\bar{a}^{\prime 2}(1, t)+\bar{b}(1, t) \bar{a}^{\prime}(1, t)+\bar{b}^{\prime}(1, t) \bar{a}(1, t)-\bar{a}^{2}(1, t)<0, \bar{b}^{\prime}(1,0)<1-\bar{a}^{\prime 2}(1,0) \tag{18}
\end{equation*}
$$

are satisfied.
Proof. If Q^{*} is a \mathcal{C}^{1}-differentiable multiplicative loop of a quasifield Q with $(1,0)^{t}$ as identity, then for $u=1$ the continuously differentiable functions $\bar{a}_{u}(t):=a(u, 0) a^{-1}(u, t), \bar{b}_{u}(t):=-b(u, t)$ satisfy the conditions in (6). The set of all left translations of Q^{*} is a product $\mathcal{T K}$ if and only if one has $a(u, t+$ $k \pi)=a(u, k \pi) a(1, t)$ and $b(u, t+k \pi)=a(1, t) b(u, k \pi)+a^{-1}(u, k \pi) b(1, t)$ for all $u>0, t \in[0,2 \pi), k \in\{0,1\}$ (cf. Proposition 11). Putting this into (6) we get for $u=1$

$$
\begin{gather*}
a^{\prime 2}(1, t)+b(1, t) a^{\prime}(1, t) a^{2}(1, t)-b^{\prime}(1, t) a^{3}(1, t)-a^{2}(1, t)<0 \text { and } \\
b^{\prime}(1,0)>a^{\prime 2}(1,0)-1 \tag{19}
\end{gather*}
$$

since $a(1, k \pi)=1, k \in\{0,1\}$. Inequalities (19) are equivalent to the inequalities (18) with $\bar{a}(1, t)=a^{-1}(1, t)$ and $\bar{b}(1, t)=-b(1, t)$.

Corollary 14. Let T be any 1-dimensional \mathcal{C}^{1}-differentiable connected compact loop such that the set \mathcal{T} of its left translations has the form (8) and let \mathcal{K} be any set of matrices of the form

$$
\mathcal{K}=\left\{\left(\begin{array}{cc}
u \cos (k \pi) a(u, k \pi) & u \cos (k \pi) b(u, k \pi) \\
0 & u \cos (k \pi) a^{-1}(u, k \pi)
\end{array}\right), u>0, k \in\{0,1\}\right\},
$$

where $a(u, k \pi)>0$ and $b(u, k \pi)$ are continuously differentiable functions such that $u a(u, 0),-u a(u, \pi)$ are strictly monotone. Then the product $\mathcal{T K}$ is the set of all left translations of a \mathcal{C}^{1}-differentiable decomposable multiplicative loop Q^{*} of a 2-dimensional locally compact connected quasifield Q with $(1,0)^{t}$ as identity of Q^{*}.

Proof. Since one has

$$
\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
a(1, t) & b(1, t) \\
0 & a(1, t)^{-1}
\end{array}\right)\left(\begin{array}{cc}
u \cos (k \pi) a(u, k \pi) & u \cos (k \pi) b(u, k \pi) \\
0 & u \cos (k \pi) a^{-1}(u, k \pi)
\end{array}\right)=
$$

$$
\begin{gathered}
\left(\begin{array}{cc}
\cos (t+k \pi) & \sin (t+k \pi) \\
-\sin (t+k \pi) & \cos (t+k \pi)
\end{array}\right)\left(\begin{array}{cc}
u a(u, k \pi) a(1, t) & u b(u, k \pi) a(1, t)+u b(1, t) a^{-1}(u, k \pi) \\
0 & u a^{-1}(u, k \pi) a(1, t)^{-1}
\end{array}\right)= \\
\left(\begin{array}{cc}
\cos (t+k \pi) & \sin (t+k \pi) \\
-\sin (t+k \pi) & \cos (t+k \pi)
\end{array}\right)\left(\begin{array}{cc}
u a(u, t+k \pi) & u b(u, t+k \pi) \\
0 & u a^{-1}(u, t+k \pi)
\end{array}\right)
\end{gathered}
$$

for the continuously differentiable functions $a(1, t), b(1, t)$ the inequalities (19) hold and $a(1, k \pi)=1, k \in\{0,1\}$, for $u=1$ the continuously differentiable functions $\bar{a}_{u}(t+k \pi)=a(u, 0) a^{-1}(u, t+k \pi)=a(u, 0) a^{-1}(u, k \pi) a^{-1}(1, t)$, $\bar{b}_{u}(t+k \pi)=-b(u, t+k \pi)=-b(u, k \pi) a(1, t)-b(1, t) a^{-1}(u, k \pi)$ satisfy inequalities (6). Hence the product $\mathcal{T} \mathcal{K}$ given in the assertion is the image of a \mathcal{C}^{1}-differentiable section of a multiplicative loop Q^{*} of a quasifield Q.
Proposition 15. The set $\Lambda_{Q^{*}}$ of all left translations of the multiplicative loop Q^{*} for a locally compact connected topological 2-dimensional quasifield Q with $(1,0)^{t}$ as identity of Q^{*} contains the group $\mathrm{SO}_{2}(\mathbb{R})$ if and only if $\Lambda_{Q^{*}}$ has the form

$$
\Lambda_{Q^{*}}=\left\{\left(\begin{array}{cc}
\cos t & \sin t \tag{20}\\
-\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
u a(u, 0) & u b(u, 0) \\
0 & u a^{-1}(u, 0)
\end{array}\right), u>0, t \in[0,2 \pi)\right\}
$$

where $a(u, 0), b(u, 0)$ are arbitrary continuous functions with $a(u, 0)>0$ such that ua(u,0) is strictly monotone. In this case Q^{*} is decomposable.
Proof. If the set $\Lambda_{Q^{*}}$ contains the group $\mathrm{SO}_{2}(\mathbb{R})$, then for each fixed $u>0$ the function $a(u, t)$ is constant with value 1 and the function $b(u, t)$ is constant with value 0 . So the functions $a(u, t)=a(u, 0), b(u, t)=b(u, 0)$ do not depend on the variable t. Hence the identities in Proposition 11 are satisfied and the set $\Lambda_{Q^{*}}$ has the form $\mathcal{T W}$ as in the assertion.

Conversely, if $u a(u, 0)$ is a strictly monotone continuous function, then for arbitrary continuous functions $a(u, 0), b(u, 0)$ with $a(u, 0)>0$ the set given by (20) is the set $\Lambda_{Q^{*}}$ of all left translations of the multiplicative loop Q^{*} of a locally compact quasifield such that $\Lambda_{Q^{*}}$ contains the group $\mathrm{SO}_{2}(\mathbb{R})$ and Q^{*} has identity $(1,0)^{t}$. Hence Q^{*} is decomposable and the assertion is proved.

6. Betten's classification of 4-dimensional translation planes

Using 2-dimensional spreads, Betten in [3], [4], [5], [6], [7], [8], see also [13] and [15], has classified all locally compact 4 -dimensional translation planes which admit an at least 7-dimensional collineation group. His normalized 2dimensional spreads are images of sharply transitive sections $\sigma^{\prime}: G / H^{\prime} \rightarrow G$, where G is the connected component of the group $\mathrm{GL}_{2}(\mathbb{R}), H^{\prime}$ is the subgroup $\left\{\left(\begin{array}{ll}1 & c \\ 0 & d\end{array}\right), d>0, c \in \mathbb{R}\right\}(c \mathrm{cf}.[2],[3])$ and $\sigma^{\prime}\left(G / H^{\prime}\right)$ consists of the elements

$$
\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
r a(r, t) & 0 \\
0 & r^{-1} a^{-1}(r, t)
\end{array}\right)\left(\begin{array}{cc}
1 & b(r, t) a^{-1}(r, t) \\
0 & r^{2}
\end{array}\right) .
$$

With respect to the stabilizer $H=\left\{\left(\begin{array}{cc}a & b \\ 0 & a^{-1}\end{array}\right), a>0, b \in \mathbb{R}\right\}$ the sharply transitive section σ^{\prime} transforms into a sharply transitive section $\sigma: G / H \rightarrow G$ given by (2), because the elements of $\sigma^{\prime}\left(G / H^{\prime}\right)$ coincide with

$$
\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
r & 0 \\
0 & r
\end{array}\right)\left(\begin{array}{cc}
a(r, t) & b(r, t) \\
0 & a^{-1}(r, t)
\end{array}\right) .
$$

Proposition 16. Let \mathcal{A} be a 4-dimensional non-desarguesian translation plane admitting an 8-dimensional collineation group such that \mathcal{A} is coordinatized by the locally compact topological quasifield Q. Then the multiplicative loop Q^{*} can be given by one of the following sets $\Lambda_{Q^{*}}$ of the left translations of Q^{*} :
a) $\Lambda_{Q^{*}}$ has the form (15) with $a(1, t)=1$ and $b(1, t)=0$ for $0 \leq t \leq \pi$, $a(1, t)=1 / \sqrt{\cos ^{2} t+\frac{\sin ^{2} t}{w}}$ and $b(1, t)=a(1, t) \frac{1-w}{w} \sin t \cos t$ for $\pi<t<2 \pi$. The quasifields $Q_{w}, w>1$, correspond to a one-parameter family of planes \mathcal{A}_{w}.
b) $\Lambda_{Q^{*}}$ is the range of the section given by (2) such that for $\alpha \geq \frac{-3 \beta^{2}}{4}$ one has $a(r, t)=\frac{\sqrt{\alpha^{2}+\beta^{2}}}{\alpha+\beta^{2}}$ and $b(r, t)=\frac{\beta(-\alpha+1)}{\sqrt{\alpha^{2}+\beta^{2}}}$ with $r \cos (t)=\alpha \frac{\alpha+\beta^{2}}{\sqrt{\alpha^{2}+\beta^{2}}}$, $r \sin (t)=-\beta \frac{\alpha+\beta^{2}}{\sqrt{\alpha^{2}+\beta^{2}}}$.
For $\alpha<\frac{-3 \beta^{2}}{4}$ we have $a(r, t)=3 \sqrt{\frac{\alpha^{2}+\beta^{2}}{\alpha^{2}}}$ and $b(r, t)=\beta \sqrt{\frac{\alpha^{2}+\beta^{2}}{\alpha^{2}}}+\frac{\beta \alpha}{\sqrt[3]{\alpha^{2}\left(\alpha^{2}+\beta^{2}\right)}}$ with $r \cos (t)=\frac{\alpha}{3} \sqrt{\frac{\alpha^{2}}{\alpha^{2}+\beta^{2}}}, r \sin (t)=-\frac{\beta}{3} \sqrt{\frac{\alpha^{2}}{\alpha^{2}+\beta^{2}}}$. The quasifield Q coordinatizes a single plane.
c) $\Lambda_{Q^{*}}$ is the range of the section given by (2) such that $a(r, t)=\sqrt{\frac{v^{2}+s^{2}}{\frac{s^{4}}{3}+s^{2} v+v^{2}}}$, $b(r, t)=\frac{-\frac{s^{3} v}{3}+s^{3}+s v}{\sqrt{\left(\frac{s^{4}}{3}+s^{2} v+v^{2}\right)\left(s^{2}+v^{2}\right)}}$ with

$$
r \cos (t)=v \sqrt{\frac{\frac{s^{4}}{3}+s^{2} v+v^{2}}{s^{2}+v^{2}}}, r \sin (t)=-s \sqrt{\frac{\frac{s^{4}}{3}+s^{2} v+v^{2}}{s^{2}+v^{2}}} .
$$

The quasifield Q coordinatizes a single plane.
In case a) the multiplicative loop Q_{w}^{*} is decomposable and a split extension of the normal subgroup $\widetilde{N^{*}} \cong \mathbb{R}$ corresponding to the connected component of $\widetilde{\mathcal{K}}=\left\{\left(\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right), 0 \neq r \in \mathbb{R}\right\}$ with a subloop homeomorphic to the 1 -sphere. In case c) the set \mathcal{K} of the left translations of Q^{*} corresponding to the kernel K_{r} of the quasifield Q has the form $\widetilde{\mathcal{K}}$. In case b) the set \mathcal{K} has the form

$$
\left\{\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right), \alpha>0\right\} \cup\left\{\left(\begin{array}{cc}
\alpha & 0 \\
0 & \frac{\alpha}{9}
\end{array}\right), \alpha<0\right\} .
$$

In cases b) and c) the multiplicative loops Q^{*} are not decomposable and quasisimple.

Proof. If the translation complement of \mathcal{A} is the group $\mathrm{GL}_{2}(\mathbb{R})$ and acts reducibly on \mathbb{R}^{4}, then one obtains the one-parameter family $\mathcal{A}_{w}, w>1$, of the non-desarguesian translation planes corresponding to the following spreads:

$$
\{S\} \cup\left\{\left(\begin{array}{cc}
s & -v \\
v & s
\end{array}\right), s, v \in \mathbb{R}, v \geq 0\right\} \cup\left\{\left(\begin{array}{cc}
s & \frac{-v}{w} \\
v & s
\end{array}\right), s, v \in \mathbb{R}, v<0\right\},
$$

$w>1$ (cf. [3], Satz 5, p. 144). Any such spread coincides with the set $\Lambda_{Q^{*}}$ in (15) with $a(1, t)$ and $b(1, t)$ as in assertion a). By Theorem 9 the multiplicative loop Q_{w}^{*} is a split extension of a normal subgroup N^{*} with a 1-dimensional compact loop. By Theorem 12 the loop Q_{w}^{*} is decomposable. Hence \widetilde{N} has the form as in the assertion.
If the translation complement $\mathrm{GL}_{2}(\mathbb{R})$ acts irreducibly on \mathbb{R}^{4}, then one obtains a single plane \mathcal{A} generated by the spread

$$
\{S\} \cup\left\{\left(\begin{array}{cc}
\alpha & -\alpha \beta-\beta^{3} \tag{21}\\
\beta & \alpha+\beta^{2}
\end{array}\right), \alpha, \beta \in \mathbb{R}, \alpha \geq \frac{-3 \beta^{2}}{4}\right\} \cup\left\{\left(\begin{array}{cc}
\alpha & \frac{1}{3} \alpha \beta \\
\beta & \frac{\alpha^{9}}{9}+\frac{\beta^{2}}{3}
\end{array}\right), \alpha, \beta \in \mathbb{R}, \alpha<\frac{-3 \beta^{2}}{4}\right\} \text {, }
$$

(cf. [5], Satz, p. 553).
If the translation complement is solvable, then one gets a single plane \mathcal{A} generated by the spread

$$
\{S\} \cup\left\{\left(\begin{array}{cc}
v & -\frac{s^{3}}{3} \tag{22}\\
s & s^{2}+v
\end{array}\right), s, v \in \mathbb{R}\right\},
$$

(cf. [4], Satz 2 (b), p. 331).
The spread (21), respectively (22) coincides with the image of the section σ in (2) with the well defined functions $a(r, t)$ and $b(r, t)$ given in assertion b), respectively c). In case c) one has $a(r, k \pi)=1, b(r, k \pi)=0$, for all $r>0$, $k \in\{0,1\}$ hence Remark 1 gives the form \mathcal{K} of the assertion. In case b) we have $a(r, 0)=1, a(r, \pi)=3, b(r, l \pi)=0$, for all $r>0, l \in\{0,1\}$. These give the form \mathcal{K} of the assertion.
For decomposable Q^{*}, the identity $a(r, t+k \pi)=a(1, t) a(r, k \pi)$ holds for all $r>0, t \in[0,2 \pi), k \in\{0,1\}$ (cf. Proposition 11). In case b) for $-3 \leq \alpha \leq 1$ one has $a(1, t)=\sqrt{\alpha^{2}-\alpha+1}$ which yields a contradiction. In case c) we have $a\left(r, \frac{\pi}{4}+k \pi\right)=\sqrt{\frac{2}{1-s+\frac{s^{2}}{3}}}, s \in \mathbb{R} \backslash\{0\}$ and the condition $a\left(r, \frac{\pi}{4}+k \pi\right)=$ $a\left(1, \frac{\pi}{4}\right)$ gives a contradiction. Hence in both cases Q^{*} is not decomposable and therefore quasi-simple (cf. Theorem 12).

If the translation complement of a 4 -dimensional topological plane \mathcal{A} has dimension 3 , then the point ∞ of the line $S=\{(0,0, u, v), u, v \in \mathbb{R}\}$ is fixed under the seven-dimensional collineation group Γ of \mathcal{A}.

Proposition 17. Let Q be a 2-dimensional quasifield coordinatizing a 4dimensional locally compact translation plane \mathcal{A} such that the 7-dimensional collineation group Γ of \mathcal{A} acts transitively on the points of $W \backslash\{\infty\}$, where W is the translation axis of \mathcal{A} and the kernel of the action of the translation complement on the line S has dimension 1. Then the multiplicative loop Q^{*} can be given by one of the following sets $\Lambda_{Q^{*}}$ of the left translations of Q^{*} :
a) $\Lambda_{Q^{*}}$ is the range of the section (2) such that
$a(r, t)=\sqrt{\frac{s^{2}+v^{2}}{s^{2} v+v^{2}+\frac{s^{4}}{3}+s^{2}}}$ and $b(r, t)=\frac{s^{3}-\frac{s^{3} v}{3}}{\sqrt{\left(s^{2} v+v^{2}+\frac{s^{4}}{3}+s^{2}\right)\left(s^{2}+v^{2}\right)}}$
with $r \cos (t)=v \sqrt{\frac{s^{2} v+v^{2}+\frac{s^{4}}{3}+s^{2}}{s^{2}+v^{2}}}, r \sin (t)=-s \sqrt{\frac{s^{2} v+v^{2}+\frac{s^{4}}{3}+s^{2}}{s^{2}+v^{2}}}$. The quasifield Q corresponds to a single plane.
b) $\Lambda_{Q^{*}}$ is the range of the section given by (2) such that

$$
\begin{gathered}
a(r, t)=\sqrt{\frac{v^{2}+u^{2}+2 \gamma^{2}(1-\cos (u))-2 v \gamma \sin (u)-2 \gamma u \cos (u)+2 \gamma u}{v^{2}+u^{2}-2 \gamma^{2}+2 \gamma^{2} \cos (u)}} \text { and } \\
b(r, t)=\frac{-2 u \gamma \sin u+2 v \gamma \cos u-2 v \gamma}{\sqrt{v^{2}+u^{2}+2 \gamma^{2}(1-\cos u)-2 v \gamma \sin u-2 \gamma u \cos u+2 \gamma u} \sqrt{v^{2}+u^{2}-2 \gamma^{2}(1-\cos u)}}
\end{gathered}
$$

with

$$
\begin{gathered}
r \cos (t)=(v-\gamma \sin (u)) \sqrt{\frac{v^{2}+u^{2}-2 \gamma^{2}+2 \gamma^{2} \cos u}{v^{2}+u^{2}+2 \gamma^{2}(1-\cos (u))-2 v \gamma \sin (u)-2 \gamma u \cos (u)+2 \gamma u}}, \\
r \sin (t)=(u-\gamma(\cos (u)-1)) \sqrt{\frac{v^{2}+u^{2}-2 \gamma^{2}+2 \gamma^{2} \cos u}{v^{2}+u^{2}+2 \gamma^{2}(1-\cos (u))-2 v \gamma \sin (u)-2 \gamma u \cos (u)+2 \gamma u}} .
\end{gathered}
$$

The quasifields Q_{γ} coordinatize a one-parameter family of planes $\mathcal{A}_{\gamma}, 0<$ $|\gamma| \leq 1$.
In all cases the multiplicative loop Q^{*} is not decomposable and quasi-simple. The set \mathcal{K} of the left translations of Q^{*} corresponding to the kernel of the quasifield Q has the form $\left\{\left(\begin{array}{cc}r & 0 \\ 0 & r\end{array}\right), 0 \neq r \in \mathbb{R}\right\}$.
Proof. If the translation complement C leaves a 1-dimensional subspace of S invariant, then one obtains a single plane \mathcal{A} which corresponds to the following spread:

$$
\{S\} \cup\left\{\left(\begin{array}{cc}
v & -\frac{s^{3}}{3}-s \tag{23}\\
s & s^{2}+v
\end{array}\right), s, v \in \mathbb{R}\right\}
$$

(cf. [18], 73.10., [4], pp. 330-331).
If the translation complement acts transitively on the 1-dimensional subspaces of S, then one gets a one-parameter family $E_{\gamma}, 0<|\gamma| \leq 1$, of planes which are generated by the normalized spread

$$
\{S\} \cup\left\{\left(\begin{array}{cc}
v-\gamma \sin u & u+\gamma(\cos u-1) \tag{24}\\
\gamma(\cos u-1)-u & v+\gamma \sin u
\end{array}\right), u, v \in \mathbb{R}\right\},
$$

([8], Satz, p. 128, [13], Proposition 5.8). The spread (23), respectively (24) coincides with the image of the section σ in (2) such that the well defined functions $a(r, t)$ and $b(r, t)$ are given in assertion a), respectively b). Since in both cases one has $a(r, k \pi)=1, b(r, k \pi)=0$, for all $r>0$, $k \in\{0,1\}$, Remark 1 gives the form of \mathcal{K}. Moreover, in case a) one has $a\left(r, \frac{\pi}{4}+k \pi\right)=\sqrt{\frac{2}{2+v+\frac{v^{2}}{3}}}, v \in \mathbb{R} \backslash\{0\}$. In case b) for $v=1$ we get

$$
a\left(r_{j}, t_{j}\right)=\sqrt{\frac{1+u^{2}+2 \gamma^{2}(1-\cos u)-2 \gamma \sin u-2 \gamma u \cos u+2 \gamma u}{1+u^{2}-2 \gamma^{2}+2 \gamma^{2} \cos u}}, \quad a\left(1, t_{j}\right)=1 .
$$

For decomposable Q^{*} one has $a(r, t+k \pi)=a(1, t) a(r, k \pi)$ for all $r \in \mathbb{R} \backslash\{0\}$, $t \in[0,2 \pi), k \in\{0,1\}$ (cf. Proposition 11) which yields a contradiction. Thus in both cases Q^{*} is not decomposable and hence quasi-simple (cf. Theorem 12).

Proposition 18. Let Q be a 2-dimensional quasifield coordinatizing a 4dimensional locally compact translation plane \mathcal{A} such that the translation complement C of the 7 -dimensional collineation group Γ of \mathcal{A} has an orbit of dimension 1 on $W \backslash\{0\}$, C leaves in the set of lines through the origin only S fixed and the kernel of its action on S has positive dimension. Then the multiplicative loop Q^{*} can be given by one of the following sets $\Lambda_{Q^{*}}$ of the left translations of Q^{*} :
a) $\Lambda_{Q^{*}}$ is the range of the section (2) such that for $\beta \geq 0$ one has

$$
\begin{aligned}
& a(r, t)=\sqrt{\frac{\alpha^{2}+\beta^{2}}{\alpha^{2}+z \alpha \beta^{\frac{1}{1+s}}-w \beta^{\frac{2}{1+s}}}} \text { and } b(r, t)=\frac{w \alpha \beta^{\frac{1-s}{1+s}}+\alpha \beta+z \beta^{\frac{2+s}{1+s}}}{\sqrt{\alpha^{2}+\beta^{2}} \sqrt{\alpha^{2}+z \alpha \beta^{\frac{1}{1+s}}-w \beta^{\frac{2}{1+s}}}} \\
& w_{\text {ith } r} r \cos (t)=\alpha \sqrt{\frac{\alpha^{2}+z \alpha \beta^{\frac{1}{1+s}}-w \beta^{\frac{2}{1+s}}}{\alpha^{2}+\beta^{2}}}, r \sin (t)=-\beta \sqrt{\frac{\alpha^{2}+z \alpha \beta^{\frac{1}{1+s}}-w \beta^{\frac{2}{1+s}}}{\alpha^{2}+\beta^{2}}} .
\end{aligned}
$$

For $\beta<0$ one gets

$$
a\left(r^{\prime}, t\right)=\sqrt{\frac{\alpha^{2}+\beta^{2}}{\alpha^{2}+q \alpha(-\beta)^{\frac{1}{1+s}}+p(-\beta)^{\frac{2}{1+s}}}} \text { and } b\left(r^{\prime}, t\right)=\frac{p \alpha(-\beta)^{\frac{1-s}{1+s}}+\alpha \beta-q(-\beta)^{\frac{2+s}{1+s}}}{\sqrt{\alpha^{2}+\beta^{2}} \sqrt{\alpha^{2}+q \alpha(-\beta)^{\frac{1}{1+s}}+p(-\beta)^{\frac{1}{1+s} s}}}
$$

with

$$
r^{\prime} \cos (t)=\alpha \sqrt{\frac{\alpha^{2}+q \alpha(-\beta)^{\frac{1}{1+s}}+p(-\beta)^{\frac{2}{1+s}}}{\alpha^{2}+\beta^{2}}} \text { and } r^{\prime} \sin (t)=-\beta \sqrt{\frac{\alpha^{2}+q \alpha(-\beta)^{\frac{1}{1+s}}+p(-\beta)^{\frac{2}{1+s}}}{\alpha^{2}+\beta^{2}}}
$$

The quasifields $Q_{s, w, z, p, q}$ coordinatize a family of planes $\mathcal{A}_{s, w, z, p, q}$ such that the parameters s, w, z, p, q satisfy the conditions $0<s<1, z^{2}+4 w\left(1-s^{2}\right) \leq 0$, $q^{2}-4 p\left(1-s^{2}\right) \leq 0$.
b) $\Lambda_{Q^{*}}$ is the range of the section (2) such that for $\beta \geq 0$ we have

$$
\begin{gathered}
a(r, t)=\sqrt{\frac{\alpha^{2}+\beta^{2}}{\alpha^{2}+z \alpha \beta-w \beta^{2}+2 \alpha \beta \ln \beta+z \beta^{2} \ln \beta+\beta^{2}(\ln \beta)^{2}}} \text { and } \\
b(r, t)=\frac{(w+1) \alpha \beta+z \beta^{2}-z \alpha \beta \ln \beta-\alpha \beta(\ln \beta)^{2}+2 \beta^{2} \ln \beta}{\sqrt{\alpha^{2}+\beta^{2}} \sqrt{\alpha^{2}+z \alpha \beta+2 \alpha \beta \ln \beta-w \beta^{2}+z \beta^{2} \ln \beta+\beta^{2}(\ln \beta)^{2}}}
\end{gathered}
$$

with

$$
\begin{aligned}
& r \cos (t)=\alpha \sqrt{\frac{\alpha^{2}+z \alpha \beta-w \beta^{2}+2 \alpha \beta \ln \beta+z \beta^{2} \ln \beta+\beta^{2}(\ln \beta)^{2}}{\alpha^{2}+\beta^{2}}}, \\
& r \sin (t)=-\beta \sqrt{\frac{\alpha^{2}+z \alpha \beta-w \beta^{2}+2 \alpha \beta \ln \beta+z \beta^{2} \ln \beta+\beta^{2}(\ln \beta)^{2}}{\alpha^{2}+\beta^{2}}} .
\end{aligned}
$$

For $\beta<0$ we obtain

$$
\begin{gathered}
a\left(r^{\prime}, t\right)=\sqrt{\frac{\alpha^{2}+\beta^{2}}{\alpha^{2}-q \alpha \beta+p \beta^{2}+\left(2 \alpha \beta-q \beta^{2}\right) \ln (-\beta)+\beta^{2}(\ln (-\beta))^{2}}} \text { and } \\
b\left(r^{\prime}, t\right)=\frac{(1-p) \alpha \beta-q \beta^{2}+\left(2 \beta^{2}+q \alpha \beta\right) \ln (-\beta)-\alpha \beta(\ln (-\beta))^{2}}{\sqrt{\alpha^{2}+\beta^{2}} \sqrt{\alpha^{2}-q \alpha \beta+p \beta^{2}+\left(2 \alpha \beta-q \beta^{2}\right) \ln (-\beta)+\beta^{2}(\ln (-\beta))^{2}}}
\end{gathered}
$$

with

$$
\begin{aligned}
r^{\prime} \cos (t) & =\alpha \sqrt{\frac{\alpha^{2}-q \alpha \beta+p \beta^{2}+\left(2 \alpha \beta-q \beta^{2}\right) \ln (-\beta)+\beta^{2}(\ln (-\beta))^{2}}{\alpha^{2}+\beta^{2}}} \\
r^{\prime} \sin (t) & =-\beta \sqrt{\frac{\alpha^{2}-q \alpha \beta+p \beta^{2}+\left(2 \alpha \beta-q \beta^{2}\right) \ln (-\beta)+\beta^{2}(\ln (-\beta))^{2}}{\alpha^{2}+\beta^{2}}}
\end{aligned}
$$

The quasifields $Q_{w, z, p, q}$ coordinatize a family of planes $\mathcal{A}_{w, z, p, q}$ such that for the parameters w, z, p, q the relations $\left(\frac{z}{2}\right)^{2} \leq-w-1,\left(\frac{q}{2}\right)^{2} \leq p-1$ hold.
c) $\Lambda_{Q^{*}}$ is the range of the section given by (2) such that $a(r, k \pi)=1$ and $b(r, k \pi)=0, k \in\{0,1\}$ with $r=|\beta|$.
For $u \in \mathbb{R}, \beta>0$, we get

$$
\begin{gathered}
a(r, t)=\sqrt{\frac{u^{2}+\sin ^{2}(l)\left(w^{2}+2 z u+z^{2}\right)+\cos ^{2}(l)-(2 u w+2 u+2 z) \sin (l) \cos (l)}{u^{2}+u z-w}}, \\
b(r, t)=\frac{\cos ^{2}(l)(2 u w+2 u+2 z)+\sin (l) \cos (l)\left(1-w^{2}-z^{2}-2 u z\right)-(u+z+u w)}{\sqrt{\left(u^{2}+\sin ^{2}(l)\left(w^{2}+2 z u+z^{2}\right)+\cos ^{2}(l)-(2 u w+2 u+2 z) \sin (l) \cos (l)\right)\left(u^{2}+u z-w\right)}}
\end{gathered}
$$

with
$r \cos (t)=\beta\left(u-(w+1) \sin (l) \cos (l)+z \sin ^{2}(l)\right) \sqrt{\frac{u^{2}+u z-w}{u^{2}+\sin ^{2}(l)\left(w^{2}+2 z u+z^{2}\right)+\cos ^{2}(l)-(2 u w+2 u+2 z) \sin (l) \cos (l)}}$,
$r \sin (t)=\beta\left(w \sin ^{2}(l)+z \sin (l) \cos (l)-\cos ^{2}(l)\right) \sqrt{\frac{u^{2}+u z-w}{u^{2}+\sin ^{2}(l)\left(w^{2}+2 z u+z^{2}\right)+\cos ^{2}(l)-(2 u w+2 u+2 z) \sin (l) \cos (l)}}$,
where $l=\frac{1}{k} \ln \beta$. For $u \in \mathbb{R}, \beta<0$ one obtains

$$
a\left(r^{\prime}, t^{\prime}\right)=\sqrt{\frac{u^{2}+\sin ^{2}\left(l_{1}\right)\left(q^{2}+2 q u+p^{2}\right)+\cos ^{2}\left(l_{1}\right)+(2 u+2 q-2 u p) \sin \left(l_{1}\right) \cos \left(l_{1}\right)}{u^{2}+u q+p}}
$$

$$
b\left(r^{\prime}, t^{\prime}\right)=\frac{\sin \left(l_{1}\right) \cos \left(l_{1}\right)\left(1-2 u q-p^{2}-q^{2}\right)+\sin ^{2}\left(l_{1}\right)(2 q+2 u-2 u p)+(u p-q-u)}{\sqrt{\left(u^{2}+\sin ^{2}\left(l_{1}\right)\left(q^{2}+2 q u+p^{2}\right)+\cos ^{2}\left(l_{1}\right)+(2 q+2 u-2 u p) \sin \left(l_{1}\right) \cos \left(l_{1}\right)\right)\left(u^{2}+u q+p\right)}}
$$

with

$$
\begin{gathered}
r^{\prime} \cos \left(t^{\prime}\right)=\beta\left((p-1) \sin \left(l_{1}\right) \cos \left(l_{1}\right)-q \sin ^{2}\left(l_{1}\right)-u\right) . \\
\sqrt{\frac{u^{2}+u q+p}{u^{2}+\sin ^{2}\left(l_{1}\right)\left(q^{2}+2 q u+p^{2}\right)+\cos ^{2}\left(l_{1}\right)+(2 u+2 q-2 u p) \sin \left(l_{1}\right) \cos \left(l_{1}\right)}}, \\
r^{\prime} \sin \left(t^{\prime}\right)=-\beta\left(\cos ^{2}\left(l_{1}\right)+q \sin \left(l_{1}\right) \cos \left(l_{1}\right)+p \sin ^{2}\left(l_{1}\right)\right) . \\
\sqrt{\frac{u^{2}+u q+p}{u^{2}+\sin ^{2}\left(l_{1}\right)\left(q^{2}+2 q u+p^{2}\right)+\cos ^{2}\left(l_{1}\right)+(2 u+2 q-2 u p) \sin \left(l_{1}\right) \cos \left(l_{1}\right)}},
\end{gathered}
$$

where $l_{1}=\frac{1}{k} \ln (-\beta)$.
The quasifields $Q_{k, w, z, p, q}$ coordinatize a family of planes $\mathcal{A}_{k, w, z, p, q}$ such that for the parameters k, w, z, p, q one has $k \neq 0,\left(4+k^{2}\right)\left(z^{2}+(w+1)^{2}\right) \leq k^{2}(1-w)^{2}$, $\left(4+k^{2}\right)\left(q^{2}+(p-1)^{2}\right) \leq k^{2}(p+1)^{2},(w, z, p, q) \neq(-1,0,1,0)$.
In all cases Q^{*} is not decomposable and quasi-simple. The set of the left translations of Q^{*} belonging to the kernel of Q is $\mathcal{K}=\left\{\left(\begin{array}{cc}r & 0 \\ 0 & r\end{array}\right), 0 \neq r \in \mathbb{R}\right\}$.

Proof. If the translation complement C fixes two 1 -dimensional subspaces of S, then we have a family of translation planes $\mathcal{A}_{s, w, z, p, q}$ such that the normalized spreads belonging to these planes are given as follows:

$$
\{S\} \cup\left\{\left(\begin{array}{cc}
\alpha & w \beta^{\frac{1-s}{1+s}} \tag{25}\\
\beta & z \beta^{1+s}+\alpha
\end{array}\right), \alpha \in \mathbb{R}, \beta \geq 0\right\} \cup\left\{\left(\begin{array}{cc}
\alpha & p(-\beta)^{\frac{1-s}{1+s}} \\
\beta & q(-\beta)^{1+s}+\alpha
\end{array}\right), \alpha \in \mathbb{R}, \beta<0\right\},
$$

(cf. [6], Satz 1, pp. 411-412).
If the translation complement C fixes only one 1-dimensional subspace of S, then there is a family of translation planes $\mathcal{A}_{w, z, p, q}$ such that the corresponding normalized spreads have the form:

$$
\{S\} \cup\left\{\left(\begin{array}{cc}
\alpha & w \beta-z \beta \ln \beta-\beta(\ln \beta)^{2} \\
\beta & \alpha+z \beta+2 \beta \ln \beta
\end{array}\right), \alpha \in \mathbb{R}, \beta \geq 0\right\} \cup\left\{\left(\begin{array}{cc}
\alpha & -p \beta-\beta(\ln (-\beta))^{2}+q \beta \ln (-\beta) \\
\beta & q(-\beta)+\alpha+2 \beta \ln (-\beta)
\end{array}\right), \alpha \in \mathbb{R}, \beta<0\right\}
$$

(cf. Satz 2, [6], pp. 418-419).
If the translation complement C acts transitively on the 1 -dimensional subspaces of S, then we have a family of translation planes $\mathcal{A}_{k, w, z, p, q}$ such that the normalized spreads belonging to these planes have the form

$$
\begin{gather*}
\{S\} \cup\left\{\beta\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \beta \in \mathbb{R}\right\} \cup \\
\left\{\beta\left(\begin{array}{cc}
u-(w+1) \sin (l) \cos (l)+z \sin ^{2}(l) & w \cos ^{2}(l)-z \sin (l) \cos (l)-\sin ^{2}(l) \\
\cos ^{2}(l)-z \sin (l) \cos (l)-w \sin ^{2}(l) & z \cos ^{2}(l)+(w+1) \sin (l) \cos (l)+u
\end{array}\right), u \in \mathbb{R}, \beta>0\right\} \cup \\
\left\{\beta\left(\begin{array}{cc}
(p-1) \sin \left(l_{1}\right) \cos \left(l_{1}\right)-q \sin ^{2}\left(l_{1}\right)-u & q \sin \left(l_{1}\right) \cos \left(l_{1}\right)-p \cos ^{2}\left(l_{1}\right)-\sin ^{2}\left(l_{1}\right) \\
\cos ^{2}\left(l_{1}\right)+q \sin \left(l_{1}\right) \cos \left(l_{1}\right)+p \sin ^{2}\left(l_{1}\right) & (1-p) \sin \left(l_{1}\right) \cos \left(l_{1}\right)-q \cos ^{2}\left(l_{1}\right)-u
\end{array}\right), u \in \mathbb{R}, \beta<0\right\}, \tag{27}
\end{gather*}
$$

where $l=\frac{1}{k} \ln \beta, l_{1}=\frac{1}{k} \ln (-\beta)$ (cf. [15], Proposition 4.1, p. 6, and [6], Satz 3, pp. 422-423). The spreads (25), respectively (26), respectively (27) coincide with the image of the section σ in (2) such that the well defined functions $a(r, t)$ and $b(r, t)$ are given in assertion a), respectively b), respectively c).

Since in all three cases we have $a(r, k \pi)=1, b(r, k \pi)=0, r>0, k \in$ $\{0,1\}$, Remark 1 shows that \mathcal{K} has the form as in the assertion. In case a), respectively b) for $\beta>0$ one gets $a\left(r, \frac{\pi}{4}+\pi\right)=\frac{\sqrt{2} \beta}{\sqrt{\beta^{2}-z \beta^{2+s}-w \beta^{\frac{2}{1+s}}}}$, respectively $a\left(r, \frac{\pi}{4}+\pi\right)=\sqrt{\frac{2}{1-z-w-2 \ln \beta+z \ln \beta+(\ln \beta)^{2}}}$. In case c) for $u=0, \beta>0$ we get that $a\left(1, t_{j}\right)$ is constant. These relations give a contradiction to the condition $a(r, t+k \pi)=a(1, t), r>0, t \in[0,2 \pi), k \in\{0,1\}$ of Proposition 11. Hence in all cases Q^{*} is not decomposable and quasi-simple (cf. Theorem 12).

Proposition 19. Let Q be a 2-dimensional quasifield coordinatizing a 4dimensional locally compact translation plane \mathcal{A} such that the translation complement C of the 7-dimensional collineation group Γ of \mathcal{A} has an orbit of dimension 1 on $W \backslash\{0\}, C$ leaves only S in the set of lines through the origin fixed and the kernel of its action on S is zero-dimensional. Then the set $\Lambda_{Q^{*}}$ of all left translations of the multiplicative loop Q^{*} is given by the range of the section (2) defined as follows: For $\alpha \geq-\frac{\beta^{2}}{2}$ one has

$$
\begin{gathered}
a(r, t)=\sqrt{\frac{\alpha^{2}+\beta^{2}}{\frac{\alpha \beta^{2}}{2 q}+\frac{\beta^{4}}{3 q}+\left(\alpha+\frac{\beta^{2}}{2}\right)\left(\alpha+\frac{q-1}{q} \beta^{2}\right)-\frac{p \beta}{q}\left(\alpha+\frac{\beta^{2}}{2}\right)^{\frac{3}{2}}}}, \\
b(r, t)=\frac{\frac{p}{q} \alpha\left(\alpha+\frac{\beta^{2}}{2}\right)^{\frac{3}{2}}-\frac{p}{q}\left(\alpha^{2}+\beta^{2}\right)+\frac{1-q}{q} \beta \alpha^{2}+\frac{\alpha \beta^{3}}{6 q}-\frac{\beta^{3} \alpha}{2}+\frac{\beta^{3}}{2 q}+\frac{\beta^{3}}{2}+\alpha \beta}{\sqrt{\alpha^{2}+\beta^{2}} \sqrt{\frac{\alpha \beta^{2}}{2 q}+\frac{\beta^{4}}{3 q}+\left(\alpha+\frac{\beta^{2}}{2}\right)\left(\alpha+\frac{(q-1)}{q} \beta^{2}\right)-\frac{p \beta}{q}\left(\alpha+\frac{\beta^{2}}{2}\right)^{\frac{3}{2}}}},
\end{gathered}
$$

with

$$
\begin{aligned}
& r \cos (t)=\alpha \sqrt{\frac{\frac{\alpha \beta^{2}}{2 q}+\frac{\beta^{4}}{3 q}+\left(\alpha+\frac{\beta^{2}}{2}\right)\left(\alpha+\frac{q-1}{q} \beta^{2}\right)-\frac{p \beta}{q}\left(\alpha+\frac{\beta^{2}}{2}\right)^{\frac{3}{2}}}{\alpha^{2}+\beta^{2}}}, \\
& r \sin (t)=-\beta \sqrt{\frac{\frac{\alpha^{2}}{2 q}+\frac{\beta^{4}}{3 q}+\left(\alpha+\frac{\beta^{2}}{2}\right)\left(\alpha+\frac{q-1}{q} \beta^{2}\right)-\frac{p \beta}{q}\left(\alpha+\frac{\beta^{2}}{2}\right)^{\frac{3}{2}}}{\alpha^{2}+\beta^{2}}} .
\end{aligned}
$$

For $\alpha<-\frac{\beta^{2}}{2}$ we get

$$
\begin{gathered}
a(r, t)=\sqrt{\frac{\alpha^{2}+\beta^{2}}{\frac{\alpha \beta^{2}}{2 q}+\frac{\beta^{4}}{3 q}-\left(\alpha+\frac{\beta^{2}}{2}\right)\left(\frac{\alpha z}{q}+\frac{(z+1) \beta^{2}}{q}\right)-\frac{w \beta}{q}\left(-\alpha-\frac{\beta^{2}}{2}\right)^{\frac{3}{2}}}}, \\
b(r, t)=\frac{\frac{w}{q} \alpha\left(-\alpha-\frac{\beta^{2}}{2}\right)^{\frac{3}{2}}+\frac{p}{q}\left(-\alpha^{2}-\beta^{2}\right)+\left(\frac{z+1}{q} \alpha \beta-\frac{z \beta}{q}\right)\left(\alpha+\frac{\beta^{2}}{2}\right)-\frac{\alpha \beta^{3}}{3 q}+\frac{\beta^{3}}{2 q}}{\sqrt{\alpha^{2}+\beta^{2}} \sqrt{\frac{\alpha \beta^{2}}{2 q}+\frac{\beta^{4}}{3 q}-\left(\alpha+\frac{\beta^{2}}{2}\right)\left(\frac{\alpha z}{q}+\frac{(z+1) \beta^{2}}{q}\right)-\frac{w \beta}{q}\left(-\alpha-\frac{\beta^{2}}{2}\right)^{\frac{3}{2}}}},
\end{gathered}
$$

with

$$
\begin{aligned}
& r \cos (t)=\alpha \sqrt{\frac{\frac{\alpha \beta^{2}}{2 q}+\frac{\beta^{4}}{3 q}-\left(\alpha+\frac{\beta^{2}}{2}\right)\left(\frac{\alpha z}{q}+\frac{(z+1) \beta^{2}}{q}\right)-\frac{w \beta}{q}\left(-\alpha-\frac{\beta^{2}}{2}\right)^{\frac{3}{2}}}{\alpha^{2}+\beta^{2}}}, \\
& r \sin (t)=-\beta \sqrt{\frac{\frac{\alpha \beta^{2}}{2 q}+\frac{\beta^{4}}{3 q}-\left(\alpha+\frac{\beta^{2}}{2}\right)\left(\frac{\alpha z}{q}+\frac{(z+1) \beta^{2}}{q}\right)-\frac{w \beta}{q}\left(-\alpha-\frac{\beta^{2}}{2}\right)^{\frac{3}{2}}}{\alpha^{2}+\beta^{2}}} .
\end{aligned}
$$

The quasifields $Q_{w, z, p, q}$ coordinatize a family of planes $\mathcal{A}_{w, z, p, q}$ such that the parameters w, z, p, q satisfy $(3 w)^{2} \leq-16 z(z+1),(3 p)^{2} \leq 16 q(q-1), q>0$, $z<0$ and $(w, z, p, q) \neq\left(0,-\frac{1}{3}, 0,3\right)$.
The multiplicative loops $Q_{w, z, p, q}^{*}$ of the quasifields $Q_{w, z, p, q}$ are not decomposable and quasi-simple. The left translations of $Q_{w, z, p, q}^{*} c o r r e s p o n d i n g ~ t o ~$ the kernel of $Q_{w, z, p, q}$ have the form $\left(\begin{array}{cc}r & 0 \\ 0 & r\end{array}\right), 0 \neq r \in \mathbb{R}$, if and only if $w=p=0, q=-z=1$.

Proof. By Satz 5 in [6], the planes $\mathcal{A}_{w, z, p, q}$ are determined by the normalized spreads which have the form

$$
\begin{aligned}
& \{S\} \cup\left\{\left(\begin{array}{cc}
\alpha & \frac{-p}{q} \alpha+\frac{p}{q}\left(\alpha+\frac{\beta^{2}}{2}\right)^{\frac{3}{2}}+\frac{(1-q)}{q} \beta\left(\alpha+\frac{\beta^{2}}{2}\right)-\frac{\beta^{3}}{3 q} \\
\beta & \frac{-p}{q} \beta+\frac{\beta^{2}}{2 q}+\left(\alpha+\frac{\beta^{2}}{2}\right)
\end{array}\right), \beta \in \mathbb{R}, \alpha \geq-\frac{\beta^{2}}{2}\right\} \cup \\
& \left\{\left(\begin{array}{cc}
\alpha & \frac{-p}{q} \alpha+\frac{w}{q}\left(-\alpha-\frac{\beta^{2}}{2}\right)^{\frac{3}{2}}+\frac{(z+1)}{}\left(\alpha+\frac{\beta^{2}}{2}\right)-\frac{\beta^{3}}{3 q} \\
\beta & \frac{-p}{q} \beta+\frac{\beta^{2}}{2 q}-\frac{z}{q}\left(\alpha+\frac{\beta^{2}}{2}\right)
\end{array}\right), \beta \in \mathbb{R}, \alpha<-\frac{\beta^{2}}{2}\right\} .
\end{aligned}
$$

These spreads coincide with the image of the section σ in (2) such that the well defined functions $a(r, t)$ and $b(r, t)$ are given in the assertion. One gets that $a(r, 0)=1$ and $a(r, \pi)=\sqrt{\frac{-q}{z}}$ for all $r>0$.

For $\beta>2$ we obtain

$$
a\left(r, \frac{\pi}{4}+\pi\right)=\frac{\sqrt{2} \beta}{\sqrt{\frac{\beta^{4}}{3 q}-\frac{\beta^{3}}{2 q}-\frac{w}{q} \beta\left(\beta-\frac{\beta^{2}}{2}\right)^{\frac{3}{2}}+\left(\beta-\frac{\beta^{2}}{2}\right)\left(\frac{z+1}{q} \beta^{2}-\frac{\beta z}{q}\right)}} .
$$

The loop $Q_{w, z, p, q}^{*}$ is not decomposable since we have a contradiction to the condition $a\left(r, \frac{\pi}{4}+k \pi\right)=a\left(1, \frac{\pi}{4}\right) a(r, k \pi), r>0, k \in\{0,1\}$ (cf. Proposition 11). Hence $Q_{w, z, p, q}^{*}$ is quasi-simple (cf. Theorem 12). As $a(r, k \pi)=1$ and $b(r, k \pi)=0, r>0, k \in\{0,1\}$ holds precisely if $w=p=0, q=-z=1$ the last assertion follows.

Proposition 20. Let Q be a 2-dimensional quasifield coordinatizing a 4dimensional locally compact translation plane \mathcal{A} such that the translation complement C of the 7-dimensional collineation group \mathcal{A} fixes two distinct lines $\{S, W\}$ through the origin and leaves on S one or two 1-dimensional subspaces invariant. Then the multiplicative loop Q^{*} can be given by one of the following sets $\Lambda_{Q^{*}}$ of the left translations of Q^{*} having the form (20):
a)

$$
a(r, 0)=r^{\frac{1-w}{1+w}}, \quad b(r, 0)=c\left(r^{\frac{w-1}{w+1}}-r^{\frac{1-w}{1+w}}\right),
$$

with $r=s^{\frac{w+1}{2}}, s>0, t=-\varphi$, where s and φ are variables of the spreads (28). The quasifields $Q_{w, c}$ coordinatize a family of planes $\mathcal{A}_{w, c}$ such that for the parameters $w \neq 1, c$ one has $0<w$ and $(w-1)^{2} c^{2} \leq 4 w$.
b)

$$
a(r, 0)=1, \quad b(r, 0)=\frac{\ln r}{d}
$$

with $r=e^{s}, t=-\varphi$, where s and φ are variables of the spreads (29). The quasifields Q_{d} coordinatize a one-parameter family of planes \mathcal{A}_{d} such that $4 d^{2} \geq 1$.
In both cases Q^{*} is decomposable and contains the group $\mathrm{SO}_{2}(\mathbb{R})$.
Proof. If the group C fixes two 1-dimensional subspaces of S, respectively only one 1-dimensional subspace of S, then one obtains a family of translation planes corresponding to the normalized spreads

$$
\{S, W\} \cup\left\{\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \tag{28}\\
\sin \varphi & \cos \varphi
\end{array}\right)\left(\begin{array}{cc}
s & c\left(s^{w}-s\right) \\
0 & s^{w}
\end{array}\right), s, \varphi \in \mathbb{R}, s>0\right\}
$$

(cf. [7], Satz 1 and [9], p. 15), respectively

$$
\{S, W\} \cup\left\{\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \tag{29}\\
\sin \varphi & \cos \varphi
\end{array}\right)\left(\begin{array}{cc}
e^{s} & e^{s} \frac{s}{d} \\
0 & e^{s}
\end{array}\right), s, \varphi \in \mathbb{R}\right\}
$$

(cf. [7], Satz 2 and [9], p. 15). In both cases these spreads coincide with the set $\Lambda=\mathrm{SO}_{2}(\mathbb{R}) \mathcal{K}$ given in (20) such that the set \mathcal{K} corresponding to the kernel K_{r} of Q is determined by the functions $a(r, 0), b(r, 0)$ as in assertion a), respectively b).

Remark 21. In [2] D. Betten constructed 4-dimensional locally compact non-desarguesian planes \mathcal{A}_{f} corresponding to continuous, non-linear, strictly monotone functions f defined for $0 \leq u \in \mathbb{R}$ with $f(0)=0$ and $\lim _{u \rightarrow \infty} f(u)=$ ∞. The planes \mathcal{A}_{f} are determined by the normalized spreads

$$
\left\{\left(\begin{array}{cc}
u \cos \varphi & -\frac{f(u) \sin \varphi}{f(1)} \\
u \sin \varphi & \frac{f(u) \cos \varphi}{f(1)}
\end{array}\right), u>0, \varphi \in[0,2 \pi)\right\} .
$$

These spreads coincide with the set $\Lambda=\mathrm{SO}_{2}(\mathbb{R}) \mathcal{K}$ given in (20) such that the set \mathcal{K} corresponding to the kernel K_{r} of the quasifield Q_{f} coordinatizing \mathcal{A}_{f} is determined by the functions $a(r, 0)=\sqrt{\frac{u f(1)}{f(u)}}, b(r, 0)=0$ with $r=\sqrt{\frac{u f(u)}{f(1)}}$, $t=-\varphi, u \neq 0$. For $f(u)=f(1) u^{w}$ these planes are planes in Proposition 20 a) with $c=0$ and $a(r, 0)=r^{\frac{1-w}{1+w}}$. Otherwise the full collineation group of the planes \mathcal{A}_{f} has dimension 6.

Proposition 22. Let Q be a 2-dimensional quasifield coordinatizing a 4dimensional locally compact translation plane \mathcal{A} such that the translation
complement C of the 7 -dimensional collineation group of \mathcal{A} fixes two distinct lines $\{S, W\}$ through the origin and acts transitively on the spaces P_{S} and P_{W} of all 1-dimensional subspaces of S, respectively W. Then the multiplicative loop Q^{*} of Q can be given by one of the following sets $\Lambda_{Q^{*}}$ of the left translations of Q^{*} :
a) $\Lambda_{Q^{*}}$ is the range of the section (2) with

$$
\begin{gathered}
a(r, u)=\sqrt{\frac{d D}{d e^{2(q t-p s)}+d e^{2 q \pi}+e^{q t-p s+q \pi}\left(2 d \cos s \cos t+\left(c^{2}+1+d^{2}\right) \sin s \sin t\right)}}, \\
b(r, u)=\frac{e^{2(q t-p s)}\left[\left(-c^{2}-1+d^{2}\right) \cos t \sin t-c\left(c^{2}+1+d^{2}\right) \sin ^{2} t\right]}{\sqrt{d D\left[d\left(e^{2(q t-p s)}+e^{2 q \pi}\right)+e^{q t-p s+q \pi}\left(2 d \cos s \cos t+\left(d^{2}+c^{2}+1\right) \sin s \sin t\right)\right]}}+ \\
+\frac{e^{q t-p s+q \pi}(\cos s \cos t+d \sin s \sin t+c \cos s \sin t)}{\sqrt{d D\left[d\left(e^{2(q t-p s)}+e^{2 q \pi}\right)+e^{q t-p s+q \pi}\left(2 d \cos s \cos t+\left(d^{2}+c^{2}+1\right) \sin s \sin t\right)\right]}}
\end{gathered}
$$

such that

$$
\begin{gathered}
r \cos u=\frac{e^{q t-p s}(\cos s \cos t+c \sin t \cos s+d \sin t \sin s)+e^{q \pi}}{1+e^{q \pi}} a^{-1}(r, u) \\
r \sin u=-\frac{e^{q t-p s}(d \cos s \sin t-\sin s \cos t-c \sin s \sin t)}{1+e^{q \pi}} a^{-1}(r, u), \\
D=e^{2(q t-p s)}\left((\cos t+c \sin t)^{2}+d^{2} \sin ^{2} t\right)+e^{2 q \pi}+2 e^{q t-p s+q \pi}(\cos s \cos t+c \cos s \sin t+d \sin s \sin t)
\end{gathered}
$$

The quasifields $Q_{p, q, c, d}$ coordinatize a family of planes $\mathcal{A}_{p, q, c, d}$ such that the parameters p, q, c, d satisfy the conditions

$$
\begin{gathered}
p=q>0 \\
q>0, p=\frac{k-1}{k+1} q, k=1,2,3, \cdots \quad \begin{array}{c}
\text { and } \quad-1 \leq d<0 \\
\text { and } \quad d>0
\end{array} \\
-(q+p)^{2} A+(q-p)^{2} B-4 A B \geq 0, \text { where } A=\frac{(d-1)^{2}+c^{2}}{4 d} \text { and } B=\frac{(d+1)^{2}+c^{2}}{4 d}
\end{gathered}
$$

The multiplicative loops Q^{*} of the quasifields $Q_{p, q, c, d}$ are not decomposable and quasi-simple.
b) $\Lambda_{Q^{*}}$ has the form (15) with

$$
a(1, u)=\sqrt{(\cos n t+c \sin n t)^{2}+d^{2} \sin ^{2} n t}, \quad b(1, u)=\frac{\sin n t \cos n t\left(d^{2}-1-c^{2}\right)-c \sin ^{2} n t\left(d^{2}+1+c^{2}\right)}{d \sqrt{(\cos n t+c \sin n t)^{2}+d^{2} \sin ^{2} n t}}
$$

such that
$r \cos u=\frac{s(\cos n t \cos m t+c \sin n t \cos m t+d \sin n t \sin m t)}{\sqrt{(\cos n t+c \sin n t)^{2}+d^{2} \sin ^{2} n t}}, r \sin u=\frac{s(d \sin n t \cos m t-\cos n t \sin m t-c \sin n t \sin m t)}{\sqrt{(\cos n t+c \sin n t)^{2}+d^{2} \sin ^{2} n t}}$
and $s \geq 0$.
The quasifields $Q_{m, n, c, d}$ coordinatize a family of planes $\mathcal{A}_{m, n, c, d}$ such that the parameters $m, n \in \mathbb{Z},(m, n)=1, c, d \in \mathbb{R}$ satisfy the conditions

$$
\left.\begin{array}{c}
m=n=1 \\
m=1,2,3, \cdots \\
m=1,3,5, \cdots
\end{array} \begin{array}{l}
n=m+1 \quad \begin{array}{l}
\text { and }-1 \leq d<0 \\
\text { and } d>0
\end{array} \\
(n=m+2 \quad \text { and } d>0
\end{array}\right] \begin{aligned}
& \\
& (n-m)^{2} B \geq(n+m)^{2} A, \text { where } A=\frac{(d-1)^{2}+c^{2}}{4 d} \text { and } B=\frac{(d+1)^{2}+c^{2}}{4 d} .
\end{aligned}
$$

The loops $Q_{m, n, c, d}^{*}$ are split extensions of the normal subgroup $\widetilde{N^{*}} \cong \mathbb{R}$ corresponding to the connected component of $\left\{\left(\begin{array}{cc}u & 0 \\ 0 & u\end{array}\right), 0 \neq u \in \mathbb{R}\right\}$ with a subloop homeomorphic to the 1-sphere.

Proof. If the translation complement C acts transitively on the product space $P_{S} \times P_{w}$, then there is a family of translation planes corresponding to the normalized spreads

$$
\{S, W\} \cup\left\{\left(\begin{array}{cc}
\frac{\alpha(s, t)+e^{q \pi}}{1+(q \pi} & \frac{\gamma(s, t)-c \alpha(s, t)}{(1+e q s)} \\
\frac{\beta(s, t)}{1+e^{q \pi}} & \frac{\delta(s, t)-c \beta(s, t)+d e^{q \pi}}{d\left(1+e^{q \pi}\right)}
\end{array}\right), s, t \in \mathbb{R}\right\}
$$

such that $\alpha(s, t)=e^{q t-p s}(\cos s \cos t+c \sin t \cos s+d \sin t \sin s)$,
$\beta(s, t)=e^{q t-p s}(d \cos s \sin t-\sin s \cos t-c \sin s \sin t)$,
$\gamma(s, t)=e^{q t-p s}(d \cos t \sin s-\sin t \cos s+c \cos t \cos s)$,
$\delta(s, t)=e^{q t-p s}(d \cos t \cos s+\sin t \sin s-c \cos t \sin s)$ (cf. [7], Satz 3, pp. 135-136). These spreads coincide with the image of the section σ in (2) with the well defined functions $a(r, u)$ and $b(r, u)$ as in assertion a). For $s=0$ we get a contradiction to the condition $a\left(r_{j}, u_{j}\right)=a\left(r_{j}, 0\right) a\left(1, u_{j}\right)$ which must hold for decomposable Q^{*}. It follows that Q^{*} is not decomposable and hence quasi-simple (cf. Theorem 12).
If the translation complement C does not act transitively on the product space $P_{S} \times P_{W}$, then there is a family of translation planes which correspond to the normalized spreads

$$
\{S, W\} \cup\left\{\left(\begin{array}{cc}
s & 0 \\
0 & s
\end{array}\right)\left(\begin{array}{ll}
a_{11}(t) & -\frac{c}{d} a_{11}(t)+\frac{1}{d} a_{21}(t) \\
a_{12}(t) & -\frac{c}{d} a_{12}(t)+\frac{1}{d} a_{22}(t)
\end{array}\right), s \geq 0, t \in \mathbb{R}\right\}
$$

with $a_{11}(t)=\cos n t \cos m t+c \sin n t \cos m t+d \sin n t \sin m t$,
$a_{12}(t)=d \sin n t \cos m t-\cos n t \sin m t-c \sin n t \sin m t$,
$a_{21}(t)=d \cos n t \sin m t-\sin n t \cos m t+c \cos n t \sin m t$,
$a_{22}(t)=d \cos n t \cos m t+\sin n t \sin m t-c \cos n t \sin m t$ (cf. [7], Satz 4, pp. 142-144). These spreads coincide with the set $\Lambda_{Q^{*}}$ in (15) such that the periodic functions $a(1, t)$ and $b(1, t)$ are given in assertion b$)$. As in the proof of Proposition 16 a) it follows that the loop $Q_{m, n, c, d}^{*}$ is a split extension as in the assertion.

Corollary 23. Let \mathcal{A} be a 4-dimensional locally compact non-desarguesian topological plane which admits an at least 7-dimensional collineation group Γ. If the quasifield Q coordinatizing \mathcal{A} is constructed with respect to two lines such that their intersection points with the line at infinity are contained in the 1-dimensional orbit of Γ or contain the set of the fixed points of Γ, then for the multiplicative loop Q^{*} of Q one of the following holds:
a) Q^{*} is quasi-simple and not decomposable. Such quasifields Q are described by Propositions 16 b), 16 c), 17), 18), 19) and in Proposition 22 a).
b) Q^{*} is quasi-simple but decomposable and it is a product $S O_{2}(\mathbb{R}) B$, where B is a 1-dimensional loop homeomorphic to \mathbb{R}. The quasifields Q of this type
are described in Proposition 20.
c) Q^{*} is a split extension of the group $\widetilde{N^{*}} \cong \mathbb{R}$ with a loop homeomorphic to the 1-sphere. The quasifields of this type are described in Propositions 16 a) and $22 b$).

Proof. A locally compact topological quasifield coordinatizing the translation plane \mathcal{A} and constructed with respect to two lines satifying the assumptions is isotopic to a quasifield given in Betten's classification (cf. [11], p. 321, [3] Satz 5). For isotopic loops Q_{1}^{*} and Q_{2}^{*} the following holds: The group generated by their left translations, every subgroup and all nuclei of them are isomorphic (cf. [14], Lemmata 1.9, 1.10, p. 20). From these facts we get: If Q_{1} is quasisimple and not decomposable, then also Q_{2} is quasisimple and not decomposable. If Q_{1} contains the subgroup $\mathrm{SO}_{2}(\mathbb{R})$, then also Q_{2} contains the group $S O_{2}(\mathbb{R})$. If Q_{1} is a split extension of $\widetilde{N^{*}}$ with a 1-dimensional compact loop, then the same holds for Q_{2}.

Acknowledgement. This paper was supported by the János Bolyai Research Fellowship and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreements no. 317721, no. 318202.

References

[1] André, J. Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z. 60:156-186.
[2] Betten, D. Nicht-desarguessche 4-dimensionale Ebenen. Arch. Math. 21:100-102.
[3] Betten, D. 4-dimensionale Translationsebenen. Math. Z. 128:129-151.
[4] Betten, D. 4-dimensionale Translationsebenen mit 8-dimensionaler Kollineationsgruppe. Geom. Ded. 2:327-339.
[5] Betten, D. 4-dimensionale Translationsebenen mit irreduzibler Kollineationsgruppe. Arch. Math. 24:552-560. Math. Z. 132:249-259.
[6] Betten, D. 4-dimensionale Translationsebenen mit genau einer Fixrichtung. Deom. Ded. 3:405-440.
[7] Betten, D. 4-dimensionale Translationsebenen mit 7-dimensionaler Kollineationsgruppe. J. Reine Angew. Math. 285:126-148.
[8] Betten, D. 4-dimensionale Translationsebenen mit kommutativer Standgruppe. Math. Z. 154:125-141.
[9] Betten, D. (1997) On the classification of 4-Dimensional Flexible Projective Planes. In: Johnson, N. L., ed. Mostly finite geometries. Decker, pp. 9-33.
[10] Figula, Á., Strambach, K. Loops on spheres having a compact-free inner mapping group. Monatsh. Math. 156:123-140.
[11] Grundhöfer, T., Salzmann, H. H. (1990). Locally compact double loops and ternary fields. In: Chein, O., et al., ed. Quasigroups and Loops: Theory and Applications. Heldermann, pp. 313-355.
[12] Hughes, D. R., Piper, F. C. (1973). Projective Planes. Springer.
[13] Knarr, N. (1995). Translation Planes. Springer.
[14] Nagy, P. T., Strambach, K. (2002). Loops in group theory and Lie theory. Walter de Gruyter.
[15] Ortleb, S. A new family of locally compact 4-dimensional translation planes admitting a 7-dimensional collineation group. Adv. Geom. 9:112.
[16] Pickert, G. (1955) Projektive Ebenen. Springer.
[17] Plaumann, P., Strambach, K. Zweidimensionale Quasialgebren mit Nullteilern. Aequationes Math. 15:249-264.
[18] Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R., Stroppel, M. (1995). Compact projective planes. Walter de Gruyter.
[19] Walter, W. (1970). Differential and Integral Inequalities. Springer.

